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Content based image retrieval has emerged as an important field encompassing fields like 

image processing, computer vision and artificial intelligence. Near the turn of the 21st century 

researchers finally got convinced that next evolution of systems would need to understand the 

semantics of an image, not simply the low level underlying computational features i.e., 

“bridging the semantic gap”. The image retrieval systems need to be more intelligent, to be 

able to recognize generic objects and visual object classes at the least and also abstract 

meanings as feelings, in the far run. This can be stated as the dawn of second generation 

research in Image retrieval.  

Recognition of a multitude of objects as dogs, cars etc. is an un-noticeable every day activity, 

hardly considered an achievement of any subtle order. In contrast, it is the ultimate scientific 

challenge of computer vision. After 40 years of research, robustly identifying the familiar 
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objects (chair, person, pet), scene categories (beach, forest, office), and activity patterns 

(conversation, dance, picnic) depicted in family pictures, news segments, or feature films is 

still far beyond the capabilities of today’s vision systems [Preface: Towards Object level 

Categorization Eds. Ponce J., et. al., 2006]. 

Visual object class recognition has gradually evolved from structure based approaches to 

appearance based techniques and presently processes of the human vision are under immense 

focus. The thesis proposes a new approach to visual object class recognition with an aim to 

better understanding and exploration of the underlying principles of human vision. The thesis 

investigates the basic level of semantic structure formation in the human vision inferential 

processes which is hierarchically combined with other semantic structures to form meanings at 

an abstract level. This is a micro level approach compared to other approaches considering the 

whole image structure as a unit or geometric modeling approaches. Using this approach two 

sets of semantic features have been derived for visual object class recognition. 

The algorithm uses the hypothesis in line with Gestalt laws of proximity that; in an image, 

basic semantic structures are formed by line segments (arcs also approximated and broken into 

smaller line segments based on pixel deviation threshold) which are in close proximity of each 

other. Based on the notion of proximity a transitive relation is defined, which combines basic 

micro level semantic structures hierarchically till such a point where a semantic meaning of the 

structure can be extracted. The algorithm extracts line segments in an image and then forms 

semantic groups of these line segments based on a minimum distance threshold from each other. 

The line segment groups so formed can be differentiated from each other, by the number of 

group members and their geometrical properties. The geometrical properties of these semantic 

groups are used to generate rotation, translation and scale invariant histograms used as feature 

vectors for object class recognition tasks in a K-nearest neighbor framework. 



x 
 

In the second approach a semantic group based on the proximity distance is clustered and 

modeled as a graph vertex. The line segments which are common to more than one semantic 

group are defined as semantic relations between the semantic groups and are modeled as edges 

of the graph. This way an image object is transformed into a graph using micro level structure 

formations. Each vertex and edge is labeled using translation, rotation and scale invariant 

properties of the member segments of each vertex and edge. From a set of training images, a 

graph model is constructed for visual object class recognition. The graph model is constructed 

by iteratively combining the training graphs and frequency labeling the vertices and edges. 

After the combining phase, all the vertices and edges whose repetition frequency is below a 

threshold are removed. The final graph model consists of the semantic nodes which are highly 

common in the training images. The recognition is based on graph matching the query image 

graph and the model graph. The model graph generates a vote for the query and ties are 

resolved by considering the node frequencies in the query and model graph. 

The algorithm has been applied to classify 101 object classes at one time. The results have been 

compared with existing state of the art approaches and are found promising. Results from 

above approaches show that low level image structure and other features can be used to 

construct different type of semantic features, which can help a model or a classifier make more 

intelligent decisions and work more effectively for the task compared to low level features 

alone. Our experimental results are comparable, or outperform other state-of-the-art approaches. 

We have also summarized the state-of-the-art at the time this work was finished. We conclude 

with a discussion about the possible future extensions. 
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I. Introduction 

 

 

A. Overview 

Content-based image retrieval, a technique which employs visual contents to search images 

from large scale image databases according to users' interests, has been an active and fast 

advancing research area since the 1990s. During the past decade, remarkable progress has been 

made in both theoretical research and system development. However, there remain many 

challenging research problems that continue to attract researchers from multiple disciplines. 

We briefly review in this chapter the world of content based image retrieval (CBIR) till to date 

by following developments in the field with respect to time line and breakthroughs. In the 

process we highlight the fundamental theories for CBIR and look at the development of CBIR 

techniques. Then, as the most important part of this chapter, we introduce some latest trends 

coupled with ongoing and future directions in the present day visual content descriptions.  

 

B. First generation of Content Based Image retrieval 

Early work on image retrieval can be traced back to the late 1970s. In 1979, a conference on 

Database Techniques for Pictorial Applications [1] was held in Florence. Since then, the 

application potential of image database management techniques has attracted the attention of 

researchers [2 – 5]. Early techniques were not generally based on visual features but on the 
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textual annotation of images. In other words, images were first annotated with text and then 

searched using a text-based approach from traditional database management systems. 

Comprehensive surveys of early text-based image retrieval methods can be found in [6, 7]. 

Text-based image retrieval uses traditional database techniques to manage images. Through 

text descriptions, images can be organized by topical or semantic hierarchies to facilitate easy 

navigation and browsing based on standard Boolean queries. However, since automatically 

generating descriptive texts for a wide spectrum of images is not feasible, most text-based 

image retrieval systems require manual annotation of images. Obviously, annotating images 

manually, is a cumbersome and expensive task for large image databases, and is often 

subjective, context-sensitive and incomplete. As a result, it is difficult for the traditional text-

based methods to support a variety of task-dependent queries.  

In the early 1990s, as a result of advances in the internet and new digital image sensor 

technologies, the volume of digital images produced by scientific, educational, medical, 

industrial, and other applications available to users increased dramatically. The difficulties 

faced by text-based retrieval became more and more severe. The efficient management of the 

rapidly expanding visual information became an urgent problem. This need formed the driving 

force behind the emergence of content-based image retrieval techniques. In 1992, the National 

Science Foundation of the United States organized a workshop on visual information 

management systems [8] to identify new directions in image database management systems. It 

was widely recognized that a more efficient and intuitive way to represent and index visual 

information would be based on properties that are inherent in the images themselves.  

Much early research, exemplified by projects such as TRADEMARK [9], QBIC [10] and 

Photobook [11], established the feasibility of retrieving images from large collections using 

automatically-derived features. Researchers from the communities of computer vision, 



 

- 3 - 
 

database management, human-computer interface, and information retrieval were attracted to 

this field. Since then, research on content-based image retrieval has developed rapidly [12 – 17]. 

Since 1997, the number of research publications on the techniques of visual information 

extraction, organization, indexing, user query and interaction, and database management has 

increased enormously. Similarly, a large number of academic and commercial retrieval systems 

have been developed by universities, government organizations, companies, and hospitals. 

Comprehensive surveys of these techniques and systems can be found in [18 –20].  

Content-based image retrieval uses the visual contents of an image such as color, shape, texture, 

and spatial layout to represent and index the image. In typical content-based image retrieval 

systems (Figure 1-1), the visual contents of the images in the database are extracted and 

described by multi-dimensional feature vectors. The feature vectors of the images in the 

database form a feature database. To retrieve images, users provide the retrieval system with 

example images or sketched figures. The system then changes these examples into its internal 

representation of feature vectors. The similarity distances between the feature vectors of the 

query example or sketch and those of the images in the database are then calculated and 

retrieval is performed with the aid of an indexing scheme. The indexing scheme provides an 

efficient way to search for the image database. Recent retrieval systems have incorporated 

user’s relevance feedback to modify the retrieval process in order to generate perceptually and 

semantically more meaningful retrieval results. In the next section, we discuss fundamental 

techniques for content-based image retrieval. 

 

C. Image Content Descriptors 

Generally speaking, image content may include both visual and semantic content. Visual 

content can be very general or domain specific. General visual content include color, texture, 
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shape, spatial relationship, etc. Domain specific visual content, like human faces, is application 

dependent and may involve domain knowledge. 

 

Figure 1.1 A typical content-based image retrieval system 

 

This section concentrates on general visual contents descriptions. Later sections discuss domain 

specific and semantic contents. A good visual content descriptor should be invariant to the 

accidental variance introduced by the imaging process (e.g., the variation of the illuminant of 

the scene). However, there is a tradeoff between the invariance and the discriminative power of 

visual features, since a very wide class of invariance loses the ability to discriminate between 

essential differences. Invariant description has been largely investigated in computer vision 

(like object recognition), but is relatively new in image retrieval [21]. A visual content 

descriptor can be either global or local. A global descriptor uses the visual features of the 

whole image, whereas a local descriptor uses the visual features of regions or objects to 

describe the image content. To obtain the local visual descriptors, an image is often divided 

into parts first. The simplest way of dividing an image is to use a partition, which cuts the 

image into tiles of equal size and shape. A simple partition does not generate perceptually 
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meaningful regions but is a way of representing the global features of the image at a finer 

resolution. A better method is to divide the image into homogenous regions according to some 

criterion using region segmentation algorithms that have been extensively investigated in 

computer vision. A more complex way of dividing an image, is to undertake a complete object 

segmentation to obtain semantically meaningful objects (like ball, car, horse). Currently, 

automatic object segmentation for broad domains of general images is unlikely to succeed. In 

the following, we will discuss some widely used techniques for extracting color, texture, shape 

and spatial relationship from images. 

 

1. Color 

Color is the most extensively used visual content for image retrieval [22 – 31]. Its three-

dimensional values make its discrimination potentiality superior to the single dimensional gray 

values of images. Before selecting an appropriate color description, color space must be 

determined first. Each pixel of the image can be represented as a point in a 3D color space. 

Commonly used color spaces for image retrieval include RGB, Munsell, CIE L*a*b*, CIE 

L*u*v*, HSV (or HSL, HSB), and opponent color space. There is no agreement on which is 

the best. However, one of the desirable characteristics of an appropriate color space for image 

retrieval is its uniformity [27]. Uniformity means that two color pairs that are equal in 

similarity distance in a color space are perceived as equal by viewers. In other words, the 

measured proximity among the colors must be directly related to the psychological similarity 

among them. 

RGB space is a widely used color space for image display. It is composed of three color 

components red, green, and blue. These components are called "additive primaries" since a 

color in RGB space is produced by adding them together. In contrast, CMY space is a color 
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space primarily used for printing. The three color components are cyan, magenta, and yellow. 

These three components are called "subtractive primaries" since a color in CMY space is 

produced through light absorption. Both RGB and CMY space are device-dependent and 

perceptually non-uniform. 

The CIE L*a*b* and CIE L*u*v* spaces are device independent and considered to be 

perceptually uniform. They consist of a luminance or lightness component (L) and two 

chromatic components a and b or u and v. CIE L*a*b* is designed to deal with subtractive 

colorant mixtures, while CIE L*u*v* is designed to deal with additive colorant mixtures. The 

transformation of RGB space to CIE L*u*v* or CIE L*a*b* space can be found in [26]. 

HSV (or HSL, or HSB) space is widely used in computer graphics and is a more intuitive way 

of describing color. The three color components are hue, saturation (lightness) and value 

(brightness). The hue is invariant to the changes in illumination and camera direction and hence 

more suited to object retrieval. RGB coordinates can be easily translated to the HSV (or HLS, 

or HSB) coordinates by a simple formula [22]. 

The opponent color space uses the opponent color axes (R-G, 2B-R-G, R+G+B). This 

representation has the advantage of isolating the brightness information on the third axis. With 

this solution, the first two chromaticity axes, which are invariant to the changes in illumination 

intensity and shadows, can be down-sampled since humans are more sensitive to brightness 

than they are to chromatic information. 

In the following paragraphs, we will introduce some commonly used color descriptors: the 

color histogram, color coherence vector, color correlogram, and color moments. Color 

moments have been successfully used in many retrieval systems (like QBIC [32, 33]), 

especially when the image contains just the object. The first order (mean), the second (variance) 

and the third order (skewness) color moments have been proved to be efficient and effective in 
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representing color distributions of images [29]. Usually the color moment performs better if it 

is defined by both the L*u*v* and L*a*b* color spaces as opposed to solely by the HSV space. 

Using the additional third-order moment improves the overall retrieval performance compared 

to using only the first and second order moments. However, this third-order moment sometimes 

makes the feature representation more sensitive to scene changes and thus may decrease the 

performance. Since only 9 (three moments for each of the three color components) numbers are 

used to represent the color content of each image, color moments are a very compact 

representation compared to other color features. Due to this compactness, it may also lower the 

discrimination power. Usually, color moments can be used as the first pass to narrow down the 

search space before other sophisticated color features are used for retrieval. 

