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Residual Stress Prediction in Dissimilar Metals Welding

Zones Using Data-based Modeling
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I. Introduction

The factors that have an effect on fatigue strength are residual stress, stress
concentration, the mechanical properties of the material, and the macrostructure and
microstructure. Among them, Residual stress is one of the most important factors
and its effect on high-cycle fatigue is of more concern than the other factors.
Residual stress is a tension or compression that exists in a material without
external load being applied and the residual stresses in a component or structure
are caused by incompatible internal permanent strains. And welding is one of the
most significant causes of residual stresses and typically produces large tensile
stresses. Welding joins the components of a structure together. On the other hand,
the complex thermal cycles from welding result in formation of residual stresses in
the joint region and distortion of the welded structure. Both welding residual stress
and distortion can significantly impair the performance and reliability of the welded
structures.

In particular, stress—corrosion cracking usually occurs when the following three
factors exist at the same time: susceptible material, corrosive environment, and
tensile stress (including residual stress). Thus, residual stress becomes very critical
for stress—corrosion cracking when it is difficult to improve the material corrosivity
of the components and their environment under operating conditions [1]. Since the
welding residual stress is a major factor to generate Primary Water Stress
Corrosion Cracking (PWSCC), it is important to predict the welding residual stress
for preventing the PWSCC.

Residual stresses may be measured by non-destructive techniques and locally
destructive techniques. The non-destructive techniques include X-ray and neutron
diffraction methods, magnetic methods, and ultrasonic techniques and the locally
destructive techniques includes hole drilling methods, the ring core techniques, and

the sectioning methods.



In recent years, there has been a rapid increase in efforts to predict residual
stresses by numerical modeling of welding processes. Modeling of welding is
technically and computationally demanding, and simplification and idealization of the
material behavior, process parameters and geometry 1is inevitable. Numerical
modeling is a powerful tool for predicting residual stress. Over the past two
decades, the finite element method has been used to predict residual stress due to
welding. Simulations of welding processes involve thermo—mechanical finite element
analyses (FEAs) of the welding zone [2].

In this thesis, a support vector regression (SVR), a fuzzy neural network (FNN),
a fuzzy support vector regression (FSVR) model among the artificial intelligence
methods which have been studied to develop data-based models are applied to
easily evaluate the welding residual stress for weld zones of different kinds of
metals. With training, these algorithms which are applied can be adept to
exceptional nonlinear function approximation. And in order to optimize and test
these models, the welding residual stress data should be acquired at first. These
data were obtained in a previous work [3] by performing FEAs for various welding
conditions such as pipeline shapes, welding heat input, welding metal strength, and
the constraint of the pipeline end parts. Note that this thesis does not focus on the
accuracy of FEA models for estimating the welding residual stress but focuses on
the nonlinear prediction of the welding residual stress using these algorithms, based
on the assumption that the FEA models are accurate.

Dissimilar welding joint between a nozzle and a pipe is regarded in the analyses
since it has been known to be highly susceptible to PWSCC in the primary
systems of nuclear power plants. Then, on the basis of the acquired data, SVR,
FSVR and FNN models are developed to easily evaluate the residual stress in the
welding of dissimilar metals for pipelines at NPPs. Also, the method combined with
the different models has been used to solve the prospective overfitting problems of

a performance improvement and accomplish the increase of reliability.



II. Computation of Welding Residual Stress
Using FEA

A. Analysis Conditions

Parametric FEAs had been carried out to obtain the data on welding residual
stress under various welding conditions [3]. A dissimilar welding joint between a
nozzle and a pipe is regarded in the analyses (see Fig. 1), because such joints are
known to be highly susceptible to PWSCC in the primary systems of nuclear
power plants. The base metals of the nozzle and the pipe were assumed to be
SADBO8 ferritic steel and TP 316 austenite stainless steel, respectively, and Alloy
82/182 was used as a filler metal. Next, a ferritic steel nozzle was buttered with
Alloy 82 and treated with heat after the welding. A gas tungsten arc weld was
used with the Alloy 82 filler metal in the first pass welding for the root gap, and
then a shielded metal arc weld was used with the Alloy 182 filler metal for the

remaining passes.

