

February 2010

Master’s Degree Thesis

Obstacle Avoidance for Autonomous

Navigation based on Context

Awareness

Autonomous Navigation for a Mobile Robot Avoiding

Obstacles Based on Context Awareness

Graduate School of Chosun University

Department of Information and Communication

Engineering

Muhammad Tahir Rasheed

[UCI]I804:24011-200000239176

Obstacle Avoidance for Autonomous

Navigation based on Context

Awareness

Autonomous Navigation for a Mobile Robot Avoiding

Obstacles Based on Context Awareness

February 25, 2010

Graduate School of Chosun University

Department of Information and Communication

Engineering

Muhammad Tahir Rasheed

Obstacle Avoidance for Autonomous

Navigation based on Context

Awareness

Advisor: Prof. Lee Joon, Ph.D.

This thesis is submitted to Chosun University in partial
fulfillment of the requirements for a Master’s Degree

October 2009

Graduate School of Chosun University

Department of Information and Communication

Engineering

Muhammad Tahir Rasheed

Muhammad Tahir Rasheed’s

Master’s Degree Thesis Approval

Committee Head ()

Committee Member ()

Committee Member ()

November 2009

Graduate School of Chosun University

Contents
 Abstract

1. Introduction ..1

1.1 Motivation ..1

1.2 Current work...2

1.3 Thesis Overview ...3

2. Obstacle Avoidance and Context Awareness ...4

2.1 Obstacle Avoidance ..4

2.2 Context Awareness ...7

2.3 Ubiquitous Computing ..9

2.4 Activity recognition ..10

2.5 Challenges in Context-Aware Computing ...11

2.6 Motivation to the Proposed Obstacle Avoidance Algorithm.........................14

3. Obstacle avoidance and autonomous navigation ..16

3.1 Global and Local Obstacle Avoidance...16

3.2 Algorithm for autonomous navigation ...17

3.3 Algorithm for panning scan by sensors for course driving20

4. Moving obstacle avoidance using LRF sensor ...23

4.1 Obstacle Detection..23

4.1.1 Obstacle Identification ...23

4.1.2 Segmentation ...24

4.1.3 Circularization ...24

4.1.4 Estimation of future collision ...26

4.2 Algorithm for Collision Avoidance..27

4.2.1 Obstacle's direction conversion and distance measured from the LRF

sensor’s center to the robot’s center ..28

4.2.2 Determination of moving direction ..29

4.2.3 Velocity and angular velocity determination for obstacle avoidance......32

5. Test Results and Implementation ..34

5.1 Panning scan System of Sensors..37

5.2 Implementation of Autonomous Navigation System using autonomous

navigation algorithm...38

6. Conclusion..43

References ...44

List of Tables and Figures

Figures

Figure 3.1 Boy Scout orienteering problem.

Figure 3.2 Coordinates of the sensors and the obstacle

Figure 3.3 Coordinates of sensor and obstacle

Figure 4.1 Segmentation

Figure 4.2 Concept of Kalman Filter algorithm.

Figure 4.3 The collision estimation with the robot and a moving obstacle.

Figure 4.4 Acquiring the avoidance point of the robot.

Figure 4.5 Translation from the sensor coordinator to the robot coordinator

Figure 4.6 case1 : 0 < θobs,min <

Figure 4.7 Case2 : π/2 < θobs,min < π

Figure 5.1 Autonomous navigation robot system

Figure 5.2 Panning scan of sensor

Figure 5.3 Testing map for autonomous navigation

Figure 5.4 Test result of starting at left A (75, 0)

Figure 5.5 Test result of Starting at center B (128, 0)

Figure 5.6 Test Result of starting at right C (155, 0)

Tables

Table 5.1 Specifications of control system

Table 5.2 Test results of obstacle avoidance algorithm

Abstract

Obstacle Avoidance for Autonomous Navigation based on

Context Awareness

 Muhammad Tahir Rasheed

 수:

 정보통신공학과

 조선 학 반 학원

주행 에 한 연 는 간 세상에서 꿈꾸 터

시 었고 끊 없 연 고 다. 란 공적 간 라고 할

수 겠다. 런 에 성 여하고 스스 애물 피하 서

동경 를 설정 란 쉬 아니다.

본 연 논문 상 식 반에서 주행 한 상 식 반

알고리 보여주고 어 한 애물 피 할 수

어 다. 본 정 한 물체 는 물체를 다 고 해

어 다. 애물 피하 해서 본적 퍼 시스템

하 고 애물 감 를 해서는 적 선 센서를 스텝 터 에

패닝 스캔 방법 사 하 다. 동 물체에 한 감 는 심체를

심 원 그 반경 하고 패닝 스캔 하여 감 하 다.

그리고 는 동체 거리 및 치 반경 측하 해서 칼만

필터를 사 하 다. 실험 해서는 간단한 시뮬 션과 실

가 고 테스트 하 다. 많 애물들 었 만 거 벽하게 피

하 다. 동 물체에 한 계산 량 많아 치 식 및 동 경 에

한 문제가 었 만 곧 해결 것 다.

Abstract

Obstacle Avoidance for Autonomous Navigation based on

Context Awareness

Muhammad Tahir Rasheed

Advisor: Prof. Lee Joon, Ph.D.

Department of Information and

Communication Engineering,

Graduate school of Chosun University

In this paper algorithm for obstacle avoidance in autonomous robot is proposed based

on context awareness. The main object is to navigate the autonomous robot to the

desired destination while detecting and avoiding any possible obstacles. A model theory

of autonomous mechanism of robot navigation is showed. We have considered both

stationary and moving obstacles. The stationary obstacles avoidance mechanism is

based on fuzzy systems and infrared sensors mounted on step motors are used to detect

the obstacles. The proposed algorithm detects the position and size of the obstacle and

helps the robot to decide the movement action. For moving obstacles we consider the

moving obstacle as a moving circle thus finding the center and radius of the circle

becomes the primary concern. This is carried out by circularization. The velocity and

position of the moving obstacle is estimated by using Kalman filter for future collision

estimation. The collision is avoided by determining the angular velocity and direction of

the moving obstacle. The test results show the navigation procedure and the action

taken by the robot in certain situations.

Many other obstacle avoidance architectures are proposed consisting of resource,

behavior, and controller with object-oriented approach structures showing good

performance but their heavy calculation method makes it difficult to perform in real-

time control. But in this paper, algorithms using geometrical methods have been

introduced to ensure simple avoids with less computation aimed to improve real-time

abilities. Moreover, the application of Kalman Filter led to the minimization of sensor

and system errors.

