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ABSTRACT 

Role of Pin1 in the Induction of Proinflammatory Mediators and 

the studies on the Anti-inflammatory effects of Phytochemicals 

Pokharel Yuba Raj 

Advisor: Prof. Kang Keon-Wook Ph.D 

Department of Pharmacy, 

Graduate School of Chosun University 

Rheumatoid arthritis (RA) is an autoimmune disease, 

characterized by chronic inflammation in joints and subsequent 

destructions of cartilage and bone. Inflammatory mediators such as 

prostaglandins and proinflammatory cytokines are believed to be 

associated with RA progress. Pin1, a peptidyl prolyl isomerase, plays 

important pathophysiological roles in several diseases including 

cancer and neurodegeneration. We found that Both Pin1 and 

cyclooxygenase-2 (COX-2) were highly expressed in ankle tissues of 

Type II collagen-induced RA mice. In the Pin1-overexpressed HTB-

94 cells and -primary cultured human chondrocytes, the basal 

expression of proinflammatory proteins (COX-2, inducible nitric 

oxide synthase, tumor necrosis factor-α and interleukin-1β) was 

increased compared to the GFP-overexpressed cells. Site-specific 

mutation analyses revealed that Pin1-mediated transcriptional 

activation of COX-2 gene was coordinately regulated by nuclear 
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factor-кB (NF-кB), cyclic AMP response element binding protein 

(CREB) and CCAAT-enhancer binding protein. Gel shift, reporter 

gene and Western blot analyses confirmed that NF-кB, CREB and 

C/EBP were consistently activated in the Pin1 -overexpressed 

chondrocyte cell line. Treatment of RA mice with juglone, a 

chemical inhibitor of Pin1, significantly reduced the RA progress 

and COX-2 expression in the ankle tissues. Moreover, the basal 

COX-2 expression in primary cultured chondrocytes from RA 

patients was diminished by juglone in a concentration-dependent 

manner. These results demonstrate that Pin1 induction during RA 

progress stimulates proinflammatory protein expression by activating 

NF-кB, CREB, C/EBP and AP-1, and suggest that Pin1 is a potential 

therapeutic target of RA. 

 The improper productions of NO and prostaglandins 

following the inductions of inducible nitric oxide synthase (iNOS) 

and cyclooxygenase-2 (COX-2) are involved in the pathogenesis of 

chronic inflammation. Selaginella tamariscina is used as an oriental 

medicine for its anti-inflammatory effects. Here, we isolated 

taiwaniaflavone and 2', 8”-biapigenin from S. tamariscina and 

investigated whether taiwaniaflavone, and 2’, 8”-biapigenin affect the 
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induction of iNOS and COX-2 in RAW264.7 macrophages 

stimulated with lipopolysaccharide (LPS). We found that 

taiwaniaflavone blocks the transactivations of iNOS and COX-2 

genes by blocking the nuclear translocation of p65 and subsequent 

nuclear factor-кB inactivation. It is known that NF-кB activation is 

controlled by the phosphorylation and subsequent degradation of I-

кB, and in the present study, we found that the phosphorylation and 

degradation of I-кB were also inhibited by taiw aniaflavone. Our 

findings indicate that taiwaniaflavone and 2', 8”-biapigenin may 

provide a developmental basis for an agent against inflammatory 

diseases. 

We recently isolated a novel lignan, 4-hydroxykobusin from 

Geranium thunbergii (Liu et al., 2006). Here, we studied its effect on 

the expression of inducible nitric oxide synthase (iNOS) gene in 

RAW264.7 cells. 4-hydroxykobusin inhibited NO production in a 

concentration-dependent manner and blocked the LPS-induced 

expression of inducible nitric oxide synthase (iNOS). To identify the 

mechanistic basis for its inhibition of iNOS induction, we examined 

the effect of 4-hydroxykobusin on the transactivation of iNOS gene 

by luciferase reporter activity using –1.59 kb flanking region. The 
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lignan suppressed the reporter gene activity and the LPS-induced 

reporter activations of NF-кB and AP-1 were also significantly 

blocked by 4-hydroxykobusin. These findings suggest that the 

inhibition of LPS-induced NO formation by 4-hydroxykobusin is due 

to its inhibition of NF-кB and AP-1 activation. 
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1. Introduction  

1.1 Definition of Inflammation ,RA, Etiology and Epidemiology 

of RA 

1. 1. 1. Inflammation 

Inflammation is the complex biological response of vascular 

tissues to harmful stimuli, such as pathogens, damaged cells, or 

irritants. It is a protective attempt by the organism to remove the 

injurious stimuli as well as initiate the healing process for the tissues. 

In the absence of inflammation, wounds and infections would never 

heal and progressive destruction of the tissue would compromise the 

survival of the organism. However, inflammation which runs 

unchecked can aslo lead to a host of diseases, such as hay fever, 

artherossclerosis, and rheumatoid arthritis. Inflammation can be 

classified as either acute or chronic. Acute inflammation is the intial 

response of the body of harmful stimuli and is achieved by the 

increased movement of plasma and leukocyte from the blood intothe 

injured tissues. A cascade of biochemical events propagates and 

matures inflammatory response, involving the local vascular system, 

the immune system, and various cells within the injured tissue. 

Prolonged inflammation, known as chronic inflammation leads to a 
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progressive shift in the type of ccells which are present at the site of 

clls which are present at the site of inflammation and is charcterised 

by simultaneousdestruction and healing of the tissue from 

inflammatory process (Williams & Wilkins, 1990). 

1. 1. 2. Rheumatoid Arthritis 

 Rheumatoid arthritis (RA) is a chronic, systemic 

autoimmune disorder that causes the immune system to attack the 

joints, where it causes inflammation (arthritis) and destruction of 

catilage and bone. It can also damage some organs, such as the lungs 

and skin. It can be a disabling and painful condition, which can lead 

to substantial loss of functioning and mobility. It is diagnosed with 

blood tests (especially a test called rheumatoid factor) and X-rays 

( Majithia et al, 2007).  

The etiology of rheumatoid arthritis is not fully understood 

but environmental and genetic factors play a crucial role in RA. A 

triggering event, possibly autoimmune or infectious, initiates joint 

inflammation. Complex interactions among multiple immune cell 

types and their cytokines, proteinases, and growth factors mediate 

joint destruction and systemic complications. (Firestein et al, 2005). 
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The incidence of RA is in the region of 3 cases per 10,000 

population per annum. Onset is uncommon under the age of 15 and 

from then on the incidence rises with age until the age of 80. It is 4 

times more common in smokers than non-smokers. Some Native 

American groups have higher prevalence rates (5-6%) and people 

from the Caribbean region have lower prevalence rates (Symmons et 

al., 2002; Alamanos et al., 2006). 

Rheumatoid arthritis affects women three times more often 

than men, and it can first develop at any age. The risk of first 

developing the disease (the disease incidence) appears to be greatest 

for women between 40 and 50 years of age, and for men somewhat 

later. RA is a chronic disease, and although rarely, a spontaneous 

remission may occur, the natural course is almost invariably one of 

persistent symptoms, waxing and waning in intensity, and a 

progressive deterioration of joint structures leading to deformations 

and disability. 

1. 2.. Molecular and cellular pathogenesis of RA  

Rheumatoid arthritis (RA) is an autoimmune disease, which is 

characterized by chronic inflammation in joints through leukocytes 
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sequestration and subsequent destructions of cartilage and bone. 

Although the exact pathological process has not been clearly clarified, 

inflammatory mediators including prostaglandins (PGs) and 

proinflammatory cytokines are believed to be associated with RA 

progress (Feldmann et al., 1996). A key enzyme to control PGs 

production in RA is cyclooxygenases-2 (COX-2). The increased COX-

2 expression has been frequently found in either RA patients or animal 

arthritis models (Siegle et al., 1998; Anderson et al., 1996). The 

overwhelmed production of PGs by cytokines-inducible COX-2 is 

closely associated with angiogenesis and inflammation of the synovial 

membrane in RA (Myers et al., 2000). In fact, proinflammatory 

cytokines such as TNF-α and IL-1β induce COX-2 in RA models 

(Bidgood et al., 2000; Martel-Pelletier et al., 2003).  

Pin1, a peptidyl prolyl isomerase, was originally discovered in 

a screen for elucidating mitosis-associated molecules (Lu et al., 1996). 

Pin1 specifically recognizes phosphorylated serine or threonine 

immediately preceding proline (pSer/Thr-Pro) and then isomerizes the 

peptide bond (Bayer et al., 2003; Lu et al., 2004). Pin1-dependent 

isomerization is important for its target proteins activities, because 

various protein kinases or phosphatases recognize their substrates in a 
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conformation-dependent manner (Weiwad et al., 2000; Zhou et al., 

2000). Most researches to find pathophysiological roles of Pin1 have 

been focused on cancer, since Pin1 overexpression was frequently 

observed in several types of cancer tissues (Bao et al., 2004). Recent 

studies have also revealed that Pin1 plays a protective role in the 

development of neurodegenerative disease (Balastik et al., 2007) and 

may potentiate the outcomes of hepatitis B virus infection via physical 

interaction with hepatitis B virus X protein (Pang et al., 2007). The 

functions of Pin1 in immune system have been studied by Malter group. 

They found that Pin1 regulates the mRNA stabilities of transforming 

growth factor-β (TGF-β) and granulocyte-macrophage colony-

stimulating factor (GM-CSF) in eosinophils and T lymphocytes (Shen 

et al., 2005; 2008; Esnault et al., 2006). Although, diverse functions of 

Pin1 have been elucidated as aforementioned, the pathological role of 

Pin1 in RA has not been studied.  

Type II collagen (CII)-induced arthritis in DBA1/J mice has 

been proven to be a useful model of RA. Humoral and cell immunity 

characteristics of the mice are very similar to those of RA patients 

(Holmdahl et al., 2000). In the present study, we found that Pin1 and 

COX-2 were highly induced in chondrocytes, lymphocytes and 
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fibroblasts of arthritic joints obtained from CII-injected DBA/1J mice. 

To clarify the pathological role of Pin1 overexpression, we established 

HTB-94 cells and primary cultured human chondrocytes stably 

overexpressing Pin1. The basal expressions of COX-2, inducible nitric 

oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and 

interleukin-1β (IL-1β) were enhanced in both the Pin1-overexpressing 

cell types and Pin1-dependent activations of nuclear factor-кB (NF-кB), 

cAMP response element binding protein (CREB) and CCAAT-

enhancer binding protein (C/EBP) are involved in the COX-2 induction. 

1. 3. Role of iNOS and COX-2 in inflammation 

Nitric oxide (NO) plays beneficial and determental roles during 

inflammation. NO produced by constitutive NOS forms (cNOS, or 

NOS type III and I) is essential for maintaining cellular function (Porsti 

et al., 1995), where as NO produced by inducible NOSs (iNOS, NOS 

type II is an important mediator of acute and chronic inflammation 

(Kubes et al., 2000), and contributes to the pathogenesis of organ 

failure in circulatory shock (Southan et al., 1996). 

Cyclooxygenase (COX) is a rate-limiting enzyme in the           

conversion of arachidonic acid into prostaglandins and thromboxanes. 

The enzyme plays several important roles in maintaining physiological 



 

   7 

homeostasis, such as mucosa secretion and smooth muscle contraction, 

and in regulating pathological conditions, such as allergic diseases and 

rheumatoid arthritis (Goetzl et al., 1995). There are two isoforms of      

cyclooxygenase, i.e., COX-1 and COX-2 (Hla et al., 1992). COX-1            

functions as a housekeeping gene and is constitutively expressed in       

most human tissues, whereas COX-2 is an inducible form that is            

induced by oncogenes, growth factors, cytokines, endotoxin or             

phorbol esters (Arias-Negrete et al., 1995). Overexpression of COX-2 

has been related to chronic inflammation, angiogenesis and                   

carcinogenesis (Tsuji et al., 2001). 

Recently, it was suggested that chronic inflammation is 

associated with carcinogenesis (Oshima et al., 2003; Farrow et al., 

2002). Chronic inflammation leads to the induction of specific enzymes 

in affected tissues and cells. In particular, inducible nitric oxide 

synthase (iNOS) and cyclooxigenase-2 are responsible  for the 

exaggerated production of NO and prostaglandins, respectively, 

believed to be involved in the pathogenesis of cancer (Lala et al., 2001; 

Zha et al., 2004) COX-2 participates during the gastric 

tumurogenesis( Van Rees et al., 2002). It has been reported that there is 

strong positive relationship between the presence of iNOS and the 
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frequency of mutation in colon tumor tissues (Ambs et al., 1999). 

Hence, the overproduction of prostaglandins and NO may act as both 

an endogenous initiator and as a promoter of carcinogenesis and 

specific inhibitors of COX-2 or iNOS might have applications as 

chemopreventive agents in human cancer.  

1. 4. Transcriptional Regulation of iNOS, COX-2 and  role of Pin1 

Pin1 may act as a novel pathological mediator to stimulate the 

transcription of proinflammatory proteins in RA tissues. The cis-acting 

elements in the 50-flanking promoter region of the COX-2 gene contain 

a TATA box and multiple transcription factor binding sites for nuclear 

factor-kB (NF-кB), specific protein-1, Myb, CCAAT/enhancer-binding 

protein (C/EBP), and cAMP response element binding protein (CREB) 

(Kosaka et al., 1994). Among these transcription factors, C/EBP, 

CREB, and NF-кB play important roles in the induction of COX-2 

(Kim et al., 1998; Tang et al., 2001; Wu et al., 2003).  

