지하채굴공동 안정성 해석을 위한
암반등급 분류법의 비교 연구

조선대학교 대학원
자원공학과
양훈재
지하체굴공동 안정성 해석을 위한
암반등급 분류법의 비교 연구

- A Study on the Comparison of Rock Mass Classification Method

 for the Stability Analysis of Underground Mining Cavity -

2007년 2월 10일

조선대학교 대학원
자원공학과
양훈재
지하채굴공동 안정성 해석을 위한
암반동급 분류법의 비교 연구

지도교수 강 추 원

이 논문을 공학석사학위 논문으로 제출함.

2006年 10月 日

조선대학교 대학원
자원공학과
양 훈 재
양훈재의 석사학위 논문을 인준함.

위원장 조선대학교 교수 고 진 석

위원 조선대학교 교수 박천 영

위원 조선대학교 교수 강춘원

2006년 11월 11일

조선대학교 대학원
목 차

List of Tables .. i
List of Figures .. ii
Abstract .. iv

1. 서론 .. 1
2. 문헌고찰 .. 3
 2.1 암반분류 .. 3
 2.1.1 RMR 분류법 .. 4
 2.1.2 Q-System ... 8
 2.1.3 RMi .. 9
 2.2 파괴기준 ... 16
 2.2.1 Hoek-Brown의 파괴기준 ... 16
 2.2.2 Mohr-Coulomb의 파괴기준 ... 21
 2.2.3 Hoek-Brown의 파괴기준으로부터 Mohr-Coulomb 강도정수 예측 22
 2.2.4 암반분류에 의한 변형계수 예측 .. 25
3. 연구지역의 지반특성 및 현장조사 .. 28
 3.1 연구지역의 지질개요 ... 28
 3.1.1 연구지역의 지형 ... 28
 3.1.2 지질 및 광상 ... 28
 3.2 현장조사 .. 30
 3.2.1 불연속면 조사 ... 30
 3.2.2 암반평가 ... 32
4. 수치해석 ... 34
 4.1 해석 프로그램 개요 .. 34
List of Tables

Table 2.1 RMR Classification parameters and their ratings .. 6
Table 2.2 Guidelines for classification of discontinuity conditions 7
Table 2.3 Effect of discontinuity orientation in tunnelling .. 7
Table 2.4 Ratings adjustment for discontinuity orientations 7
Table 2.5 Rock mass classes determined from total ratings 8
Table 2.6 Meaning of rock mass classes ... 8
Table 2.7 The ratings of n_j ... 12
Table 2.8 Classification of the RMi ... 12
Table 2.9 The values and ratings of the input parameters to RMi 13
Table 2.10 Rock coefficient value ... 19
Table 3.1 Distribution of discontinuities in 410 mine of study area 30
Table 3.2 RMR value of rock mass in study area ... 32
Table 3.3 Classification of rock mass by Q-system in study area 33
Table 3.4 RMI value of rock mass in study area .. 33
Table 4.1 Input data of Mohr–Coulomb model .. 38
Table 4.2 Input data of Hoek–Brown Model ... 38
Table 4.3 The Y-displacement(mm) of H–B model and M–C model 40
Table 4.4 The X-displacement(mm) of H–B model and M–C model 40
Table 4.5 Input data of Hoek–Brown Model ... 48
Table 4.6 Y-displacement(mm) of RMR and RMI ... 50
Table 4.7 X-displacement(mm) of RMR and RMI ... 50
Table 4.8 Maximum principal stress of RMR and RMI .. 54
Table 4.9 Minimum principal stress of RMR and RMI .. 56
List of Figures

Figure 2.1 The input parameters to RMi (from Palmstrom, 1996) .. 10
Figure 2.2 The variation of with the jointing parameter (JP) .. 14
Figure 3.1 Mine map of study area ... 29
Figure 3.2 Pole–contour diagram of A site ... 31
Figure 3.3 Pole–contour diagram of B site ... 31
Figure 4.1 M–C failure criterion and H–B failure criterion .. 36
Figure 4.2 Boundary conditions and model analysis ... 37
Figure 4.3 Measuring point ... 38
Figure 4.4 Y–displacement comparison of H–B model and M–C model 41
Figure 4.5 X–displacement comparison of H–B model and M–C model 42
Figure 4.6 Plasticity indicator comparison of H–B model and M–C model (K=0.75) 44
Figure 4.7 Plasticity indicator comparison of H–B model and M–C model (K=1.00) 45
Figure 4.8 Plasticity indicator comparison of H–B model and M–C model (K=1.25) 46
Figure 4.9 Plasticity indicator comparison of H–B model and M–C model (K=1.50) 47
Figure 4.10 Y–displacement comparison of RMR and RMi .. 51
Figure 4.11 X–displacement comparison of RMR and RMi .. 52
Figure 4.12 Maximum principal stress comparison of RMR and RMi 55
Figure 4.13 Minimum principal stress comparison of RMR and RMi 57
Figure 4.14 Plasticity indicator comparison of RMR and RMi (K=0.75) 58
Figure 4.15 Plasticity indicator comparison of RMR and RMi (K=1.00) 59
Figure 4.16 Plasticity indicator comparison of RMR and RMi (K=1.25) 60
Figure 4.17 Plasticity indicator comparison of RMR and RMi (K=1.50) 61
Abstract

A Study on the Comparison of Rock Mass Classification Method
for the Stability Analysis of Underground Mining Cavity

By Yang, hun jae
Adv. Prof. : Kang, Choo Won
Dept. of Resource Engineering
Graduate School, Chosun University

The design of level and pillar is very important for safe mining work. The rock mechanic advancement is possible for the mechanical design of mining by numerical analysis that meets practice. Because the rock mass has an unreliable factor, the proper formation model representing an object ground in case of investigating behavior at underground carven excavation must apply to obtain the reliability of analysis result.

On this study, it is compared with the stability of pillar to make a selection of numerical analysis by Hoek-Brown Model and Mohr-Coulomb Model at FDM analysis and so presented proper formation model.

The RMI system is based on defined inherent parameters of the rock mass and is obtained by combining the compressive strength of intact rock and a jointing parameter and an improved method to determine the constants m and s in the Hoek-Brown failure criterion for rock masses. By using numerical analysis program for the accuracy of constants m, s calculated by RMI in Hoek-Brown failure criterion also compared with the constants calculated by
RMR. The reliability of constants calculated by RMi is confirmed.

The result of analysis to select proper numerical analysis model on this study site is comparatively high stress level and Hoek-Brown model is possible for a safe design. The parameter calculated by RMi is almost equal to the parameter calculated by RMR.
1. 서론

최근 화공계는 산업발달과 더불어 대형 장비에 의한 기계화 작업을 위해 갱도가 대형화되고 있을 뿐 아니라 환경문제 등으로 인하여 노천채광에서 지하채굴로 전환되면서 노천채광과 같은 대량생산을 유지하기 위하여 갱도가 대형화되고 있고, 이에 따라 갱도 및 광주의 규모 그리고 채굴방법 등에서 많은 문제가 발생하고 있다.\(^1\) 그리하여 지하채굴공동 설계에 있어서 붕괴의 방지와 안전한 채광작업을 위해 채굴공동과 광주의 설계를 매우 중요시 하고 있다. 이러한 채광설계는 암석역학의 발전으로 실제와 부합된 수치해석이 뒷받침 된 역학적 설계가 가능하도록 암석 및 암반의 재료특성과 기동에 대한 전단특성 및 파괴기준에 대한 연구가 수행되고 있다. 또한 암반은 불확실한 요소를 내재하고 있으며 지하공동 굴착시의 거동을 검토할 경우 해석 대상지반을 대표할 수 있는 적정한 구성모델을 사용해야만 해석결과의 신뢰성이 확보 될 것이다.

지금까지 지하공동의 설계 및 안정성 해석에 있어서 Mohr–Coulomb의 파괴이론을 가장 많이 적용하고 있으나, 이는 절리를 포함한 암반의 거동을 해석, 평가하기에는 다소 한계를 가지고 있다. 그러므로 근래에 들어 Hoek–Brown 파괴이론의 적용을 위한 지하공동의 막장에서 간찰된 암반의 일축압축강도, 불연속면의 형태, 지하수조건 및 여러 실험 자료를 근거로 암반의 등급을 평가하는 RMR 값과 암석의 삼축 압축시험을 이용하여, 암축 및 암반의 상태에 따라 지질학적 강도정수(GSI)와 암석이 가지고 있는 고유의 특성인 파괴조건계수 m, s 값을 제시하였다.\(^2\) 또한 Palmström(1996)에 의한 RMi(Rock Mass index)는 신선암의 특성을 사용하여 현지 암반의 강도를 추정하거나 결정하기 위해 사용할 수 있는 암반분류로 보다 간단한 수식을 통하여 Hoek–Brown 이론의 파괴조건계수 m, s를 구할 수 있다.\(^3\)

이러한 암반분류를 통한 암반의 거동을 해석하는데 이론적 타당성을 정립하기 위하여 많은 학자들이 연구를 거듭하면서 점차 수정 보완되고 있는 중이다.

이에 본 연구에서는 지하채굴공동 안정성 해석을 위한 암반등급 분류법의 비교 연구를 위하여 먼저 A갱도, B갱도, pillar에 대해 암반분류를 실시하고 지반특성에
적합한 수치해석 모델선정을 위하여 Hoek-Brown Model과 Mohr-Coulomb Model을 적용하여 각각의 변화 양상을 분석하여 적정한 구성모델을 선정한 다음 Hoek-Brown Model의 입력 변수 값인 관계조건계수(m, s)를 RMR분류법과 RMi분류법에 의해 구하여 이를 수치해석을 통해 서로 간의 적용성을 규명하는데 있다.
2. 문헌고찰

2.1 암반분류

암반분류는 터널과 지하공동, 다목적댐 기초 굴착 및 암반 사면 안정에 영향을 주는 지반의 성질을 등급에 따라 암반조건을 수치로 표시함으로써 경제적이고 능률적인 굴착과 지보설계에 필요로 하는 자료를 제공하는 중요한 작업이다.

암반은 같은 종류나 구조를 가지고 있어도 단층, 파쇄, 풍화, 변질, 불연속면의 정도 등에 따라 암반의 성질이 변화하고, 이러한 암반의 성질을 공학적 차원으로 구분하고 조사하는 과정은 매우 중요하며 특히 암반분류 변수들을 선정하는 것이 중요하다고 하겠다.

Deere(1964)분류법은 RQD 개념이 도입되었으며 RQD는 시추공에서 회수된 암석 코어의 암질을 나타내는데 간편하고 실용적인 방법이다. Rock Structure Rating(RSR) 개념은 Wickham, Tiedemann, Skinner(1972)에 의해 미국에서 고안되었으며, 분류변수들의 상대적 중요도에 따라 가중 점수를 부여하는 방법을 도입한 최
초의 분류법이다.

현재 가장 많이 사용하고 있는 암반 분류법이 RMR와 Q-System이다.

암반분류는 터널과 지하공간의 안정성 평가를 위해 지하 관측의 통계적 처리를 이용하는 경험적인 설계방법의 구성요소가 된다(Goodman, 1980, Hoek와 Brown, 1980).

