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I . Introduction

The Detailed 3-Dimensional (3D) core power distribution monitoring in operating
nuclear power reactors 1S a prerequisite to ensure that various safety limits
imposed on the fuel pellets and fuel clad barriers such as the local power density
(LPD) and the departure from nucleate boiling ratio (DNBR) are not violated during

reactor operation.

Local power density (LPD) should be calculated accurately to ensure that a
number of safety limits imposed on the fuel pellets and fuel clad barriers are not
violated during normal reactor operation. Since LPD at the hottest part of the
nuclear core is of the major concern from safety perspective, the LPD at the
hottest part of a hot nuclear fuel rod represents more important data than LPD at
any other point of the nuclear reactor core. Especially, LPD monitoring in operating

nuclear power reactors is important to prevent nuclear fuel rod melting.

The calculation of LPD and departure from nucleate boiling ratio (DNBR)
constitutes two major functions of the core protection calculator system (CPCS)
and the core operation limit supervisory system (COLSS) [1]. Both play an
important role in the protection and monitoring systems of the optimized power
reactor 1000 (OPR1000) developed in Korea. The COLSS is a program that runs in
the plant monitoring system (PMS) computer, which helps plant operators to
monitor the limiting conditions for operation (LCOs) specified in technical
specifications. The COLSS monitors operating limits of the reactor core such as
LPD and DNBR and provides related information to plant operators. However, the
COLSS performs only monitoring functions regarding operating limits of the

nuclear reactor core and does not provide protection features.

On the other hand, since CPCS provides protection of the nuclear reactor, it

calculates faster than COLSS but produces more conservative values (lower DNBR



and higher LPD) than COLSS. COLSS periodically adjusts CPCS based on
operating variables that are accurately calculated by COLSS, including power level,

reactor coolant system (RCS) flow, etc.

LPD at the hottest part of the heated fuel rod, which can be expressed by the
power peaking factor (PPF), is more important than LPD at any other point of the
reactor core. DNBR studies have been extensively performed [2-8]. Meanwhile,
little LPD research [9] has been conducted using artificial intelligence methods that
have been successfully applied for solving a variety of engineering problems.
Therefore, the objective of this thesis is to predict the PPF in the reactor core
using measured signals of the RCS by applying Fuzzy Neural Network (FNN) and

Support Vector Regression (SVR) models according to plant operating conditions.

The output and input data of the FNN and the SVR models are the PPF value
in the reactor core and numerous operating conditions, which are characterized by
reactor power, core inlet temperature, pressurizer pressure, coolant flow rate of the
reactor core, axial shape index (ASI), in—core neutron flux, and a variety of control
rod positions. The PPF value in the reactor core is calculated based on the
developed FNN and SVR models using the above operating condition data as an
imput to FNN and SVR models. The proposed PPF calculation algorithm is verified
by wusing nuclear and thermal data acquired from numerical simulations at

Yonggwang nuclear power plant unit 3 (YGN-3).



IT. Artificial Intelligence Methodology

A. Fuzzy Inference Model

In fuzzy inference modeling, it is relatively easy to set up rough fuzzy rules for
a target system by intuition if we understand its dynamics well. However, the task
of fine—tuning the fuzzy rules to improve modeling performance is difficult.
Therefore, propose an FNN that can embody fuzzy inference models are proposed.
The proposed FNN provides functions for performing fuzzy inference. The functions
can also be used to tune the parameters with respect to the shape of antecedent

linguistic terms and the relative importance of rules.

The fuzzy inference system is constructed from a collection of fuzzy if-then
rules. An artificial neural network is usually defined as a network composed of a
large number of simple processors (neuron) that are massively interconnected,
operate in parallel and learn from experience. A system that consists of a fuzzy
inference system implemented in the framework of neural networks is usually
called an adaptive network-based fuzzy inference system (ANFIS) or fuzzy neural
networks [10]. In this work, the fuzzy neural network is used to predict the LPD
as power peaking factor and the training of the fuzzy neural network is
accomplished by a hybrid method combined with a backpropagation algorithm and

a least—-squares algorithm.

In the usual fuzzy inference system that is called the Mamdani fuzzy model [11],
the if part is fuzzy linguistic and the then part is fuzzy linguistic, too, which
requires a defuzzification process since the PPF estimation problem at hand has the
input and output of real values. Therefore, a Takagi - Sugeno type [12] fuzzy

model is used in which the if part is fuzzy linguistic, while the then part is crisp.



The Takagi-Sugeno type fuzzy inference system can be described as follows:

if x,is Ay AND --- AND «z,, is A

im?