The color histogram serves as an effective representation of the color content of an image if the 

color pattern is unique compared with the rest of the data set. The color histogram is easy to 

compute and effective in characterizing both the global and local distribution of colors in an 

image. In addition, it is robust to translation and rotation about the view axis and changes only 

slowly with the scale, occlusion and viewing angle. Since any pixel in the image can be 

described by three components in a certain color space (for instance, red, green, and blue 

components in RGB space, or hue, saturation, and value in HSV space), a histogram, i.e., the 

distribution of the number of pixels for each quantized bin, can be defined for each component. 

Clearly, the more bins a color histogram contains, the more discrimination power it has. 

However, a histogram with a large number of bins will not only increase the computational cost, 

but will also be inappropriate for building efficient indexes for image databases. Furthermore, a 

very fine bin quantization does not necessarily improve the retrieval performance in many 

applications. One way to reduce the number of bins is to use the opponent color space which 

enables the brightness of the histogram to be down sampled. Another way is to use clustering 
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methods to determine the K best colors in a given space for a given set of images. Each of these 

best colors will be taken as a histogram bin. Since that clustering process takes the color 

distribution of images over the entire database into consideration, the likelihood of histogram 

bins in which no or very few pixels fall will be minimized. Another option is to use the bins 

that have the largest pixel numbers since a small number of histogram bins capture the majority 

of pixels of an image [15] Such a reduction does not degrade the performance of histogram 

matching, but may even enhance it since small histogram bins are likely to be noisy. 

When an image database contains a large number of images, histogram comparison will 

saturate the discrimination. To solve this problem, the joint histogram technique is introduced 

[28]. In addition, color histogram does not take the spatial information of pixels into 

consideration, thus very different images can have similar color distributions. This problem 

becomes especially acute for large scale databases. To increase discrimination power, several 

improvements have been proposed to incorporate spatial information. A simple approach is to 

divide an image into sub-areas and calculate a histogram for each of those sub-areas. As 

introduced above, the division can be as simple as a rectangular partition, or as complex as a 

region or even object segmentation. Increasing the number of sub-areas increases the 

information about location, but also increases the memory and computational time. 

In [34] a different way of incorporating spatial information into the color histogram, color 

coherence vectors (CCV), was proposed. Each histogram bin is partitioned into two types, i.e., 

coherent, if it belongs to a large uniformly-colored region, or incoherent, if it does not. Let αi 

denote the number of coherent pixels in the ith color bin and βi denote the number of 

incoherent pixels in an image. Then, the CCV of the image is defined as the vector <(α1, β1), 

(α2, β2), …, (αN, βN)>. Note that <α1+β1, α2+β2… αN + βN> is the color histogram of the image. 

Due to its additional spatial information, it has been shown that CCV provides better retrieval 
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results than the color histogram, especially for those images which have either mostly uniform 

color or mostly texture regions. In addition, for both the color histogram and color coherence 

vector representation, the HSV color space provides better results than CIE L*u*v* and CIE 

L*a*b* space. 

The color correlogram [24] was proposed to characterize not only the color distributions of 

pixels, but also the spatial correlation of pairs of colors. If we consider all the possible 

combinations of color pairs the size of the color correlogram will be very large (O(N2d)), 

therefore a simplified version of the feature called the color autocorrelogram is often used 

instead. The color autocorrelogram only captures the spatial correlation between identical 

colors and thus reduces the dimension to O(Nd). Compared to the color histogram and CCV, 

the color autocorrelogram provides the best retrieval results, but is also the most computational 

expensive due to its high dimensionality. 

Color not only reflects the material of surface, but also varies considerably with the change of 

illumination, the orientation of the surface, and the viewing geometry of the camera. This 

variability must be taken into account. However, invariance to these environmental factors is 

not considered in most of the color features discussed above. Invariant color representation has 

been introduced to content-based image retrieval recently. In [35], a set of color invariants for 

object retrieval was derived based on the Schafer model of object reflection. In [36], specular 

reflection, shape and illumination invariant representation based on blue ratio vector (r/b, g/b, 1) 

is given. In [37], a surface geometry invariant color feature is provided. These invariant color 

features, when applied to image retrieval, may yield illumination, scene geometry and viewing 

geometry independent representation of color contents of images, but may also lead to some 

loss in discrimination power among images. 
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2. Texture 

Texture is another important property of images. Various texture representations have been 

investigated in pattern recognition and computer vision. Basically, texture representation 

methods can be classified into two categories: structural and statistical. Structural methods, 

including morphological operator and adjacency graph, describe texture by identifying 

structural primitives and their placement rules. They tend to be most effective when applied to 

textures that are very regular. Statistical methods, including Fourier power spectra, co-

occurrence matrices, shift-invariant principal component analysis (SPCA), Tamura feature, 

Wold decomposition, Markov random field, fractal model, and multi-resolution filtering 

techniques such as Gabor and wavelet transform, characterize texture by the statistical 

distribution of the image intensity. In this section, we discuss a number of texture 

representations [38 – 56], which have been used frequently and have proved to be effective in 

content-based image retrieval systems. 

The Tamura features [55], including coarseness, contrast, directionality, line likeness, 

regularity, and roughness, are designed in accordance with psychological studies on the human 

perception of texture. The first three components of Tamura features have been used in some 

early well-known image retrieval systems, such as QBIC [32] and Photobook [57].  

Wold decomposition [41, 48] provides another approach to describing textures in terms of 

perceptual properties. The three Wold components, harmonic, evanescent, and in-deterministic, 

correspond to periodicity, directionality, and randomness of texture respectively. Periodic 

textures have a strong harmonic component, highly directional textures have a strong 

evanescent component, and less structured textures tend to have a stronger in-deterministic 

component. 
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The SAR model is an instance of Markov random field (MRF) models, which have been very 

successful in texture modeling in the past decades. Compared with other MRF models, SAR 

uses fewer parameters. In the SAR model, pixel intensities are taken as random variables. The 

SAR model is not rotation invariant. To derive a rotation-invariant SAR model (RISAR), pixels 

lying on circles of different radii centered at each pixel (x, y) serve as its neighbor set. To 

describe textures of different granularities, the multi-resolution simultaneous auto-regressive 

model (MRSAR) [52] has been proposed to enable multi-scale texture analysis. An image is 

represented by a multi-resolution Gaussian pyramid with low-pass filtering and sub-sampling 

applied at several successive levels. Either the SAR or RISAR model may then be applied to 

each level of the pyramid. MRSAR has been proved [63, 75]to have better performance on the 

Brodatz texture database [38] than many other texture features, such as principal component 

analysis, Wold decomposition, and wavelet transform. 

The Gabor filter has been widely used to extract image features, especially texture features [44, 

58]. It is optimal in terms of minimizing the joint uncertainty in space and frequency, and is 

often used as an orientation and scale tunable edge and line (bar) detector. There have been 

many approaches proposed to characterize textures of images based on Gabor filters.  

Similar to the Gabor filtering, the wavelet transform [40, 50] provides a multi-resolution 

approach to texture analysis and classification [39, 47]. Two major types of wavelet transforms 

used for texture analysis are the pyramid-structured wavelet transform (PWT) and the tree-

structured wavelet transform (TWT). According to the comparison of different wavelet 

transform features [49], the particular choice of wavelet filter is not critical for texture analysis. 

 

 

 



 

- 12 - 
 

3. Shape 

Shape features of objects or regions have been used in many content-based image retrieval 

systems [59 – 62]. Compared with color and texture features, shape features are usually 

described after images have been segmented into regions or objects. The state-of-art methods 

for shape description can be categorized into either boundary-based (rectilinear shapes [61], 

polygonal approximation [63], finite element models [64], and Fourier-based shape descriptors 

[65, 66, 67]) or region-based methods (statistical moments [68, 69]). A good shape 

representation feature for an object should be invariant to translation, rotation and scaling. In 

this section, we briefly describe some of these shape features that have been commonly used in 

image retrieval applications. For a concise comprehensive introductory overview of the shape 

matching techniques, see [70].  

Classical shape representation uses a set of moment invariants. The central moment can be 

normalized to be scale invariant [44]. Based on the central moments, a set of moment 

invariants to translation, rotation, and scale can be derived [68, 69]. 

The contour of a 2D object can be represented as a closed sequence of successive boundary 

pixels for which a turning function or turning angle can be defined, which measures the angle 

of the counterclockwise tangents as a function of the arc-length according to a reference point 

on the object’s contour. One major problem with this representation is that it is variant to the 

rotation of object and the choice of the reference point. Therefore, to compare the shape 

similarity between objects A and B with their turning functions, the minimum distance needs to 

be calculated over all possible shifts and rotations. 

Fourier descriptors describe the shape of an object with the Fourier transform of its boundary. 

Again we consider the contour of a 2D object as a closed sequence of successive boundary 

pixels. Three types of contour representations, i.e., curvature, centroid distance, and complex 
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coordinate function, can be defined. The Fourier transforms of these three types of contour 

representations generate three sets of complex coefficients, representing the shape of an object 

in the frequency domain. Lower frequency coefficients describe the general shape property, 

while higher frequency coefficients reflect shape details. To achieve rotation invariance (i.e., 

contour encoding is irrelevant to the choice of the reference point), only the amplitudes of the 

complex coefficients are used and the phase components are discarded. To achieve scale 

invariance, the amplitudes of the coefficients are divided by the amplitude of DC component or 

the first non-zero coefficient. The translation invariance is obtained directly from the contour 

representation.  

We can use the shape Circularity, Eccentricity, and Major Axis Orientation. Circularity is 

computed as: 

ൌן
ܵߨ4
ܲଶ  1-1

where S is the size and P is the perimeter of an object. This value ranges between 0 

(corresponding to a perfect line segment) and 1 (corresponding to a perfect circle). The major 

axis orientation can be defined as the direction of the largest eigenvector of the second order 

covariance matrix of a region or an object. The eccentricity can be defined as the ratio of the 

smallest eigen value to the largest eigen value. 

Regions or objects with similar color and texture properties can be easily distinguished by 

imposing spatial constraints. For instance, regions of blue sky and ocean may have similar 

color histograms, but their spatial locations in images are different. Therefore, the spatial 

location of regions (or objects) or the spatial relationship between multiple regions (or objects) 

in an image is very useful for searching images. The most widely used representation of spatial 

relationship is the 2D strings proposed by Chang et al [71]. It is constructed by projecting 
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images along the x and y directions. Two sets of symbols, V and A, are defined on the 

projection. Each symbol in V represents an object in the image. Each symbol in A represents a 

type of spatial relationship between objects. As its variant, the 2D G-string [72] cuts all the 

objects along their minimum bounding box and extends the spatial relationships into two sets 

of spatial operators. One defines local spatial relationships. The other defines the global spatial 

relationships, indicating that the projection of two objects are disjoin, adjoin or located at the 

same position. In addition, 2D C-string [73] is proposed to minimize the number of cutting 

objects. 2D-B string [74] represents an object by two symbols, standing for the beginning and 

ending boundary of the object.  

 

D. Second generation of Content Based Image retrieval 

This section reviews recent changes in trends in the field and outlines and future directions and 

argues that further advances in the field are likely to involve the increasing use of techniques 

from the field of artificial intelligence.  

Most current CBIR techniques are geared towards retrieval by some aspect of image 

appearance, depending on the automatic extraction and comparison of image features judged 

most likely to convey that appearance. The features most often used include color, texture, 

shape, spatial layout, and multi-resolution pixel intensity transformations such as wavelets or 

multi-scale Gaussian filtering. At least three CBIR packages making use of such techniques 

were made commercially available: QBIC from IBM, the VIR Image Engine from Virage, Inc, 

and VisualRetrievalWare from Excalibur, Inc. While the technology behind current CBIR 

systems is undoubtedly impressive, user take-up of such systems has so far been minimal. This 

is not because the need for such systems is lacking-there is ample evidence of user demand for 

better image data management in fields as diverse as crime prevention, photo-journalism, 
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fashion design, trademark registration, and medical diagnosis. It is because there is a mismatch 

between the capabilities of the technology and the needs of users. The vast majority of users do 

not want to retrieve images simply on the basis of similarity of appearance. They need to be 

able to locate pictures of a particular type (or individual instance) of object, phenomenon, or 

event [77]. 

Gudivada and Raghavan [75] have drawn a useful distinction between retrieval by primitive 

image feature (such as color, texture or shape) and semantic feature (such as the type of object 

or event depicted by the image). Eakins [76] has taken this distinction further, identifying three 

distinct levels of image query, each of which can be further subdivided: 

(1) Level 1, retrieval by primitive features such as color, texture, shape or the spatial 

location of image elements (e.g. find all pictures containing yellow or blue stars 

arranged in a ring). 

(2) Level 2, retrieval by derived attribute or logical feature, involving some degree of 

inference about the identity of the objects depicted in the image (e.g. find pictures 

of a passenger train crossing a bridge). 

