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1. INTRODUCTION

If f is an integrable function given on an interval [a, b] of length L (that is, b—a = L),
then the n'® Fourier coefficient of f is defined by

~ 1 ,
f(n) = Z/ f(z)e 2™/l gy neZ.

The Fourier series of f is given formally by

i ‘]/c\(n) 627r7jnac/L'

n=—oo

We shall sometimes write a,, for the Fourier coefficients of f, and use the notation

f(I) ~ Z a, e27rz‘m:/L

n=—oo

to denote that the series on the right-hand side is the Fourier series of f.
Moreover, if we take a = —7 and b = 7, then the n* Fourier coefficient of f is

—~ 1 ™ )
F(n) = a, = 2_/ FO)e ™ dh, nez,
T™J-n

and the Fourier series of f is

f(z) ~ i an ™.

n=—oo

We express the partial sums of the Fourier series of f as follow:

Sx(H@) = 3 Flmyer

1 [7 N
-5/ W3 ey
= %/_Wf(y)DN(x—y)dy,

where Dy(z) = SN e Now we define the convolution f * Dy on [, 7] by

(5 Dwla) = o= [ Dt =) ) dy.
1



In general, given a family of functions {K,}, we consider the limiting properties as
n tends to infinity of the convolutions
1 ™
> | Kalz—y) fly)dy.

2 J_,

We find that if the family {K,} satisfies the three properties of "good kernels”,
then the convolution tend to f(x) as n — oo when f is continuous (For the main
properties of convolutions and good kernels, see [6]). However, the Dirichlet kernels
Dy do not belong to the category of good kernels (see Chapter 4).

In this thesis we prove other methods of summing the Fourier series of a function.
The first method, which involves average of partial sums in the sense of Cesaro, lead
to convolutions with good kernels. Second, we may also sum the Fourier series in
the sense of Abel and again encounter a family of good kernels.

More precisely, we shall show
Theorem 1. (Bernstein’s Theorem) If f satisfies a Holder condition of order
a > 1/2, then the Fourier series of f converges absolutely.

Theorem 2. If f is integrable on the circle, then the Fourier series of f is Cesaro
summable to f at every point of continuity of f. Moreover, if f is continuous on the
circle, then the Fourier series of f is uniformly Cesaro summable to f.

Theorem 3. The Fourier series of an integrable function on the circle is Abel sum-
mable to f at every point of continuity. Moreover, if f is continuous on the circle,
then the Fourier series of f is uniformly Abel summable to f.

Theorem 4. If a series Y .| ¢, is Cesaro summable to o, then it is Abel summable
to o.

Remark 1. (i) Theorem 1 is called Bernstein’s theorem. We reprove it in Chapter
3.
(1) The converse of Theorem 4 is not true (see Chapter 6).

In Chapter we study some examples Fourier series of a function and some condi-
tion for series convergence.

In Chapter 3 we consider the Fourier coefficient and estimate its decays and prove
Theorem 1.

In Chapter 4 we study the characteristic properties of convolution, good kernel.
Also by using convolutions, we show how these kernels can be used to recover a
given function.



In Chapter 5 we prove our mains results Theorems 2 and 3.

In Chapter 6 we show that Abel summability is stronger than the standard or
Cesaro methods of summation.

In Appendix we study infinite-dimensional vector spaces and pre-Hilbert space to
understand the mean square convergence of Fourier series.

Throughout this paper the different constants will be denoted by the same letter
C'. Each Chapter is based on [1] through [§] .



2. FOURIER SERIES

In this Chapter we consider some examples of Fourier series of a function. The
following Lemma 1 shows that the given integrals are independent of the chosen
interval.

Lemma 1. Suppose f is 2w-periodic and integrable on finite interval. If a, b € R,

then
b b+2m b—2m
) dr = dr = d
@2.1) | 1@ / flayde= [ fa)da
and

(2.2) /:rf(a:%—a)da::/_:f(x)dx:/::;f(x)dx.

Proof. We first show (2.1). By change of valuables = with u + 27, we have

b2 b
/ f(x)da::/ f(u+27m) du
a+2m a

Since f(u+ 27) = f(u), the above integral is

/abf(u+27r)du:/abf(u)du

Similarly, if we change of variables with  with u — 27, we get

/ab—: dx—/fu—27r du—/f

We now turn to the proof of (2.2). By change of valuables x + a with u, we have

/_W flz+a)dr = /_: f(u) du.

(Clearly, changing of variables with x with u — a, we get

/_:ﬂx)dx:/_:Zﬂ“_a)d(u_a):/_:Zf(:c)dx.