- . (1)

then y'is f’(ml, ey xm),
where z; is the input variables to the fuzzy neural network (j=1,2,--,m ; m =
the number of input variables), A,;; the membership functions for the antecedent of
the i-th rule and j-th input (i=1,2,---,n ; n the number of rules), and y' the

output of the i-th rule. Usually f'(zy, .,

m

) is a polynomial in the input variables
but it can be any function as long as it can appropriately describe the output of
the fuzzy inference system within the fuzzy region specified by the antecedent of
the rule. In this study, the symmetric Gaussian membership function is used. The
output of an arbitrary i-th rule, f’, consist of the first-order polynomial of inputs

as given in Eq. (2)

m

Filay, - x,)= Eqijxj+ri 2)
i=

where ¢; is the weighting value of the j-th input on the i-th rule output and r;
1s the bias of the i-th rule output. So the fuzzy inference rule expressed by Egs.

(1) and (2) is called a first-order Takagi-Sugeno type fuzzy rule.

The output of a fuzzy inference system with n rules is a weighted sum of the
consequent of all the fuzzy rules. The estimated output of the fuzzy inference

system is given by:

~ i i T
y=Ywf =w'q, 3)
i=1
where
w = mn ’



_ T
qQ= [qll IS R Qi Gpm 17" Ty ’

—1 —n —1 —n —1 —n]T
W= |W Ty =W Ty~ ot W Ty W Ty, W W

The superscript ¢ indicates that the parameters are related to the i-th rule.

For example, if the Takagi-Sugeno type fuzzy inference system is assumed to

have two antecedents and two rules as follows:

1° rule:if x,is A;, AND xz,is Ay, then y'is fl(xl,xQ): 1171 + qoTy + 1y,

2" rule: if x, is Ay, AND z, is Ay, then y° is fQ(xl,xQ): Qo1 T1 T qooxy + 19,

and in case triangular membership functions are used, Fig. 1 is an illustration of
how the fuzzy inference system derives the overall output y when subjected to two

crisp inputs z; and z,. First, since the inputs are real-valued variables, a fuzzifier

maps crisp points z, and z, in input universe of discourse V C R? to fuzzy sets

in V. Then the degree of match w' and w? is found as, respectively

w'= Ha, (x1)'NA12(x2)a

W= gy, () g, (@)



product

u
A y1=q11x1+q12x2+r1
................................ !
v,
g A
2 R A W V=A% T ayx, T,
w2
>
v,
@ weighted average
wiyl + w2y?
y =

Fig. 1. A Takagi-Sugeno fuzzy inference system using algebraic product for fuzzy

and operators.

The relative magnitude of the match w' and w’® indicates the compatibility of
each rule. In this study, algebraic product for fuzzy AND operator is used. Since
each rule has a crisp output, the time-consuming defuzzification procedure 1is
avoided and the overall output is obtained via the weighted average operator as
shown in Fig.l. It is natural to optimize the membership functions 4, and
consequent parameters ¢; and r;, which means that the fuzzy neural network

should be trained.

The back-propagation algorithm that uses a gradient descent method is a general
method for recursively training the fuzzy neural networks. The gradient descent
method tunes the antecedent parameters (the center position of membership
functions and their sharpness) so that a predefined objective function E is

minimized. In order to train an antecedent parameter a,;, the following iterative

calculation is used:



oF

ij
]V —~ 2

where E = E(yk—yk) ,i=1,2,-,n,j=1,2,---,m,t=0,1,2,---, and 7, is a learning
k=1

rate for a parameter a. The gradient descent method is very stable when the

learning rate is small but susceptible to local minimum.

If the antecedent parameters of the fuzzy inference system are fixed by the
backpropagation algorithm, the resulting fuzzy neural networks is equivalent to a
series of expansions of some basis functions. This basis function expansion is
linear in its adjustable parameters. Therefore, the least-squares method is used to
determine the remaining parameters (consequent parameters q;; and r;). If a total
number of N input-output training data are given, from Eq. (3) the consequent
parameters are chosen to minimize the following cost function, which means that
the sum of squared errors between the measured training data and the estimated

values should be minimized:

v

1 & Ay 1 ay 1 )
J=5 2=y = 56—y’ =5 - Wg*, (5)
k=1

where

y=[v1 92 yn]"

9’

~ ~ ~ ~1T
y= [ylyQ'“yN] )

f— e [ L eee s .o .o T
q= [ d11 dn1 Aim Qum T1 T ’
_ T
W= [W1 Wy Wa| o
—1 —n —1 —n —1 —n|T
W= |W Ty =W Ty =" = w T, w xr, w w



for k-th input data (k=1,2,---, N).

y is the output data vector, q is the parameter vector, and the matrix W
includes the input data. The equation for minimizing the cost function is as

follows:

y= Wq. (6)

The fuzzy neural network output is represented by the N < (m+1)n-dimensional
matrix W and the (m+ 1)n-dimensional parameter vector q. The parameter vector

q in Eq. (6) is solved by using the pseudo-inverse of the matrix W.