2.1.1 RMR 분류법

RMR 분류법의 장점은 여러 분야에서 적용되었고 각 요소들에 대한 평가가 비교적 쉬우며, 터널의 유지시간, 최대 가능 폭 및 최대 무지보 폭 등의 예측이 가능하다고, 암반의 물리적 성질의 값도 예측이 가능하며, 터널과 불연속면의 방향성을 명백하게 고려할 수 있고 여러 사례들이 출판되어 검증이 가능하다는 점이다. 단점은
지보량의 결정에 있어서 개별 요소의 영향이 Q-System처럼 세밀하지 않다는 점과
불연속면의 간격 평가에 있어서 불연속면의 군이 3개 이하인 경우는 보수적인 평가가 된다는 점, 그리고 총 RMR을 5개의 암반등급으로 분류하고 있지만 실제로는 영역 간에 뚜렷한 경계가 없다는 점, 터널의 폭에 대한 연구가 충분하지 못하며, 지압 25MPa 이하 직경 10m, 친공 발과식의 마재형 터널에 대한 지보량을 결정하는 데만 적용범위를 국한시키고 있다는 점 등이다.

RMR분류법의 분류 요소는 다음과 같다. 암석의 일축압축강도(15점), 암질지수(RQD)(20점), 평균 불연속면의 간격 (20점), 불연속면의 상태 (30점), 지하수의 상태 (15점), 불연속면의 방향성의 영향을 고려하기 위한 보정 값을 적용한다.\(^5\)

RMR값은 결국 다음 식과 같이 정의할 수 있을 것이다.

\[
RMR = \sum_{i=1}^{5}(\text{암반분류 요소에 의한 점수})(\text{RMR}_{\text{basic}}) + \text{불연속면의 방향성 효과에 따른 보정} \tag{2.1}
\]

6번째 요소를 따로 분리하여 평가하는 것은 불연속면의 방향성에 대한 영향은 시공대상이 터널굴착, 사면, 댐, 기초, 광산개발 등과 같은 공학적인 적용에 따라 달라지기 때문이다.

RMR 분류법을 적용하기 위해서는 암반을 지질적으로 유사성을 지닌 몇몇 구간으로 구분한다. 암반은 자연 상태에서 불연속적인 특성을 가지지만 암체단위에서는 지질특성이 동일한 것으로 간주한다. 예를 들면 암종이나 불연속면 간격이 동일하다고 보는 것이다.

대부분의 경우 암체단위의 경계는 단층, 암맥, 파쇄대 등과 같은 주요 지질구조선과 일치한다. 암체단위가 결정되면 암반분류 요소들을 현장에서 측정한다. 터널에서는 일반적으로 불연속면의 방향성에 대한 보정만으로도 충분하다. 그러나 광산의 경우는 심도에 따른 응력과 변위의 변화에 대한 보정도 필요하다.

Laubscher(1977), Kendorski(1983)등은 이에 대한 연구를 통하여 Table 2.1과 같이 보정에 대한 과정을 나타내었다.\(^5\)
Table 2.1 RMR Classification parameters and their ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ranges of values</th>
<th>For this low range, uniaxial compressive test is preferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Strength of intact rock material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point-load strength index (MPa)</td>
<td>>10</td>
<td>4-10</td>
</tr>
<tr>
<td>Uniaxial compressive strength (MPa)</td>
<td>>250</td>
<td>100-250</td>
</tr>
<tr>
<td>Ratings</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>2. RQD(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90-100</td>
<td>75-90</td>
</tr>
<tr>
<td>Ratings</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>3. Spacing of discontinuities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>2m</td>
<td>0.6-2m</td>
</tr>
<tr>
<td>Ratings</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>4. Condition of discontinuities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very rough surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noseparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unweathered wall rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly rough surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly rough surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation <1mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly weathered wall rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly weathered wall rock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slickensided surfaces or Gouge <5mm thick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5mm Continuous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratings</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>5. Ground water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inflow per 10m tunnel length (1/min)</td>
<td>None</td>
<td><10</td>
</tr>
<tr>
<td>ratio (joint water pressure)/(major principal stress)</td>
<td>0</td>
<td><0.1</td>
</tr>
<tr>
<td>General conditions</td>
<td>Completely dry</td>
<td>Damp</td>
</tr>
<tr>
<td>Ratings</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 2.2 Guidelines for classification of discontinuity conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinuity length</td>
<td></td>
</tr>
<tr>
<td>(persistence)</td>
<td></td>
</tr>
<tr>
<td><1m</td>
<td>6</td>
</tr>
<tr>
<td>1-3m</td>
<td>4</td>
</tr>
<tr>
<td>3-10m</td>
<td>2</td>
</tr>
<tr>
<td>10-20m</td>
<td>1</td>
</tr>
<tr>
<td>>20m</td>
<td>0</td>
</tr>
<tr>
<td>Separation (aperture)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td><0.1mm</td>
<td>5</td>
</tr>
<tr>
<td>0.1-1.0mm</td>
<td>4</td>
</tr>
<tr>
<td>1-5mm</td>
<td>1</td>
</tr>
<tr>
<td>>5mm</td>
<td>0</td>
</tr>
<tr>
<td>Roughness</td>
<td></td>
</tr>
<tr>
<td>Very rough</td>
<td>6</td>
</tr>
<tr>
<td>Rough</td>
<td>5</td>
</tr>
<tr>
<td>Slightly rough</td>
<td>4</td>
</tr>
<tr>
<td>Smooth</td>
<td>3</td>
</tr>
<tr>
<td>Slickensided</td>
<td>1</td>
</tr>
<tr>
<td>Infilling (gouge)</td>
<td></td>
</tr>
<tr>
<td>Hard filling</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td><5mm</td>
<td>4</td>
</tr>
<tr>
<td>>5mm</td>
<td>2</td>
</tr>
<tr>
<td><5mm</td>
<td>2</td>
</tr>
<tr>
<td>>5mm</td>
<td>0</td>
</tr>
<tr>
<td>Weathering</td>
<td></td>
</tr>
<tr>
<td>Unweathered</td>
<td>6</td>
</tr>
<tr>
<td>Slightly weathered</td>
<td>5</td>
</tr>
<tr>
<td>Moderately weathered</td>
<td>4</td>
</tr>
<tr>
<td>Highly weathered</td>
<td>3</td>
</tr>
<tr>
<td>Decomposed</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2.3 Effect of discontinuity orientation in tunnelling

<table>
<thead>
<tr>
<th>Strike perpendicular to tunnel axis</th>
<th>Drive with dip</th>
<th>Drive against dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dip 45–90</td>
<td>Dip 20–45</td>
<td>Dip 45–90</td>
</tr>
<tr>
<td>Very favourable</td>
<td>Favourable</td>
<td>Fair</td>
</tr>
<tr>
<td>Strike parallel to tunnel axis</td>
<td></td>
<td>Irrespective of strike</td>
</tr>
<tr>
<td>Dip 20–45</td>
<td>Dip 45–90</td>
<td>Dip 0–20</td>
</tr>
<tr>
<td>Fair</td>
<td>Very unfavourable</td>
<td>Fair</td>
</tr>
</tbody>
</table>

Table 2.4 Ratings adjustment for discontinuity orientations

<table>
<thead>
<tr>
<th>Orientations of Discontinuities</th>
<th>Very favourable</th>
<th>Favourable</th>
<th>Fair</th>
<th>Unfavourable</th>
<th>Very unfavourable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunnels & mines</td>
<td>0</td>
<td>-2</td>
<td>-5</td>
<td>-10</td>
<td>-12</td>
</tr>
<tr>
<td>Foundations</td>
<td>0</td>
<td>-2</td>
<td>-7</td>
<td>-15</td>
<td>-25</td>
</tr>
<tr>
<td>Slopes</td>
<td>0</td>
<td>-5</td>
<td>-25</td>
<td>-50</td>
<td>-60</td>
</tr>
</tbody>
</table>
Table 2.5 Rock mass classes determined from total ratings

<table>
<thead>
<tr>
<th>Ratings</th>
<th>100–81</th>
<th>80–61</th>
<th>60–41</th>
<th>40–21</th>
<th><20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class no.</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>Description</td>
<td>Very good rock</td>
<td>Good rock</td>
<td>Fair rock</td>
<td>Poor rock</td>
<td>Very poor rock</td>
</tr>
</tbody>
</table>

Table 2.6 Meaning of rock mass classes

<table>
<thead>
<tr>
<th>Class no.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average stand-up time</td>
<td>20yr for 15m span</td>
<td>1yr for 10m span</td>
<td>1wk for 5m span</td>
<td>10h for 2.5m span</td>
<td>30min for 1m span</td>
</tr>
<tr>
<td>Cohesion of rock mass(kPa)</td>
<td>>400</td>
<td>300–400</td>
<td>200–300</td>
<td>100–200</td>
<td><100</td>
</tr>
<tr>
<td>Friction angle of rock mass(deg)</td>
<td>>45</td>
<td>35–45</td>
<td>25–35</td>
<td>15–25</td>
<td><15</td>
</tr>
</tbody>
</table>

2.1.2 Q-System

Q-System은 1974년 노르웨이 NGI(Norwegian Geotechnical Institute)의 Barton, Lien, Lunde 등에 의해 개발되었다. Q-System은 ISRM에서 제안하는 불연속면의 상태를 표현하는 10가지 항목 모두에 대해 정량적인 표현이 이루어지고 있는 것은 아니다. 특히 RMR 분류법과 대비할 때 문제가 되는 점은 불연속면의 방향성에 대한 고려가 생략되고 있는 점이다. 그러나 Barton은 분류평가방법의 견해 중에 RMR 등에서 중시되고 있는 불연속면의 방향성을 직접적으로 고려하지 않은 이유는 터널을 설정할 때 그 방향이 주요한 방향성의 영향을 받지 않도록 고려되고 있는 점을 들고 있다. 또 불연속면의 방향성을 고려한다면 그 검토가 복잡하게 되고 일반성이 적어져서 가장 필요한 분류평가의 간략성을 잃어버리게 된다고 설명하고 있다.

Q-System의 6개의 변수를 이용하여 암반의 암질을 정량적인 수치로 평가한다. 변수로는 RQD, 절리군의 수, 가장 상태가 나쁜 절리나 불연속면의 거칠기, 취약 절리면의 충전물 또는 변질정도, 지하수의 유입상태, 응력조건이다.
이 조건들을 3개의 항으로 나타내면 전체 암반 등급 Q 값을 된다.

\[
Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}
\]

(2.2)

암질 Q는 \(10^{-3} \sim 10^3(0.001 \sim 1,000)\) 사이의 값으로 표시되며, 이 값은 9개 등급으로 분류되어 터널 폭과 Q 값에 따라 지지방법이 제시되고 있다. \(RQD/J_n\) 항은 암괴의 크기를, \(J_r/J_a\) 항은 암괴간의 상대적인 전단강도를 그리고 \(J_w/\text{SRF}\) 항은 작용응력의 상태를 나타낸다. \(RQD/J_n\)항과 \(J_r/J_a\) 항은 광산에서 채광 설계에서 자주 사용되지만, 상대적인 암괴의 크기나 암괴간의 전단강도는 불안정의 정도를 나타내기에는 충분하지 않다.5)

2.1.3 RMi (Rock mass index)

토목공학이나 광산에서 사용되는 건설재료들은 대부분 강도의 특징들이 일반적으로 설명이 되어있다. 이러한 재료들의 기본적인 성질이 공학적으로 사용되어지고 있으나 암반역학에서는 뚜렷한 강도 특성을 나타내는 것이 없다.7)

RMi는 가장 최근에 알려진 암반 분류법으로 암반의 유효 압축강도를 암반의 지질구조학적 특성을 이용하여 1996년 Palmström에 의해 개발되었다. RMi에 의한 암반강도평가는 기존의 경험적인 방법들보다 더 정확적인 계산을 하여야 한다. 이러한 RMi 방법은 신선암의 일축압축강도와, 절리면의 거칠기, 절리의 변질정도, 절리의 크기, 절리의 간격 등 모두 5개의 변수로 구성되어있다.