1

1. Introduction

1.1 Motivation

The present day requirement for ever-increasing reliability is now more important than

ever before and continues to grow constantly. Advances are continually being made in

engineering. This means that the detection, location and analysis of faults play a vital

role. The need to have efficiency and safety in the design and development of

Automated Guided Vehicle (AGV) leads to the development of diagnostic strategies

that could cover the major potential faults of the automated vehicle guidance. Following

several decades of intense research in automated vehicle guidance, we are now

witnessing market introduction of driver assistance functions into standard passenger

cars. Most of these functions are based on inertial sensors, i.e. sensors measuring the

status of the vehicle itself. A hi-tech product like a robot needs a sophisticated system

for analyzing the failures, storing the related information in an integrated repository and

retrieving the same via standard user-friendly interface.

The main focus of this thesis is on the sensor concept developed for the autonomous

system of our robot and on the realization thereof. Reliable detection and tracking of

obstacles is a crucial issue for automated vehicle guidance functions.

With the advancement of technologies, the human desire pursuing convenience and

wealth brought up the development of industrial robots resulting in productivity

improvement and entertainment robots for providing human pleasure in their everyday

life. Furthermore, with the appearance of service robots for handicapped people and

2

welfare robots for elderly people, humans are now foreseeing the coexistence of humans

and robots in daily environment.

As the human's expectation for robot grows, the hardware of robots becomes

complicated and more diverse sensors are used. Most of all, the system integration of

various software as well as hardware becomes more important. For this purpose, an

architecture that allows an easy integration of diverse software is demanded.

It is difficult for existing control architectures to satisfy the current performance

requirements, and therefore it is necessary to introduce new concept control architecture

to satisfy the various functions required.

 1.2 Current work

Lindstrom [6] introduced a reactive architecture named "BERRA" that consists of

resource, behavior, and controller. Their structure uses an object-oriented approach and

therefore shows good performance in reusability and flexibility. However, it

underperforms in real-time control. The robot control mode of the hybrid architecture

suggested by Hans and Baum [3] through Care-O-bot consists of environment

perception, skill, and trajectory components of interpreter. Though it uses a real-time

operation system like real-time framework Vxworks, the data flow has unclearness and

lacks of guaranteeing real-time characteristics when programming the software. Low

and Ang [7] locate the components of target reaching, obstacle avoidance, homeostatic

control and command fusion in reactive module. This module is similar with the

subsumption architecture of Brooks [2].

Though it shows good performance in obstacle avoidance in a dynamic environment,

the implementation of the behavior to achieve various tasks is difficult and calculation

burden is heavy. As stated, the recent researches on control architecture are neither to

3

realize the character of reactive layer nor enough to consider for real-time

implementation of robot [1, 4].

This paper presents an overall description of the Real-Time Control Architecture for

autonomous mobile robots and an obstacle avoidance algorithm using geometric

calculations.

1.3 Thesis Overview

This thesis is organized into 6 chapters. Chapter 1 is the introduction of the motivation

and objective of the thesis. Chapter 2 describes the overview of obstacle avoidance and

context awareness and its relation to our research. Chapter 3 presents the idea and

algorithm for stationary obstacle avoidance and autonomous navigation. Chapter 4

shows our future work on moving obstacle avoidance along with the algorithm

proposed for it. Chapter 5 presents the test and experiments with the simulation results

of the stationary obstacle avoidance algorithm. And finally Chapter 6 shows the

conclusion of the thesis with recommendations for future work and areas for further

development.

4

2. Obstacle Avoidance and Context Awareness

2.1 Obstacle Avoidance

Recently, many researches turned their attention to obstacle avoidance problem

developing interesting real-time approaches for narrow and cluttered spaces. However,

there are some classic obstacle avoidance methods that must be cited [18]. The first one,

edge detection, is a very popular method that extracts the obstacle vertical edges and

drives the robot around either one of the visible edges. This approach was early

commonly combined with ultrasonic sensors. Due to the limited accuracy of the sensor,

the approach presented some shortcomings: poor directionality, frequent misreading,

and specular reflections. On the other hand, Moravec and Elfes [19] pioneered the

concept of certainty grid, a map representation that is well suited for sensor data

accumulation and fusion. Certainty grid is an obstacle probabilistic representation

method that uses a grid-type world model. The robot’s work area is modeled as a 2-D

array of square elements, called cells. Each ABCM Symposium Series has a certainty

value (CV) that indicates the measure of confidence that an obstacle is within the cell

area [20]. The CV is a probability function that depends on the sensor characteristics. As

each cell has its CV updated constantly by the sensor readings, after a period moving

across an area, the robot has a fairly accurate map of that area. The method accuracy is a

function of the cell size and may be considered as its drawback as well. The third

method, potential field method is based on the idea that obstacles exert imaginary

repulsive forces, while the goal position applies an imaginary attractive force to the

robot. The resultant robot behavior is obtained summing all attractive and repulsive

forces.

5

The potential field method was later improved by Koren and Borenstein integrating its

concept with the certainly grid concept. Based on the certainly grid data, a 2-D

Cartesian histogram grid (bar graph in which the area of each bar is proportional to the

frequency or relative frequency represented) is used to represent the probability of each

cell contained in an obstacle. After that, the potential field idea is applied to the

histogram grid in order to obtain a fast reflexive obstacle avoidance behavior. This new

method was named Virtual Force Field method (VFF). Nevertheless, after some

experiments, it was abandoned due to the method instability and inability to pass

through narrow passages like doors (local minima problem). Repulsive forces from both

sides of the doorway results on a force that pushes the robot away.

In the 1990s Koren and Borenstein developed the Vector Field Histogram (VFH)

approach and afterward, Ulrich and Borenstein made some incremental improvements

called VFH+ and VFH* approaches [21]. The VFH methods create a local certainly grid

map of the robot surround environment using sensor readings. Instead of a 2-D

Cartesian, a Polar histogram (α-P) is built based on the certainly grid map. One should

observe that α is the sensor angle and P is the probability that there is an obstacle in that

direction. A probability threshold value is used in order to determine which directions

may be considered as obstacle-free ones. Taking into account the robot’s size and shape

(configuration space), all obstacle-free directions are checked to verify if they are large

enough for the robot to pass through. A masked polar histogram where the obstacles are

enlarged is calculated. After that, the steering direction for the robot is chosen. In the

VFH+ improvement, the basic robot kinematics limitations were used to compute the

robot possible trajectories using arcs or straight lines. Finally, in 2000 the VFH*

improvement proposed the look-ahead verification. The method analyses each possible

6

direction provided by the VFH+ approach, checking their consequences concerning the

robot future positions. It projects the robot trajectory several steeps ahead, building a

search tree where the end nodes correspond to a total projected distance.

Simultaneously, another method based on the admissible robot velocities was proposed.

These methods are named Steer Angle Field Approaches. In 1997, the Dynamic

Window Approach (DWA) was developed by Fox, Burgard and Thrun. This approach

takes into account robot kinematics constraints in order to calculate all possible sets of

velocity vectors (v, ω) in the velocity space. One should observe that v and ω are the

robot translational and rotational velocities, respectively. Considering the robot possible

accelerations, the overall search velocity space is reduced to the dynamic window,

which contains only the velocities that can be reached within the next time interval. The

dynamic window is a rectangle centered on the robot present velocity and its vertex

positions depend on the accelerations that can be applied. The dynamic window has a

rectangular shape because it was assumed that the robot dynamic capabilities for

translation and rotation are independent. All velocity vectors outside the dynamic

window cannot be reached within the next time interval and thus should not be

considered for the obstacle avoidance. The motion direction is chosen by applying an

objective function to all admissible velocity vectors in the dynamic window. This

objective function depends on the robot velocity, the distance between the robot and the

closest obstacle, and the robot progress toward the goal position.