We complete the proof. O

Before proceeding some examples and properties of Fourier series of a function,
we first show the following lemma.

Lemma 2. Suppose {a,}_, and {b,}2_, are two finite sequences of complex num-
bers. Let By, = 22:1 b, denote the partial sums of the series > b, with the conven-
tion By = 0.

4



(a) The summation by parts formula is

N N
E anbn = aN+1BN - aMBMfl - § (anJrl - an)Bn

(b) If the partial sums of the series > b, are bounded, and a, is a sequence of
real numbers that decreases monotonically to 0, then > a,b, converges.

Proof. (a). We write

N N
Zanbn = Zan(Bn - Bn—l)
n=1

n=1
N N
= Z aan - Z an+an + aN+1BN
n=1 n=1
N
= an41Bn — Z(%H an)Bn
n=1
Hence if M < N, then we have
N N M-1
S b = D= Y a,
n=M n=1 n=1
N M-1
= {BNaN—H - Z Bn(an+1 - an)} - {BM—laM - Z Bn(an+1 - Cln)}
n=1 n=1
N
= an+1By —ayBy-1 — Z (an+1 - an)Bn-
n=M

Next we prove (b). We note that By = >_*_ b,. Since B, is bounded their exists a
positive real number L such that

|B,| < L for all n.

In order to show the convergence of > a,b,, it suffices to show that for any € > 0

N
| Z anby| < €.
n=M

From the assumption for a sequence a,,, for give € > 0 there exists a positive integer
K such that
larr — an| < €/3L,



and

lap| < €/3L
for all M, N > K.
Hence
N N-1
[ Y anbal < lanial|Bal + land[Bul + Y lanss — an|[By|
n=M n=M
9¢ N-1
< §+LZ a1 —a
n=M
Since a,, decreases monotonically, we have
N-1
Do laner —an] = laasr = anl + oy = ana] 4 -+ Jay — an-i|
n=M

= (am —an1) + (arr41 — anrg2) + - + (an—1 — an)
= (CLM — CLN).

Therefore, we get the desired estimate

|Zanb|< +L—— :

Example 1. We consider the sawtooth function

g—g if —m<x<O,
f(z) =

T x

5—5 lf O<I’<7T,

where f(0) =
The Fourier coefficients are obtained by the integration by parts as follows :
First, if n # 0, then

~ 1 0 T x 1 T x .
_ _r —inx d - L Deinw g
f(n) | T3 T (2 5)e v
1
 2%n’

If n =0, we clearly have f(n) = 0. Thus, the Fourier series of f is given by
1 e'mm
24 n
n#0
6

flx) ~




ezn;c

If we take a, = 1/n and b, = €™ in Lemma 2, we see that this series % Zn#) —
converges.

Example 2. Let f(2) = x(o,4(2) be the characteristic function of the interval [a, b] C

[—7, 7] where
1 if x€a,b]
Xl (@) = { 0 otherwise.

First, if n # 0, then

N 1 [ 1
f(n) = 1 e™dr =

—inb —ina
_ —(—e +e .
2 /., 2min ( )

As for n = 0 it is obvious that

~ 1 [ b—a
1(0) 2m /a v 2m
Thus, the Fourier series of f is given by
b—a e—ina _ e—inb i
fl@)~ 27 * Z 2min -

n#0
If a # —mwor b # —m and a # b, then the Fourier series does not converge absolutely
for any x. Because

i b .
e e — et sinny c
2min ™ ™
n#0 n#0 n#0
where 6y = (b—a)/2 and ¢ > 0.
However, Fourier series converges at every point since in Lemma 2 we can consider

a, as 1/n and b, as (e~ — g=inb) ginz,



3. FOURIER COEFFICIENTS

In this Chapter we state the uniqueness of the Fourier series in [6] and estimate the
decay estimates of the Fourier coefficients.

Theorem 5. Suppose that f is an integrable function on the circle with f(n) =0
for allm € Z. Then f(6y) = 0 whenever [ is continuous at the point 6.

-~

Corollary 1. If f is continuous on the circle and f(n) = 0 for all n € Z, then
f=0.

Corollary 2. Suppose that [ is a continuous function on the circle and that the

~

Fourier series of f is absolutely convergent, Y~ |f(n)| < co. Then the Fourier
series converges uniformly to f, that is,

limn—oo SN(f)(0) = f(0) uniformly in 6.
We consider the decay estimates of the Fourier coefficients.

Lemma 3. Suppose f is a periodic function of period 2m which belongs to the class
C*. Then there exists a constant C' such |f(n)| < C/|n|*.

