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                                                                                                                                                                                    서서서서    유유유유    승승승승    

                                        (지도교수 : 임임임임    동동동동    윤윤윤윤) 

                                        조선대학교 대학원 의학과 

 

본 연구의 목적은 Provinol (적포도주에서 분리한 폴리페놀 혼합물)이 

정상혈압 흰쥐로부터 분리 적출한 부신의 관류모델에서 카테콜아민 

(catecholamines, CA) 분비작용에 미치는 영향을 검색하고 그 작용기전을 

규명하는데 있으며, 본 연구를 시행하여 다음과 같은 결과를 얻었다.  

Provinol (0.3~3 µg/ml)을 부신정맥 내로 90 분간 관류 시 비교적 용량 및 

시간 의존적으로 ACh (5.32 mM), 고칼륨 (56 mM, 막탈분극제), DMPP (100 µM, 

선택성 니코틴 NN 수용체 작동제), 및 McN-A-343 (100 µM, 선택성 무스카린 

M1-수용체 작동제)에 의한 CA 분비를 억제하였다. 그러나, Provinol 자체는 

기초 CA 분비량에 영향을 미치지 않았다. 또한, Provinol (1 µg/ml) 존재 하에서, 

전압-의존성 나트륨통로 활성화제인 veratridine (100 µM), L 형 칼슘통로 

활성화제인 Bay-K-8644 (10 µM) 및 세포질내 내형질세망막에서 Ca2+-ATPase 

억제제인 cyclopiazonic acid (10 µM)에 의한 CA 분비가 유의하게 억제되었다. 

흥미롭게도, Provinol (1 µg/ml)과 L-NAME (NO Synthase 억제제, 30 µM)을 



90 분간 동시 처치하였을 때 ACh, 고칼륨, DMPP, Bay-K-8644 및 

cyclopiazonic acid 의 CA 분비효과가 Provinol 단독처치 시 나타나는 

억제효과가 억제되어 거의 대조치 수준까지 회복되었다. 또한 실제로 

Provinol 처치 후에 NO 유리량이 기초 유리량에 비해 현저하게 증가하였다. 

이와 같은 연구결과를 종합하여 보면, 흰쥐 적출 관류 부신수질에서 

Provinol 은 콜린성(니코틴 및 무스카린) 수용체 흥분 및 막탈분극에 의한 CA 

분비에 대하여 억제효과를 나타내었다. 이러한 Provinol 의 억제효과는 흰쥐 

부신수질에서 NO Synthase 의 활성화에 의한 NO 생성증가로 인하여 

부신크롬친화세포 내로 전압의존성 나트륨 및 칼슘통로를 통한 Na+ 및 Ca2+ 

유입억제와 세포 내 칼슘저장고로부터 칼슘유리의 억제작용에 기인되는 

것으로 생각된다. 이와 같은 연구결과로 보아, Provinol 이 심혈관계 질환, 즉 

고혈압 및 협심증의 예방 및 치료에 유익할 것으로 사료된다  

 

 

 

 

 

 

 



I. INTRODUCTION 

 

Provinol is a mixture of different polyphenolic compounds isolated from 

French red wine. Provinol represents the polyphenolic compounds isolated from 

red wine and it involves (in mg/g of dry powder) 480 proanthocyanidins, 370 

polymeric tannins, 61 total anthocyanins, 19 free anthocyanins, 38 catechin, 18 

hydroxycinnamic acids and 14 flavonols. Various epidemiological reports have 

shown that regular intake of natural polyphenols in grape juice, red wine and in 

some other beverages is associated with reduced risk of cardiovascular diseases 

(Fuster et al. 1992; Middleton et al. 2000). The French Paradox is defined as a 

low incidence of coronary heart disease while consuming a diet rich in saturated 

fat. The Mediterranean diet, rich in fruits and red wine, was shown to protect 

against the development of cardiovascular diseases (Hertog et al 1995; De 

Lorgeril et al. 1996).  

Provinol at the concentration producing the maximal endothelium-dependent 

relaxation, restored the relaxation of the femoral artery to acetylcholine abolished 

by superoxides and enhanced partially the relaxant responses of sodium 

nitroprusside suggesting the ability of Provinol to preserve NO from degradation 

(Zenebe et al. 2003; Pecháňová et al. 2006a). Provinol partially prevents 

L-NAME induced hypertension via the different mechanisms depending on the 

duration of treatment in male Wistar rats. Prevention of oxidative damage in the 

brain with modulating effect on NO synthase activity is suggested (Jendeková et 

al, 2006). Provinol reduced blood pressure (BP) only in borderline hypertensive 

rats (BHR). Data suggest that reduction of BP in BHR as well as the improvement 



of vasorelaxation in Provinol-treated Wistar-Kyoto (WKY) rats were associated 

rather with other than NO-dependent mechanisms (Bernatova et al, 2007). 

Similarly, red wine polyphenolic compounds (PCRW) caused a dose-dependent 

relaxation in rabbit aorta with intact endothelium (Cishek et al. 1997). In healthy 

volunteers, the coronary flow-velocity reserve was increased after drinking red 

wine, but not after drinking the same quantity of alcohol in white wine or vodka 

(Shimada et al., 1999). The endothelium-dependent vasodilation was also 

improved after acute intake of 500 ml of red wine or red wine without alcohol in 

men, as determined by ultrasonography of the brachial artery (Hashimoto et al., 

2001). Although Huang et al. (1999) demonstrated epicatechin-induced 

endothelium-dependent vasorelaxation in rat mesenteric arteries, it seems that 

polymeric rather than monomeric phenols were responsible for NO-dependent 

relaxation. Resveratrol, a natural phenolic trihydroxystilbene present in red wine, 

produced mainly endothelium-dependent and nitric oxide-mediated vasodilation 

in human internal mammary artery but partially in saphenous vein rings and 

improved their endothelial reactivity. This may have a therapeutic potential in 

cardiovascular diseases (Rakici et al, 2005). It has been suggested that the 

mechanisms of vasorelaxation induced by resveratrol are heterogeneous, two 

mechanisms participating partially in the relaxation of the isolated porcine 

coronary artery were detected in the study, one being the nitric oxide released 

from the endothelium, the other causing inhibition of Ca2+ influx, but estrogen 

receptors were not involved in resveratrol-induced relaxation (Liu et al, 2006). 

Lim (2008) has shown that resveratrol inhibits cholinergic stimulation-evoked 

secretion of catecholamines (CA) through suppressing ion influx into the rat 

adrenomedullary cells due to the increased NO production. 