The promoter regions of the iNOS and COX-2 genes contain 

NF-кB binding sites (Schmedtje et al., 1997; Xie et al., 1993), and NF-

кB is known to be an essential transcription regulator of these two 

genes (Diaz-Guerra et al., 1996; Lee et al., 2003). The stimulation of 

cells by diverse inflammatory insults results in the phosphorylation of 
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the I-кB/NF-кB complex and the subsequent degradation of I-кB 

proteins. The degradation of I-кB causes the dissociation of the NF-кB 

complex from the I-кB protein, which allows free NF-кB to enter the 

nucleus. Nuclear NF-кB, which is a member of a transcription complex, 

in turn regulates the expression of the iNOS and COX-2 genes. The 

phosphorylation of I-кB bound to NF-кB is believed to be mediated by 

I- кB kinase at two conserved serines within the N-terminal domain of 

I-кB (Karin et al .,2000) and the I-кB kinase complex can be activated 

by a variety of upstream kinases (Huang et al., 2003; Trushin et al., 

2003). 

Recently there is a report that peptidyl-proline isomerase 

Protein Never in Mitosis Gene A Interacting-1 (Pin1) activity of several 

transcription factors that can induce the inducible nitric oxide (NO) 

synthase (iNOS) as well as  Pin1 can also regulate mRNA and protein 

turnover ( Liyu et al., 2008). Pin1 enhances Stat3- mediated epithelial- 

mesenchymal transition in breast cancer cells induced by oncostatin M. 

Stat3 is an important cytoplasmic transcription factors for cytokine 

signaling (Lufei et al., 2007).  With the stimulation of cytokines Pin1 

binds to the pThr254- promotif in p65 and inhibit p65 binding to I-кB 

alpha, increased the nuclear accumulation and protein stability of p65 
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and increased the NF-кB (Ryo et al., 2003).  

1. 5.  Therapeutic use of Phytochemicals in Inflammation. 

Chemoprevention is considered to be one of the most 

promising strategies for the prevention of human cancers. It is 

defined as the use of either natural or synthetic compounds to block 

or retard the carcinogenic process, and many natural candidates 

including epigallocatechin, genistein and sulforaphane have been 

evaluated in terms of malignancy prevention (Moyers et al., 2004; 

Sarkar et al., 2003; Chung et al., 2000). 

The leaves of Selaginella tamariscina, which are used in 

oriental medicine, have been reported to lower blood glucose levels 

and facilitate the repair of pancreatic islet B cells injured by alloxan 

(Miao et al., 1996). Crude extracts of S. tamariscina also reduced the 

productions of proinflammatory cytokines, e.g., interleukin-1β and 

tumor necrosis factor-α in human mesangial cells (Kuo et al., 1998). 

In the present study, we isolated a bioflavonoid, taiwaniaflavone 

from the ethylacetate fraction of Selaginella tamariscina. 

Taiwaniaflavone has been isolated from several plants (e.g. Taiwania 

cryptomerioides Hayata) (Kamil et al., 1981; Chien et al., 2004), but 

its pharmacological activities have not been studied. Lee et al., 1999; 
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reported that the water-extracted fraction of Selaginella tamariscina 

(Selaginellaceae) efficiently increased p53 gene expression and 

induced G1 arrest, suggesting that S. tamariscina is a candidate 

chemopreventive. Crude extracts of S. tamariscina also reduced the 

production of proinflammatory cytokines, interleukin-1β and tumor 

necrosis factor- α in human mesangial cells (Kuo et al., 1998). As a 

part of our program to screen for potential cancer chemopreventive 

compounds from medicinal plants, we isolated 2’, 8’’-biapigenin 

from S. tamariscina (Fig. 1). The biological activity of 2’, 8’’-

biapigenin has not been studied. In the present study, we investigated 

the modulatory effects of the bi-flavonoid taiwaniaflavone and 2’, 

8’’-biapigenin on the expressions and activities of iNOS and COX-2 

induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells.  

Geranium thunbergii, which is widely used as an anti-

diarrhetic agent in East Asia, (Okuda et al., 1975) has been reported 

to have anti-mutagenicity, anti-inflammation and anti-oxidative 

effects (Hiramatsu et al.,2004; Ushio et al., 1991; Xiufen et al., 2004). 

One of representative tannin in Geraniaceae, geraniin shows diverse 

effects including anti-bacterial, anti-fungal and anti-hypertension 

(Cheng et al., 1994; Gohar et al., 2003). We recently isolated three 
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lignans (kobusin, 7, 7’-dihydroxybursehernin and 4-hydroxykobusin) 

from Geranium thunbergii (Liu et al., 2006). Among them, 4-

hydroxykobusin has been identified as a new furofuran lignan and is 

effective to inhibit interleukin-6 production in MG-63, a human 

osteosarcoma cell line (Liu et al., 2006). 

2. Study Aim. 

1. To determine the role of Pin induction in the expression of 

proinflammatory proteins in RA model. 

2. Screening of useful phytochemicals for the therapeutic use in 

chronic inflammatory diseases and to determine their 

pharmacological mechanisms. 
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3. Materials and Methods 

3.1. Materials.  

5-bromo-4-chloro-3-indoylphosphate and nitroblue 

tetrazolium were supplied by Life Technologies (Gaithersburg, MD). 

Anti- Pin1, COX-2, C/EBP , C/EBP , CREB, c  -Jun, c-Fos, JunD, 

Fra1 and p65 antibodies were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA), Anti-murine iNOS polyclonal 

antibody from Transduction Laboratories (Lexington, KY); anti- I-кB 

and anti-phospho-I-кB kinase (IKK)/IKK antibodies from Cell 

Signaling Technology (Beverly, MA). Phosphorylated form-specific 

or total form recognizing antibodies against extracellular signal 

regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were 

obtained from Cell Signaling Technology (Beverly, MA). 

Horseradish peroxidase-conjugated donkey anti-rabbit and alkaline 

phosphatase-conjugated donkey anti-mouse IgGs were purchased 

from Jackson Immunoresearch Laboratories (West Grove, PA). The 

reagents used for molecular studies were primarily obtained from 

Sigma (St. Louis, MO). siRNA targeting human c-Jun and control 

siRNA were purchased from Ambion (Austin, TX).  

3. 2. CII-induced arthritis and juglone treatment. 
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 The institutional animal care and utilization committee of Chosun 

University approved all the animal procedures used in this study. Male 

DBA/1J mice (Joong-Ang Experimental Animals Co., Seoul, Korea), 

age 8 weeks, were used. Bovine CII was dissolved in 0.1 M acetic acid 

overnight at 4 °C. This was emulsified in an equal volume of complete 

Freund's adjuvant (Sigma). The mice were immunized intradermally at 

the base of the tail with 100 µl emulsion containing 150g CII. On day 

21, mice were boosted intradermally with 100g CII dissolved in PBS 

and monitored arthritis development for 10 days. Juglone was dissolved 

in solubilization solvent (PEG400, Tween 80, ethanol and sterile water) 

and intraperitoneally injected from day 22 every other days (4 times 

injection). 

3. 3. Assessment of arthritis. 

 Mice were sacrificed on day 10 after second CII booster. The 

left hind limbs including paws and ankles were dissected, fixed 

immediately for 12 h in 10% neutralizing formaldehyde, decalcified in 

Calci-Clear RapidTM (National Diagnostics, Atlanta, GA) for 12h, and 

embedded in paraffin. Tissue sections (4 µm) were mounted on 

common slides for staining with hematoxylin and eosin. A certified 

pathologist scored samples in a blinded fashion. The data were 
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expressed as mean chronic inflammation, fibrosis, articular cartilage 

damage, synovialis proliferation, and bone damage and ankylosis 

scores. All scores were semiquantitatively indexed based on a scale of 

0-3 (Leng et al., 2008). 

3. 4. Immunohistochemistry.  

A universal immunoenzyme polymer method was used for 

immunostaining. 4 µm sections were cut from formalin-fixed, paraffin-

embedded tissue blocks, mounted on polylysine-coated slides, dewaxed 

in xylene, and rehydrated through a graded series of ethanol. After 

deparaffinization, antigen retrieval treatment was performed at 121 °C 

for 15 min in 10 mM sodium citrate buffer (pH 6.0), and was then 

treated with 3% hydrogen peroxide in methanol solution for 20 min in 

order to quench endogenous peroxidase activity. To block intrinsic 

avidin–biotin capabilities, the tissue slides were treated with avidin–

biotin blocking kit reagents (Vectastain Elite ABC kit, Vector 

Laboratories, Burlingame, CA) for 15 min. Anti-Pin1 and anti-COX-2 

antibodies were used as the primary antibodies. The final products were 

visualized using the 3-3’diaminobenzidine tetrahydrochloride (DAB) 

detection system (DakoCytomation, Glostrup, Denmark). All 

experiments were performed in duplicate. 
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3. 5. Cell culture:  

HTB-94 cells and primary cultured human chondrocytes 

(passage 6) were obtained from the American Type Culture 

Collection (ATCC, Rockville, MD) and Dr. Lee (Chonnam National 

University, Gwangju, South Korea), respectively. Both the cell types 

were cultured at 37°C in 5% CO2/95% air in Dulbecco’s modified 

Eagle’s medium containing 10% fetal bovine serum (FBS), 100 

units/ml penicillin, and 100 g/ml streptomycin. For all experiments, 

cells were grown to 80-90% confluency and subjected to no more 

than 15 cell-passages. Raw264.7 cells and J774.A1 cells were 

obtained from the American Type Culture Collection (ATCC, 

Rockville, MD) and Korean Cell Line Bank (KCLB, Seoul, Korea), 

respectively. Both the cells were cultured at 37°C in 5% CO2/95% air 

in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine 

serum (FBS), 100 units/ml penicillin, and 100µg/ml streptomycin. 

For all experiments, cells were grown to 80%-90% confluency and 

subjected to no more than 20 cell passages. 

3. 6. MTT cell viability assay  

Viable adherent cells were stained with MTT [3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide] (2 mg/ml) 



 

   17 

for 4 h. Media were then removed and the formazan crystals 

produced were dissolved by adding 200 µl of dimethylsulfoxide. 

Absorbance was assayed at 540 nm and cell viabilities were 

expressed as ratios versus untreated control cells. 

3. 7. Measurement of nitrite 

RAW264.7 cells (5x105 cells) were preincubated at 37 °C for 

12 h in serum-free medium and NO production was monitored by 

measuring nitrite levels in culture media using Griess reagent (1 % 

sulfanilamide, 0.1 % N-1-naphthylenediamine dihydrochloride, and 

2.5 % phosphoric acid). Absorbance was measured at 540 nm after 

incubating for 10 min.  

3. 8. Construction of Pin1 retroviral plasmid and infections. 

Stably Pin1-overexpressing HTB-94 and human 

chondrocytes were established using MSCV-GFP retrovirus system 

(Lee et al., 2007). Briefly, Pin1 cDNA was subcloned into MSCV-

GFP retroviral vector and phoenix cells (a packaging cell line) were 

transfected with MSCV-GFP (Control) or MSCV-Pin1-GFP (Pin1 

overexpression) plasmid. Supernatants containing amphotrophic 

replication-incompetent retroviruses were collected and then stored at 

-80°C until required. 20% confluent HTB-94 cells and chondrocytes 
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obtained from osteoarthritic patients were multiply infected (12 

times) with retrovirus particles. Intensities of infection were 

monitored by GFP-fluorescence and Western blot analysis using Pin1 

antibody. 

3. 9. Preparation of nuclear extract and Western blot analysis. 

Cells were removed using a cell scraper and centrifuged at 

2,500g for 5 min at 4°C. The cells were then swollen with 100µl of 

lysis buffer [10 mM HEPES (pH 7.9), 10 mM KCl, 0.1 mM EDTA, 

0.5% Nonidet-P40, 1mM dithiothreitol and 0.5mM 

phenylmethylsulfonylfluoride]. Tubes were vortexed to disrupt cell 

membranes, and samples were incubated for 10 min on ice and then 

centrifuged for 5 min at 4°C. Pellets containing crude nuclei were 

resuspended in 100µl of extraction buffer [20 mM HEPES (pH 7.9), 

400 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol, and 1 mM 

phenylmethylsulfonylfluoride], incubated for 30 min on ice, and 

centrifuged at 15,800g for 10 min; the supernatants containing the 

nuclear extracts were collected and stored at -80°C until required. 

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis 

and immunoblot analyses were performed as described previously 

(Lee et al., 2007). Cell lysates were fractionated by 10% gel 
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electrophoresis, and electrophoretically transferred to nitrocellulose 

membranes. The membranes were subsequently incubated with 

primary antibody, and then with alkaline phosphatase- or horseradish 

peroxidase-conjugated secondary antibodies. Finally, the membranes 

were developed using either 5-bromo-4-chloro-3-indoylphosphate 

and nitroblue tetrazolium or using an ECL chemiluminescence 

detection kit. 

3. 10. Gel shift assay.  

Double-stranded DNA probes (2 pmole/ l) for the 

consensus sequences of AP-1 (5’-

CGCTTGATGAGTCAGCCGGAA-3’) and NF-IL6 C/EBP binding 

site in COX-2 gene (5'-CAGTCATTTCGTCACATGGG-3') were 

used for gel shift analyses after end-labeling the probe with [γ-

32P]ATP and T4 polynucleotide kinase. The reaction mixture 

contained 2 l of 5 × binding buffer with 20% glycerol, 5 mM 

MgCl2, 250 mM NaCl, 2.5 mM EDTA, 2.5 mM dithiothreitol, 0.25 

mg/ml poly dI-dC, 50 mM Tris-Cl (pH 7.5), 10 µg of nuclear 

extracts, and sterile water to a total volume of 10 µl. Incubations 

were carried out at room temperature for 20 min by adding 1 µl probe 

(106 cpm) after a 10 min pre-incubation. The specificity of 
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DNA/protein binding was determined through competition reactions 

using a 10-fold molar excess of unlabeled oligonucleotides. Samples 

were loaded onto 5% polyacrylamide gels at 100V. After 

electrophoresis, the gels were removed, dried, and autoradiographed. 