The value w' represents the normalized compatibility grade of the i—th fuzzy
rule and consists of the input data and the normalized membership function values.
The vector ¢ is called the consequent parameter vector. Fig. 2 describes the

calculation procedure of the FNN model.

T

S G x,)

Fig. 2. A fuzzy neural network model
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B. Support Vector Regression (SVR)

Support vector regression (SVR) models are an alternative training method using
a kernel function for an artificial neural network (ANN) where network weights
are found by solving a quadratic programming problem with linear constraints
rather than by solving a non-convex unconstrained minimization problem as in
conventional neural network training. The SVR models use the hypothesis space of
linear functions in multidimensional feature space. They are trained with a learning
algorithm that originates from theoretical foundations of statistical learning theory

and structural risk minimization (SRM).

Fig. 3 shows the SRM principle [10]. ANNs use conventional empirical risk
minimization (ERM) principle to minimize approximation errors of the training data.
On the other hand, the SVR model uses an SRM principle to minimize the upper
bound of the expected risk [11]. The risk bound is the sum of the empirical risk
and the confidence interval. The SVR model can be well applied to regression and
classification problems. This thesis solves a typical regression problem to calculate

the PPF value using various measured signals.

ERM methods minimize only the empirical risk at any cost whereas SRM
methods finds the function f° that gives the smallest guaranteed risk R(f) for the
given data set. The empirical risk decreases with increasing capacity (with the
index of the structure element, A), while the confidence interval increases. The
smallest bound of the risk is achieved at some element of the structure as shown
in Fig. 3. In Fig. 3, At stands for the dimension of the set of functions of the
learning machines. A structure on the set of functions is determined by the nested
subsets of functions; S, €S, € S; C ---. Any element S, of structure has a finite
dimension hx. The difference in risk minimization leads to better generalization in

SVR model than ANNs [10].



—O— empirical risk
—O— confidence interval
——bound on risk

Fig. 3. Graphical representation of the SRM principle [10].

An SVR model learns a relationship between the input and the output from the

N

training data set {(x,y;)} /ER"XR where x; is the input vector to the SVR

model. The SVR model can be represented by [12]:

y= 0= Db, ) +b=w"d(x) +b %)

i=1

where the function ¢,(x) is called the feature that is nonlinearly mapped from the

input space x, w=[w, w, --- wy]’, and ¢= [, ¢, -+ dn]".

_10_



Eq. (7) is a nonlinear regression model because the resulting hyper-surface is a
nonlinear surface hanging over the m-dimensional input space. However, after the
input vectors x are mapped into vectors ¢(x) of a multidimensional kernel-induced
feature space, the nonlinear regression model is turned into a linear regression
model in this feature space. The nonlinear function i1s learned using a linear
learning machine where the learning algorithm minimizes a convex functional. The
convex functional is expressed as the following regularized risk function, and the
support vector weight w and bias b are calculated by minimizing the following
regularized risk function:

N
R (w)= gw s+ A3y, £, ®

0 \y,;—f(x)\< €

ly, — f(x)l, = Iy, — f(x)|—¢ otherwise ®

The first term of Eqg. (8) is a weight vector norm and the second term is an
approximation error. The constant A which is one of the user—specified parameters
1s known as the regularization parameter. The regularization parameter determines
the trade-off between the approximation error and the weight vector norm. An
increase in the regularization parameter penalizes larger errors, which leads to a
decrease of the approximation error. This can also be easily achieved by increasing
the weight vector norm. However, an increase in the weight vector norm does not
ensure good generalization of the SVR model. These parameters are determined

from many simulations of the proposed SVR model.

lv, — f (X)L which uses another user—specified parameter e is called the e-

insensitive loss function [10]. The loss equals zero if the predicted value f(x) falls
within the insensitivity zone e, that means that the predicted value is inside the

insensitivity zone. For all other predicted points outside the insensitivity zone, the

_11_



loss is equal to the magnitude of the difference between the predicted value and e,
which is represented by the parameters ¢ and §f [refer to Fig. 5]. The parameters
¢ and & are positive values. These measure the cost of the errors on the training

points and become zero for all points inside the insensitive e-tube. Increasing the
insensitivity zone & means reducing the requirements for the accuracy of the
approximation and decrease of the number of support vectors, leading to data
compression. In addition, increasing the insensitivity zone ¢ has filtering effects on

heavily noisy data.