RMi분류법의 장점은 암석구조와 관련하여 암반평가의 입력을 좀 더 체계적으로 할 수 있고, 설명하기 어려운 유형을 결정하는데 필요한 지질학적 데이터의 적용에 있어서 매우 중요한 개선을 가져왔으며 Project의 초기 단계나 평가가 어려운 곳의 지반상태와 같이 정보가 제한된 경우에 사용된다. 또한 일반적인 정보뿐만 아니라 여러 위치에서 나타나는 정보들을 비교하는데 유용하며, 공학적인 판단을 하는데 적합한 순차적인 시스템이다.
RMi 분류법을 사용하여 Hoek & Brown(1980)의 $s (= J P^2)$ 값을 보다 쉽게 알아낼 수 있다. 지보에 대한 평가나 TBM 공법에서의 천공율 평가하는 등 보다 많은 영역에 활용할 수 있는 발전성을 가지고 있다. 마지막으로 RMi의 변수는 다른 암반 분류 시스템과 NATM의 입력 자료를 개선시킬 수 있다. 반면에 단점으로는 간단한 시스템에 의해 암반의 모든 변수들을 적용해야 하는 경우가 프로그램을 통해 암반의 정확한 데이터를 얻어내기 위해 육안으로 확인하기 어려운 3차원적이고 복잡한 구조를 포함하는 큰 부피의 암반에 대한 평가가 불가능하다. 이러한 이유는 암반에 대한 평가는 간단한 설명으로부터 알아낸 데이터를 근거로 평가하기 때문이다. 암반과 관련된 불확실성을 고려 할 때 암반의 강도만을 표현하는데 집중한 RMi에 대한 표현은 다소 간단하다고 볼 수 있다. 이러한 점을 보완하기 위해서 RMi는 암반의 일반적인 특징을 표현하고 있고 보다 명확한 분석이 수행될 필요가 있다.

\[\text{RMi} = \sigma_c \times JP \]

여기서, σ_c : 무결암의 일축압축강도
JP : 절리 변수(블록의 체적(Vb)과 절리의 상태(JC)에 의해 나타남)
\[JP = 0.2 \sqrt{JC} \times Vb^D \] \hspace{1cm} (2.4)

여기서, \(Vb \): 블록의 체적 (㎥)
\[D = 0.37 JC^{-0.2} \]로 아래의 표와 같이 계산되어진다.

<table>
<thead>
<tr>
<th>JC</th>
<th>0.1</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.586</td>
<td>0.488</td>
<td>0.425</td>
<td>0.392</td>
<td>0.37</td>
<td>0.341</td>
<td>0.322</td>
<td>0.308</td>
<td>0.297</td>
<td>0.28</td>
<td>0.259</td>
<td>0.238</td>
<td>0.225</td>
<td>0.213</td>
</tr>
</tbody>
</table>

절리의 상태를 나타내는 \(JC \)는 절리의 길이(\(JL \)), 절리의 거칠기(\(JR \)), 절리의 변질정도(\(JA \))의 결합으로 구할 수 있으며, 여기서 \(JR \)과 \(JA \)는 \(Q\)-System에서 암괴간의 상대적인 전단강도(\(Jr/Ja \))와 대비되며 상호 보완적으로 사용될 수 있다.

\[JC = JL \times JR/JA \] \hspace{1cm} (2.5)

여기서, \(JL \): 절리의 크기
\(JR \): 절리의 거칠음
\(JA \): 절리의 변질정도

블록의 체적은 다음과 같이 구할 수 있다.

\[Vb = S1 \times S2 \times L \] (일반적인 식) \hspace{1cm} (2.6)
\[Vb = \beta \times Jv^{-3} \] (block factor을 고려) \hspace{1cm} (2.7)

여기서, \(Jv \): 체적절리계수(각 절리 군에 대해 단위 길이 \(m \)당 나타나는 절리수의 총합)
\[\beta = 20 + 7(S_{min}/S_{max}) \] (3개의 절리군)
\[20 + 7(S_{max}/S_{min})(3/n_j) = 20 + 21(S_{max}/S_{min} \times n_j) \] (3개미만)
또는 \[20 + (21/n_j)(S_{max}/S_{min})^{(1+0.1\log(S_{max}/S_{min}))} \]
Table 2.7 The ratings of n_j

<table>
<thead>
<tr>
<th>Joint pattern</th>
<th>ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or more joint sets</td>
<td>3</td>
</tr>
<tr>
<td>2 joint sets + random joints</td>
<td>2.5</td>
</tr>
<tr>
<td>2 joint sets</td>
<td>2</td>
</tr>
<tr>
<td>1 joint set + random joints</td>
<td>1.5</td>
</tr>
<tr>
<td>1 joint set only</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.8 Classification of the RMi

<table>
<thead>
<tr>
<th>Characterization</th>
<th>RMi Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term for RMi</td>
<td>Term related to rock mass strength</td>
</tr>
<tr>
<td>Extremely low</td>
<td>Extremely weak</td>
</tr>
<tr>
<td>Very low</td>
<td>Very weak</td>
</tr>
<tr>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Moderately high</td>
<td>Moderately strong</td>
</tr>
<tr>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Very high</td>
<td>Very strong</td>
</tr>
<tr>
<td>Extremely high</td>
<td>Extremely strong</td>
</tr>
</tbody>
</table>
Table 2.9 The values and ratings of the input parameters to RMi

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniaxial Compressive Strength</td>
<td>value (MPa)</td>
<td>found from laboratory tests</td>
</tr>
<tr>
<td>Block Volume, Vb</td>
<td>value (m³)</td>
<td>measured visually at site</td>
</tr>
<tr>
<td>Joint Condition Factor, JC</td>
<td>JC = JR × JL × JA</td>
<td>measured visually at site</td>
</tr>
</tbody>
</table>

Joint Roughness Factor (JR) (the rating of JR are based on Jr in Q-system)

<table>
<thead>
<tr>
<th>Condition of Joint Surface</th>
<th>Planar</th>
<th>Slightly undulating</th>
<th>Undulating</th>
<th>Stepped or interlocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very rough</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Rough</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Smooth</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Polished or slickensided</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>3</td>
</tr>
</tbody>
</table>

For filled joint JR=1 for irregular joint a rating of JR=5 is suggested.

Joint Alteration Factor (JA) (the rating of JA are based on Ja in Q-system)

<table>
<thead>
<tr>
<th>Contact between Wall Contact</th>
<th>Clean Joints</th>
<th>COATING or Thin Filling of</th>
<th>Filling of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healed or welded joints</td>
<td>filling of quartz, epidote, etc</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>fresh joint walls</td>
<td>on coating or filing, except from staining (rust)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Altered joint walls</td>
<td>one grade higher alteration than the rock</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Friction materials</td>
<td>two grades higher alteration than the rock</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cohesive materials</td>
<td>sand, silt calcite, etc without content of clay</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clay, etc</td>
<td>4</td>
</tr>
</tbody>
</table>

Filling of:
- Friction materials
- Hard, cohesive materials
- Soft, cohesive materials
- Swelling clay materials

<table>
<thead>
<tr>
<th>Type</th>
<th>Partly wall contact</th>
<th>No wall contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>sand, silt calcite, etc (non-softerning)</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Compacted filling of clay, chlorite, talc, etc</td>
<td>2</td>
<td>6-10</td>
</tr>
<tr>
<td>Medium to low over consolidated clay, chlorite, talc, etc</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Filling material exhibits swelling properties</td>
<td>8-12</td>
<td>13-20</td>
</tr>
</tbody>
</table>

The Joint Size Factor (JL)

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Size</th>
<th>Continuous joints</th>
<th>Discontinuous joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedding of foliation partings</td>
<td><0.5m</td>
<td>very short</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Joints</td>
<td>0.1–1m</td>
<td>short or small</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1–10m</td>
<td>medium</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10–30m</td>
<td>long or large</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>(Filled) joint, seam or shear</td>
<td>>30m</td>
<td>very long or large</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

$$ JP = \sqrt{s} \quad (2.8) $$

따라서 JP는 블록의 크기와 절리상태계수의 회귀분석으로부터 구할 수 있고 RMR과 Q System을 이용한 Hoek-Brown의 파괴조건계수로부터 구할 수 있다. 파괴조건계수 m에 대해서도 Wood는 Hoek-Brown에서 RMR와 Q-System에 따라 제시한 그들의 파괴조건계수를 이용하여 JP와 m_b/m_i의 관계를 다음과 같이 나타내었다.

$$ m_b = m_i \times JP^{0.64} \quad (비교란된 암반) \quad (2.9) $$

$$ m_b = m_i \times JP^{0.857} \quad (교란된 암반) \quad (2.10) $$

Figure 2.2 The variation of m_b/m_i with the jointing parameter(JP)
따라서 Hoek-Brown의 파괴조건식은 원식에 위의 식들을 대입함으로써 다음과 같이 JP를 변수로 하는 식으로 다시 쓸 수 있다.

\[
\sigma_1 = \sigma_3 + [\sigma_c J P^{0.64}(m_i \times \sigma_3 + \sigma_c \times J P^{1.36})]^{0.5}
\] \hspace{0.5cm} (2.11)

위 식에서 파괴상수 \(s \)와 \(m \)은 \(JP \)와 \(m_i \)에 의하여 치환되었다.\(^{8(1)}\)
2.2 파괴기준

2.2.1 Hoek–Brown의 파괴기준

터널설계에 있어서 암반의 변형과 강도에 관한 물성치의 결정은 중요한 사항이다. 그러나 암반에 대한 실제적인 설계기준을 구하는 것은 매우 곤란하다. 그 이유는 암반의 변형은 무결함의 암석 거동에서 균열이 매우 많은 암반의 거동에다가 다양하게 변화하기 때문이다. 근래에 들어 많은 암석시험을 통해서 Hoek–Brown의 현장 암반모델이 개발되었다.

Hoek–Brown의 현장 암반모델의 파괴 개념은 먼저 암석의 파괴가 취성, 연성 또는 취성-연성 거동이라는 것에서 출발한다. 취성파괴는 과거에 영구변형을 동반하지 않는 것이고, 연성은 하중을 지지할 능력을 잃지 않고 영구변형을 계속하는 것이다. 암이 연암이나 풍화암으로 갈수록 주로 연성파괴가 일어난다. 그리고 취성-연성 전이압력은 임석 공시체내에 하나의 파괴 면을 형성하는데 필요한 응력이 그 면상의 활동을 일으키는 데에 필요한 응력과 같게 될 때의 구속 압력이라고 정의한다. 식 (2.12)은 실물 크기의 현장 암반시험 및 알려진 임석 삼축시험값을 사용하여 동등한 Mohr의 포락선을 얻기 위해 다음 식으로 정의되었다. 결과가 있는 암반에서 일반적인 Hoek–Brown의 파괴규준은 다음과 같이 정의된다.

\[\sigma'_1 = \sigma'_3 \left(m_b \frac{\sigma'_3}{\sigma_{ci}} + s \right)^a \]

여기서 \(\sigma'_1 \), \(\sigma'_3 \)는 파괴에서의 최대, 최소 유효응력(kg/cm\(^2\)), \(m_b \)는 암반에 대한 Hoek–Brown의 m 상수, \(s \), \(a \)는 암반특성에 의존하는 상수, \(\sigma_{ci} \)는 임석 공시체의 일측 압축강도(kg/cm\(^2\))이다.

\[\tau = A \sigma_{ci} \left(\frac{\sigma'_n - \sigma_{tm}}{\sigma_{ci}} \right)^B \]

(2.13)
여기서 A, B는 재료상수, σ'_n은 유효 수직응력, σ_{tm}은 암반의 인장강도이다.