Proof. If we integrate by parts k times, then we have

N 1 . —inf
f) = o [ @
1 27 ) -
= f)e " db.
2 (in)F /0 f6)e
Thus,
ol < g [ WOl < ok
= 2mnl* o - n
where C’ is a bound for f®). O

Definition 1. f is said to be a Hélder condition of order a (0 < o < 1) if
sup |f(0+t) — f(0)] < AJt|* for all t.
0

Lemma 4. Let f be 2m-periodic and Riemann integrable on [—m, 7).

(a) We have
fln) = ! flx+7/n)e ™ dx

2 J_.
and so

T

Fn) = = / (@) — fle 4 m/n)e-mde.

—T

8



(b) Now assume that f satisfies a Holder condition of order o, namely
[f(x+h) = f(z)] < Cln]*

for some 0 < a < 1, and all x, h. Then there exists a constant C' > 0 such
that

fn) < C/lnf.

(¢) The above result (b) cannot be improved.

Proof. We first prove (a). We recall that the Fourier coefficient is

f = o [ flaje s

From Lemma 1, we also have

~ ]_ & Vs . s
- o 71n(m+;)
f(n) 27T/_7rf(37+n)€ dx
1 " m —inT
= —5 /_,, flz+ ﬁ)e dx.

Using the above
2f(n) =

(3.1) - / f(@)e oy — L / Flot Dyeine,

If we divide by 2 in both side (3.1), we obtain the desired estimates.
Next we prove (b). From (a) it follows that

~ 1 [7

[f)l < | f@) = flz+m/n)|de.
If we use Definition 1, then we have

|f(x) — f(z +7/n)| < A(x/n)* for all .

Hence, we obtain the desired estimate.
Lastly, we prove (c¢). We consider the function

0
ok
= 27he?r 0<a<l

We want to show that

|f(z +h) = f(z)] < Cl]*,
and f(N) = 1/N® whenever N = 2.
Since f(z) = 372, 27%*¢?"* | we can rewrite

f($+h 22 ka 7,2’C (z+h) 22 ka 12’“

9



If we split > ;- as Z2k<1/|h\ - 22k>1/|h|, we have

|f(13—|—h> Z 9= ka 12’C (z+h) Z 9 ka 'LZk

2k<1/|h\ 2k <1/|h|
Z 9= ka z2k (z+h) Z 9= ka sz(x
2k>1/|h| 2% >1/|h|
= I+1II.

Applying the mean value theorem we obtain
I <Gy Y 26079,
2k<1/

From the fact |e2"(@+h) — ¢2"(#)| < 2, the estimate I is obtained as

I <2 Yy 2t

2k>1/|h|

If we combine I and I together, we have
. i
Fw+ ) = ()] i
< C|h|*.

Cy

IN

+ 2|h|*

O

Now, we shall show that the Fourier series of f converges absolutely if f satisfies
a Holder condition of order av > 1/2.

Theorem 6. (Parseval’s identity) Let f be an integrable function on the circle
with f~3 > a,e™ . Then we have Parseval’s identity

Z a? = / 170 Pde.

Proof. See the details in [6]. O
We first consider the Holder condition of order v = 1.

Proposition 1. Let f be a 2m-periodic function which satisfies a Holder condition
of order a = 1 with constant K; that is,

[f(2) = fy)| < K|z —y| foralz,y.
(a) For every positive h we define gn(z) = f(x + h) — f(x — h). Then we have

1 [ A
3= | o)l = 3 alsin ahPliw)

n=—oo

10



and

Z |sin nh|?|f(n)|? < K2h?.

(b) Let p be a positive integer. If we choose h = 7 /2P, we have
~ K2%r?
Z |f(n)]* < Dol
2r—1<|n|<2p
(¢) The Fourier series of f converges absolutely and uniformly.

Proof. (a). Since gn(z) ~ 307 Gn(n)e™, we can express the Fourier coefficient
of gy as

gn(n) = emhf(n) — e_i”hf(n) = 21 sinnh f(n)

If we use Parseval’s identity, then we have

1 2m o0 R
| @k = Y a@F

= Y 4fsin nh’|f(n)]*.
Moreover,
0 R 1 2
> lsinnhPlfm)* < o | [f(a+h) = fo—h)Pda
n=—oo 0
1 2 )
2 < — K -2h)*d
(3.2 < o (Ko
= K%K

(b). From given 277! < |n| < 2P, h = 7/2P"!  we see that % < In|h < g So it

is clear that |sin nh|*> > 1/2, and thus D o1 || <ar |f(n)]? < 2K2%h?. Plugging in
h = 7 /2P we conclude that