=S,
A

>
& | € y=r(x

Fig. 4. Linear e-insensitive loss function.
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Vi

observed point J

regression function

y=7(x)

observed point

v

Fig. 5. Insensitive e-tube and slack variables & and §J for the SVR Model [13].

The regularized risk function of Eq. (8) is converted into the following

constrained risk function:

N

Rw. €)= 5w Wt A D€ +E) (10)

i=1
subject to constraints
y,—wlipx)—b<e+§, i=1,2,-- ,N
wipx)+b—y, <e+§, i=1,2,--- N (11)
& & =0, i=1,2,- ,N

where

52[51 & fN]T,
&=l & &In

_13_



The parameter ¢ and 5: are slack variables representing upper and lower

constraints on the outputs of the system, respectively, and they are positive values
(refer to Fig. 5). The constrained optimization problem of Eq. (10) can be solved
by applying the Lagrange multiplier technique to Egs. (10) and (11) and then by
using a standard quadratic programming techinque. Finally, the regression function

of Eq. (7) becomes

N
y=J00)= (e = a) K lx %) +b, (12)

1

where K(x,,x)=¢"(x,)¢p(x) is called the kernel function. In this thesis, SVR models

(x—x,)"(x—x,)

20°

use a radial basis kernel function, K(x;x)=exp . A number of

coefficients «, —«; have non-zero values and the corresponding training data points

are called support vectors (SVs) that have approximation errors equal to or larger

than the error level e.

IM. Optimization of Data—-based Models

A. Model Optimization

The SVR and FNN models are designed by learning from given data and
should be optimized to maximize the prediction performance. The performance of
the SVR model depends heavily on the three types of design parameters such as
the insensitivity zone €, the regularization parameter ), and the kernel function
parameters. Therefore, these parameters must be optimized by a genetic algorithm

in order to maximize the performance of the SVR model. If these parameters are

_14_



not optimized, the model can be inferior in performance.

Genetic algorithm is less susceptible to being stuck at local minima than
conventional search methods since genetic algorithms start from many points
simultaneously climbing many peaks in parallel. Also, the genetic algorithm is the
most useful method to solve optimization problems with multiple objectives. The
genetic algorithm i1s used to optimize the insensitivity zone €, the regularization
parameter A\, and the sharpness o of the radial basis kernel function used in this
thesis that is expressed as follow:

(z—z,) (xz—z,)

K(z,x)=exp|— 57 . (13)
o

The genetic algorithm requires a fitness function that assigns a score to each
chromosome (candidate solution) in the current population, and maximizes the
fitness function value. The fitness function evaluates the extent to which each
candidate solution is suitable for specified objectives. A root mean square (RMS)
error and a maximum error can be a measure of the prediction performance of the
SVR model. However, the minimization of the errors only may induce the
overfitting in these models, which means that these models is fitted well for only a

specific data set (training data) but is not fitted for another data set.

In usual learning problems, the proposed model is trained using exemplary
situations (training data) for which the desired output is already known. It is
assumed that the model will also be able to predict the correct output for other
situations, thus generalizing to situations not presented during training. But
especially in cases where learning was performed too long or where training data
are rare, the proposed model may adjust to very specific random features of the
training data, which have no causal relation to the target function. In this process
of overfitting, the performance on the training data still increases while the

performance on the test data becomes worse.

_15_



Regularization has been applied successfully to numerous machine learning
problems including the avoidance of overfitting [14]. It is a well-known method for
the treatment of mathematically ill-posed problems. In this thesis, through the
regularization that these models are optimized independently by using a data set
independent of the training data, this kind of overfitting problems can be overcome.
Therefore, the acquired data are divided into three types of data sets such as the
training data, the optimization data, and the test data. The training data are used

to solve the coefficients o, —«, and the bias b in Eq. (12) of the SVR models.

In case of FNN, the training data are used to solve the antecedent parameters
of the FNN model. The optimization data are used in optimizing the SVR and FNN
models by using another independent data set to improve generalization capability
of these models. The test data are used to independently verify the developed
models. The specified multiple objectives are to minimize the RMS error along with

the small maximum error:

F= exp(— By — po By — pg By — M4E4) (14)

where 1, po, ps and pu, are the weighting coefficients. E; and E, indicate the root
mean squared error for the training data and the optimization data, respectively. F,
and E, indicate the maximum error for the training data and the optimization data.

These parameters are defined as follows:

]V
1 ~

E, = FZ(y?—yZY, (15)
ti=1
1 ]V”

By =/ 5 2w =) (16)
oi=1

E3:max{y§—y;§}, (17)
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E4:max{y;;’—y;;’}. (18)

The variables y, and yA, denote the measured output and the output predicted
by the SVR and FNN models, respectively. The number N represents the number
of the training data. The superscripts, ¢t and o, indicate the training data and the
optimization data, respectively, and N, and N, represent the numbers of the

training data and the optimization data.