절리가 있는 암반의 강도 평가에 대해 Hoek-Brown 기준을 사용하기 위해서는 먼저 암반의 암석공시체의 일축 압축강도(σ_{ci}), 암석공시체에 대한 Hoek-Brown의 상수(m_i), 암반에 대한 지질 강도정수(GSI)의 3가지 특성치에 대한 평가가 선행되어야 한다. 암석 공시체가 암반을 구성하고 있을 때의 식 (2.12)는 식 (2.14)와 같이 단순화 할 수 있다.

$\sigma'_1 = \sigma'_3 + \sigma_{ci} \left(m_i \frac{\sigma'_3}{\sigma_{ci}} + 1 \right)^{0.5}$ \hspace{1cm} (2.14)

주어진 암석에 대한 파괴상태에서 주응력 사이의 관계는 두 가지 상수 σ_{ci}, m_i에 의해서 정의된다. 또한 최소 주응력 σ_3값의 범위는 $0 < \sigma'_3 < 0.5\sigma_{ci}$로, 어떤 시험에서든 정밀하며, 적어도 실험에 대한 해석 시에는 5개의 점을 포함해야 한다.

Hoek & Franklin(1968)의 삼축시험 결과에 대한 해석에서 Hoek-Brown(1980)은 식 (2.11)을 식(2.15)로 재정의 하였다.

$y = m \sigma_{ci} x + s \sigma_{ci}$ \hspace{1cm} (2.15)

여기서 $x = \sigma'_3$ 그리고 $y = (\sigma'_1 - \sigma'_3)^2$

만약 n번의 단축압축강도를 측정하였다면 σ_{ci}, m_i 및 결정계수(r^2)는 식 (2.16)~(2.18)과 같다.

$\sigma_{ci}^2 = \frac{\sum y}{n} \left[\frac{\sum xy - (\sum x \sum y/n)}{\sum x^2 - ((\sum x)^2/n)} \right] \frac{\sum x}{n}$ \hspace{1cm} (2.16)

$m_i = \frac{1}{\sigma_{ci}} \left[\frac{\sum xy - (\sum x \sum y/n)}{\sum x^2 - ((\sum x)^2/n)} \right]$ \hspace{1cm} (2.17)
또한 실내시험에 불가능할 때는 암석의 종류에 따라 강도와 Table 2.10에서 m_i를 평가할 수도 있다.

Martin & Chandler(1994)의 현장 암반의 강도는 실험실 강도보다 70% 작게 측정한다고 하였다. 이것은 현장 암반은 매우 낮은 응력 상태에서 micro-cracking에 의한 곤열이 발달하지만 실험실 실험에서는 빠른 가압속도로 인해 곤열이 발생되기 전에 높은 응력 상태가 되기 때문에 균열이 발달한다. 절리가 있는 암반의 강도는 신선암 조각들과 상이한 응력조건에서 자유로이 회전하거나 미끄러짐에 의한 물성치에 의존하며 암석과 암반의 강도는 불연속면, 절리 및 충리 등의 복합적인 영향으로 강도는 저하된다. 이러한 상태에서의 암석과 암반의 강도에 대하여 Kaiser & Bawden(1995), Hoek(1995), Hoek & Brown(1997)은 지질학적 강도 정수(Geological Strength Index)로 나타내었으며, 암석과 암반의 강도에 관한 경험적 방법의 재료상수에 대하여 Table 2.10으로 나타내었다.121314

$$r^2 = \frac{\left[\Sigma xy - (\Sigma x \Sigma y/n) \right]}{\left[\Sigma x^2 - ((\Sigma x)^2/n) \right] \left[\Sigma y^2 - ((\Sigma y)^2/n) \right]}$$ (2.18)
Table 2.10 Rock coefficient m_i value

<table>
<thead>
<tr>
<th>Rock Type</th>
<th>Class</th>
<th>Group</th>
<th>Texture</th>
<th>Coarse</th>
<th>Medium</th>
<th>Fine</th>
<th>Very fine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDIMENTARY</td>
<td>Clastic</td>
<td></td>
<td>Conglomerate (22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic</td>
<td></td>
<td>Chalk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No-Clastic</td>
<td>Carbonate</td>
<td>Breccia (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical</td>
<td>Gypsum (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non Foliated</td>
<td></td>
<td>Marble (9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slightly foliated</td>
<td></td>
<td>Migmatite (30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foliated</td>
<td></td>
<td>Gneiss (33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light</td>
<td></td>
<td>Granite (33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark</td>
<td></td>
<td>Gabbro (27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extrusive pyroclastic type</td>
<td></td>
<td>Agglomerate (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 19 -
그리고, 암반강도 특성은 식 (2.19)와 같다.

\[m_b = m_i \exp \left(\frac{GSI - 100}{28} \right) \]
(2.19)

GSI > 25의 양질의 암반에서는 기존의 Hoek-Brown의 기준이 식 (2.20), (2.21)과 같이 적용되며,

\[s = \exp \left(\frac{GSI - 100}{9} \right) \]
(2.20)
\[a = 0.5 \]
(2.21)

GSI < 25의 매우 불량한 암반에서는 수정된 Hoek-Brown의 기준이 식 (2.22), (2.23)와 같이 적용된다.

\[s = 0 \]
(2.22)
\[a = 0.65 - \frac{GSI}{200} \]
(2.23)

\[GSI = RMR_{89'} - 5 \]
(2.24)

암반의 인장강도는 암괴사이의 절리에서 팽창이 일어나지 않을 때 다음과 같이 주어진다.
이 방법으로 암반의 강도를 구하기 위해서는 암석의 단축압축강도와 암석의 Hoek-Brown 상수 \(m_i\), 암반의 GSI가 필요하다.

GSI 값을 추정할 때 발과의 영향을 고려하는 것도 중요하다. GSI 값을 추정할 때는 발과의 영향을 받지 않은 막장을 관찰하는 것이 좋지만, 보이는 모든 면이 발과의 영향을 받았다면, 그 영향을 고려하는 것이 좋다. 그러므로 실용적 측면에서 GSI 값을 이미 손상된 막장과 관련되므로 상향 조정되어야 한다.\(^{15,16}\)

2.2.2 Mohr-Coulomb의 파괴기준

Mohr-Coulomb의 파괴기준은 수치해석 모델링을 통한 암반구조물 해석 또는 안정성 평가에서 암석의 파괴식으로 사용된다. 암석(intact rock)에 대하여 인장강도시험, 일축압축강도시험 및 삼축압축강도시험을 실시하여 그 결과들로 Mohr원을 그렸을 때, 접선과 절편을 이용하여 Mohr-Coulomb의 파괴포락선을 그릴 수 있다.

Mohr-Coulomb의 파괴기준은 전단응력으로 표시하는 것이 일반적이다. 그러나, 수치해석에서 쉽게 용용할 수 있도록 주응력으로 표시하기도 한다. 주응력으로 표시한 암석에 대한 Mohr-Coulomb의 파괴기준은 다음과 같다.

\[
\sigma_{1f} = \sigma_c + k \sigma_3
\]

(2.26)

여기서, \(\sigma_c\)는 암석의 일축압축강도로서 다음 식으로 표현된다.

\[
\sigma_c = \frac{2c \cos \phi}{1-\sin \phi}
\]

(2.27)

\(k\)는 계수로서 다음과 같다.
\[k = \frac{1 + \sin \phi}{1 - \sin \phi} \] \hspace{1cm} (2.28)

c, \phi 와 \sigma_c, k 의 관계식은 다음 식으로 표현된다.

\[\sin \phi = \frac{k - 1}{k + 1} \] \hspace{1cm} (2.29)

\[c = \frac{\sigma_c}{2\sqrt{k}} \] \hspace{1cm} (2.30)

Mohr-Coulomb 조건식은 암석의 점착력(\(c\))과 내부마찰각(\(\phi\))의 파괴변수이다. 이러한 파괴변수들은 수치해석에 적응하기 위해서 원위치 암반에 대한 현장실험을 통하여 파괴 조건계수를 결정하거나 실내 실험치를 현지암반조건으로 변환하여 적용하여야 한다.\(^{13}\)

2.2.3 Hoek-Brown의 파괴기준으로부터 Mohr-Coulomb 강도정수 예측

Hoek-Brown의 파괴기준으로부터 일반적으로 많이 적용하는 Mohr-Coulomb 파괴기준식의 강도정수를 구할 수 있다. 대부분의 암반공학에서는 암반의 강도를 점착력 \(c\)와 마찰력 \(\phi\)로 나타내는 Mohr-Coulomb의 파괴 기준을 이용하기 때문이다. Mohr-Coulomb 파괴기준에서 두 주응력 사이의 관계는 다음 식과 같다.

\[\sigma_1' = \sigma_{cm}' + k\sigma_3' \] \hspace{1cm} (2.31)

여기서, \(\sigma_{cm}'\)은 암반의 단축압축강도

\(k\)는 \(\sigma_1'\)과 \(\sigma_3'\)의 관계식의 기울기
\(\phi \) 와 \(c \)는 다음으로부터 구할 수 있다.

\[
\sin \phi = \frac{k - 1}{k + 1} \quad (2.32)
\]

\[
c = \frac{\sigma_m (1 - \sin \phi')}{2 \cos \phi} \quad (2.33)
\]

삼축압축강도시험 결과를 Hoek-Brown 파괴 기준식으로 나타내고 이를 위의 Mohr-Coulomb 식을 이용하여 \(c \)와 \(\phi' \)를 구할 수 있다. 상수 \(A, B, c, \phi' \)를 구하는 과정은 다음과 같다.

\[
\sigma_n = \sigma_3 + \frac{\sigma_1 - \sigma_3}{\partial \sigma_1 / \partial \sigma_3 + 1} \quad (2.34)
\]

\[
\tau = (\sigma_1 - \sigma_3) \sqrt{\partial \sigma_1 / \partial \sigma_3} \quad (2.35)
\]

여기서 GSI > 25로 \(a=0.5 \) 일 때

\[
\frac{\partial \sigma_1'}{\partial \sigma_3} = 1 + \frac{m_b \sigma_{ci}}{2(\sigma_1' - \sigma_3')} \quad (2.36)
\]

GSI < 25로 \(s=0 \) 일 때

\[
\frac{\partial \sigma_1'}{\partial \sigma_3} = 1 + am_b^a \left[\frac{\sigma_3'}{\sigma_{ci}} \right]^{a-1} \quad (2.37)
\]
암반의 인장강도는 앞에 보인바와 같이 식 (2.38)과 같다.

\[
\sigma_{tm} = \frac{c}{2} \left[m_b - \sqrt{m_b^2 + 4s} \right] \tag{2.38}
\]

또 앞에서 보인 Mohr 파괴포락선과 동등한 다음 식 (2.39)를 식 (2.40)과 같이 쓸 수 있다.