Brock and Khatib proposed a significant improvement to the dynamic window approach.

They added a global thinking to the DWA by using the grassfire technique for finding

routes in the certainly grid cells. Each cell is labeled with the distance to the robot’s

goal position (like a wave front expansion from the goal position outward). The desired

7

trajectory is obtained by linking adjacent cells that are closer to the robot’s goal position.

This procedure allows the robot to improve their performance by using some of the

advantages of global path planning without complete priori knowledge. This procedure

was named Global Dynamic Window Approach (GDWA).

2.2 Context Awareness

Information systems are about to enter a new era: the era of ubiquitous computing, or

the age of calm technology, which will result in an increasing use of personal wireless

devices and devices embedded in the environment.

Context awareness is the key feature to obstacle detection and avoidance. In order for a

robot to be smart, it has to be fully aware of the context.

Context awareness originated as a term from ubiquitous computing or as so-called

pervasive computing which sought to deal with linking changes in the environment with

computer systems, which are otherwise static. Although it originated as a computer

science term, it has also been applied to business theory in relation to business process

management issues [9].

In computer science it refers to the idea that computers can both sense, and react based

on their environment. Devices may have information about the circumstances under

which they are able to operate and based on rules, or an intelligent stimulus, react

accordingly. The term context-awareness in ubiquitous computing was introduced by

Schilit [10, 11]. Context aware devices may also try to make assumptions about the

user's current situation. Dey define context as "any information that can be used to

characterize the situation of an entity” [12].

While the computer science community has initially perceived the context as a matter of

user location, as Dey discussed in "Understanding and Using Context”, in the last few

years this notion has been considered not simply as a state, but part of a process in

which users are involved; thus, sophisticated and general context models have been

proposed to support context-aware applications which use them to (a) adapt interfaces,

(b) tailor the set of application-relevant data, (c) increase the precision of information

8

retrieval, (d) discover services, (e) make the user interaction implicit, or (f) build smart

environments. For example, a context aware mobile phone may know that it is currently

in the meeting room, and that the user has sat down. The phone may conclude that the

user is currently in a meeting and reject any unimportant calls [13].

Context aware systems are concerned with the acquisition of context (e.g. using sensors

to perceive a situation), the abstraction and understanding of context (e.g. matching a

perceived sensory stimulus to a context), and application behavior based on the

recognized context [14]. As the user's activity and location are crucial for many

applications, context awareness has been focused more deeply in the research fields of

location awareness and activity recognition.

Context awareness is regarded as an enabling technology for ubiquitous computing

systems. Context awareness is used to design innovative user interfaces, and is often

used as a part of ubiquitous and wearable computing. It is also beginning to be felt in

the internet with the advent of hybrid search engines. Schmidt, Beigl & Gellersen [15]

define human factors and physical environment as two important aspects relating to

computer science.

Human factors related context is structured into three categories: information on the

user (knowledge of habits, emotional state, biophysiological conditions, and so on), the

user’s social environment (co-location of others, social interaction, group dynamics, and

so on), and the user’s tasks (spontaneous activity, engaged tasks, general goals, and so

on). Likewise, context related to physical environment is structured into three

categories: location (absolute position, relative position, co-location, and so on),

infrastructure (surrounding resources for computation, communication, task

performance, and so on), and physical conditions (noise, light, pressure, and so on).

The motivation behind ubiquitous computing is the need for such applications to

understand the physical and social environment or context, in which they reside. This

typically includes the location, identity, activity and state of people, groups and objects.

Places such as buildings and rooms can be fitted with sensors that provide

measurements of physical variables such as temperature or lighting. The ability of

computing devices to detect, sense, interpret and respond to aspects of a user’s local

environment and the computing devices themselves are known as context-aware

9

computing. This has lead to the development of the concept of Context-Awareness,

which is now an emerging area of computing that involves computers' decisions based

on users’ environment.

Recently there has been an explosive expansion in mobile computing and an increasing

availability of low-cost sensors to detect elements of the user's current context. As a

result there has been an ever-increasing interest in context-aware applications. Like

many emerging technologies, context-awareness has attracted a wide spectrum of

claims as to its likely future impact.

Recent advances in computer technology are making the development of context aware

applications possible. In the near future, these are expected to replace traditional

monolithic computing applications which are often static and inflexible with contextual

dependencies embedded in them. The increasing complexity requirements of context

awareness make such traditional applications difficult to adapt.

Context-awareness becomes a fundamental enabling technology for Ubiquitous

Computing and is a key issue when creating computers that are invisible and disappear

in terms of the user’s perception. In these terms context-awareness goes beyond

providing context information, it also requires understanding context and ultimately

understanding situations.

2.3 Ubiquitous Computing

Ubiquitous computing (ubicomp) is a post-desktop model of human-computer

interaction in which information processing has been thoroughly integrated into

everyday objects and activities. In the course of ordinary activities, someone "using"

ubiquitous computing engages many computational devices and systems simultaneously,

and may not necessarily even be aware that they are doing so. This model is usually

considered advancement from the desktop paradigm.

This paradigm is also described as pervasive computing, ambient intelligence, or, more

recently, everyware [16]. When primarily concerning the objects involved, it is also

physical computing, the Internet of Things, haptic computing, and things that think.

10

Rather than proposing a single definition for ubiquitous computing and for these related

terms, taxonomy of properties for ubiquitous computing has been proposed, from which

different kinds or flavors of ubiquitous systems and applications can be described [17].

At their core, all models of ubiquitous computing share a vision of small, inexpensive,

robust networked processing devices, distributed at all scales throughout everyday life

and generally turned to distinctly common-place ends. For example, a domestic

ubiquitous computing environment might interconnect lighting and environmental

controls with personal biometric monitors woven into clothing so that illumination and

heating conditions in a room might be modulated, continuously and imperceptibly.

Another common scenario posits refrigerators "aware" of their suitably-tagged contents,

able to both plan a variety of menus from the food actually on hand, and warn users of

stale or spoiled food.

Ubiquitous computing presents challenges across computer science: in systems design

and engineering, in systems modeling, and in user interface design. Contemporary

human-computer interaction models, whether command-line, menu-driven, or GUI-

based, are inappropriate and inadequate to the ubiquitous case. This suggests that the

"natural" interaction paradigm appropriate to a fully robust ubiquitous computing has

yet to emerge - although there is also recognition in the field that in many ways we are

already living in an ubicomp world. Contemporary devices that lend some support to

this latter idea include mobile phones, digital audio players, radio-frequency

identification tags, GPS, and interactive whiteboards.