In the FNN case, if the antecedent parameters are fixed by the genetic
algorithm, the output of the resulting FNN model can be described as a series of
expansions of some basis functions. The basis function expansion is linear in its
adjustable parameters, as shown in Eq. (3), because w’ is known by the genetic
algorithm. Thus, the least squares method can be used to determine the consequent
parameters. The consequent parameter q was chosen to minimize the following cost

function, including the squared error between the target output y and the estimated

output y:
N, N, 1 .
J= Y (y—y)= E(y—Wqu:;(y—y)Q, (19)
=1 k=1
where

y= [9192'“ yN]T and }A’:[?;M;Q'“ ?;N]T

The solution for minimizing the above cost function can be obtained by

y=y=Wq (20)
where
W= [w, wy -+ wyl”.

To solve the parameter vector q in Eq. (20), we should ensure that the matrix

W is invertible but not usually a square matrix. We can easily solve the parameter

_17_



vector q in Eq. (20) by using the pseudo-inverse of the W matrix as follows:
q=(W'W)" 'w'y. (21)

The parameter vector q can be calculated with a series of N input/output data

pairs prepared for the training data.

B. Data Selection

To increase the learning efficiency and performance, the proposed models should
be trained well by using informative datas. The training data set is selected using
a subtractive clustering (SC) scheme [16]. Fig. 6 shows data clusters and their
centers (indicated as ‘+’ signs) as an example of simple two-dimensional data. An
SVR model can be well trained by using data that include a lot of information.
Since the nuclear reactor system is very complex and the acquired data should
cover the entire range of operating conditions, it is expected that input and output
training data sets have a lot of clusters and the data at the cluster centers is more
informative than the neighboring data. The cluster centers are used as a training

data set.

_18_
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+ cluster centers
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0 5 10 15 20 25

Fig. 6. An example of data clusters and their centers for simple two-dimensional

data.

The SC scheme begins by defining a measure of the potential of each data point,

which is a function of the Euclidean distances to all other input data points [15]:

N 2,2
Pl(k): 2674”&7%‘“ /"a k=1,2,---, N, (22)
j=1

where r, is a radius to define a particular neighborhood of a cluster. Here, it is
assumed that N input/output training data z,= (x,,y,) are available and the data
points are normalized in each dimension. The potential of a data point is defined so
that it becomes high when surrounded by many neighboring data. After the
potential of each data point is calculated using Eq. (22), the data point with the

highest potential is selected as the first cluster center.
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In general, after determining the i—th cluster center ¢, and its potential value P/,

the potential of each data point is revised using the following equation:

P ()= P,k —Pre Xl o, (23)
i+1 i

13

where 7, is usually greater than 7, in order to limit the number of clusters
generated. Since an amount of potential is subtracted from each data point as a
function of its distance from the former selected cluster center, the data points near
to the cluster center have a greatly reduced potential and are unlikely to be

selected as the next cluster center.

When the potentials of all data points are recalculated using Eq. (23), the data
point with the highest potential is selected as the (i+1)th cluster center. The

calculation stops if P/< eP/ becomes true, otherwise calculation continues. If the
calculation stops finally at an iterative step N, this means there are N, cluster

centers. The input/output data (training data) positioned in cluster centers are
selected to train the SVR model. The remaining data from which the training data

set had been eliminated become the test data set.

IV. Application to PPF Prediction

The proposed FNN and SVR model were applied to the first fuel cycle of the
YGN-3 PWR plant. The used data were obtained [9] by running the MASTER
(Multipurpose Analyzer for Static and Transient Effects of Reactor) reactor analysis
code [16]. The MASTER code developed by KAERI (Korea Atomic Energy
Research Institute) is a nuclear analysis and design program that has a variety of

features such as static core design, transient core analysis, and operation support.
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A. Fuzzy Neural Network (FNN)

The data obtained from the simulations of the MASTER code comprise a total of
25,541 input-output data pairs (z,, z,, -, x,;,%,). The data are divided into both the
training data sets and the test data sets and also, these data sets are divided into
two types of data with positive axial shape index (ASI) and negative ASL z,
through =z,; represent the reactor power, core inlet temperature, coolant pressure,
mass flowrate, axial shape index, 12 in—core neutron sensor signals, R1, R2, R3,
R4, R5 and P control rod positions, and y, is a power peaking factor (F,) in the
reactor core. R1 through R5 and P are the names of the control rod groups. The
used in-core detector signals are ones located on the central part of the core (a
total of 12 in-core sensor signals including instrument locations indicated as

instrument numbers 16, 20, 23 and 26 at 3 axial levels in Fig. 7).