(3) Level 3, retrieval by abstract attribute, involving complex reasoning about the 

significance of the objects or scenes depicted (e.g. find pictures illustrating 

pageantry). 

Using this framework, the extent of the mismatch between user requirements and the 

capabilities of the technology becomes clear. Although the volume of research into user needs 

is not large, the results of those studies which have been conducted to date (e.g. [77]) suggest 

strongly that very few users need level-1 retrieval. The majority of image queries received by 

picture libraries are at level 2, though a significant number (particularly in specialist art 

libraries) are at level 3. The overwhelming majority of CBIR systems, both commercial and 
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experimental; offer nothing but level 1 retrieval. A few experimental systems now operate at 

level 2, but none at all at level 3. What are the prospects of bridging what has been referred to 

as the semantic gap [75], and delivering the image retrieval capabilities that users really want? 

This section aims to answer this question by reviewing current research into semantic image 

retrieval, with particular emphasis on the contribution which techniques from related fields 

such as artificial intelligence (AI) are making to developments in this area. CBIR may have its 

roots in the field of classical image analysis; it relies on many standard image analysis 

techniques, such as convolution, edge detection, pixel intensity histogramming, and power 

spectrum analysis. But a successful solution to the problems of semantic image retrieval (if one 

exists at all) may well require a significant paradigm shift, involving techniques originally 

developed in other fields. CBIR has already benefited greatly from insights derived from 

related fields. A prime example of this process is the technique of relevance feedback, 

originally developed for text retrieval, where users indicate the relevance of each item of output 

received, and the system amends its search strategy accordingly. Relevance feedback is 

showing considerable promise in the image retrieval area, largely because users can rapidly 

judge the relevance of a retrieved image within seconds.. Other examples where CBIR has 

benefited from insights from related fields include relatively efficient direct access via 

multidimensional indexing, from the database management field, and retrieval by subjective 

appearance, drawing on Gestalt psychology. 

 

1. Intelligent image retrieval 

One crucial difference between primitive and semantic- level retrieval seems to lie in the extent 

of intelligent behavior needed to decide whether a given image meets the specified search 

criteria. At the primitive level, images can normally be matched by algorithmic means purely 
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on the basis of information contained within the images themselves. For example, color 

similarity matching requires nothing more than the computation and comparison of two 

histograms representing the distribution of pixel colors across the two images. There is no 

requirement for what might be considered intelligent behavior in reference to an external 

knowledge base, reasoning with conflicting or incomplete data, or learning from past 

experience. 

Semantic retrieval requires the identification of images depicting desired types of object, scene, 

event, or abstract idea. According to the definition above, this is a process requiring 

intelligence, as it requires reasoning about the nature and significance of primitive visual cues 

from the image, and their relationships to each other and to the viewer's past experience. This 

latter aspect appears to be of crucial importance. Even at the simplest level (such as 

recognizing a curved yellow region in an image as a banana), extraction of an image's semantic 

content seems to require reference to some external store of knowledge. To identify a banana in 

an image requires experience of the range of color, shape and texture combinations which have 

characterized previously-encountered examples, and the ability to use this knowledge to predict 

which yellow curved regions are in fact bananas, and which (say)parts of yellow rubber rings. 

Identifying even a relatively simple artifact such as a chair is a rather more complex process. 

Since chairs come in a wide variety of colors, textures and shapes, primitive image features are 

unlikely to suffice on their own. The problem of recognizing a chair is not perceptually more 

difficult than that of recognizing a banana. The difference lies in the degree of interpretation 

necessary. Recognition of an object as a chair requires reference to some higher-level model, 

defining spatial, structural and perhaps other constraints. Such a model needs to be susceptible 

to modification, to include the possibility that new designs of chair may appear in the future 

(not a problem one would expect to encounter with bananas!). Humans build up and refine such 
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a model automatically from past experience: for machines, the process is less straightforward. 

The need to gain such experience directly is one reason why Brooks [78] has advocated 

designing robots in humanoid form. 

Identifying complex human artifacts is still more problematic. Experienced engineers can 

readily recognize a pressure-limiting valve in an engineering drawing, even though its actual 

shape may vary considerably, presumably because their training enables them to draw 

reasonable inferences from the appearance and layout of key components, as well as the nature 

of any larger structures in which they appear. But even a highly intelligent human would find 

such a task impossible without the requisite engineering training. The need to update one's 

mental model of a specialist device of this kind is likely to be even greater than for an everyday 

object such as a chair, since new designs are likely to appear at frequent intervals. 

Yet another layer of complexity is encountered when trying to interpret scenes depicting 

specific types of event. To recognize a photograph as that of a child's birthday party demands 

not only the identification of objects which might be present in such scenes (young human 

figures, balloons, lighted candles), but a further level of reasoning about the relationship of 

these objects to each other and the extent to which these conform to prior expectations of what 

occurs at such events. Again, the ability to update such mental models in the light of changing 

circumstances is crucial.  

The issues surrounding human recognition and classification of images have been extensively 

studied by Rosch et al. [79]. The most significant findings from these studies in the present 

context are as follows: 

Humans naturally categorize objects they encounter into basic categories such as chair or 

banana. Although visual appearance is of major importance in identifying these classes, other 
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factors such as commonality of the motor movements needed to interact with such items (such 

as grasping with the fingers) also play a part in such characterization. 

The basic category appears to be a favored level of abstraction for many purposes. Participants 

in experiments in free-naming of pictures, for example, overwhelmingly preferred to use basic 

category names rather than more specialized or generalized levels (hammer rather than tool or 

claw-hammer, for example). Developmental studies with young children show that basic 

category names are learnt earlier in life than those of other levels. Basic categories generally 

have a higher proportion of attributes common to all member of that class than subordinate or 

super ordinate categories. In many (but not all) cases it is possible to construct an averaged 

shape from typical members of the class which humans can readily recognize.  

These findings give some indication of the likely success of semantic image retrieval 

techniques which rely on automatic derivation of object or scene labels from visual features of 

the image. Such techniques are most likely to succeed for objects within an image which 

correspond to basic classes (such as banana or horse) whose members share a strong visual 

similarity. For such objects it should be possible to construct or learn suitable object models 

permitting recognition of typical examples of each class. For other types of object (such as bird 

or tree), a similar approach based on visual similarity of subclasses (probably, though not 

necessarily, based on existing taxonomic divisions such as sparrow, parrot or eagle) may prove 

more effective. For object classes where many defining attributes are non-visual (such as chair 

or pump), however, this approach appears doomed to failure, though the fact that humans can 

recognize such objects from visual cues alone suggests that the problem is in principle soluble. 

To develop a complete understanding of image contents at the semantic level is a formidable 

task, well beyond the capabilities of any current machine. Fortunately, such a complete level of 

understanding is not an essential prerequisite for successful semantic image retrieval, as several 
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researchers in the field have pointed out [80, 81]. Empirically, a retrieval system can be 

regarded as successful if it has the ability to classify a sufficiently high proportion of objects 

sought by users accurately enough for its retrieval output to satisfy a searcher's needs. In many 

contexts (including photo-journalism) this means that quite low classification accuracy may be 

acceptable, provided the searcher can in fact find a usable picture. An analogous situation holds 

in text retrieval, where effective retrieval systems have been around for years, despite 

continuing difficulties with automatic text understanding. Unfortunately it is not yet clear what 

level of image understanding is in fact required for successful classification and retrieval. The 

only way to resolve this question appears to lie in the development and evaluation of semantic 

image retrieval techniques. 

 

2. Semantic image retrieval - current trends 

Research into semantic image retrieval per se has a relatively short history; the vast majority of 

papers mentioned above date from 1996 or later. Many of the techniques now being applied to 

the problem have been adapted from related areas such as ‘classical' object recognition or 

machine learning, and it is not always easy to distinguish between research into image 

understanding for its own sake and research motivated by a desire to develop better storage and 

retrieval systems. As yet, it is difficult to discern any body of techniques or hypotheses which 

belong solely to the field of semantic image retrieval. This is possibly an indication of the 

relative immaturity of the field. However, semantic image retrieval is a topic of growing 

research interest, at least at level 2 as discussed above (retrieval by derived attributes such as 

the type of object or scene depicted). Several different areas of activity can be distinguished 

within the field, though many of the techniques used are common to more than one area, and 

the distinctions between different approaches are not always clear-cut. 
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By contrast, no significant research has yet been reported into CBIR at level 3 (retrieval by 

abstract attribute such as freedom). The issues involved are dauntingly complex. Little is 

known about the way in which humans interact with images at this level, making it almost 

impossible even to identify potentially fruitful lines of investigation. 
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II. Local patch based approach for Image retrieval 

 

 

The chapter covers feature vector construction methodology developed using local image 

patches and their performance in image retrieval. As the geometric shapes and corners form a 

major paradigm in the evaluations and identification of graphical information by brain (human 

perception) [82]. The patches are extracted from around so called corner points in an image. 

The algorithm uses information sampled from detected corner points in the image. A corner 

detection approach based on line intersections has been employed using Hough transform for 

line detection and then finding intersecting, near intersecting or complex shaped corners. As 

the affine transformations preserve the co-linearity of points on a line and their intersection 

properties, the corner points obtained as such retain the much desired property of repeatability 

and hence ensure the similar pixel samples under various transformations and are robust to 

noise. K-means unsupervised learning approach is used to assign class labels to the corner 

patches by learning a Gaussian Byes classifier to classify whole training image dataset. 

Histogram of the class members in an image has been used as a feature vector. The retrieval 

performance and behavior of the algorithm has been tested using four histogram similarity 

measures to check the strengths and weaknesses of the approach. 
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A. Literature in perspective 

There is an abundance of literature on corner detection. Moravec [83] observed that the 

difference between the adjacent pixels of an edge or a uniform part of the image is small, but at 

the corner, the difference is significantly high in all directions. Harris [84] implemented a 

technique referred to as the Plessey algorithm. The technique was an improvement of the 

Moravec algorithm. Beaudet [85] proposed a determinant (DET) operator which has significant 

values only near corners. Kitchen and Rosenfeld [86] presented a few corner detection methods. 

The work included methods based on gradient magnitude and gradient direction, change of 

direction along edge, angle between most similar neighbors, and turning of the fitted surface. 

Lai and Wu [87] considered edge-corner detection for defective images. Tsai [88] proposed a 

method for boundary-based corner detection using neural networks. Ji and Haralick [89] 

presented a technique for corner detection with covariance propagation. Lee and Bien [90] 

applied fuzzy logic to corner detection. Fang and Huang [91] proposed a method which was an 

improvement on the gradient magnitude of the gradient-angle method by Kitchen and 

Rosenfeld [86]. Chen and Rockett utilized Bayesian labeling of corners using a gray-level 

corner image model [92]. Wu and Rosenfeld [93] proposed a technique which examines the 

slope discontinuities of the x and y projections of an image to find the possible corner 

candidates. Paler et al. [94] proposed a technique based on features extracted from the local 

distribution of gray-level values. Rangarajan et al. [95] proposed a detector which tries to find 

an analytical expression for an optimal function whose convolution with the windows of an 

image has significant values at corner points. Arrebola et al. [96] introduced corner detection 

by local histograms of contour chain code. Shilat et al. [97] worked on ridge’s corner detection 

and correspondence. Nassif et al. [98] considered corner location measurement. Sohn et al. [99] 

proposed a mean field annealing approach to corner detection. Zhang and Zhao [100] 
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considered a parallel algorithm for detecting dominant points on multiple digital curves. 

Kohlmann [101] applied the 2D Hilbert transform to corner detection. Mehrotra et al. [102] 

proposed two algorithms for edge and corner detection. The first is based on the first-

directional derivative of the Gaussian, and the second is based on the second-directional 

derivative of the Gaussian. Zuniga and Haralick [103] utilized the facet model for corner 

detection. Smith and Brady [104] used a circular mask for corner detection. No derivatives 

were used. Orange and Groen [105] proposed a model-based corner detector. Other corner 

detectors have been proposed in [106 – 109]. Mokhtarian [110] used the curvature-scale-space 

(CSS) [111, 112] technique to search the corner points. The CSS technique is adopted by 

MPEG-7. 

The Hough transform [113] later introduced in generalized form for lines and curve detection 

[114] has been focus of research interest after it was popularized by the journal article of D.H. 

Ballard [115]. Davies [116] applied the generalized Hough transform to corner detection. Diou, 

A. et al. [117] proposed an analytical approach for the calculation of the theoretical Hough 

transform on standard images for research of straight lines. Anastasios & Nikos [118] proposed 

the Inverse Hough Transform. Fei Shen & Han Wang [119] used modified Hough transform 

for corner detection. Yu-Hua Gu [120] presented corner based feature extraction for object 

retrieval using smoothed object boundary curve and 2D rotationally symmetric band pass filter 

for detecting sharp angles (corners) and used the corner information for object matching and 

retrieval. For object matching they used normalized arc-lengths between adjacent corners, 

corner to centroid distances and object boundary curves modeled by a constrained active B-

spline curve model. 