3. 11. Construction of a COX-2 promoter-luciferase construct 

and reporter gene assays: 

 To determine the transcriptional activity of the COX-2 gene, 

we used the pGL-COX-2-574 luciferase reporter gene. To construct 

the luciferase (LUC) reporter gene plasmid, COX-2-LUC(-574), a 

DNA fragment containing -574 bp of 5'-flanking sequences and 113 

bp of 5'-untranslated region (UTR) from the human COX-2 gene was 

first amplified by PCR using a human genomic clone as the template. 

The PCR fragment was then cloned into pGL3-Basic (Promega, 

Madison, WI). Site-directed mutagenesis of NF-кB, CRE/AP-1, and 

NF-IL6/CEBP binding sites was performed using a LAPCR in vitro 

Mutagenesis Kit (TAKARA SHUZO Ltd., Japan) (Jeong et al., 2007). 

1 µg of the plasmid was transfected into the cells using 

LipofectAMINE2000 (Invitrogen Corp., Carlsbad, CA) or Hilymax® 

reagent (Dojindo Molecular Technologies, Gaithersburg, MD) 

according to the manufacturer’s instructions. After 6 h, the 
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transfection medium was replaced with the basal culture medium 

without serum and the cells were further incubated for 18 h. The 

luciferase activities in the cell lysates were then measured using a 

luminometer. The relative luciferase activity was calculated by 

normalizing the promoter-driven luciferase activity versus hRenilla 

luciferase or β-galactosidase.  

3. 12. Construction of an iNOS Promoter-luciferase Construct 

and NF-кB reporter gene assays 

To determine the transcriptional activity of iNOS gene, we 

used the pGL-miNOS-1588 luciferase reporter assay system. To 

generate the miNOS promoter-luciferase construct (pGL-miNOS-

1588), mouse genomic DNA was isolated from mouse tail using the 

SV genomic DNA isolation kit (Promega, Madison, WI). The miNOS 

promoter region from –1588 bp to +165 bp was amplified by 

polymerase chain reaction (PCR) using specific primers  (forward: 

5’-GGTACCGACTTTGATATGCTGAAATCCATA-3’; reverse: 5’-

AGATCTAGTTGACTAGGCTACTCCGTG-3’) and ligated into 

pGEM-T easy vector (Promega, Madison, WI). The amplified 

product was subcloned into the KpnI/BglII site of pGL3-basic 

plasmid after confirming its DNA sequence by sequencing.  
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Cells were plated at a density of 3×105 cells/well in 12-well 

plate and transfected on the following day. A dual-luciferase reporter 

assay system (Promega, Madison, WI) was used to determine 

promoter activity. Briefly, cells were transiently transfected with 1µg 

of pGL-miNOS1588, pNF-кB-Luciferase, or pAP-1-Luciferase 

plasmid and 20 ng of the pRL-SV plasmid (Promega, Madison, WI) 

using the Genejuice® Reagent (Novagen, Madison, WI) and then 

exposed to LPS for 18 h. Firefly and Renilla luciferase activities in 

cell lysates were measured using a luminometer (Turner Designs; 

TD-20, CA). Relative luciferase activities were calculated by 

normalizing iNOS, NF-кB, or AP-1 promoter-driven firefly luciferase 

activities versus that of Renilla luciferase. 

3. 13. Reverse transcription-polymerase chain reaction (RT-PCR). 

The total RNA was isolated using total RNA isolation kit 

(RNAgents®, Promega, Madison, WI). The total RNA (1.0µg) 

obtained from the cells was reverse-transcribed using an oligo (dT) 

18mer as a primer and M-MLV reverse transcriptase (Bioneer, 

Eumsung, Korea) to produce the cDNAs. PCR was performed using 

the selective primers for human TNF-α , IL -1β  and S16 

ribosomal protein (S16r) genes. The PCRs were carried out for 42 
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cycles using the following conditions: denaturation at 98°C for 10 sec, 

annealing at 50°C for 0.5 min, and elongation at 72°C for 1 min. The 

band intensities of the amplified DNAs were compared after 

visualization using FLA-7000 (Fuji film, Tokyo, Japan). 

3. 14. Enzyme-linked imuunosorbent assay (ELISA). 

Commercial ELISA kit (Cayman Chemical, Ann Arbor, MI) 

was used to determine prostaglandin E2 (PGE2) concentrations in 

culture medium according to the manufacturer's protocols.  

3.16. Statistics. 

 One-way analysis of variance (ANOVA) was used to 

determine the significance of differences between treatment groups. 

The Newman-Keuls test was used for multi-group comparisons. 

Statistical significance was accepted for p values of <0.05. 

 

 

 

 

 

 

 



 

   24 

Results 

Part one  

4. Novel Role of Pin1 in Rheumatoid Arthiritis 

4.1. Pin1 induction in arthritic tissues and its role in 

proinflammatory protein expression. 

To determine the Pin 1 is chronically expressed in arthritic 

lesions, we determined Pin1 levels by immunohistochemistry in the 

ankle tissues from CII-induced RA mice. Hind paw swelling and 

erythema was increased in all mice injected with CII (Fig1). While 

Pin1 antibody-positive staining was not detected in control tissues, 

Pin1 induction was highly found in the RA tissues, mainly distributed 

in chondrocytes, lymphocytes and fibroblasts (Fig. 2A, left). 

Interestingly, COX-2 staining results showed very similar patterns to 

Pin1 staining (Fig. 2A, right), which raised a possibility that COX-2 

expression might be related with Pin1 existence in RA tissues. 

Western blot analysis was then performed using ankle tissue 

homogenates to confirm these results. As expected, COX-2 and Pin1 

were concomitantly induced in RA tissue homogenates; whereas only 

a slight amount of COX-2 and Pin1 were detected in the control (Fig. 

2B). To clarify the phenotypes of Pin1 overexpression in RA tissues, 
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we established stably Pin1 overexpressing HTB-94 cells, a human 

chondrocyte cell line (Pin1-HTB-94) using retroviral infections. In 

comparison to GFP-HTB-94 (GFP-overexpressing) cells, Pin1 

expression was highly detected in Pin1-HTB-94 cells (Fig. 3A). 

Western blot analysis showed that COX-2 expression was up-

regulated in Pin1-overexpressed HTB-94 cells (Fig. 3A). Since PGE2 

is one of the stable autacoids produced by COX-2, we further 

examined PGE2 levels in culture medium. PGE2 production was 4.3 

fold increased in Pin1-HTB-94 cells. Moreover, the protein or mRNA 

levels of iNOS, TNF-α and IL-1β, representative proinflammatory 

enzymes and cytokines, were also highly enhanced in Pin1-HTB-94 

cells (Fig. 3B). We then established Pin1-overexpressing human 

primary chondrocytes using the ankle tissues obtained during surgery 

of osteoarthritic patient. Although the basal Pin1 and COX-2 

expressions were seen in primary chondrocytes from osteoarthritic 

patient, and the stable Pin1 overexpression also potentiated COX-2 

expression in the primary cultured human chondrocytes (Fig. 3C). 
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Fig. 1. Type II Collagen- induced Arthritis Model. 8 weeks old 

DBA/1J mice were used for the experiments. The mice were 

immunized intradermally as described in materials and method. On day 

21, mice were boosted with second immunized intradermally with 100 

µg CII dissolved in PBS and monitored arthritis development for 10 

days. 
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Table 1. Effect of juglone on CII-induced RA 

Grou

p 

Chronic 

Inflamma

tion 

(Postive/

Total) 

Ankylosi

s 
Fibrosis 

Articular 

cartilage 

loss 

Synoviali

s 

proliferati

on 

Bone 

damage 

Contr

ol 
0/4 0 0 0 0 0 

CII 6/6 
2.17±1.3

3 

2.33±0.8

2 

2.00±1.2

6 

2.67±0.8

2 

1.83±1.

17 

+ 
Juglo
ne 1 
mg/k
g 

4/4 
0.75±1.5

0 

1.25±0.9

6* 

0.50±1.0

0* 

1.00±0.8

2** 

0.25±0.

50* 

+ 
Juglo
ne 5 
mg/k
g 

3/4 
0.25±0.5

0* 

1.50±1.0

0 

1.00±0.8

2 

1.25±1.2

6** 

0.25±0.

50* 
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Fig. 2. Induction of Pin1 in ankle tissues of CII-injected DBA/1J 

mice. (A) Immunohistochemical staining of COX-2 and Pin1. Control 

mice ankle tissues showed no staining with COX-2 (upper right panel) 

but brown color staining with COX-2 in COll-II immunized mice 

(upper left panel). In the same way no staining with Pin1 in control 

mice ankle tissues (lower right panel) but well stain with Coll-II 

immunized mice (lower left panel). (B) Ankle tissues of both control 

and Coll-II mice were homogenized in cold PBS and COX-2 and Pin-1 

immunoblot was performed. Coll-II immunized mice ankle tissues over 

express both COX-2 and Pin. All experiments were performed in 

duplicate. 
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Figure 3. Role of Pin1 overexpression in proinflammatory 

protein expression. 

Stably Pin1-overexpressing HTB-94 and human chondrocytes were 

established using MSCV-GFP retrovirus system as described in 

materials and methods. HTB-94 cells and chondrocytes obtained 

from osteoarthritic patients were multiply infected (12 times) with 

retrovirus particles. Immunoblot analysis was performed with COX-2 

antibody after the stable overexpression of GFP and Pin1 HTB94.  

PGE2 production in GFP and Pin1- HTB94 cells were determined 

after the 24 hours of serum deprived by using PGE2 ELISA ASSAY 

kit. (B) Immunoblot analysis of GFP and Pin1-HTB94 cells with 

iNOS and Pin1 antibodies (right panel) and mRNA of   TNF-α, and 

IL1-β were determined by RT-PCR in GFP and Pin1-HTB94 cells, 

S16 ribosomal protein mRNA expression was comparable in samples. 

Immunoblot analysis of COX-2 and Pin1 expression in GFP and 

Pin1- Chondrocite cells after the stable overexpression of GFP and 

Pin1.  
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4.2. Pin1-dependent simultaneous activation of NF- B, CREB,   

C/EBP  and AP -1 is required for the COX-2 expression. 

Because COX-2-mediated PG production is considered as a 

representative inflammation index in RA, we chose COX-2 gene 

expression as a model system for further experiments. Several studies 

have shown that CoX-2 expression is transcriptionally regulated by 

C/EBP, cAMO- response element binding protein (CREB), and NF- 

κB. To identify the role of each transcription factor in the regulation 

of COX-2 expression in Pin1-overexpressing chondrocytes, GFP- and 

Pin1-HTB-94 cells were transfected with the wild-type COX-2 

promoter-luciferase chimeric construct that contained the 574-bp 5’-

flanking region of human COX-2 gene, or with C/EBP mutant with 

NF-IL6 site (-132/-124) mutation, NF-кB mutant with NF-кB site (-

223/-214) mutation, or CRE/AP-1 mutant with CRE/AP-1 site (-59/-

53) mutation(Tamura et al.,2003). When we determined promoter 

reporter activities, wild-type COX-2 promoter activity in Pin1-HTB-

94 cells increased up to ~5-fold compared to GFP-HTB-94 cells. 

Each mutation of STAT-3, NF-кB or CRE/AP-1 significantly 

inhibited the Pin1-inducible reporter activity (Fig. 4A).Especially, the 

COX-2 promoter activity was most potently suppressed by NF-кB or 
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C/EBP binding site mutation (87% and 97% inhibition, respectively) 

(Fig. 4A). These results demonstrate that STAT-3, NF-кB and 

CRE/AP-1 elements are all essentially required for Pin1-mediated 

transactivation of the COX-2 gene. Hence, we first compared NF-кB 

activity between GFP- and Pin1-HTB-94 cells. The NF-кB minimal 

reporter activity and nuclear p65 levels were higher in the Pin1-

overexpressing cells (Fig. 4B). We also found that TPCK, a specific 

NF-кB inhibitor suppressed the Pin1-mediated COX-2 expression 

(Fig. 4C). It has been reported that Pin1 selectively increases nuclear 

p65 sequestration through the inhibition of p65 binding to I-кB (Ryo 

et al., 2003). Hence, it could be plausible that Pin1-mediated 

induction of proinflammatory cytokines partly result from p65/NF-

кB activation.  

We determined the activity of each transcription factor by 

using minimal reporter genes. The reporter activities of pCRE-Luc 

and pC/EBP-Luc were more than 13 fold and 4.2 fold enhanced in 

Pin1-HTB-94 cells versus control cells (Fig. 4A and 4B). Nuclear 

level of CREB was also sharply increased in Pin1-HTB-94 cells (Fig. 

5A and 5B), but the increase intensities of C/EBPα and C/EBPβ were 

marginal (Fig. 5B).  
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We found that the AP-1 minimal reporter activity, AP-1 

binding activity and nuclear distributions of c-Jun, c-Fos and Fra1 were 

significantly increased in the Pin1 overexpressed cells, though nuclear 

levels of JunB and JunD were not altered (Fig. 5C).  

To study whether MAP kinase pathways are activated in Pin1-

overexpressed cells, we measured the phosphorylated form of each 

MAP kinase. The level of active phosphorylated ERK was increased in 

Pin1-HTB94 cells compared to GFP-HTB94 cells (Fig. 5D). However, 

the phosphorylation intensities of JNK or p38 kinase were not affected 

by Pin1 overexpression (Fig. 5D). To further investigate whether 

blockade of the MAP kinase cascade led to a change in the expression 

of COX-2, we determined COX-2 expression changes in Pin1-HTB94 

cells pretreated with MAP kinase inhibitors. Incubation of Pin1-HTB-

94 cells with specific MAP kinase inhibitors (PD98059: ERK inhibitor; 

SP600125: JNK inhibitor, SB203580: p38 kinase inhibitor) for 36 h did 

not reduce the COX-2 protein levels (Fig. 5C). From these results, we 

can conclude that multiple transcription factors including NF-кB, 

C/EBP  and CREB and AP -1 are complicatedly involved in the Pin1-

dependent COX-2 expression in chondrocytes. 

c-Jun and c-Fos-mediated AP-1 activity couples to Pin1 
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through its isomerase activity on phosphorylated c-Jun or c-Fos. In our 

experiments, nuclear levels of c-Jun, c-Fos and Fra1, but not those of 

JunB and JunD were increased in Pin1-HTB-94 cells, compared to 

GFP-HTB-94 cells. Since the enhanced AP-1 minimal reporter activity 

was almost completely suppressed by c-Jun siRNA, Pin1’s target 

transcription factor for COX-2 gene transcription may be c-Jun. 