There is, however, little evidence regarding the effects of Provinol on the CA 

secretion from adrenal medulla. Therefore, the aim of the present study was to 

investigate whether Provinol can modify the CA secretion evoked by stimulation 

of cholinergic receptors and direct membrane-depolarization in the isolated 

perfused model of normotensive rats, and to establish its mechanism of action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



II. MATERIALS AND METHODS 

 

Experimental procedure 

 Mature male Sprague-dowley rats, weighing 200 to 350 grams, were used in the 

experiment. The animals were housed individually in separate cages, and food 

(Cheil Animal Chow) and tap water were allowed ad libitum for at least a week to 

adapt to experimental circumstances. On the day of experiment, a rat was 

anesthetized with thiopental sodium (50 mg/kg) intraperitoneally, and tied in 

supine position on fixing panel. 

 Isolation of adrenal glands: The adrenal gland was isolated by the 

modification of previous method (Wakade, 1981). The abdomen was opened by a 

midline incision, and the left adrenal gland and surrounding area were exposed 

by the placement of three-hook retractors. The stomach, intestine and portion of 

the liver were not removed, but pushed over to the right side and covered by 

saline-soaked gauge pads and urine in bladder was removed in order to obtain 

enough working space for tying blood vessels and cannulations. A cannula, used 

for perfusion of the adrenal gland, was inserted into the distal end of the renal 

vein after all branches of adrenal vein (if any), vena cava and aorta were ligated. 

Heparin (400 IU/ml) was injected into vena cava to prevent blood coagulation 

before ligating vessels and cannulations. A small slit was made into the adrenal 

cortex just opposite entrance of adrenal vein. Perfusion of the gland was started, 

making sure that no leakage was present, and the perfusion fluid escaped only 

from the slit made in adrenal cortex. Then the adrenal gland, along with ligated 

blood vessels and the cannula, was carefully removed from the animal and 



placed on a platform of a leucite chamber. The chamber was continuously 

circulated with water heated at 37 ±1
o
C (Fig. 1). 

 

Perfusion of adrenal gland 

  The adrenal glands were perfused by means of peristaltic pump (Isco, St. 

Lincoln, NE, U.S,A.) at a rate of 0.31 ml/min. The perfusion was carried out with 

Krebs-bicarbonate solution of following composition (mM): NaCl, 118.4; KCl, 4.7; 

CaCl2, 2.5; MgCl2, 1.18; NaHCO3, 25; KH2PO4, 1.2; glucose, 11.7. The solution 

was constantly bubbled with 95 % O2 + 5 % CO2 and the final pH of the solution 

was maintained at 7.4 ~ 7.5. The solution contained disodium EDTA (10 µg/ml) 

and ascorbic acid (100 µg/ml) to prevent oxidation of CA. 

 

Drug administration 

   The perfusions of DMPP (10-4 M) for 2 minutes and/or a single injection of 

ACh (5.32 x 10-3 M) and KCl (5.6 x 10-2 M) in a volume of 0.05 ml were made into 

perfusion stream via a three-way stopcock, respectively. McN-A-343 (10-4 M), 

veratridine (10-4 M), Bay-K-8644 (10-5 M) and cyclopiazonic acid (10-5 M) were 

also perfused for 4 min, respectively. 

  In the preliminary experiments, it was found that upon administration of the 

above drugs, secretory responses to ACh, KCl, McN-A-343, veratridine, 

Bay-K-8644 and cyclopiazonic acid returned to preinjection level in about 4 min, 

but the responses to DMPP in 8 min.  

 

Collection of perfusate 



  As a rule, prior to stimulation with various secretagogues, the perfusate was 

collected for 4 min to determine the spontaneous secretion of CA (background 

sample). Immediately after the collection of the background sample, collection of 

the perfusates was continued in another tube as soon as the perfusion medium 

containing the stimulatory agent reached the adrenal gland. Stimulated sample's 

was collected for 4 to 8 min. The amounts secreted in the background sample 

have been subtracted from that secreted from the stimulated sample to obtain the 

net secretion value of CA, which is shown in all of the figures.  

  To study the effect of Provinol on the spontaneous and evoked secretion, the 

adrenal gland was perfused with Krebs solution containing Provinol for 90 min, 

and then the perfusate was collected for a certain period (background sample). 

Then the medium was changed to the one containing the stimulating agent or 

along with Provinol, and the perfusates were collected for the same period as that 

for the background sample. The adrenal gland's perfusate was collected in chilled 

tubes.  

 

Measurement of catecholamines 

  The content of perfusate was measured directly by the fluorometric method of 

Anton and Sayre (1962) without the intermediate purification alumina for the 

reasons described earlier (Wakade, 1981) using fluorospectrophotometer 

(Kontron Co., Milano, Italy). 

A volume of 0.2 ml of the perfusate was used for the reaction. The CA content 

in the perfusate of stimulated glands by secretagogues used in the present work 

was high enough to obtain readings several folds greater than the reading of 



control samples (unstimulated). The sample blanks were also lowest for 

perfusates of stimulated and non-stimulated samples. The content of CA in the 

perfusate was expressed in terms of norepinephrine (base) equivalents. 

 

Measurement of NO release 

NO release was measured using a NO-selective microelectrode (amiNO-700, 

innovative Instruments Inc) and an amplifier (inNO meter, Innovative 

Instruments). Platelet NO production was quantified as the integrated signal 

detected by the microelectrode after platelet activation, as previously described 

(Freedman et al., 2000). The electrode was calibrated by producing standardized 

concentrations of NO in 0.5% (wt/vol) KI in 0.1 mol/L H2SO4 from NaNO2 

standards. NO release was quantitated as the current detected at the electrode 

30 min after the presence of Provinol at room teperature. NO release was 

calculated as picomole. NO production was also measured indirectly by 

measuring nitrite content in the supernatant. 

 

Statistical analysis 

  The statistical difference between the control and pretreated groups was 

determined by the Student's t and ANOVA tests. A P-value of less than 0.05 was 

considered to represent statistically significant changes unless specifically noted 

in the text. Values given in the text refer to means and the standard errors of the 

mean (S.E.M.). The statistical analysis of the experimental results was made by 

computer program described by Tallarida and Murray (1987).  