-~ K272
S frs

2p—l<|n|<2P

(¢). For the proof, if we apply (b) and Cauchy Schwartz’s inequality, then

Soofml < > FmPE e Y. 1)

2r—l<|n|<2P 2r—1l<|n|<2P 2r—l<|n|<2P
( K?%r? ); 0% Kn
2 . 2 =
= p+1
22p+1 95



Furthermore, the Fourier coefficient of f is bounded by
K i r
o (2-V2)
OJ

SNoFmI<dS > 1)
p=1 2P*1<|n‘§2p

In fact, if we modify the argument slightly used in Proposition 1, we can reprove

Bernstein’s theorem, that is Theorem 1.
Proof of Theorem 1. If we replace (2h) by (2h)® in (3.2) and use (b), we obtain
~ Krn* |2
2
>, 0P < (Gamaa)
20—1<|n|<2p

Repeating the same procedures as those in (¢), we get
~ Kn*
< . .
9(a—3)(p+1)

Y. )

20—1<|n|<2p
If we assume « > 1/2, the Fourier coefficient of f converges absolutely, that is
— 1
< Kn¢ _
< m p_zl 9la—3)(p+1)

oI D 1)
p=1 2p—1<|n|<2P

n=—oo

We complete the proof.

12



4. CONVOLUTIONS AND GOOD KERNELS

In this Chapter we study the characteristic properties of convolution, good kernel.
Also by using convolutions, we show how these kernels can be used to recover a
given function.
Definition 2. A family of kernels { K, (x)}5° on the circle is said to be a family of
good kernels if it satisfies the following properties :
(i) For all n > 1,
1 s
o | K, (z) de = 1.

(ii) There exists M > 0 such that for all n > 1,

/W Ko (2)| do < M.

—T

(iii) For every ¢ > 0,
/ |Kn(x)| dv — 0, as n — oo.
o<|z|<m

Theorem 7. Let {K,,(x)}3° be a family of good kernels, and f an integrable function
on the circle. Then

Jim (f % K,)(x) = f(2)

whenever f is continuous at x. If f is continuous everywhere, the above limit is
uniform.

Proof. See pp.49-50 in [6] for the details. O
We now revisit the partial sum of the Fourier series of f
Sn(f)(z) = (f * Dn)(x),

where Dy(x) = Zﬁ;f n €™ is the Dirichlet kernel. It is natural now consider
whether Dy is a good kernel. Unfortunately, this is not the case. The following
proposition 2 tells us that Dy is not a good kernel.

Lemma 5. The Dirichlet kernel Dy is

sin(N + 1)6
Dy(z) = ——2—
v(z) sin(2)
Proof. We decompose
N N -1
DN(ZL') _ Z eine — e Z eine.
n=—N n=0 n=—N

13



By change of valuables ¢ with w, we have

N -1
" . 1 -Vt N1
Zw + Z w o 1—w + 1—w
n=0 n=—N
—N-1/2 N+1/2

w —w
wo-12 _ 12
sin((N +1/2)x)

sin(x/2)

Proposition 2. The Dirichlet kernel Dy is not a good kernel.

Proof. 1t suffices to show that Dy does not hold the second property such that
/ |Dn(0)] d0 > C log N, as N — oo.

First, we define

1 i
Ly = o |DN( )| db.
T

From Lemma 5, we express Dy as

sin((N +1/2)0)

Dw(6) = sin(60/2)

In the denominator since the period of sin(6/2) is 4w, it is obvious that |0| >
|sin(6/2)|, and so
|sin((N +1/2)0)|

0]

|Dn(9)] =

By changing of variable (N + 1/2)6 by ¢, we have

@N+1)r |
Ly > l/ ‘S’Zg‘w 40

Nm (2N+1)m
_ / / / \szmﬁ‘] 29
N+1)w ’19‘

N7 sind)|
L e
14




N—-1 p(k+D)m

Now since we split the integral fWNﬂ as y , we conclude that

km
N7 | s N=1  (k+1)m |;
|sind| / |sind|
dy = dd
N-1 (k4+1)7 1
> C / —dY
—1 k (k' "‘ 1)7T
N-1
1
= C _
py k+1
From the fact
- > / —dz?z/ —dy = C'logN,
k=1 k k=1 "k v 1 Y
we have that
Ly > C'logN.

O

Remark (7) We note that the formula for Dy as a sum of exponentials immedi-
ately gives

1 ™
— D =1.
o /_7T ~(z)dz

(77) The fact that the mean value of Dy is 1 is a result of cancellations.