Alloy 82/182
AN
t I | s1s316 | l SA508

N - v d
Ro / Buttering RN

A
Cépter
path
— » +

<vvv“‘vv“vvvvvv‘
Fig. 1. A Welding Zone of Dissimilar Metals and Prediction Paths in the Welding

Inside path

Zone for Data Acquisition
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The residual stress of a nozzle-pipe welding joint is usually affected by pipe
thickness, heat input, the strength of welding metals, and the constraints of welded
pipes. Therefore, a combination of these parameters was used as input data in the
parametric FEA. Table 1 summarizes the values of each parameter and the

constraint conditions of the pipes.

Table 1. Conditions for Analyzing Welding Residual Stress

Pipeli h Heat input, Yield stress of

ipeline shape o

P w H [k]/sec] |weld metal, Oys Cor:jstran;t of
: [MPal end section

Rolmm] | Rn[mm] Ro/t Pass 1; others

0.49764; 1.2690 192.33
205.6 300.10 4.8778 | 0.55985; 1.4277 203.06
205.6 271.75 6.8763 |0.62205; 1.5863 213.70 Restrained
205.6 256.80 8.8735 ]0.68426; 1.7449 224.38

0.74646; 1.9036 235.07
0.49764; 1.2690 192.33

205.6 300.10 4.8778 |0.55985; 1.4277 203.06
205.6 271.75 6.8763 |0.62205; 1.5863 213.70 Free
205.6 256.80 8.8735 |0.68426; 1.7449 224.38
0.74646; 1.9036 235.07

B. Finite Element Models

The welding simulation of finite element analyses consists of a thermal analysis,
which represents a thermal process during welding, followed by a structural
analysis based on the results of the thermal analysis. Therefore, a sequentially
coupled thermal-stress analysis was used to calculate the welding residual stress.
For the structural analysis, the temperature contours was taken, which were made
available by the thermal analysis, and they were used as input data to compute a

range of stress contours. For these analyses, three types of axisymmetric



two-dimensional finite element models (as shown in Fig. 2) were developed, which
vary in relation to the thickness of the pipes. Several studies have shown that an
axisymmetric model is sufficient to simulate a pipe welding joint [4-6], even
though real welding is a three—dimensional procedure.

To calculate the welding residual stress, the ABAQUS program was used to
perform the coupled FEAs [7]. Also, an 8-node quadratic quadrilateral axisymmetric
diffusive heat transfer (DCAX8 in ABAQUS) was used as a finite element in the
thermal analysis; in addition, an 8-node biquadratic axisymmetric
stress/displacement quadrilateral with reduced integration (CAX8R in ABAQUS)
was used as the element in the structural analysis.

The welding process was simulated by eight welding passes for R,/t=8.8735,
nine welding passes for R&,/t=6.8763, and 11 welding passes for R,/t=4.8778.
Each bead in the model was considered to be a pass so that the number of passes
in the finite element model was equal to the number of beads in the simulated
welding. In the meshing, each pass was identified by grouping the corresponding
elements and activating them incrementally to simulate the deposit of each bead.
Given the assumption that post-welding heat treatment is conducted after the
buttering, the buttering procedure in the models was ignored. Also, the
metallurgical transformations in the ferritic steel was ignored; that is, in the
heat-affected zone and with respect to the dilution between the base and welding
metals. However, the annealing effect was considered in the models, and the

annealing temperature was 1400C.



mEmmman:

(a) R,/t= 4.8778

EEEEESEEARAREARE:

(b) R,/t= 6.8763

(c) R,/t=8.8735

Fig. 2. Axisymmetric Finite Element Models for a Nozzle-pipe Dissimilar Metal
Weld Joint



M. Data-based Models to Predict Welding

Residual Stress

A. Support Vector Regression (SVR)

An SVR method was presented in the previous work [8] to estimate the residual

stress for dissimilar metal welding in accordance with various welding conditions.
The estimation of continual variables i1s known as regression. The classical
regression techniques are based on the strict assumption that probability
distribution functions are known. Regrettably, in a lot of practical situations, there
is not enough information about the underlying probability distribution laws. For
the most part, all we have are recorded training patterns which are usually high
dimensional. Therefore, probability distribution-free regression techniques are
required that do not need knowledge of probability distributions. Recently, learning
and soft computing-based approaches such as neural networks (NNs) and SVRs
have widely been used in functional regression problems [9-12]. Although both data
modeling methods of NNs and SVRs show comparable results on the most popular
benchmark problems, the theoretical status of SVRs makes them an attractive and

promising area of research [13].