 



Drugs and their sources 

The following drugs were used: Provinols [(purchased product, mixture of 

polyphenols developed by INRA (Institut National de Recherche Agronomique, 

Montpellier-France) in partnership with the Société Française de Distilleries Co. 

in France)], 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP), acetylcholine 

chloride, norepinephrine bitartrate, potassium chloride (KCl), Nω-nitro-L-arginine 

methyl ester hydrochloride (L-NAME), methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4- 

(2-trifluoromethyl-phenyl)-pyridine-5-carboxylate (BAY-K-8644), cyclopiazonic 

acid, veratridine hydrochloride  (Sigma Chemical Co., U.S.A.), and (3-(m-cholro- 

phenyl-carbamoyl -oxy)-2-butynyltrimethyl ammonium chloride [McN-A-343] (RBI, 

U.S.A.). Drugs were dissolved in distilled water (stock) and added to the normal 

Krebs solution as required except Bay-K-8644, which was dissolved in 99.5 % 

ethanol and diluted appropriately with Krebs-bicarbonate solution (final 

concentration of alcohol was less than 0.1 %). Concentrations of all drugs except 

Provinol used are expressed in terms of molar base.  

 

 

 

 

 

 

 

 

 



III. RESULTS 

 

Effects of Provinol on CA secretion evoked by ACh, high K+, DMPP 

and McN-A-343 from the perfused rat adrenal glands 

  After the perfusion with oxygenated Krebs-bicarbonate solution for 1 hr, the 

basal CA release from the isolated perfused rat adrenal glands amounted to 22±3 

ng for 2 min (n=9). Since Provinol at the concentration producing the maximal 

endothelium-dependent relaxation, restored the relaxation of the femoral artery to 

acetylcholine abolished by superoxides and enhanced partially the relaxant 

responses of sodium nitroprusside suggesting the ability of Provinol to preserve 

NO from degradation (Zenebe et al. 2003; Pecháňová et al. 2006a), it was 

attempted initially to examine the effects of Provinol itself on CA secretion from 

the perfused model of the rat adrenal glands. However, in the present study, 

Provinol (0.3 ~ 3 µg/ml) itself did not produce any effect on basal CA output from 

perfused rat adrenal glands (data not shown). Therefore, it was decided to 

investigate the effects of Provinol on cholinergic receptor stimulation- as well as 

membrane depolarization-mediated CA secretion. Secretagogues were given at 

15 to 20 min-intervals. Provinol was present for 90 minutes after the 

establishment of the control release.  

 In the perfused rat adrenal medulla, stimulation of nicotinic acetylcholine 

receptor-ion channels with acetylcholine, a physiological secretagogue, injected 

into the perfusion stream in a volume of 0.05 ml greatly caused the CA secretion 

(1192±58 ng for 0-4 min), as shown in Fig. 2. However, the pretreatment with 

Provinol in the range of 0.3 ~ 3 µg/ml for 90 min relatively concentration- and 



time-dependently inhibited ACh-stimulated CA secretion. In the presence of 

Provinol as shown in Fig. 3, CA releasing responses were inhibited by 56% of the 

corresponding control release (100%). Also, it has been found that depolarizing 

agent like KCl, an activator of voltage-dependent Ca2+ channels, stimulates 

markedly CA secretion (605±28 ng for 0-4 min). However, following the 

pretreatment with Provinol (0.3 ~ 3 µg/ml), high K+ (5.6x10-2 M)-stimulated CA 

secretion was significantly inhibited to 54% of the control after 75 min period. 

DMPP (10-4 M), which is a selective nicotinic NN-receptor agonist in autonomic 

sympathetic ganglia, evoked a sharp and rapid increase in CA secretion 

(1160±62 ng for 0-8 min). However, as shown in Fig. 4, DMPP-stimulated CA 

secretion after pretreatment with Provinol was maximally reduced to 53% of the 

control release at last period (90-94 min). McN-A-343 (10-4 M), which is a 

selective muscarinic M1-agonist (Hammer and Giachetti, 1982), perfused into an 

adrenal gland for 4 min caused an increased CA secretion (489±21 ng for 0-4 

min). However, McN-A-343-stimulated CA secretion in the presence of Provinol 

was markedly depressed to 52% of the corresponding control secretion (100%) 

as depicted in Fig. 5. 

 

Effects of Provinol on CA secretion evoked by Bay-K-8644, 

cyclopiazonic acid and veratridine from the perfused rat adrenal 

glands 

Since Bay-K-8644 is known to be a calcium channel activator, which enhances 

basal Ca2+ uptake (Garcia et al., 1984) and CA release (Lim et al., 1992), it was 

of interest to determine the effects of Provinol on Bay-K-8644-stimulated CA 



secretion from the isolated perfused rat adrenal glands. Bay-K-8644 (10-5 

M)-stimulated CA secretion in the presence of Provinol (1 µg/ml) was greatly 

blocked to 63% of the control release except for the initial 0-4 min as compared 

to the corresponding control release (486±17 ng for 0-4 min) from 10 rat adrenal 

glands as shown in Fig. 6. 

In order to investigate the effect of Provinol on the mobilization of intracellular 

Ca2+, the effect of Provinol on the CA secretion evoked by cyclopiazonic acid, as 

a secretagogue, was examined.  Cyclopiazonic acid, a mycotoxin from 

Aspergillus and Penicillium, has been described as a highly selective inhibitor of 

Ca2+-ATPase in skeletal muscle sarcoplasmic reticulum (Goeger and Riley, 1989; 

Seidler et al., 1989). As shown in Fig. 7, in the presence of Provinol in 10 rat 

adrenal glands, cyclopiazonic acid (10-5 M)-evoked CA secretion was also 

inhibited to 67% of the control response (461±21 ng for 0-4 min). 

The voltage-dependent Na+ channels consist of the principal α-subunit, which 

is associated with a noncovalently attached β1-subunits, and a disulfide-linked 

β2-subunit (Catterall, 2000). The α-subunits issued from a large multigene contain 

the ion-pore and the toxin binding sites, i.e., site 1 for tetrodotoxin, site 2 for 

veratridine, site 3 for α-Scorpion toxin (α-ScTx), site 4 for β-Scorpion toxin 

(β-ScTx), and site 5 for P. brevis toxin-3 (PbTx-3) (Catterall, 2000). It has also 

been known that veratridine-induced Na+ influx mediated through Na+ channels 

increased Ca2+ influx via activation of voltage-dependent Ca2+ channels and 

produced the exocytotic secretion of CA in cultured bovine adrenal medullary 

cells (Wada et al., 1985a). To characterize the pharmacological action of Provinol 

on voltage-dependent Na+ channels, the effect of Provinol on the CA secretion 

induced by veratridine was examined here. As shown in Fig. 8, veratridine greatly 



produced CA secretion (1184±21 ng for 0-4 min). However, in the presence of 

Provinol (1 µg/ml), veratridine (100 µM)-evoked CA secretion from 8 glands was 

greatly inhibited to 46% of the corresponding control release in a time-dependent 

manner. 