Corner or Interest point detection has a long tradition in classic computer vision for finding 

point correspondences to reconstruct 3D scenes from 2D views. There exist a lot of evaluation 
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papers that try to judge the quality of interest point detectors, e.g. [121 ~ 124]. The evaluation 

criteria are mainly repeatability (i.e. robustness against varying imaging conditions like 

viewpoint, scale, illumination changes) and information content. After detecting the location of 

interest, a group of pixels extracted from around the detected interest points is used to construct 

a descriptor which can be used for point correspondence, object class recognition, image 

retrieval etc. Various descriptors have been proposed in the past and are also called as local 

features or local descriptors. A recent performance evaluation of Local Descriptors has been 

carried out by Mikolaiczyk et al. [125]. 

 

B. Corner Definition 

In the present day the term corner and interest point is being used interchangeably. A corner 

can be defined as the intersection of two edges or a point for which there are two dominant and 

different edge directions in a local neighborhood of the point. The characteristic feature of such 

a point is mentioned by Moravec [83] that the difference between the adjacent pixels of an edge 

or a uniform part of the image is small, but at the corner (edge intersection); the difference is 

significantly high in all directions. Where as, an interest point is a point in an image, which has 

a well defined position and can be robustly detected. This means that an interest point can be a 

corner but it can also be, for example, an isolated point of local intensity maximum or 

minimum, line endings, or a point on a curve where the curvature is locally maximal. In 

practice, most so-called corner detection methods detect interest points in general rather than 

corners in particular. Closely related to these are blob and ridge detectors. The exact meaning 

of even “interest point” differs from author to author. Agarwal et al. [126] defines them to be 

“points that have high information content in terms of the local change in signal.”, Cordelia 
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Schmid et al. [127] as “points where a signal changes two dimensionally” or Loupias et al. [128] 

just as “points where something happens in the signal at any resolution”. 

For the purpose of our algorithm, we defined the corner as an intersection of two or more 

intersecting or near intersecting straight lines (edges qualified to be straight lines). The reason 

for using the line intersections for defining corners is that lines are invariant to various affine 

transformations shown in figure 2.1.  

 

Figure 2.1 Common Affine transformations 

 

An Affine transformation is a geometrical transformation which is known to preserve the 

parallelism of lines but not lengths and angles. We can also say that these preserve co-linearity 

of points and their intersection properties. In other words, three points that lie on a line will 

continue to lie on that line after an affine transformation as shown in figure 2.2 Affine 

mappings are of the form Ax + b where A is an [n x n] square matrix and x and b are vectors in 

R .  
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Figure 2.2 Change of line lengths & Angles after shear transformation 

 

More general type of affine transformations shown in figure 2.1 can also be applied in 

combination as well as selective. For example scaling in only one axis can be termed as 

squeezing. Corner defined as such may not be the exact edge intersection point which Moravec 

[83] defined as a corner, but will be in the near vicinity of that, and it will be possible to extract 

the properties of the region surrounding the edge intersections. As the affine transformations 

preserve the co-linearity of points on a line and their intersection properties, we can obtain the 

lines and their intersection point under affine transformations. Furthermore, the corner features 

are invariant to noise. 
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C. Line Detection 

Hough transform can be efficiently used to search the straight lines in the images [114] using 

the parameterized line equation (2-1). 

ߩ ൌ ߠݏ݋ܿݔ ൅ (2-1) ߠ݊݅ݏݕ

Each line in the image can be associated with a couple   ሺߩ, ߠ   ሻ   which is unique ifߠ א ሾ0,    ሿߨ

and    ߩ א Թ   , or if  ߠ א ሾ0,2ߨሿ  and    ߩ ൒ 0  . The   ሺߩ,  ሻ   plane is sometimes referred to asߠ

Hough space. From the Hough space the lines can be found using the inverse Hough transform 

[118]. 

The figure 2.3 shows an original image and lines detected using the Hough transform in the 

original and affine transformed images of the original. The co-linearity of points has been 

preserved in the affine transformed image. 

 

 

Figure 2.3 Detected lines in transformed image 
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D. Corner detection 

Ideally, a corner is an intersection of two straight lines. However, in practice, corners in the real 

world are frequently deformed with ambiguous shapes. As corner represent certain local 

graphic features at abstract level, corners can intuitively be described by some semantic 

patterns (see Fig. 2.4). A corner can be characterized as one of the following four types:  

 

 

Figure 2.4 Four types of corners 

 

• Type A: A perfect corner as modeled in [109], i.e., a sharp turn of curve with smooth 

parts on both sides. 

• Type B: The first of two connected corners similar to the END or STAIR models in 

[109], i.e., a mark of change from a smooth part to a curved part. 
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• Type C: The second of two connected corners, i.e., a mark of change from a curved 

part to a smooth part. 

• Type D: A deformed model of type A, such as a round corner or a corner with arms 

neither long nor smooth. The final interpretation of the point may depend on the high 

level global interpretation of the shape. 

Figure 2.4 shows some examples of the four types of the corner. It is obvious from the figure 

that the corner points at very small level are the intersection points of the two straight lines. 

For two given line segments with end point coordinates P1,P2, P3, and P4 as shown in figure 

2.5 below 

 

Figure 2.5 Two intersecting line segments 

 

The equations of the lines are: 

Pa = P1 + ua ( P2 - P1 ) 

Pb = P3 + ub ( P4 - P3 ) 
(2-2) 
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Solving for the point where Pa = Pb gives the following two equations in two unknowns (ua 

and ub)  

x1 + ua (x2 - x1) = x3 + ub (x4 - x3) 

y1 + ua (y2 - y1) = y3 + ub (y4 - y3) 
(2-3) 

 

Solving gives the following expressions for ua and ub 

 

(2-4) 

 

Substituting either of these into the corresponding equation for the line gives the intersection 

point. If the denominator for the equations for ua and ub is 0 then the two lines are parallel. If 

the denominator and numerator for the equations for ua and ub are 0 then the two lines are 

coincident. There are other cases also, such as if point of intersection lies on the projected lines. 

Because of many intersections of lines, false corners are also detected. To avoid false 

candidates, the detected corners whose vicinity does not contain any edge point are discarded. 

Figure 2.6 shows the lines detected using Hough transform and their intersection points in red. 

Corners were detected by finding the intersecting or near intersecting lines as the corner 

consisting of two or more intersecting lines is always not possible because of edge 

deformations. We discarded lines by setting a threshold on the line lengths, so that only 

prominent lines are considered for finding corners. Figure 2.7 shows close up of a single corner 

and the detected intersecting lines. 
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Figure 2.6 Detected lines and corners 

 

 

Figure 2.7 A selected corner with coordinates 
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E. Feature Vector Construction 

Once we have the coordinates of the corner point, we need to extract a patch of pixels from 

around the corner. The shape and size of the patch depends on the approach being followed. In 

the literature, both square and circular patches have been used. From the extracted patches we 

compute features to be used of image retrieval. 

 

1. Patch extraction 

From the corner point information, feature vector is extracted using a neighborhood operation, 

for image retrieval. The neighborhood operation can be understood by the following pseudo 

code: 

Visit each point p (corner) in the image data and do { 

  N = a neighborhood or region of the image data around the point p 

  result(p) = f(N) 

} 

Denoting detected corner by ‘C’ and neighborhood pixel by ‘p’ we can write: 

Ci = p1, p2, p3,………….………….pn 

Where pi = 0~255 and i = 1, 2, 3, 4, …, n 
(2-5) 

 

From around the corner points a square block of gray level pixel values is extracted. The size of 

the block is very important and should be such that to capture maximum information around 

the corner to provide good discrimination characteristics. After experimentation, the size of the 

neighborhood matrix was chosen as (11x11). So each corner in the image is represented by an 
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11x11 matrix of the neighboring pixels. Figure 2.8 shows the block of pixels around the corner 

highlighted in the previous figure. The corner is shown by a red square box. 

 

Figure 2.8 A selected corner with neighborhood pixels 

 

2. Descriptive statistical features computation 

We take the sample mean and sample variance of each neighborhood and store this for each 

image of the training data base as its characteristic representation. The sample mean of a set 

{x1... xn} of n observations from a given distribution is defined by  
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݉ ؠ
1
݊ ෍ ௞ݔ

௡

௞ୀଵ

 (2-6)

The sample variance m2 (commonly written as s2 or sometimes  ݏே
ଶ   ) is the second sample 

central moment and is defined by: 

݉ଶ ؠ
1
ܰ ෍ሺݔ௜ െ ݉ሻଶ

ே

௜ୀଵ

 (2-7)

Where, ݉ ൌ   .ҧ is the sample mean and N is the sample sizeݔ

The features that are extracted from the image form a two-dimensional space of mean and 

variance values. The distribution of these training samples is given in Figure 2.9 which is a 2 

dimensional scatter plot of the corresponding mean and variance samples. 

 

Figure 2.9 Scatter plot of the training data 
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3. Classification into Class labels 

Using the standard K means unsupervised learning approach we partitioned this two-

dimensional feature space into a fixed set of Q classes. During training, 7,127 samples of 

extracted values from 300 randomly selected images were used to train a 20-bin quantizer. The 

resulting clusters with centroids, after 1,000 iterations are shown in Figure 2.10. 

 

Figure 2.10 Centroids of each cell 

 

We use this labeled data to obtain a Gaussian model of the data which is characterized by the 

mean and covariance for each class within the data along the number of dimensions. New data 

points can then be classified by using Bayes rule as in equation 2-8. For each new data point 

we calculate the posterior probability that point came from each class; the data point is then 

assigned to the class which gave the highest probability.  
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 ܲሺܣ|ܤሻ ൌ ௉ሺ஻|஺ሻ௉ሺ஺ሻ
௉ሺ஻ሻ   (2-8)

• P(A) is the prior probability of A. It is "prior" in the sense that it does not take into 

account any information about B. 

• P(A|B) is the posterior probability of A, given B. 

• P(B|A) is the conditional probability of B given A. 

• P(B) is the prior or marginal probability of B, and acts as a normalizing constant. 

 

Figure 2.11 Class labels in an image 

 

Using the Gaussian Bayes classifier we assign class labels to all the training image data. Figure 

2.11 shows the class distribution in an image. In the figure, the class labels associated to each 

corner has been pasted on the location of the particular corner from where these were extracted 

for visual analysis. Notice the similar values for each object, road, grass and bike. Within an 
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object, motorbike tyres form one group and the metallic body parts form their own clusters. 

This way one group of classes can describe a particular object 

 

4. Histogram Feature Vector Computation 

After the class labels have been assigned, a feature vector is computed by counting the number 

of mean variance pairs that are assigned to each class. The feature vector for each image is then 

the Q-dimensional vector which has for its q’th component the number of mean variance pairs 

that fall into that q’th class In this case Q was taken as 20. This forms the feature histogram or 

feature vector as shown in figure 2.12. 

 

Figure 2.12 Feature Histogram 

 

Figure 2.13 shows the flow process of the feature extraction module from selection of training 

images from the test dataset to the storage of feature vectors in the feature database. 
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Figure 2.13 Pre-processing and feature extraction module 

 

F. Histogram Similarity Measures for Image Retrieval 

Content-based image retrieval calculates visual similarities between a query image and images 

in a database instead of exact matching. Many similarity measures have been developed for 

image retrieval based on empirical estimates of the distribution of features in recent years. 

Different similarity/distance measures will affect retrieval performances of an image retrieval 

system significantly. In order to evaluate the affect of different similarity measures on the 

algorithm we used four known similarity measures for histogram matching. 

 

1. Euclidean Distance Measure 

The most commonly used Euclidean distance is given as: 



 

- 41 - 
 

 ݀௘௨௖௟ሺܪ, ሻ′ܪ ൌ ඥ∑ ሺܪ௜ െ ௜ሻଶ௡′ܪ
௜ୀଵ   (2-9)

 

2. Relative Histogram Deviation Measure 

Relative deviation gives the deviation between two histograms as: 

 ݀௥ௗሺܪ, ᇱሻܪ ൌ
ට∑ ሺு೘ିுᇲ೘ሻమಾ

೘సభ

భ
మቆට∑ ு೘

మಾ
೘సభ ାට∑ ுᇲ೘

మಾ
೘సభ ቇ

  (2-10)

 

3. Relative Histogram Bin Deviation Measure 

The Relative bin deviation is the bin-wise deviation between two histograms. 