2.4 Activity recognition

Activity recognition aims to recognize the actions and goals of one or more agents from

a series of observations on the agents' actions and the environmental conditions. Since

the 1980s, this research field has captured the attention of several computer science

communities due to its strength in providing personalized support for many different

applications and its connection to many different fields of study such as medicine.

11

To understand activity recognition better, consider the following scenario. An elderly

man wakes up at dawn in his small studio apartment, where he stays alone. He lights the

stove to make a pot of tea, switches on the toaster oven, and takes some bread and jelly

from the cupboard.

After taking his morning medication, a computer-generated voice gently reminds him to

turn off the toaster. Later that day, his son accesses a secure website where he scans a

check-list, which was created by a sensor network in his father's apartment. He finds

that his father is eating normally, taking his medicine on schedule, and continuing to

manage his daily life on his own. That information puts the son’s mind at ease.

Many different applications have been studied by researchers in activity recognition;

examples include assisting the sick and disabled. For example, by automatically

monitoring human activities, home-based rehabilitation can be provided for people

suffering from traumatic brain injuries. One can find applications ranging from security-

related applications and logistics support to location-based services. Due to its many-

faceted nature, different fields may refer to activity recognition as plan recognition, goal

recognition, intent recognition, behavior recognition, location estimation and location

based services.

2.5 Challenges in Context-Aware Computing

Examples, demonstrators, and prototypes have been used to demonstrate that context

awareness can enhance applications and systems. Typically location is sensed and then

based on the location further assumptions about the more general context are made. As

the concept of position and location is well understood, it also provides a powerful and

easy to apply model for context-aware applications. In many cases however awareness

based solely on location lacks information that can be of interest to a system for making

12

it context-aware. If information beyond location information is required, further

complexity is introduced. The following issues are central research challenges in

context-awareness:

• Understanding the concept of context.

What does context mean and how is it connected to situations in the real world? There

is still a fundamental lack of understanding in terms how contexts relate to situations

and how general context information can be used to help enhance applications. This is

also associated with the question of how to represent context in a universal way.

• How to make use of context?

Assuming that context is available in a system the question what is context useful for

becomes imminent: especially if contexts beyond location and available resources are

considered. In this instance a central question is what type of applications can be

enhanced? When considering context as additional input, issues of reliability and

ambiguity are important. Furthermore, the relation between context and other inputs

into the system and how they influence each other, have to be addressed. Ultimately this

requires the smartness of the system to understand the context it is dealing with.

• How to acquire context information?

Acquiring context is a prerequisite for any context-aware system. Generally context

acquisition can be seen as the process where the real situation in the world is captured,

the significant features are assessed, and an abstract representation is created, which is

then provided to components in the system for further use. Approaches to acquire

context are manifold and include computer vision, location tracking, sensor systems,

and also more predictive approaches such as modeling users and their behavior.

• Connecting context acquisition to context use.

In a location-aware system there is a close relationship between context acquisition and

context use, most often the location sensor is attached to the device using position as

context. In this case the context representation is also agreed between these components.

In more general environments context use and context acquisition is distributed. It can

13

be assumed that context is provided for various applications, potentially in dynamic

configurations. This makes it obvious that mechanisms to connect context acquisition

and context use become essential. Here the challenge is twofold: overcoming the

distribution issue by networking components and agreeing on representations that are

useful for a multitude of components.

• Understanding the influence on human computer interaction.

When systems are context-aware their behavior is dependent on the context of use or

the general situation of use. The ultimate goal is to make systems in such a way that

they react as anticipated by the user. In real life however this creates complex problems,

in particular if the system reacts differently from the users expectations. Two critical

issues are how can the user understand the system and its behavior? And how to give

the user control over the system?

• Support for building context-aware Ubiquitous Computing Systems.

Context-awareness is an enabling technology for Ubiquitous Computing Systems and

therefore commonly required when realizing such systems. To build Ubiquitous

Computing environments efficiently, it is inevitable that we need to provide support for

building context-aware applications. Up to now, there are many cases where the wheel

is re-invented; where all the problems have to be solved over and over again in each

system. Providing support for context acquisition, context provision, and context use

will make the process of implementing context-aware applications much simpler.

• Evaluation of context-aware system.

As context-aware systems are used in context, evaluation itself is also required to be

done in context. In cases where functionality is only available and is useful in a certain

context, it is required to create or simulate a particular situation that results in the

wanted context in order to assess the system. Inducing a particular situation and context

however may have also a significant effect on measures in the evaluation. Many of

these research issues are highly interconnected. Nevertheless some of the issues can be

tackled fairly independently of some others. In the approach pursued in the course of

14

research underlying this thesis, context-awareness is approached from a bottom-up

perspective.

2.6 Motivation to the Proposed Obstacle Avoidance Algorithm

Obstacle detection algorithms for autonomous navigation have been carried out for

various purposes. In this thesis the main purpose of developing an autonomous

navigation system was considering two ideas. One is to create an autonomous

navigation system in a power wheelchair for the elderly in order to give them comfort

while driving the power wheelchair. Nowadays with advancement in technology and

aging society, the number of disabled citizens is increasing. The disabled citizens

always need a caretaker for daily life routines especially for mobility. In future, the need

is expected to increase more. To reduce the burden from the disabled, various devices

for healthcare are introduced using computer technology. In the same flow the power

wheelchair is an important and convenient mobility device.

Generally, a joystick is used at the arm of the unaffected side to mobilize the wheelchair,

however, if both arms are affected, the leg of unaffected side is used. The use of power

wheelchair is convenient. However, the driving of conventional wheelchair may cause a

burden to the disabled due to continuous use of joystick and always paying deep

attention to the surroundings and to the obstacles on the drive-way. Then the capacity to

recognize path condition and to avoid obstacles is required. Moreover, the user has to be

proficient in driving the wheelchair.

The proposed obstacle detection algorithm is useful as a mobility aid to reduce the

burden from the disabled. For the obstacle detection, we have used two infrared sensors

mounted on step motors. The infrared sensors scan the area for obstacles, detect the

15

obstacles and inform the control system. The infrared sensors are connected to the

control system by zigbee suite. The step motors and sensors are controlled by

ATMEGA 128 Processor. The joystick is connected to the system by the zigbee

protocol.

The second motto of obstacle detection was to create an algorithm which helps an

autonomous navigation sensor to flow on water surface avoiding collision with any

obstacle. With the advancement of technology the purity of flowing water is decreasing,

especially water flowing through cities like canals or small rivers need attention.

Generally, the waters are tested for acidity and toxicity by taking samples manually

from different areas. It may however be inconvenient to take samples frequently from

different areas. The autonomous robotic sensors can flow on the water surface and test

the water taking samples from different places. The main issue for the sensors is to

detect and avoid the obstacles and navigate to the desired destination.