The ranges of the input and output signals that are used for training, in this
thesis, are described in Table 1. The fuzzy neural networks are trained for two
types of data sets divided into both the positive (relatively high power at a top
part of a reactor core) ASI cases and the negative ASI cases, which results in

smaller errors compared with that of only one summed data set.

The selected number of rules of fuzzy neural networks is 6 for both the positive
ASI cases and the negative ASI cases to prevent the underfitting and overfitting
problem. The antecedent parameters such as membership function parameters are
optimized by the back-propagation method and the consequent parameters ¢; and r

are optimized by the least-squares method.
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Table 1. Input and output signal ranges [9].

Input signals Nominal values Ranges
Reactor power (%) 100% 80 ~ 103
Inlet temperature (°C) 295.8 290.5 ~ 301.7
Pressure (bar) 155.17 131.0 ~ 160.0
2
Mass flowrate (kg/m™-sec) 3565.0 2994.6 ~ 41354
Axial shape index - 0.597 ~ -0.534
R1 control rod positions (cm) - 0 ~ 381
R2 control rod positions (cm) - 0 ~ 381
R3 control rod positions (cm) - 0 ~ 381
R4 control rod positions (cm) - 0 ~ 381
R5 control rod positions (cm) - 0 ~ 381
P control rod positions (cm) - 0 ~ 381
12 ICI signals
(at 4 radial instrument locations - 74 ~ 322.0
and 3 axial levels)
Output signal Nominal value Range
Power peaking factor - 1.930 ~ 4.066
A B C D E F H J K L M N P R
1 2 175 A
1 1 2 90%
& [RENsN 9 | 10 [ 1T [i2npiey 14 o
2 3 4 5 6 ¢
TS5 BN 18 | 19| 20 | 21 | 22 [R2Ss[p2dN 25
3 7 36.2
76 2@ 28 | 29 7307 37 [ 32 [ 33 847 35 | 30 [F3A| 38
4 8 9 10 1 70%
39 :%g_ 41 (42| 43 A 45 [jen| 47 [ 48| 40 [ 50 _5% T
5 1
57| 88| 54 | 5] 56 |57 56 [ 50| 00 [BT| 02 [B3 | o4 [ 85| 07 |
6 14 15 16 17 18 i
67 |68 69 | 70 Wl 72 [ 73| 74 [ 75 | 76 RN 78 | 79 | 80 | 81 50%
7 19 20 21 381.0 o
82 83 [ 84 85 |86 |87 (888990919293 0 [958 400
5 |22 23 24
57 (98 [ 99 | T00 WO 02| 103|104 105 106 [ 108 | 108 [ 110 111 T
9 25 26 27
T2 [H#8Y 1141751 116 [T17 | 118] 119|120 [127] 122 [123] 124 [125] 126 30%
10 28 29 30
127 (1287 129 [ 1301 131 [182] 133 [[§84] 135 [136] 137 [138] 139
1 31 32 33 34
140 [N 742 143 144 145|746 147 [148] 149 [ 150 [HISH| 152
12 35 36 37
153 (41158 156 [ 157 | 158 159 160 [16T] 162 163 10%
13 38 39
164165166167 168|169 170'1{31 172
14 40 41 42 .
Box Number | 173 [172 (18| 176|177 y 1ol BhLLem
15 X_ | Instrument Number 44 45 ?

Fig. 7. Fixed rhodium in—core detector location of YGN-3.
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B. Support Vector Regression (SVR)

The data obtained from MASTER simulations comprise a total of 25541 input -
output data pairs; (x, xy, -, 2, y,.) for SVR models without in-core instrument
(ICD signals and (z, 2, -, Ty3,v,) for SVR models with ICI signals. The existing
monitoring system (COLSS) uses ICI signals, however, the existing protection
system (CPCS) does not use the ICI signals because of the slow response of the
in—core instruments. Therefore, in this thesis the performances of the proposed
SVR model, with and without ICI signals are compared. The data sets are divided
into two types of data: those with positive ASI and those with negative ASI
These data sets are then divided into training data sets and test data sets,
respectively. The parameters z,; through x,; represent respectively the reactor
power, core Inlet temperature, coolant pressure, mass flow rate, ASI, various
control rod bank positions of R1, R2, R3, R4, R5 and P. Also, z,, through .,
represent, respectively, 12 ICI signals (12 in—core neutron sensor signals at 4 radial
instrument locations and 3 axial levels). The parameter y, is the PPF value of the

reactor core.