\[
\tau = \sigma_{ci} \left[\frac{\sigma_n - \sigma_{tm}}{\sigma_{ci}} \right]^B \tag{2.39}
\]

\[
Y = \log A + BX \tag{2.40}
\]

\[
Y = \log \left[\frac{\tau}{\sigma_{ci}} \right], \quad X = \log \left[\frac{\sigma_n - \sigma_{tm}}{\sigma_{ci}} \right] \tag{2.41}
\]

그리면 A, B는 식 (2.42), 식 (2.43)으로 구할 수 있다.

\[
B = \frac{\sum XY - (\sum X \sum Y)/T}{\sum X^2 - (\sum X)^2/T} \tag{2.42}
\]

\[
A = 10^{[\Sigma Y/T - B(\Sigma X/T)]} \tag{2.43}
\]

여기서 T는 회귀분석에 이용한 자료의 개수이다. 여기서 가장 중요한 것은 \(\sigma_3 \)의 범위를 정정하는 것이다. 시행착오에 의하면 \(\sigma_3 \)는 \(0 < \sigma_3 < 0.25 \sigma_{ci} \)의 범위에서 8
개의 등 간격으로 나눈 값을 선택할 때 일관된 결과를 보였다.
수직응력 \(\sigma_{\text{ni}} \) 에서 마찰각 \(\phi'_i \)는 다음과 같다.

\[
\phi'_i = \arctan \left(AB \left(\frac{\sigma'_{\text{ni}} - \sigma_{\text{lm}}'}{\sigma_{\text{ci}}} \right)^{B-1} \right) \tag{2.44}
\]

이때 점착력 \(c'_i \)는 식 (2.45)와 같다.

\[
c'_i = \tau - \sigma_{\text{ni}} \tan \phi'_i \tag{2.45}
\]
또 이때의 암반의 단축압축강도는 식 (2.46)과 같다.

\[
\sigma_{\text{ni}} = \frac{2c'_i \cos \phi'_i}{1 - \sin \phi'_i} \tag{2.46}
\]
점착력 \(c'_i \)는 상한 값을 나타내므로 실제 사용할 때에는 계산 값의 75%를 적용하는 것이 합리적이다. 위 과정에 따라 상수 A, B, \(c'_i, \phi'_i \)를 구할 수 있다.\(^{1213}\)

2.2.4 암반분류에 의한 변형계수 예측

공학적 암반분류법인 RMR과 Q-System 값을 이용하여 암반의 변형계수를 구하는 여러 사례가 다음과 같이 보고되어 있다.

(1) Bieniawski
RMR이 50 이상일 때 다음 식으로 RMR로 암반의 변형계수를 구하였다.

\[
E_m = 2 \text{RMR} - 100 \text{ (GPa)} \tag{2.47}
\]
(2) Serafim과 Pereira

RMR값의 크기에 관계없이 다음 식으로 보고하였다.

\[
E_m = 10^{\frac{RMR-100}{40}} \text{ (GPa)}
\]
(2.48)

(3) Barton 등

Q 값으로부터 암반의 변형계수를 다음과 같이 구하였다.

\[
E_m = 25 \log_{10} Q \text{ (GPa)}
\]
(2.49)

또 암반분류 값인 RMR값을 이용하여 무결암과 원암반의 변형계수의 비율을 감쇠지수(RF)로 표시한 사례도 있다.

(1) Nicholson 등은 감쇠지수를 다음과 같이 구하였다.

\[
RF = \frac{E_m}{E_i} = 0.0028RMR^2 + 0.9\exp(RMR/22.82)
\]
(2.50)

여기서 \(E_m, E_i\) 는 각각 원암반과 무결암인 암석코어의 변형계수이다.

(2) Mitri 등

감쇠지수 식을 다음과 같이 제안하였다.

\[
RF = \frac{E_m}{E_i} = 0.5 \left[1 - \cos\left(\pi \frac{RMR}{100}\right)\right]
\]
(2.51)
또 다른 방법으로 강도의 보정에서 휘슬하는 지질강도지수(GSI)를 이용하여 암반의 변형계수를 구할 수 있다.

\[
E_m = \sqrt{\frac{\sigma_{ij}}{100}} \left(\frac{\text{GSI} - 10}{40} \right) \text{(GPa)} \quad (\sigma_c < 100\text{MPa인 경우})
\] (2.52)

한편 Barton 등(1985)은 암반의 \(E_m\) 값을 다음식의 범위 안에 있는 것으로 제안하기도 하였다.

\[
10\log_{10} Q < E_m < 40\log_{10} Q
\] (2.53)

또 Trueman은 RMR값을 이용하여 암반의 단축압축강도, 점착력, 내부마찰각을 각각 다음과 같이 표시하였다.\(^{1,2,17}\)

\[
\text{암반의 단축압축강도} : \sigma_m = 0.5 \exp(0.06 \text{RMR})(\text{MPa})
\] (2.54)

\[
\text{암반의 점착력} : C_m = 0.25 \exp(0.05 \text{RMR})(\text{MPa})
\] (2.55)

\[
\text{암반의 내부마찰각} : \phi_m = 0.5 \text{RMR} + 5 \quad (^\circ)
\] (2.56)
3. 연구지역의 지반특성 및 현장조사

3.1 연구지역의 지질개요

3.1.1 연구지역의 지형

본 연구지역은 충북 제천시 두학동 일대에 속하는 석회석 광산으로써 광체 양상은 가창산 향사, 두학동 복향사 및 기동리 향사 구조로 대부분이며 현재 가창산 향사 구역에 410 penet를 개설하여 1·2·3 중단, 하 1·2·3단에서 채광중이다. (Figure 3.1)

3.1.2 지질 및 광상

본 연구지역 광산 일대의 지질은 고생대 오오도비스기(조선누층군)의 영흥층을 부정합으로 피복한 석탄기(평안누층군)의 갑산층, 중생대 쥬라기 및 백악기에 관입한 제천화강암 및 맥암류로 구성된다. 갑산층은 N25°~35°W방향의 축을 가지고 발달하는데 수회 변성작용을 받아 복잡한 양상으로 분포된다. 갑산층은 하부서열대-중부석회암대-상부호층대로 대분되고, 개발 가능한 석회암은 중부석회암대에 발달되는 석회암으로 25~35m의 충후, 연장 약 2km정도를 가지고 담회-회색, 미정-세림질 괴상석회암이 발달하였으나, 수 cm의 암회색 세일이 일부구간 혼재되며, 방해석, 세백, 석영백 및 실리카백 등의 여러 맥이 혼재되어 광물의 석회석(소성용)으로 개발 가능한 구간은 6~10m로 CaO 54%이상 SiO2 0.6%이하의 품위를 가지며, 분화율은 20% (평균 2.54%) 미만으로 소성용으로 적합한 광체를 나타낸다. (18)(19)
Figure 3.1 Mine map of study area
3.2 현장조사

3.2.1 불연속면 조사

석회석 광산의 주 조사구역인 410개 하 3단의 운반갱도에서 북쪽 방향(12시 방향)의 체석갱도(이후부터 A 갱도이라 함)와 운반갱도에서 서쪽 방향(9시 방향)의 체석갱도(이후부터 B 갱도이라 함) 내의 절리를 조사하여 Rocscience사의 Dips Ver 5.1을 사용하여 불연속면의 방향성을 파악하였다. 본 연구 광산의 경사방향과 경사각을 다음 Table 3.1에 나타내었다.

Table 3.1 Distribution of discontinuities in 410 mine of study area

<table>
<thead>
<tr>
<th>location</th>
<th>sort</th>
<th>discontinuity set</th>
<th>dip direction / dip</th>
<th>distribution</th>
<th>measurement number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower 3</td>
<td>A site</td>
<td>Joint set-1</td>
<td>270/65</td>
<td>294223/8149</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint set-2</td>
<td>48/65</td>
<td>8632/8055</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B site</td>
<td>Joint set-1</td>
<td>189/72</td>
<td>226163/8361</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint set-2</td>
<td>161/40</td>
<td>229126/6921</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joint set-3</td>
<td>270/63</td>
<td>326214/8349</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3.2 Pole-contour diagram of A site

Figure 3.3 Pole-contour diagram of B site
3.2.2 암반평가

암반평가는 캐 när의 불연속면 조사와 실내 실험 결과를 토대로 본 연구지역인 석회석 광산의 410계 하 3단의 A 계도, B 계도 및 pillar에 대한 RMR, Q-system, RMⅠ에 대해 평가하였다. 이와 같이 분류함으로써 현장암반의 변형계수, 점착력 및 내부마찰각 등을 구하여 수치해석의 기초 자료에 사용될 수 있다.

본 연구지역을 조사한 결과 RMR 값은 A 계도는 58이 나와 III등급이 예상되고, B 계도와 pillar는 각각 70~76, 72~74가 나와 II등급이 예상된다. Q값은 A 계도는 14가 나와 IV등급이 예상되고, B 계도와 pillar는 각각 16.6~50, 33~100이 나와 III~IV등급이 예상된다. RMⅠ값은 A 계도는 18.56, B 계도는 30.35, pillar은 16.09로 Very high(Very strong)등급이 예상된다.

Table 3.2 RMR value of rock mass in study area

<table>
<thead>
<tr>
<th>Value</th>
<th>Location</th>
<th>A site</th>
<th>B site</th>
<th>pillar</th>
</tr>
</thead>
<tbody>
<tr>
<td>strength of intact rock material</td>
<td></td>
<td>4</td>
<td>4~10</td>
<td>2~4</td>
</tr>
<tr>
<td>RQD</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>spacing of discontinuities</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>condition of discontinuities</td>
<td>24</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>condition of ground water</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>adjustment</td>
<td>-12</td>
<td>-12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RMR value</td>
<td>58</td>
<td>70~76</td>
<td>72~74</td>
<td></td>
</tr>
<tr>
<td>Rating (class no.)</td>
<td>fair(Ⅲ)</td>
<td>Good(Ⅱ)</td>
<td>Good(Ⅱ)</td>
<td></td>
</tr>
<tr>
<td>stand-up time (5m span)</td>
<td>1 week</td>
<td>1 year</td>
<td>1 year</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.3 Classification of rock mass by Q-system in study area

<table>
<thead>
<tr>
<th>value</th>
<th>location</th>
<th>A site</th>
<th>B site</th>
<th>pillar</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQD</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>J_n</td>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>J_r</td>
<td></td>
<td>2.0</td>
<td>1.5</td>
<td>3.0</td>
</tr>
<tr>
<td>J_a</td>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>J_w</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>SRF</td>
<td></td>
<td>2.5</td>
<td>1.0~3.0</td>
<td>1.0~3.0</td>
</tr>
<tr>
<td>Q value</td>
<td></td>
<td>14</td>
<td>16.6~50</td>
<td>33~100</td>
</tr>
<tr>
<td>Rating (class no.)</td>
<td>Good</td>
<td>Good~Very Good</td>
<td>Very Good</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4 RMi value of rock mass in study area

<table>
<thead>
<tr>
<th>value</th>
<th>location</th>
<th>A site</th>
<th>B site</th>
<th>pillar</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_v(MPa)</td>
<td></td>
<td>80.71</td>
<td>94.83</td>
<td>89.43</td>
</tr>
<tr>
<td>JP</td>
<td></td>
<td>0.23</td>
<td>0.32</td>
<td>0.18</td>
</tr>
<tr>
<td>JC</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Vb</td>
<td></td>
<td>0.52</td>
<td>0.80</td>
<td>0.12</td>
</tr>
<tr>
<td>RMi</td>
<td></td>
<td>18.56</td>
<td>30.35</td>
<td>16.09</td>
</tr>
<tr>
<td>Term for RMi</td>
<td></td>
<td>Very high</td>
<td>Very high</td>
<td>Very high</td>
</tr>
</tbody>
</table>
4. 수치해석

4.1 해석 프로그램 개요

지하공동이나 터널을 굴착하는 경우 단면의 형상이 원형일 때에는 공동 주변의 암반에서 발생하는 변위와 응력분포를 수학적인 방법으로 비교적 쉽게 구할 수 있다. 그러나 지하공동의 단면 형상이 원형이 아닐 경우에는 수학적으로 응력해석을 하는 것이 어렵기 때문에 수치 해석적 방법을 이용하게 된다.