 ݀௥௕ௗ ሺܪ, ᇱሻܪ ൌ ∑ ඥሺு೘ିுᇱ೘ሻమ

భ
మቆටு೘

మ ାටுᇱ೘
మ ቇ

ெ
௠ୀଵ   (2-11)

 

4. Quadratic Distance Measure 

Quadratic Forms are capable of considering the similarities between different bins by 

incorporating a matrix  ܣ ൌ   ݉  ௠,௡  denoting the dissimilarity between the binsܣ  ௠,௡  withܣ

and  ݊  [14]. Let  ܪ  and  ܪ′ be the histograms represented as vectors, the Quadratic form can 

be calculated as: 

 ݀௤ௗሺܪ, ᇱሻܪ ൌ ඥሺܪ െ ᇱሻ்ܪ · ܣ · ሺܪ െ ᇱሻ  (2-12)ܪ
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A high dissimilarity between the underlying values of different bins  ܪ௠   and  ܪ′௡  is denoted 

by a high value   ܣ௠,௡  , thus differences between these bins are taken into account stronger 

than differences between bins   ܪ௠′   and  ܪ′௡′   where  ܣ௠′,௡′    is a low value. A common 

setting for the  ܣ௠,௡  is  

௠,௡ܣ  ൌ 1 െ ௗమሺν೘,ఔ೙ሻ
ௗౣ౗౮

  (2-13)

Where  ݀ଶሺν௠,  ௡ሻ  is the Euclidean distance between the values represented by bins  ݉  andߥ

 ݊  respectively and  

 ݀௠௔௫ ൌ ௠,௡ݔܽ݉ ݀ଶሺߥ௠, ௡ሻ  (2-14)ߥ

 

G. Test Data set 

For testing the proposed idea, we used the dataset provided by The Californian Institute of 

Technology (Caltech) on the institute’s website [129]. The dataset is in the form of various 

visual object classes facilitating the evaluation process. The size of each image is roughly 300 x 

200 pixels. We used the classes, Motorbikes, airplanes, soccer ball, doors, leaves, grand piano, 

helicopter, pyramid, schooner, scissors, starfish, stop sign, stapler, chair and minaret. The 

number of images in each class varies between few hundreds to around 50. For performance 

evaluation of the algorithm on this database, we used the precision and recall measure. 

 

H. Image Retrieval experiments 

The framework for image retrieval is based on a query or example image or sketch as input to 

the system and the result is a list of images ranked by their similarities with the query image. 
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Figure 2.14 depicts the process flow of a query module. First the feature vector of the query 

image is computed in run time and then similarity matrix is computed. Based on which the list 

of relevant images is sent as output. Since content based image retrieval is all about visual 

information retrieval, in order to discuss various aspects of experiments carried out, four results 

from the four distance measures used are displayed from the visual class motorbike. The results 

displayed are the first 25 results obtained in a random query. 

 

Figure 2.14 CBIR Query Module 

 

Figure 2.15 below shows the query image for the displayed results from the class motorbike. 

From figure 2.16 till 2.19, we can see that the relative bin deviation measure has more 

discriminative power in this case. However with different databases the behavior of distance 

measure changes. One distance measure performing well for one data base may not be giving 
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that much accurate result in another. So the choice of similarity measure still remains an open 

ended question. 

 

Figure 2.15 Query Image 

 

The grand piano in case of Euclidean distance and relative histogram deviation has been 

detected as a false positive at different levels. In Euclidean distance measure, false positives are 

more than the relative histogram deviation measure. In figure 2.16, first false positive is at 

image 13 and then at 14 with a total of 5 false positives in a total of 25 results. Precision = 

20/25 = 0.8 

Where as in figure 2.17 of relative histogram deviation measure, we got total 3 false positives 

but their weightings are different. First false positive is image 10. Precision = 22/25 = 0.88 

In figure 2.18 the relative bin deviation measure performed the best with a steady precision 

with recall. For the displayed result, Precision = 1 

In case of figure 2.19 of quadratic distance measure, in the first 25 results there is only one 

false positive. However, in the averaged performance curve, its precision falls in the lowest 

category. For the displayed results, Precision = 24/25 = 0.96  
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Figure 2.16 Euclidean Distance Measure Results 

 

 

Figure 2.17 Relative Histogram Deviation Measure Results 
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Figure 2.18 Relative Histogram Bin Deviation Measure Results 

 

 

Figure 2.19 Quadratic Distance Measure Results 
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I. Performance Evaluation 

Two traditional measures for retrieval performance in the information retrieval literature are 

precision and recall. Precision is defined as the percentage of retrieved images that are actually 

relevant  

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
# ݂݋ ݐ݊ܽݒ݈ܴ݁݁ ݏ݁݃ܽ݉ܫ ݀݁ݒ݁݅ݎݐܴ݁

݀݁ݒ݁݅ݎݐ݁ݎ ݂݋ # ݈ܽݐ݋ܶ ݏ݁݃ܽ݉ܫ  (2-15)

Recall is defined as the percentage of relevant images that are retrieved  

ܴ݈݈݁ܿܽ ൌ
# ݏ݁݃ܽ݉ܫ ݐ݊ܽݒ݈ܴ݁݁ ݂݋ ݀݁ݒ݁݅ݎݐܴ݁

݈ܽݐ݋ܶ ݐ݊ܽݒ݈݁݁ݎ ݂݋ # ݏ݁݃ܽ݉ܫ  (2-16)

Given a query, high precision implies that very little irrelevant images have been retrieved and 

high recall implies that much of what is relevant in the database have been retrieved. Lack of 

precision can be compared to a type 2 error (false alarm) and deficiency in recall for a given 

search is comparable to type 1 error (misdetection). For performance evaluation, one can plot 

precision and recall as a function of the number of images retrieved as well as the precision 

versus recall curves for different numbers of images retrieved. To evaluate the overall retrieval 

performance (precision and recall), first, the database is queried with each of the images in test 

database consisting of images from different visual classes, then average precision and recall 

percentages are computed for the entire database. To rank-order the database images, distance 

measures discussed above are used. Figure 7 shows the averaged precision and recall for the 

entire database. 

Figure 2.20 shows the averaged precision and recall for the entire database. The low precision 

part of the quadratic distance is because it considers the similarities between different bins. The 

concept behind this measure is that because of external conditions the positions of bins may 

shift so instead of matching the corresponding bins other bins must also be taken into account. 
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For increased recall the performance of quadratic distance gets better but inferior to other 

distances. However in case of color histograms it is considered to have superior performance. 

One more question on the performance measure has been debated from the view point of users, 

that a user is mostly interested to check only first 20 or may be 40 results vis-à-vis time and 

interest constraints. This point of view considers the accuracy of only first pile of results which 

a user sets as threshold, “Like show me best 50 results”. Because the ultimate decision of 

relevance has to be from the user. With these arguments, the displayed results are good. 

 

Figure 2.20 Averaged Precision and Recall Curves for Different Distance Measures 

 

J. Comparison with known approaches 

Figure 2.21 below shows the precision and recall curves for three known approaches, compared 

with our algorithm. For comparison, same conditions were applied to all the algorithms. The 

distance measure used was ‘relative histogram bin deviation measure’, as it performed better on 
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our algorithm. The curves marked as 3 and 4 are algorithms based on color only, which 

explains their low performance in a diverse data set of semantic objects having different colors 

and textures. The proposed feature set is significantly smaller in size compared to the 

algorithms using color features typically color correllograms and thus is computationally very 

efficient.  

 

 

Figure 2.21 Comparative Precision and Recall Curves for Different Approaches 
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III. Visual Object Class Recognition using Semantic Image 
       Structure 
 

 

The chapter discusses two new approaches to explore and extract semantic meanings in visual 

object class structure for visual object class recognition. The approaches are based on 

exploiting semantic relations and micro-level semantic structural groupings, in a semantic 

object structure. The algorithms uses the hypothesis in line with Gestalt laws of proximity that; 

in an image, basic semantic structures are formed by line segments (arcs also approximated 

into line segments based on pixel deviation threshold) which are in close proximity of each 

other. These basic semantic structures are hierarchically combined till such a point where a 

semantic meaning of the structure can be extracted. One of the presented approaches exploits 

these hierarchical relations for constructing a semantic object to learn a classifier in a K-nearest 

neighbor framework. The other approach constructs a graph model for classification based on 

micro-level semantic groups and their inter-relations. Geometrical properties of the semantic 

relations are used to generate rotation, translation and scale invariant histograms which are 

used for making recognition decision in the K-nearest neighbor framework whereas in the 

graph model, invariant geometrical properties of the groups and relations are used as vertex and 

edge labels. The graph model presented, captures the inter class variability by analyzing the 

repetitiveness of structures and relations and uses it as a weighting factor for classification. The 

algorithms has been tested on standard benchmark database and results are compared with 



 

- 52 - 
 

existing approaches to understand the strengths and weaknesses of the semantic approaches 

vis-à-vis other approaches. 

 

A. Exploring semantic level intelligence in data 

Recognition of a multitude of objects as dogs, cars etc. is an un-noticeable every day activity, 

hardly considered an achievement of any subtle order. In contrast, it is a very active research 

area in computer world and the capability of computers in this regard makes an interesting 

reading. In the preface of the book [133], it is mentioned in these words: 

Object recognition — or, in a broader sense, scene understanding— is the ultimate scientific 

challenge of computer vision. After 40 years of research, robustly identifying the familiar 

objects (chair, person, pet), scene categories (beach, forest, office), and activity patterns 

(conversation, dance, picnic) depicted in family pictures, news segments, or feature films is 

still far beyond the capabilities of today’s vision systems. 

It is interesting to note in this context that, for human vision; the general classification of an 

object such as a ‘car’ is usually easier than the identification of the specific make of the car 

[79]. In contrast, current computer vision systems can deal more successfully with the task of 

recognizing a specific car compared with classifying an object into a general category as ‘car’ 

[134]. So the problem in object recognition is to determine which, if any, of a given set of 

objects appear in a given image or image sequence. Essentially this is a problem of matching 

models from a database with representations of those models extracted from the low level 

image features such as color, texture, shape or the spatial location of image elements. In the 

image retrieval literature, we come across the notion of ‘semantic gap’ at various places as 

discussed in chapter I section D. The sprung up logic as a result of this thought process is very 
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simple; since we talk about visual solutions (like given by humans and they are really good at 

it), we should try to follow human’s pattern of understanding an image. 

Near the turn of the 21st century researchers finally got convinced that next evolution of 

systems would need to understand the semantics of an image, not simply the low level 

underlying computational features i.e., “bridging the semantic gap” [135]. From a pattern 

recognition perspective, this roughly meant translating the easily computable low level content-

based media features to high level concepts or terms which would be intuitive to the user. The 

result of this thought process was the focus on the possibilities of bridging the semantic gap 

between the man and machine. The efforts made followed both the top down and bottom up 

approaches. The top down approaches studied how the human vision makes semantic decisions. 

Mojsilovic and Rogowitz [136] conducted psychophysical experiments to gain insight into the 

semantic categories that guide the human perception of image similarity. They used these data 

to discover low-level features that best describe each category. Lew [135] and others studied 

translating the easily computable low level content-based media features to high level concepts. 

In object recognition literature, we also find similar change in approaches, as Serre et al. [137] 

presented a set of features for object recognition, based on quantitative model of visual cortex. 

Such efforts trying to follow the human patterns of scene understanding implicitly imply that 

for visual solutions we can’t ignore to explore the underlying principles of human vision. 

 

B. Approaches to Generic Object Class Recognition 

Significant progress has been made in the recent years towards object recognition [133]. Early 

attempts on object recognition were focused on using geometric models of objects to account 

for their appearance variation due to viewpoint and illumination change. An excellent review 

on geometry-based object recognition research by Mundy can be found in [138]. 



 

- 54 - 
 

In contrast to early efforts on geometric model based object recognition works, later the focus 

shifted on appearance-based techniques. David Lowe [139, 140] pioneered the approach by 

using scale-invariant ‘SIFT’ features. Since then, there has been a lot of work using appearance 

based techniques. There is an excellent survey by Alexandra Teynor [141] covering the 

techniques used so far in the area of ‘appearance’, ‘patch’ or ‘key-point’ based approaches. 

There are other good evaluation papers covering strengths and weaknesses of various aspects 

of the feature based approaches [121 – 125]. 

Here we also witness that research inspired from human biological vision is getting the 

attention of researchers. A new set of biologically inspired features that exhibit a better trade-

off between invariance and selectivity than template-based or histogram based approaches was 

proposed [137]. The latest work by Mutch and Lowe [142] is an extension of quantitative 

model of visual cortex by Serre et al. [137], proposing some modifications in the approach with 

improved performance. 

The ideas of semantic or perceptual grouping for computer vision have their roots in the well 

known work of Gestalt psychologists in 1920’s [143] who described, among others the ability 

of the human visual system to organize parts of the retinal stimulus into organized structures. 