However, c-Jun siRNA treatment did not affect the COX-2 promoter 

activity in the Pin1-overexpressed HTB-94 cells, which imply that c-

Jun/AP-1 activation in Pin1-HTB-94 cells is not essential for the COX-

2 gene expression (fig. 5 E and F). 

Several reports have shown that MAP kinase including ERK, 

JNK and p38 kinase regulates COX-2 expression. Here, we found that 

only ERK pathway was consistently activated in Pin1 everexpressed 

chondrocytes, but inhibition of JNK and p38 kinase as well as ERK did 

not cause the reduction of COX-2 expression. These data suggest that 

MAP kinases activities are not required for the Pin-1 mediated COX-2 

expression. 
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Figure 4. Pin1-dependent simultaneous activation of NF-кB, CREB, 

C/EBP  and AP -1 is required for the COX-2 expression. (A) 

Essential role of NF- B, CREB/C/EBP, and Ap -1 activation in Pin1-

inducible inflammatory gene expression. Induction of luciferase 

activity by Pin1- HTB94 cells as compared with GFP-HTB94 cells 

transiently transfected with pGL-COX-2-574, NF-кB mutant, C/EBP 

mutant or CRE mutant construct, was confirmed using a luminometer. 

Reporter gene activations were expressed as changes relative to b-

galactosidase activity. (B) Nuclear translocation of P65 was determined 

in GFP and Pin1-HTB94 cells by immunochemically using specific 

antibody. (C) Immunoblotting of Pin1 HTB94 cells after the treatment 

of cells with different kinases inhibitors and NF-кB. The results shown 

represent the means ± SD of 3 separate experiments (significant as 

compared in GFP and Pin1 HTB94 cells reporter activity values of 

pGL-COX-2-574-transfected cells, **p < 0.01). 
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Figure.5. Pin1 Induction stimulates transcription of 

proinflammtory proteins.  (A)Immunoblot analysis of GFP and 

Pin1-HTB94 cells after the 24 hour serum deprivation (upper panel) 

with CREB antibody (the nuclear levels of each transcription factor 

was determined immunochemically using specific antibodies), 

induction of  luciferase activity by Pin1 overexpression in HTB94 

cells transient transfected with CRE plasmid (lower panel). (B) 

Immunoblot analysis of  GFP and Pin1 HTB-94 cells with C/EBP α 

and β antibodies ( upper panel),  induction of  luciferase activity by 

Pin1 overexpression in HTB94 cells transient transfected with C/EBP 

plasmid (lower panel).(C) Immunoblot analysis of  GFP and Pin1 

HTB-94 cells with C-Jun, JunB, Jun D, c-Fos, and Fra1 antibodies 

(right  upper panel) (the nuclear levels of each transcription factor 

was determined) immunochemically using specific antibodies, 

induction of  luciferase activity by Pin1 overexpression in HTB94 

cells transient transfected with Ap-1 minimal promoter plasmid (right 

lower panel) and Gel shift assay were performed with nuclear 

extracts prepared from GFP and Pin1- HTB 94 cells. All lanes were 

loaded with 10 µg of nuclear extracts and labeled with Ap-1 DNA 

consensus sequences (left panel). (D) Immunoblot analysis of MAP 
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kinases activity in  GFP and Pin1-HTB94 cells with P- ERK, ERK, 

P-JNK, JNK, and P-P38 kinase and P38 kinase antibodies 

respectively in cell lysate. E) Effect of c-Jun siRNA over the COX-2 

promoter activity. GFP and Pin1-HTB94 cells were transfected with 

COX-2 promoter plasmid and control and c-Jun siRNA (60pmole). F) 

Inhibition of AP-1 minimal promoter reporter activity after the 

transfection of cells with control and c-Jun siRNA (60 Pmole) 

respectively. The results shown represent the means ± SD of 3 

separate experiments (significant as compared in GFP and Pin1 

HTB94 cells reporter activity values of pGL-COX-2-574-transfected 

cells, **p < 0.01). 
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4. 3. Juglone inhibits RA progress in CII-inducible DBA/1J mice 

and suppresses COX-2 expression in human primary cultured RA 

chondrocytes. 

 Next, we tested the effect of chemical Pin1 inhibitor, juglone 

on the CII-induced RA in DBA/1J mice. Intraperitoneal injection of 

juglone once another day started after booster injection of CII and 

continued for 10 days. We histopathologically evaluated RA grades of 

ankle joints by severity of inflammation, fibrosis, damages of articular 

cartilage and bone, and ankylosis after sacrificing the mice (Fig. 6A 

and Table 1). Juglone treatment (1 and 5 mg/kg) significantly inhibited 

the histological damage and cumulative arthritis injury scores, as 

compared with vehicle-treated CII-RA group (Table 1). Moreover, the 

enhanced COX-2 expression in the RA tissues was reversed in juglone-

treated samples (Fig. 6B). 

 To finally prove whether Pin1 inhibition causes the down-

regulation of proinflammatory mediators in human chondrocytes 

from RA patient, we determined the protein levels of COX-2 in the 

primary cultured chondrocytes from RA patient. The basal COX-2 

expression was seen in chondrocytes obtained from RA patient and 
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pretreatment of the cells with juglone for 36 h blocked the basal 

expression of COX-2 in a concentration-dependent manner (Fig. 6C). 

These results imply that Pin1 could be a potential pharmacological 

target of RA progress in clinics. 

 Taken together, Pin1 is up-regulated in the chondrocytes, 

lymphocytes and fibroblasts of RA lesions of CII-injected RA mice 

and the Pin1 overexpression results in the induction of 

proinflammatory proteins including COX-2, iNOS, TNF-α and IL-1β. 

Pin1-dependent COX-2 expression is associated with the 

simultaneous activations of NF-кB, C/EBP, CREB and AP-1. Pin1 

may serve as a new therapeutic target of RA.  

Although RA is one of the most frequent inflammatory 

diseases, the molecular pathogenesis of this disease has not been 

totally clarified. Data presented here indicate that Pin1 is induced in 

the lesion area of CII-mediated arthritis and plays a key role in the 

excess production of proinflammatory mediators including 

Prostaglandins, NO, TNF-α and IL-1β. Several mechanisms may be 

involved in the overproduction of these multiple proteins in response 

to Pin1 overexpression. 
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Figure. 6. Pin1 inhibition suppresses COX-2 expression and 

arthritis progress. (A) Morphological changes of Collagen induced 

arthiritis, representative photographs by light microscopy with 

hematoxylin/eosin staining of ankle tissue sections from DBA/1J mice. 

The histological evaluation of ankle tissues, (n=6) treated with vehicle 

(upper panel), (N=6) II immunized with Coll-II (middle panel) revealed 

signs of severe arthritis, with inflammatory cell filtration and bone 

erosion and (n=6) injected interaperitonealy with 1mg/kg Juglone (3 

times a week for 10 days) (lower panel) were significantly reduced in 

the inflammatory signs. These figures were representative of at least 3 

experiments performed on different days. (B) Immunoblot of ankle 

tissues homogenate with cold PBS with COX-2 antibody after the 

treatment of DBA/1J mice with Juglone 1mg/kg for 10 days. (C) 

Immunoblot of primary cultured human chondrocyte from RA patients 

with COX-2 antibody after the 24 hour incubation with Juglone 0.1 to 3 

µM/ml. 
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5.  DISCUSSION 

Collagen-induced arthritis is an experimental model of 

autoimmune disease, which can be induced in mice (Yoo et al., 1988), 

rats (Cuzzocrea et al., 1999a, b) and primates (Trentham, 1982) by 

immunization with type II native articular cartilage collagen (CII). The 

joint pathology associated with collagen induced arthritis is similar to 

the one observed in patients with RA (Stuart et al., 1982a, b). Both 

cellular and humoral immune responses to CII are involved in the 

pathogenesis of collagen induced arthritis. Mice injected with type II 

collagen (CII) induce polyarthritis (Svensson et al., 1998). Here we 

established the DBA/1J mice as a collagen induced arthritis model for 

the further experiments. 

Pin1 is believed as one of pathological mediator in 

neurodegenerative disease (Balastik et al., 2007).  Pin1 inhibition 

significantly inhibits eosinophilic inflammation in vitro and in vivo. 

Pin1 knockout mice showed the reduced expression of TGF- β1 after 

the allergen –sensitization (Zhong-Jian et al., 2008). Here we first 

time document a hypothesis that Pin1 is chronically expressed in 

arthritic lesions, we determined Pin1 levels by immunohistochemistry 

in the ankle tissues from CII-induced RA mice. Pin1 induction was 
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highly found in the RA tissues, mainly distributed in chondrocytes, 

lymphocytes and fibroblasts. It has been shown that COX-2 is highly 

expressed in human and animal arthritic tissues (Martel-Pelletier et 

al., 2003). In animal models of arthritis, COX-2 is highly expressed 

and is thought to be responsible for the increase in PG production in 

these animals (Anderson et al., 1996). In humans, COX-2 

overexpression has been demonstrated in osteoarthritis (OA)–affected 

cartilage (Amin et al., 1997) and in synovial tissue from patients with 

RA (Kang et al., 1996). From these evidences it is proved that COX-

2 in the most important target of inflammatory diseases like as 

arthritis. We also demonstrated that, COX-2 staining showed the 

similar pattern like Pin1 which raised a possibility that COX-2 

expression might be related with Pin1 existence in RA tissues.  In our 

western blotting result of ankle tissue homogenates showed the COX-

2 and Pin1 concomitantly induced in RA tissues.  For the further 

clarification of this result, we established the stably overexpressed 

Pin 1 in RA tissues and HTB-94, a human chondrocyte human 

primary cell line (Pin1- HTB94 using retroviral infections.  We found 

that as compaired with GFP-HTB-94 (GFP-overexpressing) cells, 

Pin1 expression was highly detected in Pin1-HTB-94 cells.  COX-2 
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expression was up-regulated in the similar pattern in Pin1- HTB94 

cells. PGs influence the immune response mediated through mature B 

and T lymphocytes.  PGE2 shifts the balance of the cellular response 

from Th1 to Th2 by inhibiting interleukin-2 and enhancing IL-4 

production (Betz et al., 1991; Van der Pouw et al., 1995). Since 

PGE2 is one of the stable autacoids produced by COX-2, we further 

examined PGE2 levels in culture medium. PGE2 production was 4.3 

fold increased in Pin1-HTB-94 cells. We then established Pin1-

overexpressing human primary chondrocytes using the ankle tissues 

obtained during surgery of osteoarthritic patient. Although the basal 

Pin1 and COX-2 expressions were seen in primary chondrocytes 

from osteoarthritic patient, and the stable Pin1 overexpression also 

potentiated COX-2 expression in the primary cultured human 

chondrocytes. 

     Pro-inflammatory cytokines TNF-α and IL-1β involve  in 

the extension of local and systemic inflammatory process (Deleuran 

et al., 1992; Westacott et al., 1990; Feldmann et al., 1990; Shinmei et 

al., 1989). Here we confirmed that the protein or mRNA levels of 

iNOS, TNF-α and IL-1β, representative proinflammatory enzymes 

and cytokines were also highly enhanced in Pin1-HTB-94 cells.       
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Production of ROS such as hydrogen peroxide, superoxide and 

hydroxyl radicals at the site of inflammation contributes to tissue 

damage (Cuzzocrea et al., 1998a; 1999a; Oyanagui, 1994; Salvemini 

et al., 1998). NO play an important role in the pathophysiology of 

inflammation (Brahn et al., 1998b; Ialenti et al., 1993). We 

demonstrate here that the protein or mRNA levels of iNOS, TNF-α 

and IL-1β , representative proinflammatory enzymes and cytokines, 

were also highly enhanced in Pin1-HTB-94 cells.  

Several studies have shown that COX-2 expression is 

transcriptionally regulated by C/EBP, cAMP-response element binding 

protein (CREB), and NF-κB and that these transcription factors are 

synergistically or independently involved in COX-2 gene expression 

(Thomas et al.,2000,  Tamura et al.,2003 Wardlaw et al., 2002). C/EBP 

transcription factors are involved in the regulation of gene transcription 

by IL-6 and they control inflammation (Poli et al., 1998). The C/EBP 

family includes three main members: C/EBP-α, C/EBP-β, and C/EPB-δ. 