본 연구에 사용된 수치 해석적 방법 중 유한차분법을 이용하여 광주와 채굴공동의 안정성을 검토하도록 하였다. 유한차분법 소프트웨어 중 채굴공동과 같은 지하공동의 안정성에 보편적으로 많이 활용하고 있는 것은 FLAC(Fast Lagrangian Analysis of Continua)이다.

FLAC에서는 명시적 시간진행이 일련의 계산과정에서 사용된다. 이에 의하면 응력과 변형으로부터 새로운 속도와 변위를 구하기 위해 운동방정식을 사용한다. 그리고 변형을 속도는 계산된 속도로부터 유도되고 응력은 이렇게 계산된 변형을 속도로부터 구해진다. 이러한 계산이 한 번 수행되는 싸이클이 시간증분이 되며 한 싸이클내에서 고정된 미지의 변수들로부터 각 절점에서 변수들을 갱신하게 된다. 이때, 시간증분은 수치해석적인 안정성을 유지할 수 있도록 충분히 작은 시간을 택하게 된다. 이러한 시간진행 구조는 비선형 구성 법칙을 사용하더라도 반복수행이 필요하지 않다. 즉, 양립조건과 평형조건을 만족시키기 위해서 반복계산 싸이클이 필요하지 않다는 것이다. 전반적으로 명시적 시간진행 구조를 사용할 경우, 비선형계, 대변형률 문제, 불안정한 물리계의 모델링에 적합하다.20)

FLAC에서 사용되는 기본 계산과정은 먼저 적용된 운동방정식에서 새로운 운동량을 구하고, 제모의 물성 및 관계식에서 내부응력과 상호 작용력을 구하는 과정의 2가지 기본적인 계산방식으로 반복적인 실형으로 이루어진다.21)
4.2 연속체 모델 비교

4.2.1 개요
지반은 불확실한 요소를 내재하고 있으며 굴착 시 광주의 거동을 해석적으로 검토할 경우 해석 대상지반을 대표할 수 있는 적정한 구성모델을 사용해야만 해석결과의 신뢰성이 확보된다. 따라서 연속체 해석에 있어서 적정한 구성모델의 적용을 위하여 각 구성모델에 따른 변화양상을 분석하여 광주의 2차원 연속체 해석에 반영해야 한다.

지반조사 결과로부터 물성산정에 의하여 결정되어진 점착력, 내부마찰각에 의한 Mohr-Coulomb 파괴기준과 RMR분류법을 기반으로 하여 m, GSI, 무결암의 일축압축강도 등에 의한 Hoek-Brown 파괴기준에 따른 거동을 비교 분석하고, GSI와 RM이에 의해 각각 구한 Hoek-Brown Model의 파괴조건 계수(m, s)에 대해서도 각각 비교하였다.

4.2.2 설계적용
4.3. **Mohr–Coulomb Model과 Hoek–Brown Model 비교**

4.3.1 개요

광주의 지반특성에 적합한 수치해석 모델선정을 위하여 M–C model과 H–B Model에 대하여 해석하였다. 요소망의 크기는 계산의 정확도를 높일 수 있도록 채굴공동 주변의 요소망을 해석의 중심이 되는 채굴적과 광주가 위치한 부분에서는 요소의 크기를 0.5m ×0.5m로 하였고 계산의 효율을 높이기 위해 광주에서 멀어지는 부분은 요소의 크기를 1m ×1m로 하였다. 경계조건으로 요소망의 하부와 상부는 연직, 수평변위가 발생하지 않도록 광주 폭에 대하여 각각 6배 이상, 4배 이상을 설정하였다. 요소망의 좌우 양측은 수평방향의 변위가 발생하지 않도록 광주 폭에 대하여 4.5배 이상을 설정하였다.

본 갱도는 중단채굴법으로서 광주 폭이 6m, 갱도의 폭이 6~8m로 되어 있다. 채굴 후 발생하는 채굴공동의 안정성을 평가하기 위해서는 석회석 채굴 전 암반에 분포한 초기응력을 요소망 내에 생성시켜야 한다. 이를 위하여 초기면적응력은 암반의 단위중량과 깊이의 곱에 비례하도록 하였다. 그러나 초기수평응력은 지역에 따라 변할 수 있으므로 그 값을 변화시킨 여러 가지 경우로 나누어 평가하였다.
즉 초기연직응력에 대한 초기수평응력의 비 K를 0.75, 1.00, 1.25, 1.50로 나누고 각각의 경우에 대해 안정성 해석을 수행하고, M-C model과 H-B model의 적합성을 알아보기 위하여 연직방향변위, 수평방향의 변위, 소성영역을 비교하였다.

Figure 4.2 Boundary conditions and model analysis
Table 4.1 Input data of Mohr–Coulomb model

<table>
<thead>
<tr>
<th>specific gravity (t/m³)</th>
<th>poisson’s ratio</th>
<th>internal friction angle (°)</th>
<th>cohesion (MPa)</th>
<th>young’s modulus (GPa)</th>
<th>tensile strength (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.70</td>
<td>0.261</td>
<td>37.32°</td>
<td>4.29</td>
<td>26.64</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Table 4.2 Input data of Hoek–Brown Model

<table>
<thead>
<tr>
<th>σₐ (MPa)</th>
<th>mmi</th>
<th>ssi</th>
</tr>
</thead>
<tbody>
<tr>
<td>89.4</td>
<td>3.189</td>
<td>0.0286</td>
</tr>
</tbody>
</table>

(a) Displacement measuring point (b) Max, Min principal stress measuring point

Figure 4.3 Measuring point
4.3.2 연직방향변위, 수평방향변위

채굴을 하면서 암반 내에서 발생하는 용력의 재배치 결과 암반에서 변위가 발생한다. 변위의 크기는 암반의 물성과 초기응력상태 및 터널의 형상과 배열에 따라 변한다. 채굴공동주변에 발생하는 연직방향변위와 수평방향변위를 정리하면 Table 4.3, Table 4.4와 같다.

연직방향변위는 1지점(천반부)에서 H-B model과 M-C model의 차이가 K값에 따라 0.129mm~0.147mm로 H-B model이 더 크게 발생하였으며 2지점(좌측부)에서는 K값에 따라 0.054mm~0.072mm의 차이로 H-B model이 더 크게 발생하였고 3지점(바닥부)에서도 K값에 따라 0.012mm~0.011mm의 차이로 H-B model이 더 크게 발생하였다. 마찬가지로 4지점(우측부)에서도 K값에 따라 0.062mm~0.068mm의 차이로 H-B model이 더 크게 발생하였다. 각 측점위치에 따라 평균적으로 H-B model이 M-C model에 비해 연직방향변위가 12.38%, 16.14%, 4.15%, 15.26% 정도 크게 나타났다.

수평방향변위는 1지점(천반부)에서 H-B model과 M-C model의 차이가 K값에 따라 0.011mm~0.024mm로 H-B model이 더 크게 발생하였으며 2지점(좌측부)에서는 K값에 따라 0.216mm~0.265mm의 차이로 H-B model이 더 크게 발생하였고 3지점(바닥부)에서도 K값에 따라 0.006mm~0.027mm의 차이로 H-B model이 더 크게 발생하였다. 마찬가지로 4지점(우측부)에서도 K값에 따라 0.199mm~0.221mm의 차이로 H-B model이 더 크게 발생하였다. 각 측점위치에 따라 평균적으로 H-B model이 M-C model에 비해 수평방향변위가 16.42%, 26.17%, 9.83%, 20.23% 정도 크게 나타났다. H-B model과 M-C model 모두 K값이 증가 할수록 천반부와 바닥 부는 감소하였지만 좌측부와 우측 부는 증가하였다.
Table 4.3 The Y-displacement of H-B model and M-C model (mm)

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H-B</td>
<td>M-C</td>
</tr>
<tr>
<td>k=0.75</td>
<td>1</td>
<td>-1.104</td>
<td>-0.975</td>
</tr>
<tr>
<td>k=1.00</td>
<td>2</td>
<td>-1.140</td>
<td>-1.019</td>
</tr>
<tr>
<td>k=1.25</td>
<td>3</td>
<td>-1.179</td>
<td>-1.062</td>
</tr>
<tr>
<td>k=1.50</td>
<td>4</td>
<td>-1.243</td>
<td>-1.096</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H-B</td>
<td>M-C</td>
</tr>
<tr>
<td>k=0.75</td>
<td>5</td>
<td>0.200</td>
<td>0.188</td>
</tr>
<tr>
<td>k=1.00</td>
<td>6</td>
<td>0.251</td>
<td>0.241</td>
</tr>
<tr>
<td>k=1.25</td>
<td>7</td>
<td>0.306</td>
<td>0.297</td>
</tr>
<tr>
<td>k=1.50</td>
<td>8</td>
<td>0.373</td>
<td>0.362</td>
</tr>
</tbody>
</table>

Table 4.4 The X-displacement of H-B model and M-C model (mm)

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H-B</td>
<td>M-C</td>
</tr>
<tr>
<td>k=0.75</td>
<td>1</td>
<td>0.078</td>
<td>0.067</td>
</tr>
<tr>
<td>k=1.00</td>
<td>2</td>
<td>0.036</td>
<td>0.018</td>
</tr>
<tr>
<td>k=1.25</td>
<td>3</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td>k=1.50</td>
<td>4</td>
<td>0.034</td>
<td>0.010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H-B</td>
<td>M-C</td>
</tr>
<tr>
<td>k=0.75</td>
<td>5</td>
<td>0.067</td>
<td>0.061</td>
</tr>
<tr>
<td>k=1.00</td>
<td>6</td>
<td>0.036</td>
<td>0.013</td>
</tr>
<tr>
<td>k=1.25</td>
<td>7</td>
<td>0.004</td>
<td>0.011</td>
</tr>
<tr>
<td>k=1.50</td>
<td>8</td>
<td>0.035</td>
<td>0.008</td>
</tr>
</tbody>
</table>
Figure 4.4 Y-displacement comparison of H-B model and M-C model
Figure 4.5 X-displacement comparison of H-B model and M-C model
4.3.3 소성영역

갱도를 굴착하면 지하공동 주위 암반은 응력 재배치와 응력 집중으로 채굴공동 주변과 광주에 응력이 집중된다. 채굴에 의해 암반 내 응력이 과다하게 집중되면 암반은 파괴되어 소성영역으로 변할 수 있다. 만약 암반이 소성영역으로 변하게 되면 암반은 채굴공동을 지지할 수 있는 강도가 상실되고 광주와 채굴공동의 안정성은 유지될 수 없다. 따라서 유한차분법 등의 수치해석 방법으로 암반 내 채굴공동의 안정성 평가하는 경우 소성영역의 분포를 검토하는 것이 중요하다.