The word Gestalt means “whole” or “configuration”. Gestalt psychologists observed the 

tendency of the human visual system to perceive configurational wholes. With rules that 

governs the uniformity of psychological grouping for perception and recognition, as opposed to 

recognition by analysis of discrete primitive image features. The grouping principles proposed 

by Gestalt psychologists embodied such concepts as grouping by proximity, similarity, 

continuation, closure, and symmetry. 

Perceptual organization is a primitive explanation of the processes that generated the image. 

Deeper explanations are constructed by labeling, elaborating, and refining the primitive ones 
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[144]. The goal of perceptual grouping in computer vision is to organize image primitives into 

higher level primitives thus explicitly representing structure contained in the image data [145]. 

The final structure obtained after grouping all lower level features to a higher-level structure 

will represent the shape of an object in an image. A precise model of the object may still be 

required for recognition. In case of humans we obtain that model through learning since birth 

and also through inherited knowledge.  

In computer vision, the term “perceptual organization” has been used by various researchers in 

various contexts, at different levels of vision processing, and with respect to different feature 

types. This practice has blurred the meaning of the term “perceptual organization”. Perceptual 

groupings differ from one another with respect to the types of constituent features being 

organized and the dimensions over which the organizations are sought [146]. It means that 

different authors have considered different ideas under the banner of perceptual groupings and 

no two are alike. 

The true heart of visual perception is the inference from the structure of an image about the 

structure of the real world outside [147]. Approaches extracting semantic meanings from the 

image structure including line segments, different shapes such as ‘L’, ‘U’, etc which the line 

segments make and incorporating other features as color and texture to make these more 

meaningful are found in literature. These approaches basically follow the human visual system, 

which has the ability to link together image features arising from the same physical source (e.g., 

the same object). Etemadi [148] proposed a frame work for low level grouping of straight lines 

following the work in perceptual grouping. He proposed to group parallel, collinear and 

intersecting lines in a hierarchical order. He then further subdivided parallel lines in 

overlapping and non overlapping line groups and grouped intersecting lines based on the 

location of their junction point, if it lies on or away from the lines. Further subdividing these on 
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the basis, if they form a ‘V’,’T’, ‘⊥’ or ‘L’ shape. He however did not take into consideration 

the distance or spatial placement of these line segments with respect to each other. 

For detecting man-made objects in non-urban scenes, Lu and Aggarwal [149] proposed a 

framework based on perceptual organization. The framework grouped low level image features 

hierarchically into regions-of-interest (ROI), likely to enclose man-made objects or a 

substantial part of the man-made objects. For detecting large man made structures such as 

buildings, Iqbal and Aggarwal [150] proposed a framework based on perceptual line groupings. 

The approach was based on the ‘Principle of non-accidentalness’. Meaning that in case of man 

made features; line segments have an order where as in other cases the objects lack such an 

order. To exploit ‘non-accidentalness’ nature of man made structures they placed the extracted 

line segments from an image into various groups as, straight line segments, longer linear lines, 

co terminations, “L” junctions, “U” junctions, parallel lines, and Polygons. Based on these 

characteristics they trained a classifier on a database consisting of three classes: structure, non-

structure and intermediate. The proposed framework takes an image and computes the above 

described line segment groupings of the whole image. The algorithm works globally and does 

not take into account spatial arrangements of the line segments in relation to each other and 

their contribution to form semantic objects. 

 

C. Image structure analysis for semantic features 

The algorithm builds on the idea that putting a minimum number of line segments in close 

proximity to each other forms a basic semantic structure. The other important properties are the 

relative segment lengths and angles. Hierarchically combining these basic semantic structures 

makes possible for human brain to interpret the whole structure as something meaningful. 
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Figure 3.1 Semantic meanings to line segments 

 

This can easily be explained using figure 3.1, showing the formation of basic semantic 

structures. First row of figure 3.1 shows two basic semantic structures made from different 

number of line segments. First consists of just four line segments and second consists of nine 

line segments. For both the structures we can use the word ‘hut’, ‘house’, ‘dog house’ or 

something else depending upon the person trying to describe the sketch. In the second row of 

figure 3.1, line sketch of a person’s side view is shown. Close up of line segment groups are 

shown in the callout. One thing can be appreciated here that, more line segments mean more 

clarity in making a categorization decision by the brain. In answering if it is a semantic 

structure or not and can the structure be semantically described using language. The line 
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segments in the figure get semantic meanings when they are placed at a close distance from 

each other at certain angles having certain lengths with respect to each other. The relationship 

of minimum distance remains the same under various geometric transformations though the 

segment lengths and angles may change. The basic semantic structure formed in this way can 

have some lower level or basic semantic meanings. Lower level means that the structure may 

not have any clear semantic level meanings on its own, without being combined hierarchically 

with other groups to give true semantic meanings. 

 

 

Figure 3.2 Edge pixels in an image 
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D. Transforming image structure into a line segment model 

In order to follow the semantic grouping idea, we need to transform the image structure into a 

line segment model. We can think of an image edge map consisting of staggered lines and 

curves. Figure 3.2, shows binary edge map of an image showing different objects. The edges 

can be generalized as consisting of staggered lines, curves and circles. The semantic grouping 

approach discussed above, only talked about lines and not curves or circles. As the curved 

shapes and circles carry important information about the semantics of an object, these can not 

be ignored. So, the proposed semantic grouping approach has to account for curves and circles 

constituting a semantic object. 

 

Figure 3.3 Extracted line segments 
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We have followed the approach of breaking down the curves and the circles into smaller line 

segments based on pixel deviation. This way the general semantic meaning of a shape or an 

object remains unchanged and we can implement the grouping approach. For this purpose we 

have adopted the algorithms of [151] and [152]. The algorithm takes the edge map of an image, 

performs edge linking, removing isolated pixels and edges below a threshold of pixel length. In 

the next step a parameter is introduced which controls the threshold of the maximum allowed 

line tolerance, i.e. pixels that are too far off the line segment. The pixels which are below the 

tolerance level are grouped into line segments. Similarly all the edge lists are converted into 

line segments. Then we combine the line segments which are within a specified distance and 

angle tolerance. Figure 3.3 shows the line segments obtained using the approach. 

 

E. Parameter of proximity 

In order to translate the notion of ‘close proximity’ between two line segments into the 

mathematical domain, we find a point on each line segment such that the distance between the 

two is minimum compared to other points on respective line segments. This will be our 

parameter of proximity for the grouping approach. 

In case of an image domain the line segments are in a two dimensional plain and either are 

parallel or intersecting. The parallel line segments can be overlapping or non-overlapping and 

in case of intersecting line segments, the point of intersection may lie on or away from the line 

segments or even out of the image boundaries. For finding the minimum distance we use the 

below derivation. 

Using the parametric line equation defined by two points we can write 

L1: P (s) = P0 + s (P1 – P0) = P0 + su (3-1) 
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L2: Q (t) = Q0 + t (Q1 – Q0) = Q0 + tv (3-2) 

Whereas, P(s) is the line segment on line L1, and Q(t) is the line segment on line L2. The 

parameters s and t are real numbers. Whereas;  

u = P1 – P0  and v = Q1 – Q0 (3-3) 

are line direction vectors. 

We have to find the two points, P and Q, whose distance is minimum compared to other points 

on the respective lines and the points P and Q must lie on the respective line segments. 

Let w(s, t) = P(s) – Q(t) be a vector between points on the two lines. We want to find the     w(s, 

t) that has a minimum length for all s and t. 

Minimizing the length of w is the same as minimizing; 

|w|2 = w · w 

= (w0 + su – tv) · (w0 + su – tv) 
(3-4) 

which is a quadratic function of s and t.  In fact, it defines a parabaloid over the (s, t)-plane 

with a minimum at intersection point C = (sc , tc), and which is strictly increasing along rays in 

the (s, t)-plane that start from C and go in any direction. 

We compute where the minimum occurs on each line segment by substituting s and t for 0 and 

1 and solving the equation for vector w. 

Consider the edge s = 0, by substituting in equation 3-4, we get,  

|w|2 = (w0 – tv) · (w0 – tv) (3-5) 

Taking the derivative with t we get a minimum when: 

( )tvwv
dt
d w =⋅−== 0

2
20  (3-6) 
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From equation 3-6 we can calculate t shown in equation 3-7. This gives a minimum on the edge 

at (s0, t0) where s0 = 0 and t = t0: 

t0= v·w0 / v·v (3-7) 

If 0 <= t0 <= 1, then this will be the minimum and P(0) and Q(t0) are the two closest points of 

the two segments. However, if t0 is outside the edge, then we will have to check other cases for 

the true minimum. 

Similarly, for s = 1,                          t1 = (v·w0 + v·u) / v·v (3-8) 

                 for t = 0,                          s0 = – u·w0 / u·u (3-9) 

                 for t = 1,                          s1 = u.v – u.w0 / u·u (3-10) 

 

F. Defining a Transitive Relation for Semantic Modeling 

The figure 3.4(a) shows a simple picture of a semantic object whose general category is 

‘Motorbikes’. Semantically this is not a complex category and it has a very peculiar structure 

like ‘two wheels’ and a ‘handle’, which helps in its identification even by children rather 

quickly. The figure 3.4(b) shows the line segment model or more generally line sketch of the 

object motorbike. For humans it is very easy to categorize this line segment model. There are 

hardly any chances that someone will categorize it as something else such as ‘shovel’. The line 

segments in the figure get semantic meanings when they are placed at a close distance from 

each other at certain angles having certain lengths with respect to each other. The relationship 

of minimum distance remains the same under various geometric transformations though the 

segment lengths and angles may change. 
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(a) 

 

(b) (c) 

Figure 3.4 Original Image, Line segment model and a close-up showing four 
closely placed line segments 

 

The basic semantic structure made by one group of line segments close to each other at a 

certain threshold distance, can have some lower level or basic semantic meanings. Lower level 

means that the structure may not have any clear semantic level meanings on its own, without 

being combined hierarchically with other groups to give true semantic meanings. The criteria 

for bottom up hierarchical grouping can be explained easily using figure 3.4 (c), which shows 

four closely placed line segments ‘a’, ‘b’, ‘c’, and ‘d’. The approximate minimum distance 

between these four line segments can be determined by visual inspection. The line segment ‘a’ 

is close to ‘b’ compared to the other line segments. The line segment ‘b’ is close to ‘a’ and ‘c’ 

and ‘c’ is close to ‘b’ and ‘d’, whereas ‘d’ is close to only ‘c’. 
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We can define a binary relation ‘is close’ denoted by ‘ℜ ’ based on a minimum distance 

threshold between line segments for all the line segments (a, b, c and d) in the image (X) of 

figure 3.4(c). A binary relation ℜ  over a set X is transitive if it holds for all members a, b and 

c in X, that if a ‘is close’ to b and b ‘is close’ to c, then a ‘is close’ to c. Using predicate logic 

we can write this transitive relation as: 

dadccbbaXdcba ℜ⇒ℜ∧ℜ∧ℜ∈∀ ,,,,  (3-11)

Or more simply as: 

if   a = b, b = c and c = d, then  a = d (3-12)

This way all the four line segments in figure 3.4(c) form part of a semantic hierarchical group. 

 

1. Feature representation 

After line extraction and minimum distance calculation between line segments, we form the 

line segment groups using the transitive relation of equation (3-11). This gives us semantic line 

groups in an image. For further processing, we have discarded lines by setting a threshold on 

the line lengths, so that only prominent lines are considered and the rest which mostly provide 

object details are discarded. 

For feature construction using line segments, first we have to consider the effect of various 

affine transformations; as the affine transformations do not preserve line lengths and angles. A 

Euclidean distance matrix (EDM) is an (n×n) matrix representing the spacing of a set of n 

points in Euclidean space. If A is a Euclidean distance matrix and the points are defined on m-

dimensional space, then the elements of A are given by. 
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A = (aij); 

aij = || xi – xj||2 

Where ||.||2 denotes the 2-norm on Rm. 

(3-13) 

 

A common translation of all points will not affect an EDM since the change of the point co-

ordinates is nullified. Similarly, an EDM is invariant against rotation and also against scaling if 

the matrix is normalized in the range of [0, 1], otherwise it is scale invariant up to a factor ‘S’ 

[153]. In view of these invariance properties, we compute EDM’s from the geometric 

properties of the line segments. 