The SVR is to map nonlinearly the original data z into a higher-dimensional
feature space. That is, in order to learn nonlinear relations with a linear machine, it
is required to select a set of nonlinear feature and to express the data in the new
representation. This transformation can be achieved by using various nonlinear
mapping. Nonlinear regression problems in input space can become linear
regression problems in feature space.

The SVR model is given N training data {(z,y;)}"

=

(ER"XR where z; is the

_7_



input vector to the SVR model and y; is the actual output value, from which it

learns the input-output relationship. The SVR model can be expressed as follow
[13]:
N
y=f(:L')=i;wiqﬁi(w)%—b:wTd)(xH-b (1)
where the function ¢,(z) is called the feature that is nonlinearly mapped from the
input space z, w=[w, wy -+ wyl’, and ¢= (¢, By - .

Eq. (1) is a nonlinear regression model because the resulting hyper-surface is a
nonlinear surface hanging over the m-dimensional input space. However, after the
input vectors z are mapped into vectors ¢(z) of a high dimensional kernel-induced
feature space, the nonlinear regression model is turned into a linear regression
model in this feature space. The nonlinear function is learned by a linear learning
machine where the learning algorithm minimizes a convex functional. The convex
functional i1s expressed as the following regularized risk function, and the
parameters w and b are a support vector weight and a bias that are calculated by

minimizing the risk function:

N
Rw)=gw'wt AN~ (o), )
where
- 0 ]yyff(x)K €
|yi 7f(x)|5 B {’y, *f(w)‘* € otherwise )

The constant A is called a regularization parameter. The regularization parameter
determines the trade-off between the approximation error and the weight vector
norm. An increase of the regularization parameter A penalizes larger errors, which
leads to a decrease of approximation error. This can also be achieved easily by
increasing the weight vector norm. However, an increase in the weight vector
norm does not make sure of the good generalization of the SVR model. The

constants A\ and e are user-specified parameters and |y, — f(w)|€ is called the €

-insensitive loss function [14]. The loss equals zero if the predicted value f(z) is

_8_



within an error level e, and for all other predicted points outside the error level e,
the loss i1s equal to the magnitude of the difference between the predicted value

and the error level e (refer to Figs. 3 and 4).

%=1,
A

>
—£ | £ y—f(x)

Fig. 3. Linear e-insensitive Loss Function.

Yi

observed point

regression function
y=f(x)

y, observed point

v

Fig. 4. Insensitive e—tube and Slack Variables ¢, and f:- for the SVR Model.



Increasing the insensitivity zone e means a reduction in requirements for the
accuracy of approximation and it also decreases the number of support vectors,
leading to data compression. In addition, increasing the insensitivity zone € has
smoothing effects on modeling highly noisy polluted data. The foregoing regularized

risk function is converted into the following constrained risk function:

N
R(w,f,f*)Z%wTw+)\E(£i+§:) (4)

i=1
subject to the constraints
y—w'gl@)—b<et+g, i=12, N

wlelx)+b—y, <e+€, i=1,2, , N (5)
£,6 =0, i=1,2, ,N

where
g=1¢ & - &l
£=l6 & &I
The parameter & and 5: are slack variables representing upper and lower

constraints on the outputs of the system, respectively, and they are positive values
(refer to Fig. 4). The constrained optimization problem of Eq. (4) can be solved by
applying the Lagrange multiplier technique to Egs. (4) and (5) and then by using a
standard quadratic programming techinque. Finally, the regression function of Eq.

(1) becomes

y=r@)= D (a;—a;)K(@,z;)+b (6)

where K(z,z)=¢" (z,)¢(z) is called the kernel function. A number of coefficients
oci—oz: have nonzero values and the corresponding training data points are called

support vectors and have approximation errors equal to or larger than €.