IL-1β and C/EBP are positively regulated in the interaction with NF-κB 

(Lee et al., 1998; Jones et al., 1997). However, induction of C/EBP 

binding to DNA by proinflammatory cytokines correlates with the 

accumulation of prostaglandin E2, and both effects are reversed by 
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anti-inflammatory cytokines (Alaaeddine et al.,1999]. C/EBP factors 

act with NF-κB to induce the transcription of many acute-phase 

response genes in response to proinflammatory cytokines, and this 

effect is based on direct protein–protein interactions (Stein et al., 1993; 

Diehl et al., 1994; Kravchenko et al., 2003). We determined the activity 

of each transcription factor by using minimal reporter genes. The 

reporter activities of pCRE-Luc and pC/EBP-Luc were x.y and 4.2 fold 

enhanced in Pin1-HTB-94 cells versus control cells. Nuclear level of 

CREB was also sharply increased in Pin1-HTB-94 cells, but the 

increase intensities of C/EBP  and C/EBPwere marginal.   To 

identify the role of each transcription factor in the regulation of COX-2 

expression in Pin1-overexpressing chondrocytes, GFP- and Pin1-HTB-

94 cells were transfected with the wild-type COX-2 promoter-

luciferase chimeric construct that contained the 574-bp 5’-flanking 

region of human COX-2 gene, or with C/EBP mutant with NF-IL6 site 

(-132/-124) mutation, NF-кB mutant with NF-кB site (-223/-214) 

mutation, or CRE/AP-1 mutant with CRE/AP-1 site (-59/-53) mutation 

(Tamura et al.,2003). When we determined promoter reporter activities, 

wild-type COX-2 promoter activity in Pin1-HTB-94 cells increased up 

to ~5-fold compared to GFP-HTB-94 cells. Each mutation of STAT-3, 
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NF-кB or CRE/AP-1 significantly inhibited the Pin1-inducible reporter 

activity. Especially, the COX-2 promoter activity was most potently 

suppressed by NF-кB or C/EBP binding site mutation (87% and 97% 

inhibition, respectively). These results demonstrate that STAT-3, NF-

кB and CRE/AP-1 elements are all essentially required for Pin1-

mediated transactivation of the COX-2 gene. Hence, we first compared 

NF-кB activity between GFP- and Pin1-HTB-94 cells. The NF-кB 

minimal reporter activity and nuclear p65 levels were higher in the 

Pin1-overexpressing cells. We also found that TPCK, a specific NF-кB 

inhibitor suppressed the Pin1-mediated COX-2 expression. It has been 

reported that Pin1 selectively increases nuclear p65 sequestration 

through the inhibition of p65 binding to I-кB  (Ryo et al., 2003). 

Hence, it could be plausible that Pin1-mediated induction of 

proinflammatory cytokines partly result from p65/NF-кB activation.  

In the promoter region of the COX-2 gene, two NF-кB 

consensus sequences are located and the expressions of Pin1-inducible 

proinflammatory genes including iNOS, IL-1β  and TNF -α  gene 

are mainly dependent on NF-кB activation (Neuton et al., 1997; Tak 

and Firestein, 2001; Xiao and Ghosh., 2005).Since C/EBP and 

CRE/AP-1 elements are also involved in cytokine- or ultraviolet B-
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inducible COX-2 gene transcription (Tang et al., 2001; Thomas et al., 

2000). We determined COX-2 and PG production is considered as a 

representative inflammation index in RA, we select COX-2 gene 

expression as a model system for the further experiments.Several 

studies have shown that CoX-2 expression is transcriptionally regulated 

by C/EBP, cAMP- response element binding protein (CREB), and   

NF- κB.  

We confirmed that the AP-1 minimal reporter activity, AP-1 

binding activity and nuclear distributions of c-Jun, c-Fos and Fra1 

were significantly increased in the Pin1 overexpressed cells, though 

nuclear levels of JunB and JunD were not altered. Either c-Jun or c-

Fos are known to be cis/trans isomerized by Pin1 and it has been 

suggested that Pin1 plays a key role in AP-1-dependent gene 

transcription upon phosphorylation by the MAP kinase family (Wulf 

et al., 2001; Monje et al., 2005). c-Jun activation by platelet-derived 

growth factor or serum induced COX-2 via CRE/AP-1 binding site 

(Xie and Herschman, 1996). Several reports have shown that MAP 

kinases including ERK, JNK and p38 kinase regulates COX-2 

expression through the regulation of NF-кB, C/EBP or CREB in 

diverse pathological conditions (Lee et al., 2007; Ki et al., 2007; Han 
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et al., 2004).Both the phosphorylation and the expression of c-Fos 

and c-Jun are controlled by MAP kinase family (Chun and Surh, 

2004). It has been also shown that MAP kinases play a crucial role in 

regulating COX-2 expression (Chen et al., 2001). We found that the 

level of active phosphorylated ERK was increased in Pin1-HTB94 

cells compared to GFP-HTB94 cells. However, the phosphorylation 

intensities of JNK or p38 kinase were not affected by Pin1 

overexpression. For the further confirmation whether blockade of the 

MAP kinase cascade led to a change in the expression of COX-2, we 

determined COX-2 expression changes in Pin1-HTB94 cells 

pretreated with MAP kinase inhibitors. Incubation of Pin1-HTB-94 

cells with specific MAP kinase inhibitors (PD98059: ERK inhibitor; 

SP600125: JNK inhibitor, SB203580: p38 kinase inhibitor) for 36 h 

did not reduce the COX-2 protein levels. From these results, we can 

conclude that multiple transcription factors including NF-кB, 

C/EBP  and CREB and AP -1 are complicatedly involved in the 

Pin1-dependent COX-2 expression in chondrocytes. Here, we found 

only ERK pathway was consistently activated in Pin1-overexpressed 

chondrocytes, but inhibition of JNK and p38 kinase as well as ERK 

did not cause the reduction of COX-2 expression. These data suggest 
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that MAP kinases activities are not required for the Pin1-mediated 

COX-2 expression.  

In our experiments, nuclear levels of c-Jun, c-Fos and Fra1, but 

not those of JunB and JunD were increased in Pin1-HTB-94 cells, 

compared to GFP-HTB-94 cells. Since the enhanced AP-1 minimal 

reporter activity was almost completely suppressed by c-Jun siRNA, 

Pin1’s target transcription factor for COX-2 gene transcription may be 

c-Jun. However, c-Jun siRNA treatment did not affect the COX-2 

promoter activity in the Pin1-overexpressed HTB-94 cells, which imply 

that c-Jun/AP-1 activation in Pin1-HTB-94 cells is not essential for the 

COX-2 gene expression.  

NF-κB which forms a homo or heterodimer complex plays an 

important role in the regulation of various genes responsible for the 

stimulation of inflammation reactions. Several studies have shown that 

COX-2 and iNOS expression is transcriptionally regulated by C/EBP, 

CREB as well as NF-κB and that these transcription factors may be 

synergistically or independently involved in the expression of these 

gene expression (Draska., 1999; Kinugawa et al., 1997; Wardlaw et al., 

2002) and many phytochemicals inhibiting NF-кB has been proven to 

effective against RA in animal and human studies (Bremner et al., 



 

   55 

2002; Kauss et al., 2008). It has been shown that Pin1 bind to the 

phosphorylated Thr254-Pro of p65 and subsequently inhibits Inhibitor-

кB binding, which finally result in the increased nuclear localization 

and NF-кB activity (Ryo et al., 2003). We also revealed that either 

COX-2 gene expression or its promoter activity was dependent on NF-

кB activity. Thus, NF-кB activation in Pin1-activated chondrocytes is 

obviously associated with the overwhelmed production of 

proinflammatory mediators during RA progress.  

The present data by COX-2 promoter mutation, minimal 

reporter genes and Western blot analyses revealed that CRE and 

C/EBPs are consistently activated by Pin1 and also demonstrate that 

C/EBPs and CREB are transcriptionally active to increase COX-2 

expression in Pin1-overexpressed chondrocytes. In silico analysis 

revelaed that C/EBP variants contain Ser/Thr-Pro-rich segmants and 

speculated that consensus phosphorylation sequences for Pin1 or Polo-

like kinase was located in a highly conserved region of transactivation 

domains of C/EBP (Miller, 2006). Although there is still no report 

showing that transcriptional activity of CREB is dependent on Pin1, it 

could be plausible that the transcriptional activities of C/EBP and 

CREB are controlled by Pin1.   
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The juglone covalently inactivates a unique cysteine residue in 

the active site of Pin1 isomerase (Hennig et al., 1998). Juglone suppress 

the Pin1  and eosinophilic pulmonary inflammation, TGF-β1 and 

collagen expression, and airway remodeling (Shen  et al., 2008).Pin1 

induce the type 1 immune response and suppression of Pin1 by 

pharmacologic or genetic means greatly attenuated IFN-γ, IL-2 and 

CXCL-10 mRNA stability, accumulation and protein expression after 

cell activation (Esnault et al., 2007).  We found that intraperitoneal 

injected juglone, significantly inhibited the histological damage and 

cumulative arthritis injury scores, as compared with vehicle-treated 

CII-RA group (Table 1). Moreover, the enhanced COX-2 expression in 

the RA tissues was reversed in juglone-treated samples. 

 To finally prove whether Pin1 inhibition causes the down-

regulation of proinflammatory mediators in human chondrocytes 

from RA patient, we determined the protein levels of COX-2 protein 

levels in the primary cultured chondrocytes from RA patient. The 

basal COX-2 expression was seen in chondrocytes obtained from RA 

patient and pretreatment of the cells with juglone for 36 h blocked the 

basal expression of COX-2 in a concentration-dependent manner. 

These results imply that Pin1 could be a potential pharmacological 
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target of RA progress in clinics. 

 Taken together, Pin1 is up-regulated in the chondrocytes, 

lymphocytes and fibroblasts of RA lesions of CII-injected RA mice 

and the Pin1 overexpression results in the induction of 

proinflammatory proteins including COX-2, iNOS, TNF-α and IL-1β. 

Pin1-dependent COX-2 expression is associated with the 

simultaneous activations of NF-кB, C/EBP, CREB and AP-1. Pin1 

may serve as a new therapeutic target of RA. Although RA is one of 

the most frequent inflammatory diseases, the molecular pathogenesis 

of this disease has not been totally clarified. Data presented here 

indicate that Pin1 is induced in the lesion area of CII-mediated 

arthritis and plays a key role in the excess production of 

proinflammatory mediators including prostaglandins, NO, TNF-α and 

IL-1β. Several mechanisms may be involved in the overproduction of 

these multiple proteins in response to Pin1 overexpression. In this 

study, stable Pin1 overexpression caused both the sustained nuclear 

translocation of p65 and the increase in NF-кB-driven transcription. 
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6. Signal transduction in Pin1 pathway 

 

 

 

Wulf et al., Nature Cell Biol.  
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Part 2 

7.  Anti inflammatory effects of some phytochemicals 

7. 1. Effects Taiwaniaflavone, 4-hydroxykobusin and 2′, 8”-

biapigenin on the induction of iNOS by LPS  

The chemical structure of taiwaniaflavone, 4-

hydroxykobusin and 2’, 8”-biapigenin is presented in Fig 7A, B, and 

And C. Initially we measured the cytotoxicity of taiwaniaflavone and 

4-hydroxykobusin to RAW264.7 cells by MTT assay. Cell viability 

was not significantly altered by taiwaniaflavone and 4-

hydroxykobusin at up to 100 mM (Fig. 8, A&B). Thus, we treated 

cells with taiwaniaflavone and 4-hydroxykobusin in the concentration 

range 3-100 mM during subsequent experiments. To assess the NO-

blocking effect of taiwaniaflavone, 4-hydroxykobusin and 2’, 8”-

biapigenin, we monitored nitrite levels in culture media after 

stimulating cells with LPS (1 µg/ml) in the presence or absence of 

taiwaniaflavone, 4-hydroxykobusin and 2’, 8”-biapigenin for 48 h. 

LPS stimulation caused a significant accumulation of nitrite in 

culture media at 12 h (4.3 fold), 24 h (12.5 fold) and 48 h (19.9 fold) 

(Fig.9A) by twainiaflavone. However, pretreatment with 

taiwaniaflavone (10-100 µM) significantly attenuated LPS-induced 
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nitrite production in a concentration-dependent manner (Fig. 9A). 

LPS stimulation caused a significant increase of nitrite in culture 

media at 12 h (2.5 fold), 24 h (6.2 fold) and 48 h (7.3 fold) (Fig. 9A). 

This enhancement in NO production was significantly suppressed by 

4-hydroxykobusin in a concentration dependent manner. Especially, 

LPS-inducible NO production was ~90% blocked by 100 M  4-

hydroxykobusin (Fig. 9B). To determine the NO-blocking effect of 

2’,8’-biapigenin, we monitored nitrite levels in culture media after 

stimulating cells with LPS in the presence or absence of 2’,8’-

biapigenin for 48 h. LPS (1 µg/ml) significantly increased NO 

production from 12 h (4.3 fold) to 48 h (19.9 fold) (Fig. 9B). 2’, 8”-

biapigenin significantly inhibited LPS-induced NO production in a 

concentration-dependent manner (10-100 µM) (Fig. 9C). 

We then examined whether the inhibition of NO production 

by taiwaniaflavone is due to iNOS transcription. Western blot 

analysis using iNOS-specific antibody showed that exposure of 

RAW264.7 cells to LPS (1 µg/ml) for 12 h increased iNOS protein 

levels versus un-stimulated controls. Moreover, taiwaniaflavone (10-

100 µM) significantly reduced iNOS protein expression, and in 

particular, 30 or 100 µM of taiwaniaflavone completely inhibited 
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iNOS protein upregulation (Fig. 10A). These results show that de 

novo iNOS synthesis was suppressed by taiwaniaflavone in LPS-

activated macrophages. We then investigated whether the inhibition 

of NO formation by 4-hydroxykobusin was the result of the inhibition 

of iNOS gene expression. The inhibitory effects of different 

concentrations of 4-hydroxykobusin on iNOS protein expression 

induced by LPS (1 µg/ml) were estimated. Western blot analysis 

using iNOS-specific antibody showed that exposure of RAW264.7 

cells to LPS (1 µg/ml) for 18 h increased iNOS protein levels versus 

un-stimulated controls (Fig. 10B). Pretreatment of RAW264.7 cells 

with 4-hydroxykobusin (10 min) significantly inhibited iNOS protein 

expression at 30-100 µM (Fig. 10B). These results suggest that 4-

hydroxykobusin is effective to block iNOS induction and NO 

production in macrophages. To examine whether the blocking of NO 

production by 2’,8’-biapigenin was mediated by a process involving 

iNOS gene expression, iNOS protein and mRNA levels were 

measured by Western blotting and RT-PCR analyses, respectively. 