 

Effects of Provinol plus L-NAME on CA release evoked by ACh, high 

K+, DMPP and McN-A-343 from the perfused rat adrenal glands 

It has also been found that, as shown in Fig. 2~8, Provinol inhibits the CA 

secretory response evoked by cholinergic stimulation in the perfused rat adrenal 

gland. Therefore, to study the relationship between NO and Provinol-induced 

inhibitory effects on the CA release from the rat adrenal glands, Provinol-induced 

inhibitory responses of CA secretion evoked by cholinergic receptor-stimulation 

as well as membrane depolarization was examined in the presence of L-NAME. 

In the simultaneous presence of Provinol (1 µM) and L-NAME (30 µM) for 90 min, 

ACh-evoked CA release was recovered by 74~94% of the corresponding control 

release compared to results after loading of Provinol alone as illustrated in Fig. 9. 

High K+ (56 mM)-evoked CA release in the simultaneous presence of Provinol (1 

µM) and L-NAME (30 µM) for 90 min was also recovered by 75~100% of the 

corresponding control release during all periods in comparison to data of 

treatment with Provinol alone (Fig. 10).  

As shown in Fig. 11, the simultaneous perfusion of Provinol and L-NAME for 90 

min got over the DMPP-evoked CA release to 77~89% of the control response 

compared to the corresponding control response in comparison to that of the 

Provinol-treatment alone. Moreover, in the presence of Provinol (1 µM) and 



L-NAME (30 µM), the CA secretory response evoked by McN-A-343 (10-4 M for 4 

min) was recovered to 75~100% of the corresponding control release compared 

to results of the Provinol-treatment alone, as shown in Fig. 12. 

 

Effects of Provinol plus L-NAME on CA release evoked by 

BAY-K-8644 and cyclopiazonic acid from the perfused rat adrenal 

glands 

As shown in Fig. 13, the simultaneous perfusion of Provinol (1 µM) and 

L-NAME (30 µM) for 90 min made the CA release evoked by Bay-K-644 (10 µM, 

an activator of voltage-dependent L-type calcium channel) to 74~100% of the 

corresponding control response compared to the results of Provinol-treatment 

alone. After the simultaneous perfusion with Provinol and L-NAME, cyclopiazonic 

acid (10 µM, an inhibitor of Ca2+-ATPase of endoplasmic reticulum)-evoked CA 

release was also recovered by 73~100% of the control release in comparison to 

the results following the treatment with Provinol alone (Fig. 14).  

 

Effect of Provinol on the level of nitric oxide released from the 

perfused rat adrenal medulla 

 

As shown in Fig. 9~14, it has been shown that Provinol-induced inhibitory effects 

on the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, 

BAY-K-8644 and cyclopiazonioc acid from the perfused rat adrenal glands were 

greatly recovered to the considerable extent of the corresponding control 

secretion by simultaneous treatment with L-NAME, an inhibitor of NO synthase, 



compared to the inhibitory effects of Provinol-treatment alone. Therefore, it was 

of interest to determine directly the level of nitric oxide released from adrenal 

medulla following the perfusion of Provinol-containing Krebs-bicarbonate solution. 

As shown in Fig. 15, the basal level of NO before loading of Provinol was 8.9±3 

picomole. However, 30 min after the presence of Provinol (3 µg/ml), it was greatly 

enhanced to 650% of the control release. Consequently, it was confirmed that 

Provinol practically increase the level of NO released from the rat adrenal 

medulla. 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV. DISCUSSION 

 

The present results provide the first evidence that Provinol significantly 

inhibits the CA secretory responses evoked by stimulation of cholinergic (both 

muscarinic and nicotinic) receptors and direct membrane-depolarization from the 

isolated perfused adrenal gland of the normotensive rats. This inhibitory effect of 

Provinol seems to be exerted by inhibiting the influx of both ions through 

voltage-dependent Na+ and Ca2+ channels into the rat adrenal medullary 

chromaffin cells as well as by blocking Ca2+ release from the cytoplasmic calcium 

store, which is mediated at least partly by the increased NO production due to the 

activation of nitric oxide synthase.  

In support of this idea, it was documented that Provinol elicited 

endothelium-dependent relaxation of rat femoral artery by the Ca2+-induced 

increase of NO synthase activity and by protecting NO from degradation (Zenebe 

et al. 2003). Because the action of red wine polyphenolic compounds has been 

associated with the improvement of endothelium-dependent relaxation and 

elevation of NO synthase activity and/or expression in several in vitro and in vivo 

experiments (Andriambeloson et al. 1998, Pecháňová et al. 2004a), it may be 

assumed about possible therapeutic effect of Provinol in diseases associated 

with reduced NO bioavailability such as endothelial dysfunction or atherosclerosis. 

Furthermore, in the simultaneous presence of L-NAME (an inhibitor of nitric oxide 

synthase) and Provinol, the CA secretory responses evoked by cholinergic 

stimulation and direct membrane-depolarization was significantly recovered to 

considerable level of the corresponding control secretion in comparison to 



inhibition of treatment with Provinol alone. This result is well consistent with 

report that polyphenolic compounds isolated from red wine produced the 

endothelium-NO-dependent relaxation through an extracellular Ca2+-dependent 

mechanism (Andriambeloson et al., 1999). Amongst the different classes of 

polyphenolic compounds present in Provinol, anthocyanins and oligomeric 

condensed tannins had the same pharmacological profile as Provinol 

(Andriambeloson et al., 1998). Of different anthocyanins identified in wine, only 

delphinidin caused endothelium-dependent relaxation, although it was slightly 

less potent than Provinol (Andriambeloson et al., 1998). 