_‘IO_



B. Fuzzy Support Vector Regression (FSVR)

The FSVR is known as support vector regression (SVR) that is combined with
a fuzzy concept. The proposed FSVR improves the SVR by reducing the effect of
outliers and noise. By applying a fuzzy membership function to each data point of
the SVR model, the regularized risk function can be reformulated, such that
different input data points can make different contributions to the learning of a
regression function as follows:

1 N
R(w) = 5wTw+ Ai;m\yff(w)b 7
where p,; is a fuzzy membership grade. Commonly used SVR methods apply an
equal weighting to all data points. However, FSVR uses different weightings
according to their importance, which is specified by the fuzzy membership grade.
Minimizing the regularized risk function is equivalent to minimizing the following
constrained risk function:
o1 u .
Rw.&€) = gw'w A (6 +6), ®)
subject to the constraints
y—wlplx)—b<e+&, i=12,N
wiplx)+b—y, <e+€ i=1,2,, N 9)
£,6 =0, i=1,2,,N
where the constant A determines the trade-off between the complexity of f(z) and
the amount up to which deviations greater than € are tolerated. The parameters
E=1¢ & - &7 and 5*2[51 52 £E]T are the slack variables (which are
positive) that represent the upper and lower constraints on the outputs of the
system like an SVR.
The constrained optimization problem can be solved by applying the Lagrange

multiplier technique to Egs. (8) and (9), which is expressed by the following

_‘I‘I_



Lagrange functional:

B (w,b,6, 6 s Z,w)——w w+/\zuz &+E)— Ea[w¢ )+b—y;+et+&] (10)
N

i=1

- 42aj[yi—wT¢(xi)—b+e+§j]— Z(ﬁ'igi—’—ﬁjf:)'

i=1 i=1

Minimizing Eq. (10) with respect to the primal variables, w,b,¢&;, 5: , gives the

following conditions:

pA—o;,—03; =0, 1=1,2,--- , N,

pA—a;, — 8, =0, i=1,2,- ,N.
The Lagrange functional [15] can be rewritten using the above minimum
conditions as follows:

Bla0) = Spyfo = a)) — e Do +a)) — £ 3333, ooy — 067 (@ )pa) 41

i=1 i=1 i=1l=1

subject to the constraints

(a-a})=0

suA k=12, N
<uA, k=12 N

o O
TTMZ

The above Lagrange functional can be solved by determining the values for «;

and a: using a quadratic programming technique. Finally, the regression function
of Eq. (1) is expressed as follows:
V *

1

where K (w,xi)zqﬁT (x;)¢(xz) is known as the kernel function which is mentioned in

_12_



the section I.A. The bias b is calculated as [14]

=

*

b==3 Do, =) K(z,.z)+ Klz,.z.),

where z, and z, are support vectors and they are data points positioned at the
boundary of the e-insensitivity zone (refer to Fig. 4).

The four most relevant design parameters for the FSVR model are the
insensitivity zone (e), the regularization parameter ()\), the kernel function
parameter (o), and the fuzzy membership grade (u). An increase in the
insensitivity zone (e), reduces the requirements for the accuracy of approximation
and allows a decrease in the number of SVs, leading to data compression. In
addition, increasing the insensitivity zone (e) has smoothing effects on modeling
highly noisy polluted data. An increase in the regularization parameter (\), reduces
larger errors, which lead to a decrease in the approximation error. This can also be
achieved by increasing the weight vector norm. However, an increase in the weight
vector norm decreases the good generalization capability of the FSVR model. The
kernel function parameter (o) determines the sharpness of the radial basis kernel

function. The fuzzy membership grade will be explained in the section IV.B.

C. Fuzzy Neural Network (FNN)

In fuzzy inference modeling, it is relatively easy to set up rough fuzzy rules for
a target system by intuition if we understand its dynamics well. However, the task
of fine-tuning the fuzzy rules to improve modeling performance is difficult.
Therefore, an FNN that can embody fuzzy inference models was proposed [3]. The
proposed FNN provides functions for performing fuzzy inference. The functions can
also be used to tune the parameters with respect to the shape of antecedent

linguistic terms and the relative importance of rules.

_13_



A fuzzy inference model consists of situation and action pairs where conditional
rules described in ’‘if-then statements’ are generally used. The task of adapting
fuzzy systems for on-line application involves neuronal improvements of fuzzy
inference systems and the fuzzification of neural network systems. In this way we
can exploit the complementary nature of fuzzy inference systems and neural
network systems. The combination of the two systems is usually called an FNN
system.