LPS (1 µg/ml) treatment increased the level of iNOS protein and 30 

or 100 µM 2’, 8”-biapigenin almost completely inhibited this increase 

in iNOS protein level (Fig. 10C). Glyceraldehyde 3-phosphate 



 

   62 

dehydrogenase (GAPDH) levels were comparable among the samples 

(Fig. 10C).Consistent with the Western blot result, LPS-inducible 

iNOS mRNA levels were also suppressed by 30 µM 2’, 8”-biapigenin 

in macrophages (Fig. 10D). The mRNA level of S16 ribosomal 

protein was used as an internal loading control (Fig. 10D). To test 

whether 2’, 8”-biapigenin inhibit iNOS expression in other 

macrophage cell line, we used J774.A1 cells (a murine macrophage 

cell line). The levels of iNOS was increased in J774.A1 cells 

incubated with tumor necrosis factor-α (20 ng/ml) and interferon-γ 

(20 ng/ml) and this increase was also completely reversed by 10 µM 

2’, 8”-biapigenin (Fig.10D). These results suggest that iNOS gene 

transcription is suppressed by 2’, 8”-biapigenin in activated 

macrophages 
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Fig. 7.  Chemical structure of (A) Taiwaniaflavone, 2′, 8″ Biapegenin, 

and 4- Hydroxykobusin. Structure of 4-Hydroxykobusin Isolated 

from Geranium thunbergii (Geraniaceae) 
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Fig. 8. (A)Effect of taiwaniaflavone on cell viability. RAW264.7 cells 

were incubated in the presence or absence of 1–100 µM 

taiwaniaflavone. Cell viabilities were determined by MTT assay. Data 

represent the means §SD of eight different samples. (B) Effect of 4-

Hydroxykobusin on Cell Viability RAW264.7 cells were incubated in 

the presence or absence of 1-100µM 4-hydroxykobusinfor 24 h. Cell 

viabilities were determined by MTT assay. Data represent the 

means_§SD of 8 different samples 
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Fig. 9. Effects of Natural Compunds on LPS-Induced NO 

Production. (A) The effects of taiwaniaflavone on LPS-induced NO 

production. RAW264.7 cells were incubated in a medium containing 

taiwaniaXavone (3, 10, 30, and 100 µM) for 10 min and then treated 

with LPS (1 µg/ml). The amount of nitrite in medium was monitored 

for 48 h. (B) Effect of 4-hydroxykobusin on LPS-induced NO 

production. The RAW264.7 cells were incubated in a medium 

containing 4-hydroxykobusin (3, 10, 30, 100 µM) for 10 min and 

then treated with LPS at 1 µg/ml. The amount of nitrite in the 

medium was monitored for 48 h. (C) Effects of 2-, 8--biapigenin on 

LPS-induced NO production. Raw264.7 cells were incubated in a medium 

containing 2-, 8--biapigenin (3, 10, 30 or 100µM) for 10 min and then 

treated with LPS 1µg/ml. The amount of nitrite in medium was monitored 

for 48 h. Data represents means_±_S.D. of 4 different samples 

(significant compared to LPS alone, <p-0.01). 
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Fig. 10. Effects of Natural compounds on iNOS expression. (A) 

Inhibition of LPS-inducible iNOS protein expression by 

taiwaniaflavone (3–100 µM). iNOS protein levels were monitored for 

12 h after treating cells with LPS (1µg/ml) with or without 

taiwaniaXavone treatment. Relative iNOS protein levels were 

determined by measuring immunoblot band intensities by scanning 

densitometry. (B) Inhibition of LPS-inducible iNOS protein expression 

by 4-hydroxykobusin (3–100 µM). The level of iNOS protein was 

monitored 18 h after treating cells with LPS (1µg/ml) with or without 

4-hydroxykobusin. Relative iNOS protein levels were determined by 

measuring immunoblot band intensities by scanning densitometry. 

Inhibition of LPS-inducible (C) iNOS protein expression by 2-, 8--biapigenin 

(3-100 µM). Levels of iNOS protein were monitored 12 h after treating cells 

with LPS (1m g/ml) with/without 2-,8--biapigenin treatment. Relative iNOS 

protein levels were determined by measuring immunoblot band intensities by 

scanning densitometry.(D)Inhibition of LPS-inducible iNOS mRNA 

expression by 2-, 8--biapigenin. iNOS mRNA expression levels were 

determined by RT-PCR. S16 ribosomal protein mRNA expression was 

comparable in samples. (E) Inhibition of tumor necrosis factor-a (TNF-α ) and 

interferon- g (IFN-γ )-inducible iNOS protein expression by 2-,8-biapigenin 

(3, 10m M) in J774.A1 cells. Levels of iNOS protein were monitored 12 h 

after treating cells with TNF-a (20 ng/ml) and IFN-g (20 ng/ml) with/without 

2-, 8--biapigenin treatment.  
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7. 2. Taiwaniaflavone, 4-hydroxykobusin, 2’, 8”-biapigenin 

inhibits  LPS-inducible NF-кB and AP-1 activation  

To determine wheather the process of iNOS gene 

transcription is targeted by taiwaniaflavone, reporter gene analysis 

was performed using macrophages transfected with the mammalian 

cell expression vector pGL-miNOS1588, which contained luciferase 

cDNA and a-1.59 kb miNOS promoter (Woo et al., 2005) LPS (1 

µg/ml) increased the luciferase activity by approximately 3.2 fold, 

and this enhanced activity was reversed by taiwaniaflavone at 10 or 

30 µM (Fig. 11A). NF-кB and AP-1 are activated in cells stimulated 

with LPS or by some other inflammatory insult, which is involved in 

the transcriptional activation of responsive genes (Muller et al., 1993; 

Adcock et al., 1997; Guha et al., 2001). Hence, we carried out 

reporter gene analyses using luciferase reporter plasmids containing 

the NF-кB or AP-1 binding sequences to determine whether the 

suppressive effect of taiwaniaflavone on iNOS gene induction is with 

the inhibition of NF-κB or AP-1. LPS treatment (1 µg/ml, 18 h) 

caused a 5.6-fold increase in NF-κB reporter activity (Fig. 11B), and 

pretreatment of cells with 10 or 30 µM of taiwaniaflavone 
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significantly inhibited the increase in NF-kB reporter activity by LPS 

(Fig. 11B). However, LPS-induced AP-1 reporter activity increases 

were not significantly altered by taiwaniaflavone (Fig. 11C). These 

results demonstrate that taiwaniaflavone selectively inhibits the NF-

κB activation process, and suggest that this is associated with an 

abrogation of iNOS induction by taiwaniaflavone.  

Because p65 is a major participant in NF-κB activation by 

LPS in macrophages, we also examined p65 translocation to the 

nucleus by subcellular fractionation and immunoblotting. Nuclear 

p65 protein levels increased from 30min to 1h after treating 

RAW264.7 cells with LPS (1 µg/ml) and peaked at 30 min after LPS 

treatment. 30 µM taiwaniaflavone completely blocked the LPS-

induced nuclear translocation of p65 at 1 h of treatment (Fig. 12A). 

This translocation is preceded by the phosphorylation and subsequent 

degradation of the I-κB  subunit  (Wang et al., 2002), and thus, we 

further examined phosphorylated I-κB and total I-κB levels in 

macrophages. Immunoblot analysis using specific antibodies showed 

that the phosphorylation and degradation of I-κB  by LPS (1  µg/ml, 

15 min) were also prevented by pretreating with 30 µM 

taiwaniaflavone (Fig. 12B). Phosphorylation step of I-κB is 
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dependent on the activation of IKK complex and the phosphorylation 

of IKK  is essentially required for the activation of IKK  (Zandi et 

al., 1997). Thus, we also determined phosphorylation levels of 

IKK/IKK in LPS-treated RAW264.7 cells. LPS resulted in transient 

phosphorylation of IKK/IKK (5 min) and this increase was 

completely inhibited by taiwaniaflavone pretreatment (Fig. 12B). 

These results provide evidence that the inhibition of NF-κB 

activation by taiwaniaflavone is due to the prevention of IKK 

complex activation and of I-κB  phosphorylation.  

To determine whether the process of iNOS gene transcription 

is affected by 4-hydroxykobusin, reporter gene analysis was 

performed using RAW264.7 cells transfected with the mammalian 

cell expression vector pGL-miNOS1588, which contained luciferase 

cDNA and a –1.6 kb miNOS promoter. LPS (1 µg/ml) increased the 

luciferase activity, and this increase was reversed by 4-

hydroxykobusin at 30 or 100 µM (Fig. 13A).  

One of key transcription factors involved in the transcription 

of iNOS gene is AP-1(Cho et al., 2002; Chen et al., 2003; Choi et al., 

2005). AP-1 activation was assessed by reporter gene assay using 

luciferase plasmid containing AP-1 minimal promoter. The increase 
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in AP-1 reporter activity by LPS was 51% inhibited by 100 µM 4-

hydroxykobusin (Fig. 13B), but 30 µM 4-hydroxykobusin did not 

suppress AP-1 reporter activity enhancement by LPS (1 µg/ml) (Fig. 

13B). These findings suggest that blocking of AP-1 activation may be 

partly associated with the mechanism of iNOS expressional inhibition 

by 4-hydroxykobusin.  

Inhibition of iNOS expression by 4-hydroxykobusin may 

result from the suppression of NF-κB activation. First, we performed 

reporter gene assay using a luciferase plasmid containing NF-κB 

minimal promoter. LPS treatment (1 µg/ml, 18 h) caused a 3-fold 

increase in NF-κB reporter activity (Fig. 13C), and pretreatment of 

cells with 100 µM of 4-hydroxykobusin completely inhibited the 

increase in NF-κB reporter activity by LPS (Fig. 13C).  

We measured nuclear p65 levels by subcellular fractionation 

and immunoblotting. Nuclear p65 protein levels increased from 15 

min to 30 min after treating RAW264.7 cells with LPS (1 µg/ml) and 

peaked at 30 min after LPS treatment. Pretreatment of cells with 100 

µM 4-hydroxykobusin for 10 min suppressed the LPS-induced 

nuclear translocation of p65 (Fig. 14A). We further examined 

phosphorylated I-κB levels in macrophages. Immunoblot analysis 
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using specific antibodies revealed that the I-κB phosphorylation by 

LPS (1 µg/ml) were also reversed by 100 µM 4-hydroxykobusin (Fig. 

14B).  These results indicate that the inhibition of NF-κB activation 

by 4-hydroxykobusin is due to the prevention of I-κB 

phosphorylation and the subsequent nuclear translocation of p65.  

We additionally assessed the effect of 4-hydroxykobusin on 

the LPS-inducible COX-2 expression. COX-2 expression was not 

altered by up to 100 µM 4-hydroxykobusin (Fig. 14D). The 

expression of both iNOS and COX-2 genes is dependent on NF-κB 

activation (Schmedtje et al., 1997; Newton et al., 1997). However, 

other cis-acting elements such as C/EBP  binding site and cAMP 

response element (CRE) are also involved in the transcriptional 

regulation of the COX-2 gene (Billack et al., 2002; Gorgoni et al., 

2001). Although NF-κB binding in the promoter region of COX-2 

gene can be blocked by the lignan, other cis-acting elements may be 

still active. Hence, the minimal effect of 4-hydroxykobusin on COX-

2 expression may result from the discrepancy of active transcription 

factors between iNOS and COX-2 genes. 

 To confirm whether the process of iNOS gene 

transcription is targeted by 2’, 8”-biapigenin, reporter gene assays 
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were performed using macrophages transfected with a mammalian 

cell expression vector pGL-miNOS1588, which contained the 

luciferase structural gene and a -1.59 kb miNOS promoter (Woo et al., 

2005) 1 µg/ml LPS caused a 3.8-fold increase in luciferase activity 

and the enhanced reporter activity was reversed by 10 or 30 µM 2’, 

8”-biapigenin (Fig. 15A).   

We performed reporter gene analysis using a luciferase 

plasmid containing the NF-κB binding sequence to determine 

whether the transcriptional inhibition of the iNOS gene by 2’, 8”-

biapigenin is related to NF-κB activation. LPS treatment (18 h) 

caused a 4.2-fold increase in NF-κB reporter activity (Fig. 15B), and 

the pretreatment of cells with 10 or 30 µM of 2’, 8”-biapigenin 

significantly suppressed LPS-inducible NF-κB reporter activity (Fig. 

15B).  

Because p65 is a major component of NF-κB activation by 

LPS in macrophages, we also examined p65 translocation into the 

nucleus by subcellular fractionation and immunoblot analysis. 

Nuclear p65 protein levels were increased from 30 min to 1 h after 

treating Raw264.7 cells with LPS (1 µg/ml) and peaked 30 min after 

LPS treatment. However, pretreatment with 2’, 8”-biapigenin (30 
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µM) almost completely blocked the LPS-induced nuclear 

translocation of p65 (Fig. 15C). These data show that the inhibition 

of iNOS gene expression by 2’, 8”-biapigenin was due to the 

transcriptional inhibition of the iNOS gene through NF-κB pathway. 
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Fig. 11. Effect of taiwaniaflavone on LPS-induced NF-кB activation. 

(A) Inhibitory effect of taiwaniaflavone on iNOS gene transactivation. 

Induction of luciferase activity by LPS in RAW264.7 cells transiently 

transfected with pGL-miNOS1588 construct, which contained a 1588 

bp iNOS promoter sequence, was confirmed using a luminometer. A 

dual luciferase reporter gene assay was performed on lysed cells co-

transfected with pGL-miNOS1588 (firefly luciferase) and pRL-SV 

(Renilla luciferase)(in the ratio of 50:1) after exposure to LPS (1µg/ml) 

and taiwaniaflavone (10 and 30 µM) for 18 h. Reporter gene activations 

were expressed as changes relative to Renilla luciferase activity. The 

results shown represent the means§ SD of four separate experiments 

(significant versus the control, ¤¤p < 0.01; signiWcant versus the LPS-

treated group, ##p < 0.01). (B) NF-кB reporter gene analysis. Cells 

were transfected with the pNF-кB-Luc plasmid, and reporter gene 

analysis was performed as described in (A). Data represent the means 

§SD of 4 separate experiments (significant versus the control, ¤¤p < 

0.01; significant versus the LPS-treated group, #p < 0.05, ##p < 0.01). 