Ranges of the input and output signals used for training in this thesis are shown
in Table 1. Two SVR models are trained for two individual data sets, the positive
(relatively high power at the upper part of the reactor core) ASI cases (12,765
cases) and negative ASI cases (12,776 cases). This results in smaller errors

compared with using only one general data set.
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C. Application to PPF Prediction

Fig. 8 shows PPF wvalues for 3,351 train cases without ICI signals and the
estimation error histogram of the proposed models. In case of FNN, the RMS error
1s 0.2557% and its maximum error is 1.8599%. Also, note that the RMS error and
the maximum error of the SVR model are 0.0604% and 0.5414%, respectively (see
Table 2).

800

600

400 N

counts
i

200

3.0 35 4.0 4.5
PPF value

(a) Actual PPF histogram
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(b) Error histogram between actual PPF and estimated PPF using an FNN model
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(c) Error histogram between actual PPF and estimated PPF using an SVR model

Fig. 8. Estimation performance of the proposed model without ICI signals for train

data.
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Table 2. PPF results calculated by the proposed models

Training data Test data
RMS Relative RMS Relative
Number Number
eror | maximum error | maximum
of data of data
(%) error (%) (%) error (%)
Positive | FNN 0.2889 | 1.8599 02793 | 1.9061
1,665 11,100
ASI | qyr 0.0580 | 0.2926 0.0870 0.4621
Proposed
model | Negative | TN - 02224 | 1.5886 - 02088 | 1.5299
.tll t 9 b
WIRlout 1 ASE | gyr 0.0628 | 0.5414 01312 | 1.7624
ICI
FNN 02557 | 1.8599 0.2441 | 1.9061
Total 3351 22.190
SVR 0.0604 | 0.5414 0.1113 | 1.7624
Positive | FNN 0.1215 | 0.9572 0.1507 | 0.9852
2.119 10,646
ASL | qyr 0.0255 | 0.2029 0.0806 | 0.5504
LT Negative | PNV 0.1062 | 0.8464 0.1231 | 1.0499
model 2,127 10,649
with 1cr | A8 | syr 0.0835 | 0.3696 0.1106 | 1.3279
FNN 0.1139 | 0.9572 0.1369 | 1.0499
Total 4246 21,295
SVR 0.0618 | 0.3696 0.0968 13279
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Fig. 9 shows PPF wvalues for 22,190 test cases without ICI signals and the
estimation error histogram of the proposed models. In case of FNN, the RMS error
1s 0.2441% and its maximum error is 1.9601%25. Also, note that the RMS error and
the maximum error of the SVR model are 0.1113% and 1.7624%5, respectively,
which are smaller than those of the FNN model (see Table 2).
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(a) Actual PPF histogram
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(b) Error histogram between actual PPF and estimated PPF using an FNN model
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(c) Error histogram between actual PPF and estimated PPF using an SVR model

Fig. 9. Estimation performance of the proposed model without ICI signals for test

data.

_28_



Fig. 10 shows PPF values for 4,246 train cases with ICI signals and the
estimation error histogram of the proposed models. In case of FNN, the RMS error
1s 0.1139% and its maximum error is 0.9572%. Also, note that the RMS error and
the maximum error of the SVR model are 0.0618% and 0.3696%, respectively (see
Table 2).
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(a) Actual PPF histogram
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(b) Error histogram between actual PPF and estimated PPF using an FNN model
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(c) Error histogram between actual PPF and estimated PPF using an SVR model

Fig. 10. Estimation performance of the proposed model with ICI signals for train

data.
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Fig. 11 shows the PPF values for 21,295 test cases with ICI signals and the
estimation error histogram of the proposed models. The RMS error of the proposed
FNN model is 0.1369% and its maximum error is 1.0499%. Also, note that the
RMS error and the maximum error of the SVR model are 0.0968% and 1.3279%,
respectively, which are smaller than those of the FNN model (see Table 2).
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(a) Actual PPF histogram
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(b) Error histogram between actual PPF and estimated PPF using an FNN model
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(c) Error histogram between actual PPF and estimated PPF using an SVR model

Fig. 11. Estimation performance of the proposed model with ICI signals for test

data.
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Table 3 shows the effect of training data selection methods; SC scheme and
fixed interval scheme. The fixed interval scheme selects the training data every
fixed interval. It is shown that the SC scheme can improve the performance of the
SVR model. RMS error of the SC scheme is 0.0618% for the train data, whereas
that of the fixed interval scheme is 0.0847%. Also, RMS error of the SC scheme is
0.0968% for the test data, whereas that of the fixed interval scheme is 0.1363%.