The fuzzy inference model can be accomplished through a clustering of numerical
data. A cluster center is in essence a prototypical data point that exemplifies a
characteristic behavior of a target system, and each cluster center can be used as
the basis of a fuzzy rule that describes the system behavior. The development of a
complete fuzzy system identification algorithm can therefore be based on the results
of a subtractive clustering (SC) technique (This method will be explained in next
chapter); this type of technique can be used as the basis of a fast and robust
algorithm for identifying a fuzzy inference model [16]. Therefore, a fuzzy inference
model based on an SC method can be used to predict the residual stress of
dissimilar metal welding.

The data-based fuzzy inference model assumes the availability of N input/output
training data pairs (z”(k),y(k)), where z (k)= (z,(k),2y k), z,, (k) ,k=1,2,---, N.
If we assume that the data points have been normalized in each dimension, the
method can begin by generating a number of clusters in the m X /N dimensional
input space. To develop a systematic approach to the generation of fuzzy rules
from a given input-output data set, we can use a Takagi-Sugeno-type fuzzy
inference model [17], where the i-th fuzzy rule for the k-th time instant data is

formulated as follows:

If z(k) is A,,(k) AND - AND z,(k) is A, (k), (13)

then y,(k’) is fi(xl(k:), e, X, (k)
where :cj(k) is the input linguistic variable to the fuzzy inference model

(j=1,2,--,m ; m= the number of input variables), 4;;(k) is the membership

_14_



function of the j-th input variable for the i-th fuzzy rule (i=1,2,---,n ; n= the
number of rules), and yAi(k:) 1s the output of the i-th fuzzy rule.

The SC method is applied to obtain the informative training data. And when the
cluster estimation method is applied to a collection of input/output data, we can
generate a number of n Takagi-Sugeno-type fuzzy rules, where the premise parts
are fuzzy sets defined by the cluster centers that are obtained by the SC

algorithm. The membership function value, A4;(z(k)), of an input data vector, z(k),

to the i-th cluster center,z.(i), can be defined as follows:

Az(:l,‘(k:))zeiwz(k)iz‘(i) I 2/r2 (14)
The fuzzy inference model output, yAl-(k:), is calculated by the weighted average of

the consequent parts of the fuzzy rules as follows:

n

Y A,@®)f: (@ (k)

(15)

The function f;(z(k)) is a polynomial in the input variables, but it can be any
function as long as it can appropriately describe the output of the fuzzy inference
system within the fuzzy region specified by the antecedent of the rule. In the
Takagi-Sugeno-type fuzzy inference model, the output of an arbitrary i-th fuzzy
rule, f;, i1s usually represented by the following first-order polynomial of inputs:

file(k) = Y gy, (k) +r, (16)
j=1
where ¢;; is a weighting value of the j-th input on the i-th fuzzy rule output and
r; 1s a bias of the i-th fuzzy rule output.

The output of the fuzzy inference model given by Eq. (15) can therefore be

rewritten as

y(k)= ZEf (@ (k) =w"(k)g, 17)

i=1

_15_



— A;(x k)
wl(k‘): ”(7()'
> A, (@ (k)
i=1
q: [ql‘l qn,l ql,m qn,,m, 7,.1 rn,]Tl and

w (k) = [w, (K)z, (k) -+ w, (k)z; (k) - w, (k)x,, (k) -+ w, (k)z,, (k) w (k) w, &),
k=1,2,---, V.

The value w,(k) represents the normalized compatibility grade of the i-th fuzzy
rule and consists of the input data and the normalized membership function values.
The vector ¢ is called the consequent parameter vector. Figure 5 describes the

calculation procedure of the FNN model.

Fig. 5. A Fuzzy Neural Network Model
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IV. Optimization of Data—-based Models and

Selection of Training Data

A. Optimization of Data-based Models

The SVR, FSVR and FNN models are designed by learning from given data and
should be optimized to maximize the prediction performance. The performance of
the SVR model depends heavily on the three kinds of design parameters such as
the insensitivity zone €, the regularization parameter A, and the kernel function
parameters. (In case of FSVR, four parameters (€, A, o, () are considered.)
Therefore, these parameters except for the fuzzy membership grade must be
optimized by a genetic algorithm in order to maximize the performance of the SVR,
FSVR and FNN models. If these parameters are not optimized, the three models
can be inferior in performance.