(C) AP-1 reporter gene analysis. Cells were transfected with pAP-1-

Luc plasmid, and reporter gene analysis was performed as described in 

(A). Results represent the means§ SD of four separate experiments 

(significant versus the control, ¤¤p < 0.01). 
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Fig. 12. (A) Effects of taiwaniaflavone on p65 nuclear translocation. 

RAW264.7 cells were treated with 1 µg/ml LPS for 30min or for 60 

min with/without 30 µM taiwaniaflavone, and the protein levels of 

nuclear p65 was determined immunochemically using specific antibody. 

(B) Effects of taiwaniaflavone on the phosphorylation/degradation of I-

кBα and on the phosphorylation of IKKα/ β. To determine I-кBα levels, 

cell lysates were obtained 15 min after exposure of RAW264.7 cells to 

LPS (1 µg/ml). GAPDH levels were measured with duplicate blot using 

same samples. The levels of phosphorylated I-кBα and phosphorylated 

IKK α/IKK β were determined using specific antibodies. The levels of 

actin and IKKα were measured as internal loading controls. 
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Fig. 13. Effects of 4-Hydroxykobusin on the Transcriptional 

Activities of iNOS Promoter and AP-1 Minimal Promoter. (A) 

Inhibitory effect of 4-hydroxykobusin on the transactivation of iNOS 

gene. Induction of luciferase activity by LPS in the RAW264.7 cells 

transiently transfected with pGL-miNOS1588 construct, which 

contained -1588 bp iNOS promoter sequences, was confirmed using a 

luminometer. A dual luciferase reporter gene assay was performed on 

the lysed cells co-transfected with pGL-miNOS1588 (firefly 

luciferase) and pRL-SV (Renilla luciferase) (in a ratio of 100:1) after 

exposure to LPS (1µg/ml) and 4-hydroxykobusin (30 and 100 µM) 

for 18 h. The cells were preincubated with 4-hydroxykobusin for 10 

min before LPS exposure. The activation of the reporter gene was 

calculated as a relative change in the Renilla luciferase activity. Data 

represents the means ± SD of 3 separate samples (significant versus 

the control, **p<0.01; significant versus the LPS-treated group, 

** p<0.01). (B) AP-1 reporter gene analysis. Cells were transfected 

with the pAP-1-Luc plasmid, and reporter gene analysis was 

performed as described in panel (A) the data shown is representative 

of the means ± SD of 5 separate samples (significant versus the 

control, **p<0.01; significant versus the LPS-treated group, #p<0.05).  
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(C) Cells were transfected with the pNF-kB-Luc plasmid, and 

reporter gene analysis was performed as described in the legend of 

(A). Data represents the means_±S.D. of 4 separate samples 

(significant versus the control, **p<0.01; significant versus the LPS-

treated group, ** p<0.01).  
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Fig. 14.Effect of 4-Hydroxykobusin on the LPS-Inducible NF-kB 

Activation.(A) Effect of 4-hydroxykobusin on the LPS-induced 

nuclear translocation of p65. RAW264.7 cells were treated with 1     

µg/ml of LPS for 15 min or 30 min in the presence or absence of     

100 µM 4-hydroxykobusin, and nuclear p65 protein was 

immunochemically detected using antip65 antibody. (B) Effect of 4-

hydroxykobusin on LPS-inducible I-kBa phosphorylation. The 

phosphorylation of I-kBa was immunochemically assessed 5 min 

after 1 µg/ml LPS exposure to RAW264.7 cells. The cells were 

preincubated with 100 µM 4- hydroxykobusin for 10 min. (C) Effect 

of 4-hydroxykobusin (3-100 µM) on COX-2 expression. COX-2 

protein levels were monitored 18 h after treating cells with LPS       

(1 µg/ml). 
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Fig. 15. Effects of 2’, 8”-biapigenin on LPS-inducible NF-кB 

activation. (A) Inhibitory effect of 2’, 8”-biapigenin on iNOS gene 

transactivation. Induction of luciferase activity by LPS in Raw264.7 

cells transiently transfected with a pGL-miNOS1588 construct 

containing -1588 bp iNOS promoter sequences, were confirmed 

using a luminometer. A dual luciferase reporter gene assay was 

performed on lysed cells co-transfected with pGL-miNOS1588 

(firefly luciferase) and pRL-SV (Renilla luciferase) (in a ratio of 

50:1) after exposure to LPS (1 µg/ml) and 2’, 8”-biapigenin (10 and 

30 µM) for 18 h. Reporter gene activation is expressed versus Renilla 

luciferase activity. Data represents the means ± SD of 4 separate 

experiments (significant versus the control, **p<0.01; significant 

versus the LPS-treated group, ##p<0.01). (B) NF-кB reporter gene 

analysis. Cells were transfected with pNF-кB-Luc plasmid, and 

reporter gene analysis was performed as described in panel (A). Data 

represent the means ± SD of 4 separate experiments (significant 

versus the control, **p<0.01; significant versus the LPS-treated 

group, #p<0.05, ##p<0.01). (C) Effect of 2’, 8”-biapigenin on p65 

nuclear translocation. Raw264.7 cells were treated with 1 µg/ml LPS 

for 30 min or 1h with or without 30 µM 2’, 8”-biapigenin, and 
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nuclear p65 protein was immunochemically detected using anti-p65 

antibody.  
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7. 3. Inhibition of COX-2 induction and PGE2 production by 

Taiwaniaflavone, 4-hydroxykobusin and 2’, 8”-biapigenin  

There are two NF-кB consensus sequences in the promoter 

region of the COX-2 gene, and COX-2 gene expression is dependent 

on NF-кB activation (Schmedtje et al., 1997; Newton et al., 1997). 

Thus, we also investigated whether taiwaniaflavone inhibits COX-2 

induction and PGE2 synthesis in LPS-stimulated macrophages (Fig. 

16A). Western blot analysis showed that exposure of cells to LPS (1 

µg/ml) for 24 h increased COX-2 protein levels (Fig. 16A). Moreover, 

taiwaniaflavone at 30 or 100 µM significantly reduced COX-2 

expression level (Fig. 16A). Since PGE2 is one of the stable 

autacoids produced by COX-2 in activated macrophages (Chen et al., 

2003), we examined PGE2 levels in culture medium. When cells 

were exposed to 1 µg/ml LPS for 24 h, PGE2 levels increased. And, 

the enhanced PGE2 production was significantly diminished in cells 

pretreated with 30 or 100 µM taiwaniaflavone prior to LPS treatment 

(by 54 and 82 %, respectively) (Fig. 16B).  

We investigated whether 2’, 8”-biapigenin affects LPS-

mediated PGE2 synthesis in macrophages (Fig. 17A). When cells 
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were exposed to 1 µg/ml LPS for 24 h, PGE2 levels showed about 4-

fold increase compared with the controls. Moreover, this enhanced 

PGE2 production was significantly diminished in the cells pretreated 

with 100 µM 2′, 8″-biapigenin (68 % inhibition).  

To determine whether the decreased PGE2 production by 2’, 

8”-biapigenin could be related with the expression of COX-2 protein, 

we performed Western blot analysis using COX-2 specific antibody. 

The stimulation of Raw264.7 cells with LPS for 24 h also induced the 

expression of COX-2 protein (Fig. 17B), and 100 µM 2’, 8”-

biapigenin significantly reduced COX-2 protein levels. However, low 

concentrations (3, 10 or 30 µM) of 2’, 8”-biapigenin did not affect 

COX-2 expression (Fig.174B).  
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Fig. 16. Effect of taiwaniaflavone on COX-2 expression. (A) 

Inhibition of LPS-inducible COX-2 protein expression by 

taiwaniaflavone (3-100 µM). COX-2 protein levels were monitored 

24 h after treating cells with LPS (1 µg/ml). Relative COX-2 protein 

levels were determined by measuring immunoblot band intensities by 

scanning densitometry. Data represent means±SD of three separate 

experiments (significant compared to LPS alone, **P<0.01). (B) 

Effect of taiwaniaflavone on LPS-induced PGE2 production in 

macrophages. RAW264.7 cells were incubated with 1 µg/ml LPS for 

24 h and amounts of PGE2 in medium was determined using PGE2-

specific ELISA assays. The results shown represent the means±SD of 

4 different samples.   
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Fig. 17. Effects of 2’, 8”-biapigenin on COX-2 expression. (A) 

Effects of 2’, 8”-biapigenin on LPS-induced PGE2 production in 

macrophages. Raw264.7 cells were incubated with 1 µg/ml LPS for 

24 h and the amount of PGE2 in medium was determined by PGE2-

specific ELISA. Data represent the means ± SD of 4 different 

samples (significant compared to control group, **p<0.01; 

significant compared to LPS alone, ##p<0.01). (B) Inhibition of LPS-

inducible COX-2 protein expression by 2’, 8”-biapigenin (3 – 100 

µM). COX-2 protein levels were monitored 24 h after treating cells 

with LPS (1 µg/ml). Relative COX-2 protein levels were determined 

by measuring immunoblot band intensities by scanning densitometry. 

Data represent the means ± SD of three separate experiments 

(significant compared to LPS alone, **p<0.01). 
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8. Discussion of Phytochemiclas’ therapeutics. 

The productions of proinflammatory cytokines, 

prostaglandins, and NO by activated macrophages play critical roles 

in severe inflammatory diseases such as sepsis and arthritis (Szabo et 

al., 1998; Martel-Pelletier et al., 2003). Hence, the inhibition of 

proinflammatory cytokines and iNOS/COX-2 gene expression in 

inflammatory cells, such as macrophages, may offer a new 

therapeutic strategy against inflammation. As a result of our on-going 

screening of anti-inflammatory agents from plants, we became 

interested in the effect of taiwaniaflavone and 2’, 8”-biapigenin on 

NF-кB- mediated iNOS/ COX-2 expression induced by LPS. In the 

same way lignan, 4-hydroxykobusin from Geranium thunbergii 

inhibits iNOS expression in macrophages, suggesting that 4-

hydroxykobusin is a naturally-occurring iNOS inhibitor. We showed 

that IC50 value of 4-hydroxykobusin on the nitrite production is ~30 

M. Park et al. recently reported that a lignan, lappaol F isolated 

from Arctium lappa more potently inhibited NO production (IC50 = 

9.5 M) in comparison to 4-hydroxykobusin (Park et al., 2007). The 

potency discrepancy between lappaol F and 4-hydroxykobusin would 

be due to the structure difference. Because lappaol F is classified as a 
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di-lignan, lappaol F may metabolized to two different compounds 

containing active lignan moiety.  

In the present study, we found that taiwaniaflavone inhibits 

the activities of inducible forms of COX and NOS in macrophages, 

and that taiwaniaflavone and2’, 8”-biapigenin probably act at the 

transcriptional level. A reporter gene analysis using iNOS promoter, 

showed that the LPS-inducible transactivation of the iNOS gene was 

significantly suppressed by taiwaniaflavone, and 2’, 8”-biapigenin 

thus indicating these natural compounds target the transcription step. 

The promoter regions of the iNOS and COX-2 genes contain NF-кB 

binding sites (Schmedtje et al., 1997; Xie et al., 1993). Moreover, 

NF-кB is known to be an essential transcription regulator of these 

two genes (Diaz-Guerra et al., 1996; Lee et al., 2003). Hence, by 

using a reporter gene assay using NF-кB minimal promoter and the 

immunochemical detection of nuclear p65, we found that 

taiwaniaflavone2’, and 8”-biapigenin potently suppresses NF-кB 

activity. We further revealed that 4-hydroxykobusin mainly acted on 

the transcriptional process of iNOS gene. A reporter gene analysis 

using iNOS promoter, showed that the LPS-inducible transactivation 

of the iNOS gene was significantly suppressed by 4-hydroxykobusin, 
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thus indicating the lignan targets the transcription of iNOS gene.  

The NF-кB heterodimer of p65 and p50, is located in the 

cytoplasm as an inactive complex bound to I-κB, which is 

phosphorylated and subsequently degraded, and then dissociates to 

produce activated NF-кB.  In the present study, we found that the 

phosphorylation and degradation of I-кB, which are required for p65 

activation, were abolished in cells treated with taiwaniaflavone. The 

phosphorylation of I-кB  bound to NF -кB is considered to be 

mediated by IKK at two conserved serines within the N-terminal 

domain of I-кB Karin et al., 2000). And, it has been reported that 

some natural flavonoids suppress the activity of I-к/B kinase (Pan et 

al., 2000; Yang et al., 2001), for example a green tea polyphenol, 

epigallocatechin-3-gallate, was found to directly block I-кB kinase 

activity in an intestinal epithelial cell line (Yang et al., 2001). In this 

study, we found that phosphorylation of IKK/IKK  was also 

blocked by taiwaniaflavone. Since IKK complex can be activated by 

a variety of upstream kinases such as NF-кB-inducing kinase, protein 

kinase C and the tyrosine kinase family (Hayden et al., 2004; Huang 

et al., 2003; Trushin et al., 2003), taiwaniaflavone may also act on the 

upstream kinases of IKK complex and the exact molecular target(s) 
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affected by taiwaniaflavone remains to be identified. 

 Recent in vitro and in vivo studies have suggested that the 

inhibition of COX-2 and iNOS enzymes has an anti-carcinogenic 

effect (Watanabe et al., 2000; Lynch et al., 2001). Chinese herbs 

including Sellaginella genus plants have been used as alternative 

anti-cancer agents in East Asia (Lee et al., 1999; Mori et al., 1989). 