16

3. Obstacle avoidance and autonomous navigation

In this chapter we presented an effective approach to obstacle avoidance. We then

examined the desired attributes of the path planner/obstacle avoidance algorithm used

for the autonomous robot.

Robots require a wide range of sensors to obtain information about the world around

them. These sensors detect position, velocity, acceleration, and range to objects in the

robots workspace. There are many different sensors used to detect the range to an object.

One of the most common rangefinders is the ultrasonic transducer. Vision systems are

also used to greatly improve the robot's versatility, speed, and accuracy for its complex

tasks. For many experimental automated guided vehicles (AGV), ultrasonic transducers,

or sonar, are frequently used as a primary means of detecting the boundaries within

which the vehicle must operate. But in our testing we used infrared sensors mounted

with step motors to rotate the sensors which are effective and inexpensive.

3.1 Global and Local Obstacle Avoidance

In autonomous vehicle research two levels of planning occur. One level of planning,

called global planning, examines the whole world an autonomous vehicle can travel and

plans paths from one point to the next dependent upon this world. Obstacle avoidance

on a global level is accomplished by routing all paths away from potential obstacles. If

the vehicle encounters an unexpected obstacle during a mission then the global planner

reexamines the whole map with the added obstacle and adjusts either a portion of the

affected path or the rest of the path based on the newer map data. Local or reactive

planning plans a short path for the vehicle to traverse based only on the environment

surrounding the vehicle, typically using only the detection sensor output. Local or

17

reactive avoidance is aware of the desired path of travel, but due to path obstructions,

plots a path around the obstruction until the vehicle can safely reattach itself to the

desired path of travel. An example of global and local obstacle avoidance can be

illustrated in my drive to work. Each morning I drive to work my route is the same. If

one day I drive to work and a child jumps in front of my car, I do not drive a different

route to work, instead I swerve around the child and continue on my way in the usual

fashion. This is analogous to reactive obstacle avoidance. However, one day while

driving to work I come across a roadblock. Now I choose a different road, or set of

roads, that will get me to work. This is analogous to global obstacle avoidance.

3.2 Algorithm for autonomous navigation

This is a simple yet very effective technique for stationary obstacle avoidance and

navigating the autonomous robot through the best possible route to the desired goal.

The setting up of the autonomous navigation mechanism of the robot for controller

design is shown.

Two distance sensors are used to detect the obstacle which are placed on the right and

left side at the front of the robot. A step motor is used to panning scan at the front side

for obstacle identification with a prefixed pan degree.

Following is the process by which the autonomous navigation robot will avoid obstacles.

Case 1: On detection of the obstacle:

1. The robot is moving in straight direction.

2. The right and left sensors scan for obstacle.

3. If the right sensor detects an obstacle, the robot stops, else it keeps moving

forward.

18

4. If the left sensor detects an obstacle, the robot stops, else it keeps moving

forward.

5. If condition3 is satisfied (the right sensor detects obstacle), the robot turns left.

6. If condition4 is satisfied (the left sensor detects obstacle), the robot turns right.

7. If both condition3 and condition4 are satisfied (both right and left sensors

detect obstacle), the robot turns back.

Case 2: After turning right or left on detection of obstacle

8. After completing condition 3 or 4 (turning right or left), the robot moves

forward.

9. If condition5 was satisfied (the robot turned left), the robot will turn right again

(opposite direction) after crossing the obstacle.

10. If condition6 was satisfied (the robot turned right), the robot will turn left again

(opposite direction) after crossing the obstacle.

The robot will try to find the best suitable course of movement by learning the route

with the shortest distance covered.

The following flowchart expresses the process.

19

Once the robot detects the obstacle, it turns either left or right in 90° and after avoiding

the obstacle it turns back to the opposite direction to go back to the former route. The

approach was kept as simple as possible using an idea from a scout orienteering

problem. If a scout starts out on a hike and wants to get to the base of a large mountain

he will travel a straight path at a constant heading. If a lake blocks his path and forces

him to change his desired heading he will choose a new heading +/- 90° of the desired

heading. Suppose for this example he chooses to turn to the right 90°. As he travels the

new heading he will always check his desired heading, or to his left, to see if he has

passed the lake. Once he has passed the lake he will again travel the desired heading.

Now the lake will be on his left and he will travel the desired heading until the lake is

no longer on his left. At that point he will adjust his heading to 90° to the right so he can

walk back to the original path he would have taken if the lake was not present. When he

reaches the desired path he will turn right 90° and walk at his desired heading until he

reaches the camp. Fig. 3.1 shows this concept.

Figure 3.1 Boy Scout orienteering problem.

20

3.3 Algorithm for panning scan by sensors for course driving

The primary purpose of this algorithm is to decide for position and posture of the

autonomous robot by defining the course form.

Figure 3.2 shows the relation between sensors coordinates and the obstacle.

Figure 3.2 Coordinates of the sensors and the obstacle

For the movement towards the obstacle, the new coordinates can show 4x4 determinate

of standard coordinates.

That is, to express the direction of the axis of obstacle coordinate, and to express the

vector translation of moving obstacle coordinates origin, a matrix can be created by

using the composition of these three vectors.

The point p1 = [x,y]T is used to create a 2x2 matrix, that the random point p shows [x,

y]T on 2 dimension system.

Obstacle recognition is done by panning scan of x coordinates of course form.

21

The next equation shows their geometrical relation.

The distance measurement is carried out by panning scan by the following process:

1. Range finder sensor detects the obstacle in a range of 50cm, and stops.

2. The sensor starts scanning on right hand side in a range of 50cm

3. The motor scans for the obstacle with 9° panning.

4. After completing the scan, the motor comes back to its center position.

5. Then the sensor starts scanning at the left side, with the same distance of 50 cm.

6. The motor scans for the obstacle with 9° panning.

7. After completing the scan, the motor comes back to its center position.

This algorithm detects obstacles on the route of the autonomous robot. It is done by

panning scan by both sensors of the robot. Figure 3.3 shows the coordinates of the

sensors and the obstacle.

Figure 3.3 Coordinates of sensor and obstacle

22

The following equation shows the detection of the size of the obstacle.

The algorithm is a process to navigate the autonomous robot through the best route

avoiding obstacles.

For the autonomous navigation robot, we have declared the following seven

assumptions.

Assumption 1:. While detecting left, detect right of front obstacle and left obstacle

Assumption 2: While detecting left, detect right of front obstacle and right obstacle

Assumption 3:. Only detect left of front obstacle.

Assumption 4:. Only detect right of front obstacle.

Assumption 5:. Right sensor doesn't detect obstacle while left-side forward movement

Assumption 6:. Left sensor doesn't detect obstacle while right-side forward movement

Assumption 7: Detect obstacle at back side while driving back.

23

4. Moving obstacle avoidance using LRF sensor

4.1 Obstacle Detection

A robot needs to visibly spot the dynamic condition of the obstacle before taking any

action to avoid it. This is because a stationary obstacle doesn’t become an object of

concern because it is recognized as a part of the environment, but a moving obstacle can

be avoided precisely only when its moving direction and velocity are predicted

precisely.