Genetic algorithm is less susceptible to being stuck at local minima than
conventional search methods since genetic algorithms start from many points
simultaneously climbing many peaks in parallel. Also, the genetic algorithm is the
most useful method to solve optimization problems with multiple objectives. The
genetic algorithm is used to optimize the insensitivity zone €, the regularization
parameter A, and the sharpness o of the radial basis kernel function used in this

thesis that is expressed as follow:

T
K(:L‘Z-,.’L'):exp*(x w,igiw xz). (18)

The genetic algorithm requires a fitness function that assigns a score to each
chromosome (candidate solution) in the current population, and maximizes the
fitness function value. The fitness function evaluates the extent to which each

candidate solution is suitable for specified objectives. A root mean square (RMS)

_17_



error and a maximum error can be a measure of the prediction performance of the
SVR, FSVR and FNN models. However, the minimization of the errors only may
induce the overfitting in these models, which means that these models is fitted
well for only a specific data set (training data) but is not fitted for another data
set.

In usual learning problems, the proposed model is trained using exemplary
situations (training data) for which the desired output is already known. It is
assumed that the model will also be able to predict the correct output for other
situations, thus generalizing to situations not presented during training. But
especially in cases where learning was performed too long or where training data
are rare, the proposed model may adjust to very specific random features of the
training data, which have no causal relation to the target function. In this process
of overfitting, the performance on the training data still increases while the
performance on the test data becomes worse.

Regularization has been applied successfully to numerous machine learning
problems including the avoidance of overfitting [18]. It is a well-known method for
the treatment of mathematically ill-posed problems. In this thesis, through the
regularization that these models are optimized independently by using a data set
independent of the training data, this kind of overfitting problems can be overcome.
Therefore, the acquired data are divided into three kinds of data sets such as the
training data, the optimization data, and the test data. The training data are used

to solve the coefficients a;—a, and the bias b in Eq. (6) of the SVR and FSVR

models.

In case of FNN, the training data are used to solve the antecedent parameters of
the FNN model. The optimization data are used in optimizing the SVR, FSVR and
FNN models by using another independent data set to improve generalization
capability of these models. The test data are used to independently verify the
developed these models. The specified multiple objectives are to minimize the RMS

error along with the small maximum error:
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F=exp(—mBy — pp By — g By — py By) (19)
where iy, pe, ps5 and p, are the weighting coefficients. £, and £, indicate the root
mean squared error for the training data and the optimization data, respectively. £
and £, indicate the maximum error for the training data and the optimization data.

These parameters are defined as follows:

-
1 & ~

B = FZ(?J?‘Z/E)Q, (20)
ti=1
1 &

_ - o _ A‘? 2

EZ_ N)i:l(yl yl) ’ (21)

Ey = max{yﬁ - g}f}, (22)

E, = max{y;’ — 3;?} (23)

The variables y; and y: denote the measured output and the output predicted by
the SVR, FSVR and FNN models, respectively. The number N represents the
number of the training data. The superscripts, ¢ and o, indicate the training data
and the optimization data, respectively, and N, and /N, represent the numbers of
the training data and the optimization data.

In the FNN case, if the antecedent parameters are fixed by the genetic algorithm,
the output of the resulting FNN model can be described as a series of expansions
of some basis functions. The basis function expansion is linear in its adjustable
parameters, as shown in Eq. (17), because w’(k) is known by the genetic
algorithm. Thus, we can use the least squares method to determine the consequent
parameters. The consequent parameter ¢ was chosen to minimize the following cost

function, including the squared error between the target output y and the estimated

output y
J= k,tl(y(k) - z} (k))?* = kzjl(y(k) —w T(k>q>2 _ é(y_ &)2’ "
where
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y=ly(1)y@2) - y(V)]" and y=I[y(1)y(2)- y(V)"
The solution for minimizing the above cost function can be obtained by
y=y= Wy, (25)
where
W= [w(1) w(2) - wV,)]".
To solve the parameter vector q in Eq. (25), we should ensure that the matrix

W is invertible but not usually a square matrix. We can easily solve the parameter

vector ¢ in Eq. (25) by using the pseudo-inverse of the W matrix as follows:
= (W'w) "Wy (26)
The parameter vector q can be calculated with a series of N, input/output data

pairs prepared for the training data.

B. Selection of Training Data

To increase the learning efficiency, the three models should be trained well by
using informative data. It is expected that input and output training data have a lot
of clusters and the data at these cluster centers is more informative than
neighboring data. Figure 6 shows data clusters and their centers (indicated as ‘+

signs) for simple two-dimensional data.
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Fig. 6. Data Clusters and Cluster Centers for Simple Two-dimensional Data.