Hence, the present data provide a possible mechanistic basis for the 

anti-tumor or chemopreventive effect of Sellaginella extracts. The 

productions of excessive proinflammatory mediators, prostaglandins, 

and NO, through NF-кB pathway play an important role in severe 

inflammatory disease (Southan et al., 1989), and thus the inhibition of 

proinflammatory mediators in inflammatory cells could beneficially 

suppress excessive inflammatory reaction. In this study, we also 

found that 2’, 8”-biapigenin inhibited the LPS-induced production of 

nitric oxide and PGE2 in macrophages by blocking NF-кB activation. 

Thus, the inhibition of this transcription factor by 2’, 8”-biapigenin or 

Sellaginella extracts offers a possible therapeutic approach to the 

treatment of severe inflammatory diseases. 

 The iNOS gene promoter contains several homologous 

consensus sequences as binding sites for transcription factors 
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including NF-кB and AP-1 (Cieslik et al., 2002; Lee et al., 2003). 

Since NF- B and AP -1 are believed to be essentially required for 

iNOS gene transcription, (Cho et al., 2002; Xie et al., 1993; Diaz-

Guerra et al., 1996), we performed reporter gene analyses using NF-

кB and AP-1 minimal promoters. Reporter gene assays showed that 

4-hydroxykobusin inhibited activation process of both NF-кB and 

AP-1. We further found that 4-hydroxykobusin completely blocked 

the nuclear translocation of p65 and the lignan was effective at 

blocking the phosphorylation of I-κB  protein.  These results 

combined with the data from NF-кB reporter gene assays suggested 

that the phosphorylation of I-кB  is a pharmacological targe t of 4-

hydroxykobusin. Since I-кB  is serially phosphorylated by diverse 

upstream kinases such as I-кB kinase, NF-кB-inducing kinase, 

protein kinase C and the tyrosine kinase family, (Hayden et al.,2004; 

Huang et al., 2003; Trushin et al., 2003) the possible molecular 

target(s) of the lignan for the blocking of NF-кB seem to be one of 

the upstream kinases. It has been reported that a 

dibenzylbutyrolactone lignan, arctigenin concomitantly inhibits the 

activation of NF-кB and AP-1 in LPS-treated macrophages (Cho et 

al., 2002, 2004). In this study, we also showed that 4-hydroxykobusin 
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acted on the activation of both NF-кB and AP-1. Cho et al. revealed 

that MAP kinases and their upstream kinases MKK1 were inhibited 

by arctigenin and suggested that AP-1 inhibition by arctigenin 

resulted from its kinase blocking activity Cho et al., 2004). Therefore, 

the inhibitory effect of 4-hydroxykobusin on AP-1 activity also may 

be related with its actions on the upstream kinase(s) regulating MAP 

kinases. The exact molecular target(s) affected by 4-hydroxykobusin 

remains to be identified. 

We recently showed that 7, 7’-dihydroxybursehernin from 

Geranium thunbergii inhibited LPS-inducible iNOS expression 

(Pokharel et al., 2007). The inhibitory potency of 4-hydroxykobusin 

against iNOS induction was very similar to that of 7, 7’-

dihydroxybursehernin (Complete inhibition was seen in 100 M of 

both the lignans). However, the mechanism of iNOS inhibitory action 

by 7, 7’-dihydroxybursehernin is distinct from that by 4-

hydroxykobusin. The pharmacological target of 7, 7’-

dihydroxybursehernin is physical binding of NF-кB to DNA. Thus, 

both the lignans in Geranium thunbergii have identical functions to 

control transcription of iNOS gene, but their mechanistic bases would 

be different. It was also found that iNOS inhibitory activity of 
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kobusin was almost comparable to that of 4-hydroxykobusin (data 

not shown). Hence, the existence of hydroxyl group in 4-

hydroxykobusin may not be critical to its NO blocking activity.  

In this study, we found that tawaniaflavone was several times 

more potent to inhibit iNOS expression than COX2 expression. The 

expression of both iNOS and COX-2 genes is dependent on NF-кB 

activation (Schmedtje et al., 1997; Newton et al., 1997). However, 

other cis-acting elements such as C/EBP  binding site, CRE and 

NF-IL6 site are also involved in the transcriptional regulation of the 

COX-2 gene (Billack et al., 2002; Gorgoni et al., 2001). Although 

NF- B -binding in the promoter region of COX-2 gene can be 

blocked by taiwaniaflavone, other cis-acting elements (e.g. CRE) 

may be still active. 

NF-кB activation is controlled by cellular redox state (Gius 

et al., 1999; Kratsovnik et al., 2005). A variety of antioxidants such 

as ascorbic acid and tocopherol inhibit NF -кB (Tan et al., 2005) 

and oxygen-derived radicals are directly coupled with the NF-кB 

activation process (Brar et al., 2002). 2’, 8”-biapigenin, a structurally 

similar bi-flavonoid, has an anti-oxidant function (Couladis et al., 

2002), and it has also been reported that the bi-flavonoid 



 

   103 

amentoflavone isolated from S. tamariscina directly scavenges 

superoxide anion (Huguet et al., 1990). Hence, the efficient blocking 

of NF-кB activation by 2’, 8”-biapigenin might be associated with its 

potential antioxidant effects. 

In summary, the present study, suggests that taiwaniaflavone 

isolated from S. tamariscina inhibits the expressions and activities of 

inducible isoforms of COX and NOS in macrophages. The potent 

COX-2 and iNOS inhibitory effects of taiwaniaflavone are associated 

with NF-кB inactivation via the blockade of I-кB  phosphorylation. 

Since NF- B is one of the transcription factors that regulate the 

transcriptions of many genes associated with inflammation, inhibition 

of this transcription factor with taiwaniaflavone offers a possible 

approach to the treatment of severe inflammatory diseases.In the 

same way, 2’, 8”-biapigenin inhibits the expression and activity of 

the inducible isoforms of COX and NOS in macrophages. This potent 

inhibitory effect of 2’, 8”-biapigenin may be associated with the 

putative anti-inflammatory and anti-carcinogenic effects of 

Sellaginella extracts. The present study showed that 4-

hydroxykobusin isolated from G. thunbergii inhibits the expressions 

and activities of inducible NOS in macrophages. The iNOS inhibitory 
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effects of 4-hydroxykobusin are associated with both NF-кB 

inactivation via the blockade of I-кB  phosphorylation and AP -1 

inactivation. Since NF- B and AP -1 are critical transcription factors 

that regulate the transcriptions of many genes associated with 

inflammation, inhibition of these transcription factors with 4-

hydroxykobusin offers a possible approach to the treatment of severe 

inflammatory diseases 
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9. Conclusion. 

1. We can conclude that, Pin1 is up-regulated in the chondrocytes, 

lymphocytes and fibroblasts of RA lesions of CII-injected RA 

mice and the Pin1 overexpression results in the induction of 

proinflammatory proteins including COX-2, iNOS, TNF-α and 

IL-1β. Pin1-dependent COX-2 expression is associated with the 

simultaneous activations of NF-κB, C/EBP and CREB.  

2. Although RA is one of the most frequent inflammatory diseases, 

the molecular pathogenesis of this disease has not been totally 

clarified. Data presented here indicate that Pin1 is induced in the 

lesion area of CII-mediated arthritis and plays a key role in the 

excess production of proinflammatory mediators including 

Prostaglandins, NO, TNF-α and IL-1β. Several mechanisms may 

be involved in the overproduction of these multiple proteins in 

response to Pin1 overexpression. Pin1 may serve as a new 

therapeutic target of RA. 

3.  Juglone (a well known Pin1 inhibitor) treatments efficiently 

suppressed RA progress in CII-induced RA model and also 

inhibited the basal COX-2 expression in primary chondrocytes 

isolated from human RA patient. These results imply that Pin1 
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could be a potential pharmacological target of RA progress in 

clinics. 

4. Taiwaniaflavone isolated from S. tamariscina inhibits the 

expressions and activities of inducible isoforms of COX and NOS 

in macrophages. The potent COX-2 and iNOS inhibitory effects 

of taiwaniaflavone are associated with NF-κB inactivation via the 

blockade of I-κBα phosphorylation. Since NF-κB is one of the 

transcription factors that regulate the transcriptions of many genes 

associated with inflammation, inhibition of this transcription 

factor with taiwaniaflavone offers a possible approach to the 

treatment of severe inflammatory diseases.  

5. 2’, 8”-biapigenin inhibits the expression and activity of the 

inducible isoforms of COX and NOS in macrophages. This potent 

inhibitory effect of 2’, 8”-biapigenin may be associated with the 

putative anti-inflammatory and anti-carcinogenic effects of 

Sellaginella extracts. 

6. 4-hydroxykobusin isolated from G. thunbergii inhibits the 

expressions and activities of inducible NOS in macrophages. The 

iNOS inhibitory effects of 4-hydroxykobusin are associated with 

both NF-κB inactivation via the blockade of I-κBα 
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phosphorylation and AP-1 inactivation. Since NF-κB and AP-1 

are critical transcription factors that regulate the transcriptions of 

many genes associated with inflammation, inhibition of these 

transcription factors with 4-hydroxykobusin offers a possible 

approach to the treatment of severe inflammatory diseases. 
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국문국문국문국문 초록초록초록초록 

염증매개물의 유도과정에서 Pin1의 역할 및 

천연물의 항염증효과연구 

                             유바 라쥐 포카렐 

지도 교수: 강 건 욱  

조선대학교 대학원 약학과     

류마티스 관절염은 관절의 만성염증에 이어 연골과 뼈

의 파괴가 일어나는 자가면역질환이다. Prostaglandins과 

proinflammatory cytokines과 같은 면역매개물질이 류마티스 

관절염에 관여한다고 보여지고 있다. Peptidyl prolyl 

isomerase인 Pin1은 암이나 신경퇴행성질환과 같은 몇몇 질환

에서 중요한 생리학적 작용을 한다. 우리는 Type II collagen-

induced RA mice에서 Pin1과 cyclooxygenase-2 (COX-2)가 높

게 발현되어 있는 것을 발견했다. GFP-overexpressed cells에 

비해 Pin1-overexpressed HTB-94 cells and 초기 배양된 인간

연골조직에서 proinflammatory proteins (COX-2, inducible 
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nitric oxide synthase, tumor necrosis factor-α and 

interleukin-1β)이 매우 증가되어 있었다. Site-specific 

mutation analyses에 의해 Pin1에 의한 COX-2 유전자의 전사

적 활성이 nuclear factor-кB (NF-кB), cyclic AMP response 

element binding protein (CREB) 그리고 CCAAT-enhancer 

binding protein 에 의해서도 조절된다는 것을 알 수 있었다. 

Gel shift, reporter gene 과 Western blot analyses를 이용하여 

Pin1-overexpressed chondrocyte cellC/EBP line 에서 NF-кB, 

CREB이 동등하게 활성화 된다는 것을 확인하였다. Pin1의 화학

적 억제제인 juglone을 투여한 RA mice의 발목조직에서 RA 

progress 그리고 COX-2 발현이 매우 감소되었다. 게다가 류마

티스 환자의 초기 배양된 인간연골조직에서 COX-2의 발현이 

juglone의 농도에 의존적으로 감소 되었다. 이러한 결과들로 

류마티스 관절염의 진행 중 Pin1의 합성이 NF-кB, CREB, 

C/EBP 그리고 AP-1에 의해 proinflammatory protein에 자극이 
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되고, Pin1이 류마티스 관절염의 치료의 중요한 표적이 된다고 

생각하게 되었다.  

Inducible nitric oxide synthase (iNOS) 그리고  

cyclooxygenase-2 (COX-2)의 유도에 의한 비정상적 NO 와 

prostaglandin 의 생산이 만성염증의 발생에 관여한다. 

Selaginella tamariscina 는 동양의학에서 염증의 치료효과를 

위해 사용 되어져 왔다. 우리가 S. tamariscina 에서 추출해낸 

Taiwaniaflavone 과 2', 8”-biapigenin 이 lipopolysaccharide 

(LPS)로 자극시킨 RAW264.7 대식세포에서 iNOS와 COX-2의 

합성에 영향이 있는지 실험 하였다. 우리는 Taiwaniaflavone이 

p65의 핵으로의 이동을 억제하여 nuclear factor-кB 를 불활성

화 시켜 iNOS와 COX-2 유전자의 전사활성을 억제한다는 것을 

발견하였다. NF-кB의 활성이 I-кB의 파괴와 그에 따른 인산화

에 의해서 일어난다는 것은 잘 알려진 사실이다. 그리고 이번 

연구에서 Taiwaniaflavone이 I-кB의 파괴와 인산화를 억제한다
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는 것을 실험하였다. 우리의 실험의 결과는 Taiwaniaflavone 와 

2', 8”-biapigenin이 염증성질환 진행의 예방에 관여한다는 것

을 뜻한다.  

우리는 최근에 Geranium thunbergii 에서 새로운 리그

난 물질인 4-hydroxykobusin 을 분리했다.(Liu et al., 2006). 여

기서 우리는 이것이 RAW264.7 세포에서 inducible nitric oxide 

synthase (iNOS) 유전자의 발현에 영향을 준다는 것을 연구하

였다. 4-hydroxykobusin은 농도의존적으로 LPS에 의한 

inducible nitric oxide synthase (iNOS)의 발현을 차단하여 NO

의 생성을 억제하였다. iNOS억제의 기전을 명확하게 하기 위

해 –1.59 kb flanking region 을 이용한 luciferase reporter의 

활성을 통하여 4-hydroxykobusin의 iNOS유전자의 전사활성을 

실험 하였다. 이 Lignan은 reporter gene의 활성을 억제 하였으

며 LPS에 의한 NF-кB 와 AP-1 reporter 활성의 증가 또한 현저

하게 차단되었다. 이러한 발견은 LPS에 의한 NO 합성의 억제
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가 NF-кB 와 AP-1의 활성의 억제에 의한 것임을 의미한다. 
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