For each semantic group, let L = {li |i = 1, 2, ...,N}, be the set of line segments obtained. Then 

we can compute geometric properties of L: the angles formed by all segments between each 

other and the relative length of each segment with respect to all other line segments. The 

relative minimum distance between each has already been considered based on which we made 

the semantic groups. The angle between two line segments can be calculated as: 

vu
vu
⋅
⋅

=θcos  (3-14) 

where, u and v are line direction vectors of two line segments from equation 3-3. The length of 

segment l(i) with end points (x0, y0) and (x1, y1) is given as: 

( ) ( )210
2

10)( yyxxllen i =+−=  (3-15) 

Relative lengths of the line segments for constructing EDM are calculated as: 
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jiij lla −=  (3-16) 

Where aij is the element of EDM from equation 3-13 with row ‘i’ and column ‘j’. 

We normalize the relative line length data in order to bring it in [0, 1] range as follows: 

Given a lower bound l and an upper bound u for a feature component x, 

lu
lxx

−
−

=
 

(3-17) 

results in x  being in the range of [0, 1]. Now we have angles in the range of (±π) and relative 

line lengths in the range of [0, 1]. 

Since every EDM is symmetric, we extract the upper triangle matrix and form a histogram 

from each EDM with different resolutions based on empirical testing. 

{ } { }ac
ang
bang BbhH

a
,,3,2,1, KKK==  

(3-18)

{ } { }ll
ang
blen BbhH

l
,,3,2,1, KK==  

where Ba and Bl denote the different number of bins of the three histograms. For Hang, 72 or 36 

bins that correspond to a 5 and 10 degree angle resolution, produced the best results. The 

resolution for Hlen depends more on the application data then Hang. However, we found out that, 

25 bins result in a robust and compact histogram feature. 

 

2. Experiments and results 

In order to test the performance of the proposed algorithm and make comparisons of our results 

with state of the art algorithms we chose the classification results of several different authors. 
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Because many authors have reported the classification rates of their algorithms on a subset of 

the data and on class-wise classification methodologies, i.e. a classifier was trained in order to 

discriminate a single class among the subset from a background class consisting of arbitrary 

images. Multiclass object categorization has been dealt in a less frequency. 

Our recognition framework is based on k-nearest neighbor classifier (k-NN). The k-NN 

classifier generalizes in a straightforward manner to multi-class classification. Given a training 

set E of m labeled patterns, a nearest neighbor procedure decides based on a distance function, 

that some new pattern, X, belongs to the same category as do its closest neighbors in E. More 

precisely a k-nearest neighbor method assigns a new pattern, X, to that category to which the 

plurality of its k closest neighbors belong. We used relative histogram deviation measure as a 

distance function for performing better that L2 measure. The measure gives the deviation 

between two histograms as: 
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(3-19) 

Using relatively large values of k decreases the chance that the decision will be unduly 

influenced by a noisy training pattern close to X. But large values of k also reduce the acuity of 

the method. The k-nearest neighbor method can be thought of as estimating the values of the 

probabilities of the classes given X. Of course the denser are the points around X and larger the 

value of k the better the estimate. Cover and Hart theorem [154] related the performance of the 

1-nearest neighbor method to the performance of a minimum probability-of-error classifier and 

also concluded that, for any number n of samples, the single-NN rule has strictly lower 

probability of error than any other k-NN rule. 
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Airplanes 
 
 
 
Motorbikes 
 
 
 
 
Scissors 
 
 
 
 
 
Scorpion 
 
 
 
 
 
Sunflower  

Figure 3.5 Few classes of the Caltech 101 database 

 

a. Data set 

For testing the algorithm we have used the Caltech 101 data set provided by ‘The California 

Institute of Technology’ (Caltech) for object class recognition. The Caltech 101 dataset 

contains 9,197 images comprising 101 different object categories. The dataset consists of 

pictures of objects belonging to 101 categories. There are about 40 to 800 images per category. 

Most categories have about 50 images. The size of each image is roughly 300 x 200 pixels. The 

data set is available on the institute’s website [155]. 
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Caltech 101 dataset is an extremely challenging dataset with large intra-class variation in color, 

pose and lighting. Secondly, a number of previously published papers have reported results on 

this data set. Figure 3.5 shows few classes from the dataset 

 

b. Multiclass categorization task 

We first discuss and compare our results with the published work using only the subset of 

Caltech 101 database. The table below shows results by Fergus et al. [156] and Fayin Li [157] 

along with our results in the similar way for comparisons. 

 

Table 3.1 Classification results: Comparison with published results on subset of Caltech 101 

Classes Our Multi class 
[156] 

Single class 

[157] 

Multi class 

[157] 

Single class 

Airplanes 95.75 90.2 95.4 93.7 

Faces 94.2 96.4 93.4 94.4 

Motorbikes 95.3 92.5 93.1 96.1 

Aver. Class 95.08 93.0 93.96 94.73 

 

In [157] the authors additionally reported the class separation performance for visual object 

classes in the form of a confusion matrix. It is obvious that the latter approach is more 

challenging then a pure one-class problem. The results of [157] confirm that - for the class 

motorbikes - the classification rate dropped for about 3% between the one-class and multi-class 

problem. This result suggests that the inter-category separation is of a higher difficulty, but also 

gives a further insight into the discrimination ability of a feature.  
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Table 3.1 shows that our approach showed better results with the subset of the database 

compared to other methods. For the class faces our approach is slightly less better then the one 

in [156]. For the class motorbikes [157] reported a higher classification rate for the one-class 

approach. However, for the class separation task the performance drops below ours. The 

overall classification rate of our method is the highest with more than 95%. Better results are 

mainly because the semantic structures of these classes are very distinct from each other and 

can’t be misjudged visually. 

For comprehensive comparisons, we have shown results from published work on multiclass 

object categorization using whole of the Caltech 101 dataset. The algorithm was tested with the 

benchmark methodology of Grauman and Darrell [158], where a number (in this case 15 and 

30) of images are taken from each class uniformly at random as the training image, and the rest 

of the data set is used as test set. The “mean recognition rate per class” is used so that more 

populous (and easier) classes are not favored. This process is repeated 10 times and the average 

correctness rate is reported.  

The figure 3.6 above shows the number of training images per class on x-axis and mean 

recognition rate per class on y-axis. The best results on the Caltech 101 dataset for visual object 

class recognition have been published by Zhang et al. (2006) [159]. They have shown that a 

hybrid of SVM and KNN classifier has much better performance compared to all others. The 

work is a continuation of the previous work (2005) [161 and 162] as in this work, they have 

focused on improved classification using the same features. This brings forward the open 

question as to which classifier is the best with which features and distance functions. Figure 3.6 

shows that our approach is comparable to other methods and has performed well above all 

except few. 
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Figure 3.6 Classification rates Caltech 101 database 

 

For the purpose of clarity, we have shown the published classification rates (correctness rates) 

using 15 and 30 training images per class in a tabular form in table 3-2. The blank cells indicate 

the unavailability of results in that category. Results for our algorithm are the average of 10 

independent runs using all available test images. Scores shown are the average of the per-

category classification rates. 

When looking at the classification results of individual visual object categories, we find that 

our algorithm performed better for the classes which have distinctive semantic structure like 

airplane, motorbikes, grand piano, minaret, etc or represent coherent natural “scenes” (like 
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Joshua tree). Figure 3.7 shows some examples of categories for which the system performed 

well. 

 

Table 3.2 Classification results: Comparison with published results using whole of Caltech 101 

Model 15 training images/cat 30 training images/cat 

Fei-Fei et al. [155] 18  

Serre et al.[137] 35 42 

Holub et al. [164] 37 43 

Berg et al. [162] 45  

Mutch and Low [142] 51 56 

Grauman & Darrell [158] 50 58 

Berg voting [161] 52  

Nishat and Park 49 60 

Wang et al. [163] 44 63 

Lazebnik et al. [160] 56 65 

Zhang et al. [159] 59 66 

 

Compared to the easy categories, the categories which were difficult to categorize are those 

which are semantically more diverse, shown in figure 3.8 having greater shape variability due 

to greater intra-category variation and no-rigidity. The least successful classes are either 

textureless animals, or animals that camouflage well in their environment (like crocodile etc). 

Common misclassification errors has been shown in some works such as in [142 and 160], to 

understand the algorithms pattern of misclassification. Table 3.3 shows the most common 

classification errors found. A scrutiny of these errors shows that the misclassified objects have 



 

- 73 - 
 

structural similarities, which needs additional features to be considered. The most common 

confusions are schooner vs. ketch (both are sail boats with three or four sails, commonly 

indistinguishable by uninitiated) and lotus vs. water lily (both are almost similar flowers). 

 

 

Grand Piano (93.7%)                                Inline skate (94.2%) 

 

Ceiling fan (96.1%)                                     Motorbikes (92.6%) 

Figure 3.7 Caltech 101 dataset: Visual object classes on which the system performed better 

 

 

Cougar body (24.9%)                                          Kangaroo (24.2%) 

 

Wild cat (23.7%)                                                  Crocodile (28.3%) 

Figure 3.8 Caltech 101 dataset: Visual object classes on which the system performed poor 
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Table 3.3 Most common misclassification errors on the Caltech 101 dataset 

Visual Object  
class1/class2 

Class 1 
misclassified as 
class 2 

Class 2 
misclassified as 
class 1 

ketch/schooner 20.6 18.1 

lotus/water lily 17.2 19.3 

cougar body/wild cat 14.7 17.2 

Ibis/flamingo 11.4 8.6 

crayfish/lobster 9.3 8.9 

 

G. Semantic group formation and Graph Modeling 

Using equations (3-7 ~ 3-10), we can find the coordinates of the minimum distance points on 

the respective lines which are closest. From these points we can find the distance between them 

and the center point of the line joining them. All the line segments which are within the 

minimum distance threshold and whose center points of the line joining the minimum distance 

points are also within a defined distance threshold are grouped together as a semantic group. 

This can be understood from figure 3.9, SG 1 ~ 3 are three semantic groups and the mean 

center point of the group is shown as a black dot. The relation R1 and R2 are the line segments 

which are at a minimum distance with two groups and hence joining the two groups. The 

relations R1 and R2 are common members of both the semantic groups they are joining. This 

way we have transformed an image object into a relational structure of semantic groups and 

their inter linking. The relational structure obtained is shown in the tabular form as table 3.4 

below, which can easily be represented as a linked list. In order to use this structure for 

identification purposes, we have to compute some of its properties and associate these with 
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individual semantic groups and relations. The only image information considered here is the 

extracted line segments. Since the line angles and lengths are subject to change under various 

transformations, we consider the effect of transformations and try to minimize or eliminate it. 

 

Figure 3.9 Semantic structures and their relations 

 

Since Euclidean Distance Matrix (EDM) is invariant to rotation, translation and scaling 

(equation 3-13), we compute EDM’s from the geometric properties of the line segments of 

each semantic group. 

 

Table 3.4 Layout of semantic structures and their relations 

Semantic group - ID link - ID Linked group 

SG 1 R 1 SG 2 

SG 2 
R 1 

R 2 

SG 1 

SG 3 

SG 3 R 2 SG 2 
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For each semantic group, let L = {li |i = 1, 2, ...,N}, be the set of line segments obtained. 

Then we can compute geometric properties of L: the angles formed by all segments between 

each other and the relative length of each segment with respect to all other line segments. For 

the segment joining two semantic groups, we computed its geometric properties with respect to 

each group member of all the linked groups (equations 3-14 ~ 3-17).  

Since every EDM is symmetric, we extract the upper triangle matrix and form a histogram 

from each EDM with different resolutions based on empirical testing (equation 3-18). For Hang, 

72 bins that correspond to a 5 degree angle resolution were used. The resolution for Hlen was 

taken as 101 bins through experimentation. As shown in the below figure, for each semantic 

group we get two histograms and for each relation we get four histograms, two from each 

group. The histograms of the semantic groups are obtained from the EDM of the group 

members and the histograms of the relations are the relative difference of length and angles of 

the R1 segment with the rest of the respective group members. 

 

Figure 3.10 Properties of semantic groups and relations 

 

Now we have a relational structure consisting of semantic groups with distinct properties and 

their inter-relations, also with distinct properties. This way we can simply define an image 

object in terms of its lower level semantic groups and their interrelations. Further we analyze 
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the relational structure and introduce another property of frequency for repetitive semantic 

groups using a distance function (histogram deviation measure, equation 3-19). We combine 

the semantic groups which are exactly same and combine their relations with other nodes, 

under one semantic node. So, in the relational structure of an image object, the semantic groups 

or nodes are unique. 