In this thesis, the cluster centers are found out by a subtractive clustering (SC)
scheme [16]. The SC scheme assumes the availability of N input/output training
data z,=(x,y;),i=1,2,..., NV, and also, it is assumed that the data points have
been normalized in each dimension. The scheme starts by generating a number of
clusters in the m-dimensional input space. The SC scheme considers each data
point as a potential cluster center and uses a measure of the potential of each data
point, which is defined as a function of the Euclidean distances to all other input
data points [16]:

N
P(i)=Ye tlemelin ioq 9. N, @7)
j=1
where r, is a radius, defining a neighborhood, which has considerable influence on
the potential. Obviously, the potential of a data point is high when it is surrounded
by many neighboring data. After the potential of every data point has been
computed, the data point with the highest potential is selected as the first cluster
center. Then an amount of potential is subtracted from each data point as a

function of its distance from the selected cluster center. The data points near the
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selected cluster center will have greatly reduced potential, and therefore are
unlikely to be selected as the next cluster center. When the potentials of all data
points have been revised according to Eq. (28), the data point with the highest

remaining potential is selected as the next cluster center:

* —dlz—a, |

P, i)=P.(i)— Pee ,i=1,2,---, N, (28)
where a:z is the location of the k-th cluster center and P, is its potential value. If
the inequality P,: < wPl* is true, these calculations stop, else these calculations are
repeated.

The input/output data positioned in the cluster centers are used as the training
data set in order to train the three models. The test data is selected every five
time-steps among the remaining data that the training data have been eliminated
from all acquired data. That is, the optimization data and the test data comprise 80
percents and 20 percents, respectively, of the remaining data. These models are
verified by the test data independent of the training data and the optimization data.
The three models and the SC selection algorithm for selecting the training data are
optimized by a genetic algorithm which was mentioned before.

In case of FSVR, the four parameters (e, X\, o, p) are included. As mentioned
before, It is reasonable that the data points with high potential calculated by Eq.
(27) are more important and weighted more highly than the other neighboring data
points when training the FSVR models. Therefore, the potential of the cluster
centers calculated by Eq. (27) was used as a fuzzy membership grade in Eq. (7) as

follows:

b=1= Gy i= Lo N (29)
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V. Application to the Welding Residual Stress

Prediction

Initially a finite element model was developed for analyzing welding residual
stress. In the developmental process, 150 analysis conditions (welding heat input,
pipeline shapes, welding metal strength, and the constraints of the pipeline end
parts) were considered as a means of assessing the welding residual stress along
two paths in the welding zone (as shown in Fig. 1). But performance computation
of the three models (SVR, FSVR and FNN) for predicting the welding residual
stress in this thesis was executed in only center path because of complexity of
data in inside path. In addition, the ABAQUS code was used to calculate the
welding residual stress at 21 locations along each path [7]. In total, 6300 items of
welding residual stress data were acquired from the two paths (Fig. 1). Table 1
shows the conditions for analyzing the welding residual stress.

These models can be well trained by using informative data. Input and output
training data are expected to have many clusters, and the data at these cluster
centers is more informative than neighboring data (refer to Fig. 5.). The cluster
centers was selected with an SC scheme and they were used as the training data
set. The test data verify the three models, independently of the training data and
the optimization data. A genetic algorithm was used to optimize three models while
the SC selection algorithm was used for selecting the training data.

The three models were optimized with the training data and the optimization
data and then tested with the test data. Tables 2 to 4 show the performance
results of the three models, respectively. The relative RMS errors (SVR) of the
predicted residual stress are 2.50% for the training data, 2.31% for the optimization
data, and 2.80% for the test data. In the FSVR case, 1.34% for the training data,
2.82% for the optimization data, and 2.95% for the test data. In case of FNN,
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441% for the training data, 2.50% for the optimization data, and 2.72% for the
test data, respectively. Note also that the RMS errors of the three models for the
test data are similar to the RMS errors for the training data and the optimization
data, irrespective of the (restrained and free) constraints and the center path.
Therefore, if initially trained and optimized with the training data and the
optimization data for a variety of welding conditions and pipeline shapes, the three
models can accurately predict the welding residual stress for any other welding
condition. In addition, the developed three models can predict welding residual
stress with an RMS error level of less than 5% (as shown in Tables 2-4).
Generally, the results of each method confirm that the proposed three models
favorably evaluate welding residual stress well. Plus, the performance of FSVR is

better than the other methods.