We now turn to the standard positive result. Although Sy (f)(z) = (f * Dy)(z)
does not converge to f pointwisely, we instead have the following theorem.

Theorem 8. If f is an integrable function on the circle, then ||Sy — f|loc — 0 as
N — oo.

Proof. See [4]. O

15



5. PROOFS OF THEOREMS 2, 3

The Dirichlet kernels fail to belong to the family of good kernels, since one has

/ |IDn(0)] d0 > C log N, as N — oc.
However, their averages are very well behaved functions, in the sense that they do
form a family of good kernels.
Definition 3. We define N** Fejér kernel given by

_ Dy(x) +---+ Dy-s(2)

Fy(x) N .

From S, (f) = f * Dy, we find that

on(f)(@) = (f = Fx)(x),
where Fy(z) is the N** Fejér kernel.
Lemma 6. The Fejér kernel is given by
sin?(Nz/2)
F = ——""
w(z) N sin?(z/2)
Proof. From Definition 3 we write

NFN(ZE) = Do(l’) + -+ DN_l(I).

If we denote w = €', then Dy(z) = Zflzo W'+ 371 w™ and their sums are

1— +1 -l _ 1
1—w7 and w
—w

(5.1)

)

1—w

respectively. If you plug [ into 0,1,--- , N — 1 in (5.1), this leads

N-1 1—w Wl w2 W N+ _ N

D e S S
41wt 1YY (Wt Wi W)
N 1 —w B 1—w
C ww VN —1) — w1 —wh)
- (1—-w)?
(N2 w2 sin(Na/2)

(w=12 — /22— sin2(x/2)
If we divide the above estimate by N, this completes the proof. O

16



We let the partial sum s, by s, = >_,_, ¢, and say that the series converges to
s if
11My—s00Sn = S.

Definition 4. We define the average of the first N partial sums by
So+ 81+ +SNy-1
N :
The quantity oy is called the N Cesaro mean of the sequence {s,} or the N*

Cesaro sum of the series Y~ . If o converges to a limit o as N tends to infinity,
we say that the series >~ ¢, is Cesaro summable to the same limit s.

ON

Example 3. Consider the series
L=1+41=1+4--=> (=1~
k=0

Its partial sums form the sequence {1,0, 1,0, ...} which has no limit. However, the
series Cesaro summable to 1/2.

We proceed to the proof of Theorem 2.

Proof of Theorem 2. In view of Theorem 7 we first show that the Fejér kernel
is a good kernel. For N > 1, we have 5= [* Fy(z)dz = 1 since 5= [7 Dy(z)dz =1
and Definition 3. Clearly,

sin?(Nx/2)
F = ——"=
n(z) N sin?(x/2)
from Lemma 6. However, sin?(z/2) > C(§) > 0, if § < |z| < 7, hence Fy(z) <
m, from which it follow that

1
Fy(x)lde < — 0 as N — oo.
/5§|z|§7r| w(e)lde < C(6) N

We now consider the N** Cesaro mean of the Fourier series
_ So(I) + -+ SN_l(l‘)

on(x) N
Since N Fy(x) = Do(z) + -+ + Dy_1(x), we have oy(x) = f x Fy(x). Hence if we
apply Theorem 7, we have the desired results. O

-~

Corollary 3. If f is integrable on the circle and f(n) =0 for all n, then f =0 at
all point of continuity of f.

Proof. Since all the partial sums are 0, hence all the Cesaro means are 0. 0

Corollary 4. Continuous function on the circle can be uniformly approximated by
trigonometric polynomials.
17



Proof. Since the Cesro means are trigonometric polynomials, it follows from Theo-
rem 2. O

Remark. Corollary 4 is the periodic analogue of Weierstrass approximation the-
orem (see [6], pp.159-160).
Another method of summation is Abel summation.

Definition 5. A series of complex numbers >/~ ¢ is said be Abel summable to s
if for every 0 < r < 1, the series

converges, and
lim,_1A(r) = s.

The quantities A(r) are called the Abel means of the series.