It has also been shown that (-) epicatechin, one of polyphenolic components of 

green tea, concentration-dependently relaxed U46619-contracted arteries without 

the functional endothelium. It is unlikely that (-) epicatechin acts as an antagonist 

at prostaglandin receptors to cause relaxation since it reduced arterial contraction 

induced by other vasoconstrictors, such as phenylephrine and endothelin-1 

(Huang et al., 1998). The endothelium-independent relaxation induced by (-) 

epicatechin may be partly mediated through inhibition of Ca2+ influx through 

voltage-sensitive Ca2+ channels in vascular smooth muscle cells because (-) 

epicatechin significantly reduced the high K+-induced contraction in the same 

preparation (Huang et al., 1998). It was also found that (-) epicatechin could act 

on endothelium to increase intracellular Ca2+ and nitric oxide release, which may 

account for the endothelium-dependent relaxation (Huang et al., 1999). In 

addition, (-) epicatechin-induced relaxation in endothelium-intact tissues may be 

also mediated by nitric oxide-dependent activation of iberiotoxin-sensitive K+ 

channels. These mechanisms may be associated with a beneficial effect of green 

tea epicatechins on vascular system (Huang et al., 1999). This result strongly 



indicates that Provinol-induced inhibitory effect of the CA secretion is mediated 

by the increased NO production due to activation of NO synthase in 

adrenomedullary cells. 

Generally, NO is produced enzymatically from the terminal guanidino nitrogen 

of L-arginine by the action of NO synthase (NOS) (Palmer, et al., 1988; Sakuma, 

et al., 1988). There are at least three isoforms of NOS: neuronal NOS (nNOS), 

endothelial NOS (eNOS), and inducible NOS (iNOS). The adrenal medulla 

possesses characteristic postganglionic sympathetic neurons, and the presence 

of nNOS has been demonstrated (Marley, et al., 1995; Oset-Gasque, et al., 1994; 

Palacios, et al., 1989; Schwarz, et al., 1998). In vitro studies using NOS inhibitors 

and NO donors were performed to examine the role of NO in modulating CA 

secretion from the adrenal medulla but the results remain controversial. It has 

been reported that the NOS inhibitor, L-NAME enhances K+-stimulated CA 

secretion in cultured bovine chromaffin cells (Torres, et al., 1994) and that sodium 

nitroprusside (SNP) inhibits ACh-induced CA secretion in bovine chromaffin cells 

(Rodriguez-Pascual, et al., 1996). These studies suggest that NO may play an 

inhibitory role in the control of CA secretion. Moreover, the presence of 

endothelial cells has been reported to inhibit the K+-induced or the nicotinic 

receptor agonist DMPP-induced CA secretion in cultured bovine chromaffin cells 

(Torres, et al., 1994), suggesting that not only nNOS but also eNOS may play 

roles in modulating adrenal CA secretion. On the contrary, it has been reported 

that L-NAME inhibits ACh-induced CA secretion in bovine chromaffin cells 

(Uchiyama, et al., 1994) and that the NO donor SNP enhances nicotine-induced 

CA secretion in cultured bovine chromaffin cells (O'Sullivan and Burgoyne, 1990). 

These findings suggest that NO may facilitate cholinergic agonist-induced CA 



secretion. On the other hand, a few in vivo studies have suggested that NO does 

not play a role in regulation of adrenal CA secretion (Breslow, et al., 1992; 

Breslow, et al., 1993). Anyway, in the light of above findings, the present studies 

suggest that Provinol can activate nNOS in the rat adrenal medullary chromaffin 

cells, in addition to the direct inhibitory effects on the CA secretion. 

Polyphenolic compounds of red wine (PCRW) are also found to lower blood 

pressure in normotensive and hypertensive rats (Mizutani et al., 1999; Diebolt et 

al., 2001).  It has been shown that in endothelium-dependent fashion, red wines 

and grapes exhibit vasorelaxation via enhanced generation and/or increased 

biological activity of NO, leading to the elevation of cGMP levels (Fitzpatrick et al., 

1993; Fitzpatrick et al., 1995; Andriambeloson et al. 1997; Fitzpatrick et al., 2000; 

Zenebe et al., 2003). Recently, Provinol reduced blood pressure only in 

borderline hypertensive rats (BHR). Data suggest that reduction of BP in BHR as 

well as the improvement of vasorelaxation in provinol-treated Wistar-Kyoto 

(WKY) rats were associated with other rather than NO-dependent mechanisms 

(Bernatova et al, 2007). Moreover, Provinol partially prevents L-NAME induced 

hypertension via the different mechanisms depending on the duration of 

treatment in male Wistar rats. Prevention of oxidative damage in the brain with 

modulating effect on NO synthase activity is suggested (Jendeková et al, 2006). 

Based on these findings, the present experimental results indicate that 

Provinol-induced inhibitory activity of CA secretory response evoked by 

stimulation of nicotinic receptors might contribute at least partly to its hypotensive 

mechanism.  

More recently, it has been shown that polyphenolic compounds isolated from 



Rubus coreanum (PCRC) inhibits the CA secretory responses evoked by 

cholinergic stimulation and membrane depolarization in the adrenal medulla 

isolated from the normotensive rat (Kee and Lim, 2007). Based on this result, the 

present finding that Provinol significantly inhibited the CA secretory responses 

evoked by ACh, high K+, DMPP and McN-A-343 suggests that Provinol can 

produce the similar effect with that of PCRC in adrenal medulla of the 

normotensive rats. 

Polyphenolic compounds have been documented to relax precontracted 

smooth muscle of the arteries with intact endothelium. Moreover, some of them 

were also shown to relax endothelium-denuded arteries (Fuster et al. 1992; 

Andriambeloson et al. 1997). Several authors have reported that extracts from 

grape and wine induce endothelium-dependent relaxation via enhanced 

generation and/or increased biological activity of NO which leads to the elevation 

of cGMP level (Fitzpatrick et al. 1993; Andriambeloson et al. 1997). The increase 

in the intracellular Ca2+ level proceeds via a redox-sensitive pathway the 

activation of NO synthase, the production of NO and thus 

endothelium-dependent vasodilatation in different types of arteries from different 

species (Andriambeloson et al. 1999, Zenebe et al. 2003, Duarte et al. 2004). 

Another therapeutic effect of flavonoids may be their ability to interact with the 

generation of NO from vascular endothelium, which leads not only to 

vasodilatation, but also to the expression of genes that protect the cardiovascular 

system (Middleton et al. 2000; Zenebe and Pecháňová 2002; Curin and 

Andriantsitohaina 2005). In terms of these findings, the results of the present 

study seem likely that Provinol can cause the depressor effect by the inhibition of 

CA secretion from the adrenal medulla.  