The relational structure can easily be represented in the form of a 4-tuple labeled graph g as: 

),,,( βαEVg =  (3-20)

where : - L denotes the finite set of labels for nodes 

- fv denotes the finite set of  node frequencies 

- M denotes the finite set of edge property labels for edges 

- V is the finite set of vertices (semantic nodes) 

- VVE ×⊆  is the set of edges (semantic relations) 

- vfLV ,: →α  is a function assigning labels and frequency to the vertices 

- ME →:β  is a function assigning labels to the edges (semantic relation 

properties) 

 

1. Graph model for classification 

Since there is quite a considerable amount of variability at a structure level between the objects 

of the same semantic category, a graph model should take into account the commonality and 

variability in the semantic structures of the objects from same visual class. Going back to the 

basic argument of the idea that semantic objects are a combination of micro level semantic 

groups and their relations, we chart these factors for building a graph model. We build a graph 

model by iteratively merging the graphs of the test dataset and counting the frequency of the 

recurring semantic groups and relations. Groups and relations below a threshold are considered 

not essential in basic semantic labeling and are dropped. The resulting model graph is quite 
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small and is neither a subset, nor a super set of any image graph in the test data set and captures 

the variability in all the test samples. It contains the set of those semantic groups and relations 

which are common in at least few test sets. Retention of semantic groups and relations which 

are common over a spectrum of test samples from the same object class can be considered as a 

basic semantic skeletal structure which is essential to identify an object. 

For building a graph model we use a general relational structure matching approach which is 

less restricted than graph isomorphism, because nodes or edges may be missing from one or the 

other graph. Also, it is more general than sub-graph isomorphism because one structure may 

not be exactly isomorphic to a substructure of the other. A more general match consists of a set 

of nodes from one structure and a set of nodes from the other and a 1:1 mapping between them 

which preserves the compatibilities of properties and relations. In other words, corresponding 

nodes (under the node mapping) have sufficiently similar properties, and corresponding sets 

under the mapping have compatible relations. We use association graph techniques of general 

relational structure matching [177] to build a graph model encompassing similarities and 

variability in visual object classes. 

Given two structures ),,,( 11111 βαEVg =  and  ),,,( 22222 βαEVg =  . For each v1 in V1 and 

v2 in V2, construct a node of associated graph ‘g’ labeled (v1, v2) if v1 and v2 have the same 

properties [ ]212211 ,),(),( vvLviffLv ∀αα . Thus the nodes of G denote assignments, or 

pairs of nodes, one each from V1 and V2, which have similar properties. Now connect two 

nodes (v1, v2) and (v'1, v'2) of ‘g’ if they represent compatible relations, that is, if the pairs 

satisfy the same relations  [ ]212211 ,)()( eeeiffe ∀ββ  . The properties can be compared 

using a suitable distance function (histogram deviation measure). A match between the two 

relational structures is just a set of assignments that are mutually compatible. 
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Figure 3.11 Association graph 

 

In the above figure, three nodes of the association graph are linked as they have compatible 

relations and the 4th node (v'4, v''4) has no compatible edges with any other node pair. The 

association graph ),,,( βαEVg =  obtained this way, gives us the similarity pattern between 

two object images of the same visual class.  

Here we take the union of the two relational structures and add two more properties using the 

association graph, for intergroup frequency count of nodes (semantic groups) and edges 

(semantic relations). These labels show us the importance of a semantic group in the overall 

structure formation of that object class and also in deciding which semantic group would most 

likely be part of which object class in case there is a tie in the classification task. The union of 

the two structures is calculated as follows: 

We have graphs ‘g1’, ‘g2’ and the association graph ‘g’, such that 21 gandggg ⊆⊆ . The 

difference of gg −1  and gg −2  is a graph g'= (V', E', α', β') and g''= (V'', E'', α'', β''), 

where 
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V' = V1 – V 

E' = E1 ∩(V' x V') 

α'(v') = α1 (v') for any v'∈V' 

β'(e') = β1 (v') for any v'∈V' 

V'' = V2 - V 

E'' = E2 ∩(V'' x V'') 

α''(v'') = α2 (v'') for any v''∈V'' 

β''(e') = β2 (v'') for any v''∈V'' 

The difference graphs g' and g'' above are obtained by removing the sub-graph g from g1 and 

from g2, including the edges that connect g1 and g2 with the rest of the graph. These edges are 

removed by finding the embedding of g with g1 and g2. The embedding of g in g1 and g2, 

( )1, ggemb  and ( )2, ggemb  is the set of edges that connects g with gg −1  and gg −2 . 

V)]V)((VV)(V[(VE)emb(g,gg 1111emb ×−−×== UI  (3-21)

Where β (eemb) = β1 (eemb) for any eemb ∈  emb (g, g1). 

From the association graph cwe can count the inter-object frequency of the semantic group and 

relations and add two more labels lg fandf  , such that:  

- fg denotes the finite set of group frequencies 

- fl denotes the finite set of edge (link) frequencies 

- gfLV ,: →α  is a function assigning labels and frequency to the vertices 

- lfME ,: →β  is a function assigning labels to the edges (semantic relation properties) 

Now we have graphs g'= (V', E', α', β'), g''= (V'', E'', α'', β'') and ),,,( βαEVg =  with 

Φ=′′′ VVV II . We find the union graph ( )( )gggG UU ′′′= . Let 

)()( VVVVE ′×′′′′×′⊆ U  is a set of edges with labeling function ME →:β . The union 

of g' and g'' is the graph g''' (V''', E''', α''', β''') where 
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 V''' = V'UV''   

 E''' = E'UE'' EU    
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We repeat the process iteratively for a set of training images. The semantic groups and relations 

which are essential to give semantic meanings to the visual object will have intra-object 

frequency greater than a threshold ‘t’. So, all the semantic groups with intra-object frequency 

tf g ≤  are considered redundant and are removed along with any edges they have with other 

nodes. The resulting model graph contains the repetitive patterns in a training set of images 

containing a visual object class. The removal of redundant groups reduced the model size to a 

considerably small level. Using the same procedure, we build up relational structure models for 

all the visual object classes we want to test. 

 

2. Classification steps 

The classification task has been reduced to the graph matching between the model graph and 

the query graph. We constructed graph models of all the object classes in the test data set using 

15 and 30 training images, selected randomly. The remaining images form the test data set. For 

the purpose of matching the query and model graph we used the association graph technique 

[166] and constructed a relational graph from the query and model graphs. We used relative 

histogram deviation measure (equation 3-19) as a distance function for building nodes and arcs 

of the relational graph. From the relational graph we find the maximum cliques in the graph 
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[166]. The decision is based on the voting by each model based on the maximum cliques as 

follows.  

∑
=

×=
n

1i
xavote  (3-22) 

Where, a = {2, 3, 4…} are the a-clicks, i = {1, 2, 3 …n} is the number of total click counts and 

x = {1, 2, 3 …} is the frequency of an instance of a-click. In case of a tie, node and edge 

frequencies in the model graph are used as an additional vote for the nodes in the cliques. The 

vote for a node in case of a tie is calculated as: ng ffvotenode ×=  Where as, fg is inter-

object node frequency from the model and fn is the node frequency from the query image. Final 

vote is formulated by counting the maximum number of node votes. 

 

3. Experiments and results 

For testing the algorithm we have used the Caltech 101 data set as a number of previously 

published papers have reported results on this data set, thereby making comparisons more 

meaningful. In literature multiclass object categorization has been dealt in a less frequency. 

Many authors have reported the classification rates of their algorithms on a subset of the data 

and on class-wise classification methodologies, i.e. a classifier was trained in order to 

discriminate a single class among the subset from a background class consisting of arbitrary 

images. For comprehensive comparisons, we have shown results from published work on 

multiclass object categorization using whole of the Caltech 101 dataset. The algorithm was 

tested with the benchmark methodology of [158], where a number (in this case 15 and 30) of 

images are taken from each class uniformly at random as the training image, and the rest of the 

data set is used as test set. The “mean recognition rate per class” is used so that more populous 
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(and easier) classes are not favored. This process is repeated 10 times and the average 

correctness rate is reported.  

 

Figure 3.12 Classification rates Caltech 101 database 

 

In figure 3.12, number of training images per class is shown on x-axis and mean recognition 

rate per class on y-axis. The figure shows that our approach is comparable to other methods 

and has performed well above all except few. For the purpose of clarity, we have shown the 

published classification rates (correctness rates) using 15 and 30 training images per class, in 

table 3.5. The blank cells indicate the unavailability of results in that category. Results for our 

algorithm are the average of 10 independent runs using all available test images. Scores shown 

are the average of the per-category classification rates. 
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Table 3.5 Classification results: Comparison with published results using whole of Caltech 101 

Model 15 training images/cat 30 training images/cat 

Fei-Fei et al. [155]  18 -- 

Serre et al.[137]  35 42 

Holub et al. [164]  37 43 

Berg et al. [162]  45 -- 

Mutch et al. [142]  51 56 

Nishat and park  43 57 

Grauman & Darrell [158]  50 58 

Berg voting [161]  52 -- 

Wang et al. [163]  44 63 

 

When looking at the classification results of individual visual object categories, we find that 

our algorithm performed better for the classes which have distinctive semantic structure like 

airplane, motorbikes, grand piano, minaret, etc. The categories which were difficult to 

categorize are semantically more diverse, having greater shape variability due to greater intra-

category variation and no-rigidity. A scrutiny of misclassification errors show that the 

misclassified objects have structural similarities, which needs additional features to be 

considered. The most common confusions are schooner vs. ketch (both are sail boats with three 

or four sails, commonly indistinguishable by uninitiated) and lotus vs. water lily (both are 

almost similar flowers). 
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H. Conclusion and future work 

The field of Content Based Image Retrieval (CBIR) has evolved very quickly due to the rapid 

advancement in technology, making possible unmanageable collections of image and 

multimedia data. The emphasis in future will be to make the CBIR systems more and more 

intelligent, mimicking human vision and intelligence. In this thesis work, effort has been made 

to understand the underlying principles of human vision perception and explore them to make 

the computer vision systems more intelligent in the task of image retrieval. David Marr wrote, 

“The true heart of visual perception is the inference from the structure of an image about the 

structure of the real world outside” [147]. This is the main objective of this thesis, to be able to 

infer a real world object from the structure of an image. 

The thesis explores basic level of semantic structure formation in the human vision inferential 

processes in line with Gestalt laws and proposes micro level semantic structure formations and 

their relational combinations. Using this approach two sets of semantic features have been 

derived for visual object class recognition. The first algorithm uses the hypothesis in line with 

Gestalt laws of proximity that; in an image, basic semantic structures are formed by line 

segments (arcs also approximated and broken into smaller line segments based on pixel 

deviation threshold) which are in close proximity of each other. Based on the notion of 

proximity a transitive relation is defined, which combines basic micro level semantic structures 

hierarchically till such a point where semantic meanings of the structure can be extracted. The 

algorithm extracts line segments in an image and then forms semantic groups of these line 

segments based on a minimum distance threshold from each other. The line segment groups so 

formed can be differentiated from each other, by the number of group members and their 

geometrical properties. The geometrical properties of these semantic groups are used to 
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generate rotation, translation and scale invariant histograms used as feature vectors for object 

class recognition tasks in a K-nearest neighbor framework. 

In the second approach a semantic group based on the proximity distance is clustered and 

modeled as a graph vertex. The line segments which are common to more than one semantic 

group are defined as semantic relations between the semantic groups and are modeled as edges 

of the graph. This way an image object is transformed into a graph using micro level structure 

formations. Each vertex and edge is labeled using translation, rotation and scale invariant 

properties of the member segments of each vertex and edge. From a set of training images, a 

graph model is constructed for visual object class recognition. The graph model is constructed 

by iteratively combining the training graphs and frequency labeling the vertices and edges. 

After the combining phase, all the vertices and edges whose repetition frequency is below a 

threshold are removed. The final graph model consists of the semantic nodes which are highly 

common in the training images. The recognition is based on graph matching the query image 

graph and the model graph. The model graph generates a vote for the query and ties are 

resolved by considering the node frequencies in the query and model graph. 

The algorithms have been applied to classify 101 object classes at one time. The results have 

been compared with existing state of the art approaches and are found promising. Results from 

above approaches show that low level image structure and other features can be used to 

construct different type of semantic features, which can help a model or a classifier make more 

intelligent decisions and work more effectively for the task compared to low level features 

alone. Our experimental results are comparable, or outperform other state-of-the-art approaches. 

We have also summarized the state-of-the-art at the time this work was finished. We conclude 

with a discussion about the possible future extensions. 
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For the semantic hierarchical relational features, the most important highlight of the 

comparisons is the choice of a classifier for the object categorization task. Boiman et al. (2008) 

[165] and Zhang et al. (2006) [159] have proposed to use modified or hybrid versions of knn 

classifier for better performance. In the future work we would like to test and improve the 

algorithm performance with modified and improved classifiers and incorporate additional 

features to reduce the classification confusion further down. In case of Graph model, we would 

like to test and improve the algorithm performance with modified and improved models and 

incorporate additional features to reduce the classification confusion further down. Since color 

and texture forms very important components in recognition; their inclusion into the proposed 

features in a semantic perspective can further improve the performance in recognition. 
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