In the context of Fourier series, we define the Abel means of the function f(6) ~
ZTOLO:?OO anemeby

A(N)0) = ) rMa,em.

n=—oo

We note that since f is integrable, |a,| is uniformly bounded in n, so that A,(f)
converges absolutely and uniformly for each 0 < r < 1. In fact,

o0

400 = 3 Mae

n=—oo

- 2 7‘"'(% /_ ' flp)eedg)en

1 " = —in(p—
= 5o [ S ey ag,

where the interchange of the integral and infinite sum is justified by the uniform
convergence of the series. These Abel means can be written as convolutions

Ar(F)(0) = (f * B£)(0),
where P,.(6) is the Poisson Kernel given by

(5.2) P.(8) = i rinleind,

n=—oo

We turn to the proof of Theorem 3.
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Proof of Theorem 3. Let 0 < r < 1. By change of valuables re? with w, we
have

P.(0) = Z Fnlging an i an‘
n=—oo n=0 n=1
B 1 n w
Cl-w 1-
1—|w® 1—1r2

1—wl2 1—2rcosf+r?
To show that P, is a good kernel, we first note that
1 —2rcosf +1? = (1 —2r)? +2r(1 — cosb).
Hence if 1/2 <r <1 and § < |0] < 7, then
1 —2rcosh +1*>cs > 0.
Thus P.(0) < (1 —1r?)/cs when § < |0] < 7, and

/ |P.(0)]d0 < (1 —7?)/cs — 0 as r — 1.
0<|z|<m

Clearly P,(0) > 0, and integrating the expression (5.2) term by term yield
1 ™
2 J_.

P.(0)df = 1.

Therefore, we conclude that P, is a good kernel. Combining this lemma with The-
orem 7 we complete the proof. O
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6. CESARO AND ABEL SUMMABILITY

In this Chapter we show that Abel summability is stronger than the standard or
Cesaro methods of summation.

Lemma 7. If a series of complex numbers Y, ¢, converges to s, then >~ ¢y is
Cesaro summable to s.

Proof. Let
S1+ S+ -+ Sy
- .
We want to show that o, converges to s as n goes to infinity. Now we consider

Op —

S1+S2+---+s8, ns

op—8 = - —

n n
(s1—8)+(so0—58)+-+ (8, — 9)

n

Since s,, converges to s by assumption, for give ¢ > 0 there exists N € N such that
|sn — s| < e for all n > N. By using this and triangle inequality, we have

|s1 — s| + |sa —s| + -+ |sy — s

|‘7n _3|

n
n [sn1 — s+ [s2 — [+ +[s0 — 5]
n
< |31—s|—|—|32—3|+---+|sN—s|+e(n—N).
n n

Therefore, since lim sup,,_, |0, — | < € and € is arbitrary, we obtain the desired
result. O

Lemma 8. If the series Y -, ¢, of complex numbers converges to a finite limit s,
then the series is Abel summable to s,

Proof. Let Sy =¢1 +ca+ -+ cy. Since s = s(1—7r) > 2 7" for |r| <1,

N N
Z cprt —s = Z(S” — Sp)r —s
n=1 n=1

N N
= E S,r" —r E S "t SN Sy N g
n=1 n=1

N
= ZSnrn(l —r) 4+ SyrV T — s,
n=1

20



If we let N go to infinity, we have

n_ o o ni1 : N+1
Zlcnr s Zl(Sn s)r'*(1 r)+J&1LI;OSNT .

Since imy 0o Sy 7V = 0 and lim, 1 > o2, (S, — s)r"(1 — r) = 0, we obtain

o0
lim E Ccpr" = S.
r—1

n=1

O

The following example shows that there exists a series which is Abel summable
does not converge.

Example 4. ([6]) Take ¢, = (—1)". Thenlim,_1 > oo, (=1)"r" = —3, but Y 02 (—=1)"
does not converge.

We prove Theorem 4. This tells us that Cesro methods of summation implies
Abel summation.

Proof of Theorem 4. Let S, = >/, ¢, 0, = M and so no, =
S+ Sy +---+5,_1. In view of Lemma 8 it suffices to show that o0 = 0. Now

N N
et = Z<S" — Sy
n=1 n=1
N
(6.1) = (1=7)> Spr+ Syt

n=1

Since S, = no, — (n — 1)0,,_1, we rewrite
N
S8 = ot 2o — o)+ o+ (Now — (N = Dow-1)r
n=1

= (0’17“1—{— +NUN7‘N)—T’(0'17"1—{—... +(N_1)UN_1TN_1)
N
= (1—T)Zn0nr”+NaNrN+1,

n=1

Thus if we plug the above in (6.1), we have

N N
cpr’” = (1—r)[(l—r)ZnanT”+NJNrN+1]+SNTN+1
n=1 n=1
N
= (l—T)QZanT"—i—(1—r)NanrN+1—|—SNrN+1,
n=1
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If we let N go to oo, then limy_oo o, N7Vt = 0 and limy_.oo SyrV ! = 0. Hence
it follows that

chr" = (1 —T)ZZnanr”.
n=1 n=1
Finally, if we let r go to 1, we obtain the desires estimate. OJ

The next example explains that a series that is Abel summable is not Cesaro
summable.