In the present study, Provinol also time-dependently depressed the CA 

secretory response evoked by Bay-K-8644, which is known to activate L-type 

voltage-dependent Ca2+ channels (Garcia et al, 1984; Schram et al, 1983). This 

result indicates that Provinol may inhibit Ca2+ influx to the rat adrenomedullary 

cells. In support of this idea, in cultured bovine adrenal medullary cells, nicotinic 

(but not muscarinic) receptors mediate the Ca2+-dependent secretion of CA 

(Fisher et al., 1981; Yanagihara et al, 1979). It has been also known that the 

activation of nicotinic receptors stimulates CA secretion by increasing Ca2+ entry 

through receptor-linked and/or voltage-dependent Ca2+ channels in both perfused 

rat adrenal glands (Wakade & Wakade, 1983; Lim & Hwang, 1991) and isolated 

bovine adrenal chromaffin cells (Kilpatrick et al, 1981; 1982; Knight & Kesteven, 

1983). Wada and his coworkers (1985b) have found that the adrenomedullary 

chromaffin cells have (i) nicotinic receptor-associated ionic channels, responsible 

for carbachol-induced Na+ influx, (ii) voltage-dependent Na+ channels, 

responsible for veratridine-induced Na+ influx and (iii) voltage-dependent Ca2+ 

channels, suggesting that the influx of Na+ caused either by carbachol or by 

veratridine leads to activate voltage-dependent Ca2+ channels by altering 

membrane potentials, whereas high K+ directly activates voltage-dependent Ca2+ 

channels without increasing Na+ influx. In the present study, the finding that high 

K+-induced CA secretory response was depressed by pretreatment with Provinol 

indicates that this inhibitory effect of Provinol is exerted through the direct 

inhibition of calcium influx into the rat adrenal chromaffin cells. Furthermore, 

slight elevation in the extracellular potassium concentration increases both the 

frequency of spontaneous action potentials and the secretion of CA (Kidokoro & 

Ritchie, 1980), suggesting that the influx of calcium that occurs during action 



potentials is directly linked to the rate of secretion. These findings that Provinol 

inhibited CA secretion evoked by Bay-K-8644 as well as by high K+ suggest that 

Provinol inhibits directly the voltage-dependent Ca2+ channels. In the bovine 

chromaffin cells, stimulation of nicotinic, but not muscarinic ACh receptors is 

known to cause CA secretion by increasing Ca2+ influx largely through 

voltage-dependent Ca2+ channels (Burgoyne, 1984; Oka et al., 1979). Therefore, 

it seems that Provinol inhibits the DMPP-evoked CA secretion by inhibiting Ca2+ 

influx through voltage-dependent Ca2+ channels.  

 The mechanism by which the stimulation of ACh receptors activates 

voltage-dependent Ca2+ channels in adrenal medullary cells is well understood. It 

has also been shown that ACh depolarizes chromaffin cell membranes and that 

this is dependent on the inward movement of Na+ into the cells (Douglas et al., 

1968). Kidokoro and Ritchie (1980) demonstrated that ACh generates 

Na+-dependent action potentials and that these are mediated by nicotinic (but not 

muscarinic) ACh receptors. Taking these previous observations into account, it 

has been suggested that the influx of Na+ via nicotine receptor-associated ionic 

channels leads to the activation of voltage-dependent Ca2+ channels by altering 

the membrane potentials (Wada et al., I985b). In the present study, Provinol 

suppressed the veratridine-evoked CA secretory response. This result suggests 

that the inhibition of Provinol on the CA secretion evoked by veratridine as well as 

by ACh and DMPP is responsible for the inhibition of Ca2+ influx, resulting in 

reduced CA secretion. Therefore, it seems likely that the predominant site of 

action of Provinol is nicotinic receptor-gated ionic channels in the rat 

adrenomedullary chromaffin cells.  

Veratridine-induced influx of Na+ is a requisite for triggering Ca2+ influx and the 



CA secretion (Wada et al., 1985a; 1985b). Therefore, the inhibition by Provinol of 

voltage-dependent Na+ channels is responsible for the inhibition of Ca2+ influx 

and the CA secretion. Voltage-dependent Na+ channels are indispensable for 

axonal conduction in central and peripheral neurons. 

The present study has also shown that Provinol inhibits the CA secretion 

evoked by cyclopiazonic acid. Cyclopiazonic acid is known to be a highly 

selective inhibitor of Ca2+-ATPase in skeletal muscle sarcoplasmic reticulum 

(Goeger & Riley, 1989; Seidler et al., 1989) and a valuable pharmacological tool 

for investigating intracellular Ca2+ mobilization and ionic currents regulated by 

intracellular Ca2+ (Suzuki et al., 1992). Therefore, it is felt that the inhibitory effect 

of Provinol on CA secretion evoked by cholinergic stimulation as well as by 

membrane-depolarization may be associated with the mobilization of intracellular 

Ca2+ from the cytoplasmic calcium store. This indicates that the Provinol has an 

inhibitory effect on the release of Ca2+ from the intracellular pools induced by 

stimulation of muscarinic ACh receptors, which is weakly responsible for the 

secretion of CA. It has been shown that Ca2+-uptake into intracellular storage 

sites susceptible to caffeine (Ilno, 1989) is almost completely abolished by 

treatment with cyclopiazonic acid during the proceeding Ca2+ load (Suzuki et al., 

1992). This is consistent with the findings obtained in skinned smooth muscle 

fibers of the longitudinal layer of the guinea-pig ileum, where Ca2+-uptake was 

also inhibited by cylopiazonic acid (Uyama et al., 1992). Suzuki and his 

coworkers (1992) have shown that cyclopiazonic acid easily penetrates into the 

cytoplasm through the plasma membrane and reduces Ca2+-ATPase activity in 

sarcoplasmic/endoplasmic reticulum, resulting in increase in the subsequent Ca2+ 

release from those storage sites. Moreover, in bovine adrenal chromaffin cells, 



stimulation of muscarinic ACh receptors is also proposed to cause activation of 

phosphoinositide metabolism, resulting in the formation of inositol 

1,4,5-trisphosphate, which induces the mobilization of Ca2+ from the intracellular 

pools (Cheek et al., 1989; Challis et al., 1991). The present results suggest that 

Provinol-induced depression of the CA secretion evoked by McN-A-343 and 

cyclopiazonic acid may be due to the inhibition of Ca2+ release from the 

intracellular pools induced by stimulation of muscarinic ACh receptors. However, 

in the present study, it is uncertain whether the inhibitory effect of Provinol on 

Ca2+ movement from intracellular pools is due to its direct effect on the response 

of phosphoinositides or the indirect effects. 