Therefore, in this segment, while guaranteeing real-time performance, the information

on the surrounding environment will be acquired using the LRF mounted on the robot;

moreover we will deal with the methods that can expel the obstacle within the

information.

4.1.1 Obstacle Identification

The data acquired from the LRF can be expresses as:

Of the 361 data obtained, objects existing within a certain range in the robot progressing

direction will be detected.

Here, k represents the k-th discrete time, ai is the i-th angle, and di is the distance to the

object obtained from that angle.

24

4.1.2 Segmentation

It is necessary to extract the obstacle information from the LRF data in order to

recognize an obstacle. The segmentation process begins with calculating the distance

between the two points acquired consecutively. As shown in Figure 4.1, if the distance

between the two succeeding points is the same as or smaller than the variable critical

value C0 + C1, they will be classified as the same piece, and if the distance is larger than

the critical value, they will be classified as different pieces.

4.1.3 Circularization

Of the data on an obstacle that are acquired by segmentation, the nearest point to the

robot and the two end points are used to find the center of a circle supposing that the

obstacle is circular. Circularization is a process necessary to consider the relativity of

movements because the surface of the obstacle nearest to the robot at the k-th point of

time is not the nearest part at the k+lth point of time.

Figure 4.1 Segmentation

25

When the robot exists at an optional point of time k, Pk,ini, Pk,near, and Pk,end can be

converted into the rectangular coordinates for circulation.

If two straight lines that are calculated are same, we conclude the form is like a wall. If

different, we judge that its form is like an archetype obstacle and we estimate the

subsequent position of obstacle after progressing the below process.

The middle point position of the obstacle exists at the intersection point of the two

straight lines and therefore the coordinates of x axis can be obtained by calculating

Y´a = Y´b

The value of y axis can be obtained from

When (the position of the calculated obstacle) is expressed as

 (1)

 (2)

Obstacle characteristics (dynamic/static) can be obtained through segmentation and the

speed of measured obstacle is compared with the transfer speed of the robot to judge the

circularization. (The static obstacle also has velocity because estimated value is relative).

If dynamic/static characteristic is distinguished, in the case of moving obstacle, the

robot operates using forecasted trajectory of obstacle; otherwise it avoids the obstacle

that is observed only within avoidance range.

26

4.1.4 Estimation of future collision

When dynamic obstacle is distinguished, transfer direction of obstacle is estimated

using the speed of calculated obstacle. Because the calculated cycle is very short by

20ms; even if we suppose that the momentary obstacle has a straight movement, it will

be justifiable. The equation of straight line of obstacle motion is created using estimated

two points of k and k+1 time. The straight line that passes the origin (center of robot)

which is perpendicular straight line with the above straight line, can be calculated easily.

The nearest position between obstacle center and robot center can be calculated by the

distance between the intersection point of the two straight lines that are calculated above

and the origin. If this distance is smaller than the critical value (Dradius = robs + rrobot),

as in Figure 4.3, the robot will have a collision with the moving obstacle in future. If

we get the result showing the robot and obstacle will collide, we have to calculate the

position in which the robot operates the avoidance action. Hence, the position of the

obstacle is the distance between point over trajectory of obstacle and the origin which is

Dradius. Coordinate of avoidance position is calculated by looking for a point of contact

of equation of the circle of obstacle and that of robot. Figure 4.3 shows, using calculated

coordinate, the avoidance radius of robot is shifted along the straight line that passed the

center of robot and center of obstacle. In order to apply the obstacle avoidance

algorithm, we must acquire three points at the position using the calculated coordinate.

Because the distance to its center and the radius of obstacle are known, the coordinate is

calculated using geometrical relation as in Figure 4.3.

The values of angle of coordinate are

 θ r - θ obs ' θ r + θ obs θ r

And distance of the coordinate is

27

Figure 4.2 Concept of Kalman Filter algorithm.

Figure 4.3 The collision estimation with the robot and a moving obstacle.

4.2 Algorithm for Collision Avoidance

One of the most important and basic factors in evaluating the safety and traveling

abilities of an autonomous mobile robot is obstacle avoidance. This study deals with

28

reactive control among the various sensor-based traveling technologies. The core of

reactive control is to avoid an obstacle in real time. To this end, simple algorithms,

rather than complex ones, are more efficient for faster computations. In this section, the

point nearest to the robot is located using the obstacle's coordinate, radius and origin

obtained in the previous section. In addition, this section explains the process in which

velocities and angular velocities are created by using the algorithm that makes use of

the geometric relations between the robot and the nearest point.

4.2.1 Obstacle's direction conversion and distance measured from the

LRF sensor’s center to the robot’s center

Using the radius and distance between the center of the robot and the center of the circle

obtained through circularization, the distance to the obstacle nearest to the robot can be

obtained. But the relative coordinates of the obstacle obtained in this way are the data

measured not from OR, the center of the robot, but from the position of the sensor. As

the robot is driven around OR located on the same line as the driving wheel, it is

necessary to move the relative coordinates of the obstacle to the center of the robot. As

Figure 4.4 shows, using the information obtained through segmentation and

circularization, the angle (αi) and the distance (di) to the obstacle nearest to the center

of the robot can be calculated. As in Figure 4.5(a, b), α ́ can be obtained in the

following way by considering the case of αi <π/2 and the case of αi > π/2.

 (3)

 (4)

29

 (5)

The distance (dobs,i) between the center of the robot (OR) and the obstacle can be

obtained as in (4) by applying trigonometric function cosine law number 2. The angle

between the center of the robot and the obstacle (Oobs,i) can be obtained by applying to

(5) the distance to the obstacle obtained in (4), the distance between the center of the

robot (OR) and the center of the sensor (OS), and the distance between the center of the

sensor and the obstacle.

4.2.2 Determination of moving direction

The avoidance becomes activated and the robot's avoidance direction and velocity are

determined when the distance between the robot and the measured obstacle becomes

less than the boundary value (dsafe) of the safety area, which actually carries out the

avoidance of obstacle collision. When an obstacle exists in the safety zone, in that case,

there are two possibilities; which can be referred as two cases depending on the

positions of the obstacle and robot. It becomes the beginning point (θobs,r). When the

entered value is larger than the boundary value, the previous point becomes the ending

point (θobs,l).

30

Figure 4.4 Acquiring the avoidance point of the robot.

When the distance between the robot and the obstacle obtained through circularization

becomes the shortest, that distance (dobs,l) is called dobs, min and θobs,l at that time is now

called θobs,min. Δθ can be obtained as in (6) using the point where the boundary value

meets with the point (θobs,min) nearest to the obstacle from the center of the robot.