Example 5. ([6]) If we consider the series
1=243—d4--=> (=1fk+1),
k=0
then one can show that it is Abel summable to 1/4 since

A(r) = So(-DMk+ 1 = !

— 1+47r)%

On the other hand, to show this series is not Cesaro summable we put N = 2k for

k € Z. Then
. Sl+52+"‘+52k . —k 1
lim = lim — = ,
If N =2k+1 for k € Z, then

m51+52+---+52k+52k+1_1. k+1 1

li = _.
kLOO 2k kLIEO 2k+1 2

Remark 2. The results above can be summarized by the following implications about
series:

Convergent = Cesaro summable = Abel summable,
and the fact that none of the arrows can be reversed.

The next Theorem 9 shows with the above arrows can be reversed with some
additional condition.

Theorem 9. (a) If D7 o ¢y is Cesaro summable to o and ¢, = o(1/n) (that is,
nc, — 0),then Y o ¢, converge to o.
(b) The above statement holds if we replace Cesaro summable by Abel summable.

Proof. (a) Let o, = S22t and G, = 37 ¢ Then

Cat(ata)tFlat+ - +a)
n

Sp—0on = (14 +cpn)

Cn

) (o= )

n

— (01_7)+(C2_w
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Next, we estimate the size of S,, — 0,,. For this, we consider for any ¢ > 0 there
exists K such that |nc,| < € and

K - K
cK+(n )e
n n

S0 —oul < Egg
n

for all n > K.
Lastly, we have
lim sup |S, —o,| < e

Since € is arbitrary, we complete the proof.
(b) Tt suffices to show that the difference between 32 _ ¢, and 32 ¢,(1—1/N)"
where 7 =1 —1/N. Then we have

S el — (1 —1/N))

n=1
N
n nn-—1),1, 1
— (- T (— o (=) (=),
Yool g () D))
If we repeat the same argument used in (a), we finish the proof. O
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7. APPENDIX : MEAN SQUARE CONVERGENCE OF
FOURIER SERIES

In this Chapter we study infinite-dimensional vector spaces and pre-Hilbert space
to understand the following mean square convergence of Fourier series:
Theorem 10. Suppose f is integrable on the circle. Then

1 2

— [ |f(6) = Sn(H)(O)d -0 as N — oo.
2m Jo

We now review the definitions of a vector space over R or C, an inner product,
and its associated norm.

Definition 6. A vector space V over the real numbers R is a set whose elements
may be "added” together, and "multiplied” by scalars. More precisely, we may
associate to any pair X,Y € V an element in V' called their sum and denoted by
X+Y.

Definition 7. An inner product on a vector space V over R associates to any pair
X, Y of elements in V' a real number which we denote by (X, Y'). In particular, the
inner product must be by symmetric (X,Y) = (Y, X) and linear in both variables;
that is,

(aX +pY,Z)=a(X,Z2)+B(Y,Z)
whenever o, 8 € R and X,Y,Z € V. Also, we require that the inner product be
positive-definite, that is, (X, X) > 0 for all X in V.

Definition 8. An inner product (-,-) we may define the norm of X by
X = (X, Y)'2.

If in addition ||X|| = 0 implies X = 0, we say that the inner product is strictly
positive-definite.

Definition 9. For vector spaces over the complex numbers, the inner product of two
elements is a complex number. Moreover, these inner products are called Hermitian

(instead of symmetric) since they must satisfy (X,Y) = (Y, X). Hence the inner
product is linear in the first variable, but conjugate-linear in the second:

(aX +0Y,Z)=a(X,Z)+ B(Y,Z) and

(X, oY +pZ) =a(X,Y) + B(X, Z).
Also, we must gave (X, X) > 0, and the norm of X is defined by || X|| = (X,Y)"?as
before. Again, the inner product is strictly positive-definite if ||X|| = 0 implies
X =0.
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Definition 10. Let V be a vector space (over R or C) with inner product (-,-) and
associated norm || - ||. Two elements X and Y are orthogonal if (X,Y) = 0, and we
write X LY.

Three important results can be derived from this notion of orthogonality :

Lemma 9. We have
(1) The Pythagorean theorem: if X and Y are orthogonal, then

1X + Y17 = |IX|° + Y]
(17) The Cauchy-Schwarz inequality: for any XY € V we have
(XY < [IXTYY.
(1ii) The triangle inequality: for any X,Y € V we have
IX + Y[ < [IX][+[[Y]].
Proof. See [6]. O
We study infinite-dimensional vector spaces.