 Some epidemiological studies indicate an association between moderate 

consumption of red wine and reduced risk of coronary heart disease (Renaud 

and de Lorgeril, 1992; German and Walzem, 2000). It has been shown that 

Provinol promotes the endothelium-dependent relaxation, activates NO synthase, 

inhibits platelet aggregation, and prevents oxidation of LDL-cholesterol 

(Fitzpatrick, et al, 1993; Andriambeloson, et al., 1997; Flesh, et al., 1998; Leikert, 

et al., 2002; Demrow and Slane, 1995; Frankel, et al., 1993a). The polyphenolic 

compound resveratrol presented in red wine is thought to be responsible factor 

for its beneficial cardiovascular effects. Since resveratrol has similar effects to 

RWPC such as promotion of vasodilation, activation of nitric oxide synthase, 

inhibition of platelet aggregation and leukocyte activation, prevention of oxidation 

of LDL-cholesterol and reduction of cholesterol synthesis (Chen and Pace-Asciak, 

1996; Wallerath, et al., 2002; Pace-Asciak, et al., 1995; Rotondo, et al., 1998; 

Frankel, et al., 1993b).  

In addition to these pharmacological effects of Provinol, in the present study, it 



was shown that Provinol inhibits the CA induced by cholinergic (both nicotinic and 

muscarinic) receptor stimulation, suggesting that Provinol attenuates the CA 

secretion induced by stress or emotional excitation, thus causing the stimulation 

of sympathetic nerves and the adrenal medulla. Although the CA play a pivotal 

role in the regulation of normal functions in cardiovascular systems, 

stress-induced over expression of the CA would contribute to the involvement 

and augmentation of cardiovascular diseases such as heart failure, 

atherosclerosis, coronary heart disease and hypertension. Indeed, chronic heart 

failure is associated with activation of the sympathetic nervous system as 

manifested by increased circulating level of norepinephrine and increased 

regional activity of the sympathetic nervous system (Kaye et al., 1995; 

Lymperopoulos et al., 2007; Freedman and Lefkowitz, 2004; Westfall and 

Westfall, 2005).  

As shown in Fig. 16, conclusively, the results of the present study demonstrate 

that Provinol inhibits the CA secretion by stimulation of cholinergic nicotinic 

receptors as well as by membrane depolarization from the isolated perfused 

adrenal glands of the normotensive rats. It seems that this inhibitory effect of 

Provinol is mediated by blocking the influx of Na+ and Ca2+ ions through calcium 

and sodium channels into the rat adrenal medullary chromaffin cells as well as by 

inhibiting the release of Ca2+ from the cytoplasmic calcium store, which are 

exerted at least partly by the increased NO production due to the activation of 

nitric oxide synthase. These experimental results may greatly contribute to the 

hypotensive effect of Provinol components, through inhibition of the CA secretion 

from adrenomedullary chromaffin cells and consequent reduction of the CA level 

in the circulation.  



V. SUMMARY 

 

The aim of the present study was to examine the effect of Provinol, which is a 

mixture of polyphenolic compounds isolated from red wine, on secretion of 

catecholamines (CA) from the isolated perfused rat adrenal medulla, and to 

elucidate its mechanism of action.  

Provinol (0.3~3 µg/mL) perfused into an adrenal vein for 90 min dose- and 

time-dependently inhibited the CA secretory responses evoked by ACh (5.32 

mM), high K+ (a direct membrane-depolarizer, 56 mM), DMPP (a selective 

neuronal nicotinic NN receptor agonist, 100 µM) and McN-A-343 (a selective 

muscarinic M1 receptor agonist, 100 µM). Provinol itself did not affect basal CA 

secretion (data not shown). Also, in the presence of Provinol (1 µg/mL), the 

secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type 

dihydropyridine Ca2+ channel activator, 10 µM), cyclopiazonic acid (a cytoplasmic 

Ca2+-ATPase inhibitor, 10 µM) and veratridine (an activator of voltage-dependent 

Na+ channels, 10 µM) were significantly reduced. Interestingly, in the 

simultaneous presence of Provinol (1 µg/mL) and L-NAME (a selective inhibitor 

of NO synthase, 30 µM), the CA secretory responses evoked by ACh, high K+, 

DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid were recovered to the 

considerable extent of the corresponding control secretion in comparison with 

inhibition of Provinol-treatment alone. Under the same condition, the level of NO 

released from adrenal medulla after the treatment of Provinol (3 µg/mL) was 

greatly elevated compared to the corresponding basal release. 

Taken together, the present results demonstrate that Provinol inhibits the CA 



secretory responses evoked by stimulation of cholinergic (both muscarinic and 

nicotinic) receptors as well as by direct membrane-depolarization from the 

isolated perfused adrenal gland of the normotensive rats. This inhibitory effect of 

Provinol seems to be exerted by inhibiting the influx of both calcium and sodium 

into the rat adrenal medullary chromaffin cells along with the blockade of Ca2+ 

release from the cytoplasmic calcium store at least partly through the increased 

NO production due to the activation of nitric oxide synthase. Based on these 

effects, Provinol may be beneficial to prevent or alleviate the cardiovascular 

diseases, including hypertension and angina pectoris. 
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Fig. 1. Schematic drawing of the preparation used to study secretion of  catecholamines
in  the isolated perfused rat adrenal gland.



Fig. 2. Effects of Provinol on the secretory responses of catecholamines (CA) evoked by acetylcholine 
(ACh) in the isolated perfused rat adrenal glands. CA secretion by a single injection of ACh (5.32 x 10-3 M) 
in a volume of 0.05 ml was evoked at 15 min intervals during loading with 0.3, 1.0 or 3.0 μg/mLof Provinol
for 90 min as indicated at an arrow mark. Numbers in the parenthesis indicate number of rat adrenal glands. 
Vertical bars on the columns represent the standard error of the mean (S.E.M.). Ordinate: the amounts of 
CA secreted from the adrenal gland (% of the control). Abscissa: collection time of perfusate (min). 
Statistical significance was tested by comparing the corresponding control with each concentration-
pretreated group of Provinol. ACh-induced perfusate was collected for 4 minutes. **: P < 0.01. 



Fig. 3. Effects of Provinol on the secretory responses of catecholamines (CA) evoked by 
high K+ in the isolated perfused rat adrenal glands. CA secretion by a single injection of K+

(56 mM) was evoked at 15 min intervals during loading with 0.3, 1.0 or 3.0 μg/mLof
Provinol for 90 min. Statistical significance was tested by comparing the corresponding 
control with each concentration-pretreated group of Provinol. K+-induced perfusate was 
collected for 4 minutes. Other legends are the same as in Fig. 2. *: P < 0.05, **: P < 0.01.