 (6)

Case 1: 0 < θobs,min < π/2

(a) αi <_π/2 (b) αi > π/2

Figure 4.5 Translation from the sensor coordinator to the robot coordinator

Figure 4.6 shows that the point where the distance to the obstacle becomes the shortest

(θobs,min) and the difference between the boundary value and the end point of the

31

obstacle (θobs,l) (Δθ) can be obtained. Then, vertical line D(= 2(dr + demg)) that includes

the robot radius and the Emergency-Stop area is drawn in the normal line direction of

the extension line linking the minimum point of the robot center and the obstacle. Using

D, dobs,min, angle ß is obtained as in (7), and γ, the direction in which the autonomous

mobile robot will move, is obtained as in (8). As the direction in which the autonomous

mobile robot will move is the direction of γ from the robot's direction of movement, the

direction in which the autonomous mobile robot actually moves (ф) can be obtained as

in (7).

 , (7)

 γ = ß+ Δθ (8)

Case 2:

Figure 4.6 case1 : 0 < θobs,min <

Figure 4.7 shows that the collision avoidance direction can be obtained in the same way

as Case 1 with use of (6) - (8) when an obstacle is on the left side of the robot’s moving

32

direction. The difference from Case 1 lies in the fact that, as shown in Figure 4.7, the

point where the distance to the obstacle becomes the shortest (θobs,min) and the difference

between the boundary value and the beginning point of the obstacle (θobs,r) (Δθ) are

calculated for application with respect to the information of the two points for the

obstacle. As the direction in which the autonomous mobile robot should move is the

direction of γ from the robot's direction of movement, the direction in which the

autonomous mobile robot actually moves (ф) can be obtained as in (9).

 (9)

Figure 4.7 Case2 : π/2 < θobs,min < π

4.2.3 Velocity and angular velocity determination for obstacle avoidance

For the robot to avoid an obstacle, to determine the velocity and angular velocity, the

boundary value, the distance to the obstacle, and the robot's maximum velocity and

angular velocity were applied using the following expression in the nearness diagram

algorithm of Minguez and Montano [8].

33

 (10)

 (11)

Here, vo represents the robot's velocity depending on the approach of the obstacle, dobs

the distance between the robot and obstacle, dsafe the boundary value to avoid the

obstacle, ω0 the robot's angular velocity depending on the obstacle position, and ф the

direction in which the robot must move.

The velocity of the autonomous mobile robot is determined by the direction and

distance to the obstacle as shown in equation (10) and (11). The velocity decreases as

the obstacle comes close to the robot, and the angle of the direction of movement

becomes larger. The angular velocity is determined by the angle of the direction of

movement.

34

5. Test Results and Implementation

For testing the obstacle avoidance algorithm in stationary obstacles, we set up ARM

System for the test and implementation of autonomous navigation robot system, sensor

platforms, and Control systems. This is based on Auto Control without any change in

the basic system. Table 5.1 shows the specifications of the embedded system.

 [Table 5.1] Specifications of control system

Category Article Specification etc

CPU PXA270

SDRAM-64M Memory

NAND 64M

Ethernet 10/100Mbps 1port

Audio AC’97

RTC RTC4531

Interface USB Host, Client,

Serial, Jtag, external

pin

Hardware

CPLD Xilinx

Software OS Linux kernel 2.6

35

Device Driver Ethernet, Frame

buffer, Touch

screen, Audio, USB,

VGA, Serial,

The following figure shows the architecture of autonomous navigation robot system.

Figure 5.1: autonomous navigation robot system

The testing was performed considering 5 different aspects. The simulation is shown in

table 5.2 according to each situation.

Situation 1

In this case, the obstacle is placed on the right side of the mobile robot. The robot tries

to avoid it by moving to the left direction.

Situation 2

36

Opposite to case 1, the obstacle is placed on the left side of the mobile robot. The robot

tries to avoid it by moving to the right direction.

Situation 3

The mobile robot is placed in a deadlock situation (obstacles both on right and left side).

The mobile robot tries to escape from this situation by moving in reverse direction.

Situation 4

Obstacles are placed at left and right direction of the mobile robot. There is no obstacle

in the middle path, so the robot continues to move in forward direction.

Situation 5

The obstacles are placed very far from the mobile robot, so the mobile robot is still

moving in forward direction.

[Table 5.2] Test results of obstacle avoidance algorithm

Number Situation Robot Movement

1

2

3

4

Direction = Forward
Angle = Left

Direction = Forward
Angle = Right

Direction = Reverse
Angle = Mid

Direction = Forward
Angle = Mid

37

5.1 Panning scan System of Sensors

We created a sensor system for test, using sensor panning scan. The sensor used for

distance measurement is Sharp GP2Y0A2YKOF and the distance measurement is from

10 to 150cm. the step motor is NK243-01AT 1.8 degree.

5

Direction = Forward
Angle = Mid

38

Figure 5.2: Panning scan of sensor

Data measurement gets the distance data to move the step motor at steps of 1.8 degrees

from distance measurement sensor. The sensor system scans left and right by panning

scan using the step motor. The obtained data is transmitted to ATmega128 system of

sensor system by ADC Convertor to calculate 10bit sampling signal data. This data use

learning data for autonomous navigation system. Figure 5.2 shows system architecture

of Obstacle detection using distance measurement sensor panning.

5.2 Implementation of Autonomous Navigation System using

autonomous navigation algorithm

The map environment has 255cm width and 700cm height for test. We set up obstacles

of 100cm width and 30cm height along the y-axis; at 200cm, 600cm, and 400cm on

right of y-axis. Driving course goal figures out the best driving courses from 0 to 650

coordinate of y-axis. The size of autonomous navigation robot is 50cm in width and

100cm in height. Figure 5.3 is the environment map for the test.

39

Figure 5.3 Testing map for autonomous navigation

For the testing of the autonomous navigation robot, it drives on course after setting up

the start point at A(75, 0), B(128, 0) and C(175, 0) of center-axis of the robot. Figure

5.4, 5.5, and 5.6 show result of the simulation test of autonomous navigation driving.

40

Figure 5.4 Test result of starting at left A(75, 0)

41

Figure 5.5 Test result of Starting at center B (128, 0)

42

Figure 5.6 Test result of starting at right C (155, 0)

This increases the moving distance. The autonomous navigation robot detects obstacle

in a range of 50cm ahead, assuming that the speed of autonomous navigation robot is

regular. The autonomous navigation robot keeps up 30cm of each side to get the point

values of Obstacle while driving on a side of obstacle. At first start of autonomous

navigation robot at A(75, 0) point, it detected obstacles three times. Total distance

moved by the autonomous navigation robot was 740cm. At the second start, while

driving straight line at B(128, 0) point, autonomous navigation robot didn't detect any

obstacle. Total distance moved by the autonomous navigation robot was 650cm. At the

third start at C(175, 0) point, autonomous navigation robot detected obstacle twice and

turned 4 times. Total distance moved by the autonomous navigation robot was 680cm.

Finally, the autonomous navigation robot decides that the best course is starting point of

B because the moving distance was the shortest.