Table 2. Performance of the Proposed SVR Model for Predicting the Welding
Residual Stress (Center Path)

Constraint RMS Relative Max
of end Data type o max error | No. of data N
. error(%) o Fitness
section (%)
Trf)‘mmg 3.3350 33.7051 1261
ata
Optimization 0.9314
Restrained Data 27770 15.3491 251
Test Data 3.8527 24.1245 63 -
Trf)‘mmg 1.6657 6.2035 1261
ata
Ovtimizati 0.9833
Free e o | 1.8528 7.1262 251
ata
Test Data 1.7545 4.1842 63 -
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Table 3. Performance of the Proposed FSVR Model for Predicting the Welding
Residual Stress (Center Path)

Constraint Relative
of end Data type RM% max error | No. of data Max.
. error(%) o Fitness
section (%)
Trg‘mmg 2.6023 10.3991 1261
ata
FeSeT—— 0.9521
Restrained | ~P lgnz‘i 1O 31385 13.2690 251
ata
Test Data 3.4665 9.3707 63 -
Trg‘mmg 0.0844 0.3055 1261
ata
FeNeT—— 0.9779
Free P ”5““ 1O 95008 75196 251
ata
Test Data 2.4246 6.2893 63 -

Table 4. Performance of the Proposed FNN Model for Predicting the Welding
Residual Stress (Center Path)

Constraint Relative .
of end Data type RM% max error | No. of data MdX'
. error(%) o Fitness
section (%)
Training 45135 42.1870 1261
Data
Ovtimizati 09131
Restrained | ~ P lgnza I 9 9886 11.6960 251
ata
Test Data 3.1258 16.9490 63 -
Iraining 43153 385710 1261
ata
Ovtimizati 0.9384
Free P lgnza o 20108 7.2120 251
ata
Test Data 2.3117 6.3920 63 -
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In order to solve the prospective overfitting problems of artificial intelligence
methods and to accomplish the increase of reliability, the different combined models
were made and each performance was compared. As shown in Table 5, the model
combined with SVR and FSVR provides the best results and is superior to other

prediction models.

Table 5. Performance Comparison of the Data—based Models for the Prediction of

Residual Stress (Center Path)

Constraint of Methods RMS error(%) Relatlve(;n)a X error
end section 0
FNN 3.1258 42.1870
SVR 3.8527 33.7051
Restrained FSVR 3.4665 13.2690
FNN+SVR+FSVR 2.8477 20.9978
SVR+FSVR 2.5870 19.7250
2 out of 3 models 2.8184 28.8881
FNN 2.3117 38.5710
SVR 1.7545 7.1262
Free FSVR 2.4246 7.5196
FNN+SVR+FSVR 1.7155 14.7229
SVR+FSVR 1.1314 6.1552
2 out of 3 models 1.1643 5.7053
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VI. Conclusions

Now that the welding residual stress is a major factor to generate Primary
Water Stress Corrosion Cracking (PWSCC), it is important to assess the welding
residual stress for preventing the PWSCC.

In this thesis, a support vector regression (SVR), a fuzzy support vector
regression and a fuzzy neural network (FNN) models have been developed to
correctly estimate a residual stress for dissimilar metals welding zones. The three
developed models were applied to numerical data obtained by means of FEAs. And
because of complexity of data in inside path, implementation of FSVR model for
predicting the welding residual stress was executed in only center path. But it is
expected that it is possible to accomplish the performance improvement in inside
path by selecting proper functions which can assign a fuzzy membership grade to
data point.

The three models were trained with the data set prepared for training (the
training data), optimized with the optimization data set, and verified with the test
data set, which is different from the training data and the optimization data. The
developed models can predict welding residual stress with an RMS error level of
less than 5%. The RMS errors of the three models for the test data are similar to
the RMS error for the training data and the optimization data. Then the models
combined with different methods (FSVR, SVR, FNN) have been used to solve the
prospective overfitting problems.

Consequently we could confirm that the performance of the model combined with
both SVR and FSVR 1is superior to any other method. Therefore, it is expected
that this model can be applied to predict residual stress in dissimilar metals

welding zones.
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