H-B model이 M-C model에 대한 소성영역 겸토결과는 Figure 4.6~4.9에 나타나있다. H-B model이 M-C model비해 다소 큰 소성영역을 나타낸다. 또한 H-B model은 K값의 증가로 소성영역이 증가 하지만 M-C model은 K값 증가에 따른 소성영역의 변화가 거의 일정하다.
Figure 4.6 Plasticity indicator comparison of H–B model and M–C model
\((K=0.75)\)
Figure 4.7 Plasticity indicator comparison of H–B model and M–C model (K=1.00)
Figure 4.8 Plasticity indicator comparison of H–B model and M–C model (K=1.25)
Figure 4.9 Plasticity indicator comparison of H-B model and M-C model (K=1.50)
4.4 RMR과 RMi에 의해 구한 파괴조건계수에 의한 Hoek-Brown Model 비교

4.4.1 개요
Hoek-Brown Model의 파괴식은 암반의 풍화와 습윤 상태 및 절리 암반 등에 대한 평가법이 RMR분류법, Q-System과 같이 정량화하여 이를 파괴조건식에 결

부시킨 것이다. 본 연구에서 최근에 개발된 RMi에 의해 구한 Hoek-Brown 파괴조건계수와 이를 RMR분류법에 의해 구한 파괴조건계수를 비교함으로써 보다 새로운 암반분류법의 신뢰성이 확보될 것이다.

상호간의 적정성을 검토하기 위해 K값을 0.75, 1.00, 1.25, 1.50로 하여 연직방향 변위, 수평방향변위, 최대 주응력, 최소주응력, 소성영역을 각각 비교하였다.

Table 4.5 Input data of Hoek-Brown Model

<table>
<thead>
<tr>
<th>Value</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RMR</td>
<td>73</td>
<td>89.4</td>
<td>3.189</td>
</tr>
<tr>
<td>RMi</td>
<td>16.09</td>
<td>89.4</td>
<td>3.337</td>
</tr>
</tbody>
</table>

4.4.2 연직방향변위, 수평방향변위
채굴을 하면서 암반 내에서 발생하는 응력의 재배치 결과 암반에서 변위가 발생

한다. 변위의 크기는 암반의 물성과 초기응력상태 및 터널의 형상과 배열에 따라

변한다. 채굴공동주변에 발생하는 연직방향변위와 수평방향변위를 정리하면 Table 4.6, Table 4.7와 같다.

연직방향변위는 1지점(천반부)에서 RMR에 의한 H-B model과 RMi에 의한 H-B model의 차이가 K값에 따라 0.048mm~0.058mm로 차이가 나며 2지점(좌측부)에서

는 K값에 따라 차이가 0.012mm~0.023mm가 난다. 또한 3지점(바닥부)에서도 K값

에 따라 0.017mm~0.013mm의 차이가 났으며, 4지점(우측부)에서도 K값에 따라

0.021mm~0.029mm의 차이가 났다. 정리해보면 연직방향변위는 평균적으로 측정위

치에 따라 4.77%, 3.78%, 4.67%, 5.20%로 거의 차이가 나지 않았다.
K값의 따른 연직방향 변위 변화 추이를 살펴보면 RMR에 의한 H-B model과 RMi에 의한 H-B model 모두 K값이 증가 할수록 천반부와 바닥 부는 증가하였지만 좌측부와 우측 부는 감소하였다.

수평방향 변위는 1지점(천반부)에서 RMR에 의한 H-B model과 RMi에 의한 H-B model의 차이가 K값에 따라 0.006mm~0.030mm로 차이가 나며 2지점(좌측부)에서 K값에 따라 0.061mm~0.018mm의 차이가 났다. 또한 3지점(바닥부)에서도 K값에 따라 0.002mm~0.028mm의 차이가 났으며 4지점(우측부)에서도 K값에 따라 0.074mm~0.033mm의 차이가 났다. 수평방향 변위는 평균적으로 측정위치에 따라 5.88%, 1.46%, 3.07%, 3.19%로 거의 차이가 나지 않았다.

K값의 따른 수평방향 변위 변화 추이를 살펴보면 RMR에 의한 H-B model과 RMi에 의한 H-B model 모두 K값이 증가 할수록 천반부와 바닥 부는 증가하였지만 좌측부와 우측 부는 감소하였다.
Table 4.6 Y-displacement (mm) of RMR and RMi

<table>
<thead>
<tr>
<th>Point</th>
<th>K value</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>-1.104</td>
<td>-1.056</td>
<td>-0.444</td>
</tr>
<tr>
<td>k=1.00</td>
<td>-1.140</td>
<td>-1.098</td>
<td>-0.446</td>
</tr>
<tr>
<td>k=1.25</td>
<td>-1.179</td>
<td>-1.114</td>
<td>-0.438</td>
</tr>
<tr>
<td>k=1.50</td>
<td>-1.243</td>
<td>-1.185</td>
<td>-0.434</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point</th>
<th>K value</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>0.200</td>
<td>0.183</td>
<td>-0.455</td>
</tr>
<tr>
<td>k=1.00</td>
<td>0.251</td>
<td>0.241</td>
<td>-0.443</td>
</tr>
<tr>
<td>k=1.25</td>
<td>0.306</td>
<td>0.301</td>
<td>-0.431</td>
</tr>
<tr>
<td>k=1.50</td>
<td>0.373</td>
<td>0.360</td>
<td>-0.434</td>
</tr>
</tbody>
</table>

Table 4.7 X-displacement (mm) of RMR and RMi

<table>
<thead>
<tr>
<th>Point</th>
<th>K value</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>0.078</td>
<td>0.072</td>
<td>-0.827</td>
</tr>
<tr>
<td>k=1.00</td>
<td>0.036</td>
<td>0.034</td>
<td>-1.105</td>
</tr>
<tr>
<td>k=1.25</td>
<td>0.003</td>
<td>0.010</td>
<td>-1.410</td>
</tr>
<tr>
<td>k=1.50</td>
<td>0.034</td>
<td>0.064</td>
<td>-1.842</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point</th>
<th>K value</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>0.067</td>
<td>0.065</td>
<td>0.945</td>
</tr>
<tr>
<td>k=1.00</td>
<td>0.036</td>
<td>0.038</td>
<td>1.073</td>
</tr>
<tr>
<td>k=1.25</td>
<td>0.004</td>
<td>0.016</td>
<td>1.239</td>
</tr>
<tr>
<td>k=1.50</td>
<td>0.035</td>
<td>0.063</td>
<td>1.424</td>
</tr>
</tbody>
</table>
Figure 4.10 Y-displacement comparison of RMR and RMi
Figure 4.11 X-displacement comparison of RMR and RMi
4.3.3 최대주응력, 최소주응력

초기응력 상태의 암반을 굴착하면 채굴공동 주변의 암반에 응력이 집중된다. 만약 집중된 응력의 수준이 암반의 강도보다 크게 되면 암반은 파괴되어 지지력이 없어지게 된다. 광주에 의해 채굴공동의 안정성을 유지하는 경우에는 광주의 형상에 따라 응력의 분포가 변할 수 있다. 최대주응력과 최소주응력을 정리하면 Table 4.8~4.9와 같다.

먼저 광주 내 최대주응력 특성은 다음과 같다. RMR에 의한 H-B model과 RMi에 의한 H-B model의 차이가 1지점에서 \(K\)값에 따라 0.18MPa~0.86MPa의 차이가 나며, 2지점에서는 \(K=0.75, K=1.00\)일 때는 0.06MPa, 0.04MPa의 차이가 났으나 \(K=1.25, K=1.50\)에서는 값이 동일하였다. 3지점에서는 \(K\)값에 따라 0.25MPa~0.41MPa로 차이가 나며, 4지점에서는 \(K\)값에 따라 0.42MPa~0.22MPa로 차이가 났다. 또한, 5지점에서는 \(K\)값에 따라 0.02MPa~0.08MPa, 6지점에서는 \(K\)값에 따라 0.74MPa~1.06MPa, 마지막으로 7지점에서는 \(K\)값에 따라 0.33MPa~0.20MPa의 차이가 났다. 평균적으로 RMR에 의한 H-B model과 RMi에 의한 H-B model의 최대주응력의 차이는 각 지점별로 2.08%, 0.44%, 1.81%, 1.39%, 2.26%, 3.77%, 1.69% 정도로 차이가 거의 발생하지 않았다.

또한 광주 내 최소주응력의 특성은 다음과 같다. RMR에 의한 H-B model과 RMi에 의한 H-B model의 차이가 1지점에서 \(K\)값에 따라 0.04MPa~0.02MPa의 차이가 나며, 2지점에서는 \(K\)값에 따라 모두 0.01MPa의 차이가 났다. 3지점에서는 \(K\)값에 따라 0.03MPa~0.03MPa의 차이가 났으며, 4지점에서는 \(K\)값에 따라 0.15MPa, ~0.08MPa의 차이가 났다. 또한 5지점에서는 \(K\)값에 따라 0.01MPa~0.06MPa, 6지점에서는 \(K\)값에 따라 0.09MPa~0.10MPa, 7지점에서는 \(K\)값에 따라 0.01MPa~0.10MPa의 차이가 났다. 평균적으로 RMR에 의한 H-B model과 RMi에 의한 H-B model의 최소주응력의 차이는 각 지점별로 0.59%, 4.05%, 1.01%, 3.38%, 3.98%, 2.82%, 1.80% 정도로 차이가 거의 발생하지 않았다.
Table 4.8 Maximum principal stress of RMR and RMi (MPa)

<table>
<thead>
<tr>
<th>K value</th>
<th>Location</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>22.00</td>
<td>22.18</td>
<td>9.84</td>
</tr>
<tr>
<td>k=1.00</td>
<td>22.01</td>
<td>22.35</td>
<td>8.97</td>
</tr>
<tr>
<td>k=1.25</td>
<td>23.07</td>
<td>23.64</td>
<td>8.69</td>
</tr>
<tr>
<td>k=1.50</td>
<td>23.19</td>
<td>24.05</td>
<td>8.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>22.83</td>
<td>22.58</td>
<td>22.02</td>
</tr>
<tr>
<td>k=1.00</td>
<td>23.29</td>
<td>23.87</td>
<td>22.67</td>
</tr>
<tr>
<td>k=1.25</td>
<td>23.75</td>
<td>24.07</td>
<td>24.92</td>
</tr>
<tr>
<td>k=1.50</td>
<td>24.32</td>
<td>24.73</td>
<td>26.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
<td>RMR</td>
</tr>
<tr>
<td>k=0.75</td>
<td>10.08</td>
<td>10.10</td>
<td>21.08</td>
</tr>
<tr>
<td>k=1.00</td>
<td>9.73</td>
<td>9.32</td>
<td>22.82</td>
</tr>
<tr>
<td>k=1.25</td>
<td>9.29</td>
<td>9.71</td>
<td>24.02</td>
</tr>
<tr>
<td>k=1.50</td>
<td>8.29</td>
<td>8.21</td>
<td>25.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K value</th>
<th>Point</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
</tr>
<tr>
<td>k=0.75</td>
<td>14.31</td>
<td>14.64</td>
</tr>
<tr>
<td>k=1.00</td>
<td>14.26</td>
<td>14.51</td>
</tr>
<tr>
<td>k=1.25</td>
<td>14.22</td>
<td>14.38</td>
</tr>
<tr>
<td>k=1.50</td>
<td>14.20</td>
<td>14.00</td>
</tr>
</tbody>
</table>
Figure 4.12 Maximum principal stress comparison of RMR and RMi
Table 4.9 Minimum principal stress of RMR and RMi (MPa)