43

6. Conclusion

In this paper, we have shown the setting up of the model theory of the autonomous

navigation mechanism of power wheelchair for controller design. Though the control

method we selected in this paper is simple and classic, it is effective. Because we found

that classic control method is based on accurate system model, while control under

micro scale has the property of complex nonlinear, time-varying, uncertainty and

incompleteness. According to the mechanism human collision avoidance, a unique

technique of real-time obstacle avoidance for redundant robot is proposed in the paper.

44

By the use of fuzzy control system we were able to develop a simple yet effective

mechanism to achieve the desired goal.

Finally, simulation and experiment results validate the proposed method. In addition,

the presented algorithm can be applied to the obstacle avoidance for redundant robot

and mobile robot in time-varying environment.

Furthermore, the future work related to moving obstacle detection has introduced

control architecture of a reactive layer for the autonomous traveling of a robot. In

addition, the application of Kalman Filter led to the minimization of sensor and system

errors, and algorithms using geometrical methods have been introduced to ensure

simple avoids with less computation aimed to improve real-time abilities. Studies on

new algorithms will be necessary so that voidance of complex obstacles may be

possible through the sensor fusion of sonar, IR and others.

References

[1] J. S. Albus, "4D/RCS: A reference model architecture for intelligent unmanned ground

vehicles," Proc. of the SPIE Annual International Symposium on Aerospace/Defense

Sensing, Simulation and Controls, Orlando, FL, April 1-5,2002.

[2] R. A. Brooks, "A robust layered control system for a mobile robot," IEEE Journal of

Robotics and Automation, Vol. 2, No. 1, pp. 14-23, 1986.

[3] M. Hans and W. Baum, "Concept of a hybrid architecture for Care-O-bot," Proceedings

of the IEEE International Conference on Robot and Human Interaction, RO-MAN,

Bordeaux-Paris, France, pp. 407-411, 2001, 2001.

45

[4] G. H. Kim, W. J. Chung, M. S. Kim and C. W. Lee, "Control architecture design and

integration of the autonomous service robot PSR," Proceedings 2002 International

Conference on Control, Automation, and Systems, Muju, Korea, 2002.

[5] T. B. Kwon, J. B. Song and S. Y. Lee, "Improved exploration algorithm using reliability

index of thinning based topological nodes," Proceeding of 2005 International Conference on

Control, pp., Automation and Systems, 2005.

[6] M. Lindstrom, A. Oreback and H. I. Christensen, "BERRA: A research architecture for

service robots," Proceedings of the IEEE Conference on Robotics and Automation, San

Francisco, CA, USA, pp. 3278-3283, 2000.

[7] K. H. Low, W. K. Leow and M. H. Ang, Jr., "A hybrid mobile robot architecture with

integrated planning and control," Proceedings of 1st AAMAS'02, Bologna, Italy, pp. 219-226.

[8] J. Minguez and L. Montano, "Nearness diagram (ND) navigation: Collision avoidance in

troublesome scenarios," IEEE Trans. on Robotics and Automation, Vol. 20, No. 1, pp. 45-59,

2004.

[9]Rosemann, M., & Recker, J. "Context-aware process design: Exploring the extrinsic

drivers for process flexibility". T. Latour & M. Petit. 18th international conference on

advanced information systems engineering. Proceedings of workshops and doctoral

consortium. Luxembourg: Namur University Press. pp. 149-158, 2006.

[10]B. Schilit, N. Adams, and R. Want. "Context-aware computing applications" (PDF).

IEEE Workshop on Mobile Computing Systems and Applications (WMCSA'94), Santa Cruz,

CA, US. pp. 89-101, 1994.

[11] Schilit, B.N. and Theimer, M.M. "Disseminating Active Map Information to Mobile

Hosts". IEEE Network 8 (5): 22–32, 1994.

[12] Dey, Anind K. "Understanding and Using Context". Personal Ubiquitous Computing 5

(1): 4–7, 2001.

46

[13] Schmidt, A.; Aidoo, K.A.; Takaluoma, A.; Tuomela, U.; Van Laerhoven, K; Van de

Velde W. "Advanced Interaction in Context". 1st International Symposium on Handheld and

Ubiquitous Computing (HUC99), Springer LNCS, Vol. 1707. pp. 89-101, 1999.

[14] Schmidt, Albrecht. "Ubiquitous Computing - Computing in Context". PhD dissertation,

Lancaster University, 2003.

[15] Albrecht Schmidt, Michael Beigl and Hans-W. Gellersen. "There is more to Context

than Location". Computers & Graphics Journal, Elsevier 23, December 1999.

 [16] International Conference on Ubiquitous Computing (Ubicomp).

[17] IEEE International Conference on Pervasive Services (ICPS).

[18] Borenstein and Koren: edge-detection, certainty grids, and potential field methods,

1991.

[19] Moravec and Elfes, 1985.

[20] ABCM Symposium Series in Mechatronics - Vol. 2 - pp.250-257 Copyright ©

2006 by ABCM.

[21] Koren and Borenstein, 1991.

	1. Introduction
	1.1 Motivation
	1.2 Current work
	1.3 Thesis Overview

	2. Obstacle Avoidance and Context Awareness
	2.1 Obstacle Avoidance
	2.2 Context Awareness
	2.3 Ubiquitous Computing
	2.4 Activity recognition
	2.5 Challenges in Context-Aware Computing
	2.6 Motivation to the Proposed Obstacle Avoidance Algorithm

	3. Obstacle avoidance and autonomous navigation
	3.1 Global and Local Obstacle Avoidance
	3.2 Algorithm for autonomous navigation
	3.3 Algorithm for panning scan by sensors for course driving

	4. Moving obstacle avoidance using LRF sensor
	4.1 Obstacle Detection
	4.2 Algorithm for Collision Avoidance

	5. Test Results and Implementation
	5.1 Panning scan System of Sensors
	5.2 Implementation of Autonomous Navigation System using autonomous navigation algorithm

	6. Conclusion
	References

<startpage>11
1. Introduction 1 1.1 Motivation 1 1.2 Current work 2 1.3 Thesis Overview 32. Obstacle Avoidance and Context Awareness 4 2.1 Obstacle Avoidance 4 2.2 Context Awareness 7 2.3 Ubiquitous Computing 9 2.4 Activity recognition 10 2.5 Challenges in Context-Aware Computing 11 2.6 Motivation to the Proposed Obstacle Avoidance Algorithm 143. Obstacle avoidance and autonomous navigation 16 3.1 Global and Local Obstacle Avoidance 16 3.2 Algorithm for autonomous navigation 17 3.3 Algorithm for panning scan by sensors for course driving 204. Moving obstacle avoidance using LRF sensor 23 4.1 Obstacle Detection 23 4.2 Algorithm for Collision Avoidance 275. Test Results and Implementation 34 5.1 Panning scan System of Sensors 37 5.2 Implementation of Autonomous Navigation System using autonomous navigation algorithm 376. Conclusion 43References 44</body>