Table 3. Effect of training data selection

SElEehoD Training data Test data
Sign of
methods RMS Relative RMS Relative
.. ASI Number Number
of training eror | maximum error | maximum
values of data of data
data (%) error (%) (%) error (%)
Positive
2,119 0.0255 0.2029 10,646 | 0.0806 0.5504
ASI
SC
Negative
scheme AS 2,127 0.0835 0.3696 10,649 | 0.1106 1.3279
1
(With ICI)
Total 4,246 0.0618 0.3696 21,295 | 0.0968 1.3279
Positive
2,119 0.0933 0.2158 10,646 | 0.1410 5.4332
Fixed ASI
interval Negative
2,127 0.0751 0.3033 10,649 | 0.1315 5.4731
scheme ASI
(With ICI)
Total 4,246 0.0847 0.3033 21,295 | 0.1363 5.4731
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Table 4 shows other test results to compare PPF values with the existing
COLSS methodology [9]. The F, values calculated by the COLSS method are
obtained by multiplying the core average axial power P1D(z) to the F,, values of
the corresponding regions and then by selecting its maximum (refer to Fig. 12).
Here, z denotes the axial position of a reactor core and F,, is a plane-wise (radial

X

direction) peaking factor. In the COLSS method, the F,, values are prepared and

provided at a design stage according to a variety of the control rod configurations.

For example, for the control rod configurations of Fig. 12, each F,, for 3 different
regions is selected by a table lookup scheme from the F,, values prepared at a

T

design stage. But in the MASTER code the plane-wise F,, values at the real core
state are used to calculate the F, value. Therefore, if the proposed models
accurately estimate the target F, values, the proposed method always provides the
less or equal F, value than that of COLSS method, and the COLSS method is

always equally or excessively conservative than the proposed methods.

The rightmost values in Table 4 are PPFs calculated under the assumption that
all 12 incore sensor signals are over-measured by 5% compared to actual values.
The ICI signals have measurement error that can be under—estimated or
over—estimated. The assumption that all 12 ICI signals are over-measured by 5%
is severe with respect to increasing PPF (reducing safety). Even PPFs for these
severe cases are lower than those of COLSS. Thus, the proposed methods secure

larger operation margin than the existing COLSS.
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Table 4. Comparison of calculated PPFs.

Proposed Proposed Proposed

ASI S MASTER model model TR model 1

value (target) | (without ICT) (with ICI) (with ICD)"
FNN SVR | FNN SVR FNN SVR
0.081 80 1.968 1.967 1966 | 1974 1965 | 2.133 | 2.051 2.013
0.094 90 1.959 1.957 1958 | 1.962 1.955 | 2.135 | 2.050 @ 2.009
0.069 100 1.952 1.953 1952 | 1954 1.952 | 2.137 | 2.055 1.998
0.073 103 1.949 1.950 1950 | 1.953 1.951 | 2.138 | 2.058 @ 1.996
-0.525 80 2.778 2774 2777 | 27774 2.776 | 3.000 | 2915 2.804
-0.504 90 2.718 2725 2718 | 2717 2716 | 2961 | 2.881 2.741
-0.483 100 2.663 2.670  2.663 | 2.664 2.660 | 2918 | 2.852 2.691
-0.520 103 2.646 2.652  2.647 | 2.650 2.642 | 2905 | 2.845 2.681

Y Values calculated under the assumption that all 12 ICI signals are over-measured 5% more
largely than actual values

P1D(z) COLSS

Fig. 12. The pseudo hot pin axial power distribution of COLSS.
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V. Conclusions

In this thesis, a fuzzy neural network (FNN) and a support vector regression
(SVR) models have been developed to correctly predict the power peaking factor in

a nuclear reactor core.

In this study, the proposed models have been developed and applied to the
estimation of the PPF in the reactor core. The proposed models are trained by
using the data set prepared for training (training data) and verified by using a
different data (test data) set. The developed models are trained for two types of
data sets divided into both the positive ASI and the negative ASI, respectively.
The training data are selected by an SC scheme. It was known that this could
improve the performance of the SVR models. The developed FNN and SVR models
were applied to the first fuel cycle of the YGN-3.

The RMS error of the estimated PPF is 0.2441% for the FNN model without ICI
signals and 0.1369% for the FNN model with ICI signals. In case of SVR model,
the RMS error of the estimated PPF i1s 0.1113% without ICI signals and 0.0968%
with ICI signals. And also, the use of ICI signals as input signals to the proposed
algorithms reduces the estimation error compared to that not using the ICI signals.
In case of FNN, the use of ICI signals as input signals reduces the estimation
error about two times compared to that not using the ICI signals. In summary, the
proposed models are sufficiently accurate for using in power peaking factor
monitoring. And also, the estimation performance of SVR models is superior to the

estimation performance of FNN.

Consequently, we could confirm that the performance of the SVR models is
superior to any other method. Therefore, it is expected that this model can be

applied to predict reactor core power peaking factor.
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