<table>
<thead>
<tr>
<th>K value</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
</tr>
<tr>
<td>k=0.75</td>
<td>3.31</td>
<td>3.35</td>
</tr>
<tr>
<td>k=1.00</td>
<td>3.49</td>
<td>3.47</td>
</tr>
<tr>
<td>k=1.25</td>
<td>3.63</td>
<td>3.61</td>
</tr>
<tr>
<td>k=1.50</td>
<td>3.78</td>
<td>3.69</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
</tr>
<tr>
<td>k=0.75</td>
<td>3.36</td>
<td>3.39</td>
</tr>
<tr>
<td>k=1.00</td>
<td>3.54</td>
<td>3.50</td>
</tr>
<tr>
<td>k=1.25</td>
<td>3.69</td>
<td>3.65</td>
</tr>
<tr>
<td>k=1.50</td>
<td>3.80</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
</tr>
<tr>
<td>k=0.75</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>k=1.00</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>k=1.25</td>
<td>0.29</td>
<td>0.33</td>
</tr>
<tr>
<td>k=1.50</td>
<td>0.30</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMR</td>
<td>RMi</td>
</tr>
<tr>
<td>k=0.75</td>
<td>2.64</td>
<td>2.63</td>
</tr>
<tr>
<td>k=1.00</td>
<td>2.67</td>
<td>2.73</td>
</tr>
<tr>
<td>k=1.25</td>
<td>2.68</td>
<td>2.78</td>
</tr>
<tr>
<td>k=1.50</td>
<td>2.75</td>
<td>2.85</td>
</tr>
</tbody>
</table>
Figure 4.13 Minimum principal stress comparison of RMR and RMi
4.3.4 소성영역

갱도를 굽착하면 지하공동 주위 암반은 응력 재배치와 응력 집중으로 채굴공동 주변과 광주에 응력이 집중된다. 채굴에 의해 암반 내 응력이 과다하게 집중되면 암반은 파괴되어 소성영역으로 변할 수 있다.

만약 암반이 소성영역으로 변하게 되면 암반은 채굴공동을 지지할 수 있는 강도가 상실되고 광주와 채굴공동의 안정성은 유지될 것이다. 따라서 유한차분법 등의 수치해석 방법으로 암반 내 채굴공동의 안정성 평가하는 경우 소성영역의 분포를 검토하는 것이 중요하다. 이러한 소성영역의 검토는 RMR에 의한 H-B model과 RMI에 의한 H-B model의 소성영역 검토가 매우 중요한 것이다.

각각의 소성영역의 비교는 Figure 14~17까지 나타나 있다. RMR에 의한 H-B model의 소성영역과 RMI에 의한 H-B model의 소성영역을 비교해보면 소성영역의 깊이는 매우 열게 형성되었으며 같은 K값에서 두 모델이 매우 흡사한 양상을 보였 다. 또한 K값이 증가함에 따라 약간 넓어지는 경향을 보였다.
(a) \(K=0.75 \) (RMR)

(b) \(K=0.75 \) (RMi)

Figure 4.14 Plasticity indicator comparison of RMR and RMi (K=0.75)
Figure 4.15 Plasticity indicator comparison of RMR and RMi (K=1.00)
Figure 4.16 Plasticity indicator comparison of RMR and RMi (K=1.25)
Figure 4.17 Plasticity indicator comparison of RMR and RMi (K=1.50)
5. 결론

본 연구는 지하채굴공동 안정성 해석을 위한 암반등급 분류법 비교를 위해 먼저 M-C Model과 H-B Model을 적용하여 해석결과를 비교 검토하여 지반특성에 적합한 수치해석 모델산정을 하고, RMR과 RMi분류법에 의해 얻어진 H-B Model의 입력 변수 값인 과괴조건계수(m, s)에 대해 서로간의 적용성을 비교 검토한 결과는 다음과 같다.

1. 본 연구지역의 RMR분류법에 의한 값은 A갱도 58(III), B갱도 70~76(II), pillar 72~74(II)의 값이 나타났으며, Q-system에 의한 값은 A갱도 14(Good), B갱도 16.6~50(Good~Very Good), pillar 33~100(Very Good)이 나타났다. 또한 RMi의 값은 A갱도 18.56(Very high), B갱도 30.35(Very high), pillar 16.09(Very high)가 나왔다. 비록 몇몇의 입력 변수 값들이 차이가 있다 하더라도, 암반등급의 최종 평점은 유사하였다.

2. 수치해석 시 M-C Model과 H-B Model을 비교한 결과 연직방향변위는 K값이 증가함에 따라 천반 부와 바닥 부는 증가하였지만 좌측 부와 우측 부는 감소하였다. 반면 수평방향변위는 K값이 증가함에 따라 천반 부와 바닥 부는 감소하였지만 좌측 부와 우측 부는 증가하였다. 두 Model의 연직방향변위와 수평방향변위는 K값에 따른 변화양상은 같았다. 하지만 H-B Model은 K값의 증가로 소성영역이 증가하지만 M-C Model은 K값 증가하여도 소성영역은 일정하였다.

4. 수치해석 시 RMR에 의한 H-B Model과 RMi에 의한 H-B Model의 연직방향 변위는 K값이 증가할수록 천반 부와 바닥 부는 증가 하였지만 좌측 부와 우측 부는 감소하였다. 반면 수평방향변위는 K값이 증가함에 따라 천반 부와 바닥 부는 감소하였지만 좌측 부와 우측 부는 증가하였다. 최대주응력과 최소주응력은 K값이 증가할수록 광주의 모서리 부분(1지점, 3지점, 4지점, 6지점)에서는 응력이 증가하였다. 또한 소성영역은 K값이 증가함에 따라 두 경우 모두 비슷한 양상으로 증가하였다.

5. 측점위치 따라 RMR에 의해 H-B Model과 RMi에 의한 H-B Model의 연직방향 변위의 차이는 4.77%, 3.78%, 4.67%, 5.20% 수평방향변위의 차이는 5.88%, 1.46%, 3.07%, 3.19%로 서로 유사하며 최대주응력의 차이는 2.08%, 0.44%, 1.81%, 1.39%, 2.26%, 3.77%, 1.69%, 최소주응력의 차이는 0.59%, 4.05%, 1.01%, 3.38%, 2.82%, 1.80%로 차이가 거의 없었다. 또한 소성영역은 같은 K값에서 두 모델이 매우 흡사한 양상을 보인다.

6. 본 연구지역에 적합한 수치해석 모델 선정을 위하여 검토한 결과 비교적 높은 응력수준으로 영역Ⅲ(Figure 4.1)에 해당하며 해석 결과 H-B Model이 더 보수적인 경향을 나타내어 안전 측의 설계가 가능할 것이다. 또한 RMi분류법과 RMR분류법에 의해 구한 H-B Model의 파괴조건계수로 해석한 결과 값의 차이가 미비하여 서로간의 암반분류법은 매우 유사하다고 사료된다. 앞으로는 경도의 안정성 평가를 위한 연속체 모델 선정에 있어서 다양한 심도와 조건에서의 적용성 검토가 필요하며, 많은 현장에서 경험적인 암반분류법들을 적용함으로써 신뢰성을 높여야 할 것이다.
참 고 문 험

1) 류복현, “지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한연구”, 조선대학교 석사학위논문, pp. 3~5, 2005

2) 윤성준, “RMR을 적용한 Hoek-Brown Model의 터널해석에 관한 연구”, 단국대학교 석사학위논문, pp. 3~10, 1999

4) 박상도, “암반분류에서 RMR과 Q-System의 상관분석”, 조선대학교 석사학위논문, pp. 9~15, 1999

5) 신희준, 선우춘, 이두화, “토목기술자를 위한 지질조사 및 암반분류”, 구미서관, pp. 221~258, 2000

12) 대한광업진흥공사, “대규모 개발 채광광산의 안전진단 및 채광설계 연구”, pp. 94~96, 2003
13) 이인모, “암반역학의 원리”, 새론, pp. 223~239, 2001

18) 대한광업진흥공사, “정밀조사보고서(석회석, 영월-토교·제천-두학지구)”, pp. 9~22, 2002

21) 유기정, “NATM 터널 굴착시 불연속면을 고려한 터널주위의 변형거동 연구”, 조선대학교 석사학위논문, pp. 27, 2000
감사의 글

어느덧 2년간의 대학원 생활을 마치려는 시점에 저에게 언제나 힘과 용기를 북돋아 주신 모든 분들께 감사드립니다.

학부 때부터 대학원 현재까지 항상 사랑으로 보살펴 주시고, 인성을 강조하시며 이끌어주신 지도교수님 강주원 교수님께 진심으로 감사드립니다. 그리고 저의 부족한 논문을 심사해주시고 조언해 주신 고전석 교수님, 박천영 교수님, 학부 때부터 지금까지 관심과 애정을 갖고 열정적으로 지도해 주신 양해승 교수님, 서동우 교수님, 박영식 교수님, 한오형 교수님 그리고 지금은 자리에 계시지 않지만 저의 진로를 같이 고민해주시고 도움해 주신 이창신 교수님께도 감사의 말씀을 전해드리고 싶습니다.

저희 암석역학실험실에 항상 따뜻한 관심과 애정으로 많은 가르침을 주신 원우회 선배님들이신 원연호 선배님, 김영희 선배님, 추영배 선배님, 한남철 선배님, 조영동 선배님, 노영배 선배님, 박정봉 선배님, 문창일 선배님, 최태웅 선배님, 김재웅 선배님, 위장복 선배님, 이성 선배님, 강석곤 선배님, 강성진 선배님, 박기동 선배님, 윤석 선배님, 황남수 선배님, 안기호 선배님, 김연수 선배님, 이창원 선배님, 이창훈 선배님, 이수연 선배님, 오현 선배님, 유기정 선배님, 박윤석 선배님, 김수로 선배님께 감사드립니다.

실험실 생활동안 늘 가족처럼 따뜻한 격려와 가르침을 주셨던 김종인 선배님, 박현석 선배님, 순오형, 영석이 형, 호민이 형, 강일이 형, 윤택이 형, 복현이 형, 승현이, 우리 실험실을 잘 이끌 지우, 청신, 동조, 태철이, 그리고 이 자리에 없지만 다른 자리에서도 열심인 나의 실험실 동기인 승민이와 대웅이, 마지막으로 함께 졸업하는 규용이형에게도 고마움을 전합니다.

같은 실험실은 아니지만 항상 밝고 따뜻하게 대해주신 김종균 선배님, 김성구 선배님, 현호 형, 상철이 형, 감진이 형, 대우 형, 장준이 형, 영인이, 성태, 인회,
경태에게도 고마움을 전합니다.

지금까지 나와 함께하고 앞으로도 함께 할 친구 승철, 준식, 종혁, 상훈, 주연, 명완, 성현이에게 고마움을 전합니다. 자랑스러운 내 동생 혼범이, 항상 나를 격려해주고 믿고 따라주는 미선이에게도 고마움을 전합니다.

마지막으로 내가 태어나서 지금까지 내가 있게 만들어 주신 우리 엄마에게 진심으로 감사드리며 이 논문을 바칩니다. 항상 건강하시길 바랍니다.

또한 저를 아끼고 사랑해주시는 모든 분들께 행복이 깃들길 바랍니다.