Fig. 4.Effects of Provinol on the secretory responses of catecholamines (CA) evoked by DMPP 
in the isolated perfused rat adrenal glands. CA secretion by the perfusion of DPPP (10-4 M) was 
evoked for 2 min at 20 min intervals during loading with 0.3, 1.0 or 3.0 μg/mLof Provinol for 90 
min. Statistical significance  was tested by comparing the corresponding control (1160±62 ng
for 8 min) with each concentration-pretreated group of Provinol. DMPP-induced perfusate was 
collected for 8 minutes. Other legends are the same as in Fig. 2. **: P < 0.01. 



Fig. 5. Effects of Provinol on the secretory responses of catecholamines (CA) evoked by McN-A-343 
in the isolated perfused rat adrenal glands. CA secretion by the perfusion of McN-A-343 (10-4 M) was 
evoked for 4 min at 15 min intervals after preloading with 0.3, 1.0 or 3.0 μg/mLof Provinol for 90 min. 
Statistical significance was tested by comparing the corresponding control with each concentration-
pretreated group of Provinol. McN-A-343-induced perfusate was collected for 4 minutes. Other 
legends are the same as in Fig. 2. *: P < 0.05, **: P < 0.01. ns: Statistically not significant.



Fig. 6. Time-course effect of Provinol on CA release evoked by Bay-K-8644 from the rat 
adrenal glands. Bay-K-8644 (10-5 M) was perfused into an adrenal vein for 4 min at 15 min 
intervals during loading with Provinol (1.0 μg/mL) for 90 min. Statistical significance was 
tested by comparing the corresponding control with each period after treatment with Provinol. 
Other legends are the same as in Fig. 2. **: P < 0.01. ns: Statistically not significant.



Fig. 7. Time-course effect of Provinol on CA release evoked by cyclopiazonic acid from the rat 
adrenal glands. Cyclopiazonic acid (10-5 M) were perfused into an adrenal vein for 4 min at 15 
min intervals during loading with Provinol (1.0 μg/mL) for 90 min. Statistical significance was 
tested by comparing the corresponding control with each period after pretreatment with 
Provinol. Other legends are the same as in Fig. 2. **: P < 0.01. ns: Statistically not significant.



Fig. 8. Time-course effect of Provinol on the CA release evoked by veratridine from the rat adrenal 
glands. Veratridine (10-4 M) was perfused into an adrenal vein for 4 min at 15 min intervals during 
loading with Provinol (1.0 μg/ml) for 90 min. Other legends are the same as in Fig. 2. **: P < 0.01.



Fig. 9. Effects of Provinol plus L-NAME on the CA secretory responses evoked by ACh in the 
isolated perfused rat adrenal glands. The CA secretion by a single injection of ACh (5.32 
×10-3 M) in a volume of 0.05 ml was induced before (CONTROL) and after loading with 
Provinol (1.0 µg/ml) plus L-NAME (30 µM) for 90 min. Perfusates were collected for 4 minutes 
at 15 min-intervals. Other legends are the same as in Fig. 2. *: P < 0.05, **: P < 0.01. 



Fig. 10. Effects of Provinol plus L-NAME on the CA secretory responses evoked by high potassium 
fin the isolated perfused rat adrenal glands. The CA secretion by a single injection of high K+

(5.6×10-2 M) in a volume of 0.05 ml was induced before (CONTROL) and after loading with 
Provinol (1.0 µg/ml) plus L-NAME (30 µM) for 90 min. Perfusates were collected for 4 minutes at 15 
min-intervals. Other legends are the same as in Fig. 2. **: P < 0.01. ns: Statistically not significant.



Fig. 11. Effects of Provinol plus L-NAME on the CA secretory responses evoked by DMPP in the isolated 
perfused rat adrenal glands. The CA secretion by perfusion of DMPP (10-4 M) for 2 min was induced before 
(CONTROL) and after preloading with Provinol (1.0 µg/ml) plus L-NAME (30 µM) for 90 min. Perfusates were 
collected for 8 minutes at 20 min-intervals. Other legends are the same as in Fig. 2. **: P < 0.01. 



Fig. 12. Effects of Provinol plus L-NAME on the CA secretory responses evoked by McN-A-343 in 
the isolated perfused rat adrenal glands. The CA secretion by perfusion of McN-A-343 (10-4 M) for 
4 min was induced before (CONTROL) and after loading with Provinol (1.0 µg/ml) plus L-NAME 
(30 µM) for 90 min. Perfusates were collected for 4 minutes at 15 min-intervals. Other legends are 
the same as in Fig. 2. **: P < 0.01, **: P < 0.01. ns: Statistically not significant.



Fig. 13. Effects of Provinol plus L-NAME on the CA secretory responses evoked by Bay-k-8644 
in the isolated perfused rat adrenal glands. The CA secretion by perfusion of Bay-k-8644 (10-5 M) 
for 4 min was induced before (CONTROL) and after loading with Provinol (1.0 µg/ml) plus L-
NAME (30 µM) for 90 min. Perfusates were collected for 4 minutes at 15 min-intervals. Other 
legends are the same as in Fig. 2. **: P < 0.01. ns: Statistically not significant.



Fig. 14. Effects of Provinol plus L-NAME on the CA secretory responses evoked by cyclopiazonic
acid from the isolated perfused rat adrenal glands. The CA secretion by perfusion of cyclopiazonic
acid (10-5 M) for 4 min was induced before (CONTROL) and after loading with Provinol (1.0 µg/ml) 
plus L-NAME (30 µM) for 90 min. Perfusates were collected for 4 minutes at 15 min-intervals. Other 
legends are the same as in Fig. 2. **: P < 0.01. ns: Statistically not significant.



Fig. 15. Effect of Provinol on nitric oxide (NO) production in the isolated perfused rat 
adrenal medulla. Perfusate sample was taken for 10 min after perfusion of Provinol (3.0 
ug/ml) for 90 min. Ordinate: the amounts of NO released from the adrenal medulla (% of 
control). Abscissa: Treatment (before and after Provinol). Statistical difference was made 
by comparing the control (8.9±3 picomoles) with Provinol-treated group. **: P< 0.01.
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Fig. 16. Schematic diagram of possible action site of Provinol in the rat adrenal gland.
This diagram demonstrates possible localizations of voltage-dependent Na+ and Ca2+ channels 
and cholinergic receptors mediating secretion of adrenal catecholamines (CA). CA-containing 
cells possess synaptic nicotinic receptors, extrasynaptic nicotinic and muscarinic receptors, and 
L-type voltage-dependent Ca2+ channels close to the extrasynaptic nicotinic receptors. 
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전송ㆍ출력을 허락함.
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