Definition 11. The vector space [*(Z) over C is the set of all (two-sided) infinite
sequence of complex numbers

(o A 1,G0, A1,y ey e .)

D an? < oo

nez
Addition is defined componentwise, and so is scalar multiplication. The inner prod-
uct between the two vectors A = (...,a_1,a9,a1,...) and B = (..., b_1,bo,by,...)
is defined by the absolutely convergent series

B) = ZG"E

ne”

such that

The norm of A is then given by
A = (A4, 172 = (Y ).

neL

Lemma 10. [*(Z) is a vector space.
Proof. See pp.73-74 in [6]. O

We now consider Pre-Hilbert space.
In the three example R? C¢, and [?(Z), the vector spaces with their inner products
and norm satisfy two important properties:
(7) The inner product is strictly positive-definite, that is, || X|| = 0 implies X =0
(77) The vector space is complete, which by definition means that every Cauchy

sequence in the norm converges to a limit in the vector space. An inner product
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space with these two properties is called a Hilbert space (see for details [?]). If either
of the conditions above fail, the space is called a pre-Hilbert space.

We now give an example of a pre-Hilbert space where both conditions (i) and (i)
fail.

Example 6. ([6]) Let R denote the set of complex-valued Riemann integrable func-
tions on [0, 27]. This is a vector space over C. Addition is defined pointwise by

(f +9)(0) = £(0) + g(0).
Naturally, multiplication by a scalar A € C is given by
(Af)(0) = A- f(0).

An inner product is defined on this vector space by

1 [ -
(f.9) = %/0 f(6)g(6) db.
The norm of f is then
1911 = o [ 1@ Pany
C2m '

One needs to check that the analogue of the Cauchy-Schwarz and triangle inequalities
hold in this example; that is [(f, g)] < ||f]| |lg]]. We first observe that 2AB < (A?+
B?) for any two real numbers A and B. If we set A = A'/2|f(0)| and B = A\"/2|g(0)|
with A > 0, we get

1£(0)g(0)] <
We then integrate this in # to obtain

LSO + A g (O))-

N | —

() < 3= [ ORI < SOIF+ 3ol

Then, put A = ||g]|/||f]| to get Cauchy-Schwarz inequality. In our choice of A we
must assume that ||f|| # 0 and ||g|| # 0.
This leads us to the following observation.

Lemma 11. The vector space R is a pre-Hilbert space.

Proof. In R, condition (7) for a Hilbert space fails, since || f|| = 0 implies only that
f vanishes at its points of continuity.

To prove condition (ii) for a Hilbert space fails, we now want to show that the space
R is not complete. To see this, define a sequence of functions in R by

£.06) = 0 for 0<60<1/n,
) f6) for 1/n < 6 < 2m,
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where

0 for 6 =0,
f0) =
log(1/0 ) for 0< 6 < 2m.

Then we can easily show that {f,} is a Cauchy sequence in R, since

||fn(‘9)_fm(9)|| = (i/ (10g6’)2d0)1/2

27
1 2 b)1/2
= (%[ﬁ(log 0)* —201log 6 + 26],)
converges to 0 for all 0 < a < band b — 0. However, this sequence does not converge
to an element in R since f is not bounded. O

We now turn to the proof of Theorem 10 ([6]).

Lemma 12. (Best approximation) If f is integrable on the circle with Fourier
coefficients a,,, then

1 =Sx(NIl < 11f = Y caall

In|<N
for any complex numbers c,. Moreover, equality holds precisely when ¢, = a,, for all
In| < N.

Proof. This follows immediately by applying the Pythagorean theorem to
F= cnen=1F=Sn(f)+ D buen,
In|<N [n|<N
where b,, = a,, — c,. O

Proof of Theorem 10. Suppose that f is continuous on the circle. Then, given
€ > 0, there exists a trigonometric polynomial P, say of degree M, such that

|f(0) — P(A)| <e forall 0.
This leads to us that

1
1f = Pl =

2m
2, \1/2
— - P .
(%/0 1£(0) — PO do)"* < ¢
Then by the best approximation lemma 12, we conclude that

l|f —Sn(f)|| <e whenever N > M.

If f is merely integrable, we apply the approximation lemma in [6], p.285 and
choose a continuous function g on the circle which satisfies

SUPoe[0,27] !9(9)! < SUpgefo,2n] \f(e)\,
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and

/0 17 0) — g(6) do < /4.

Since f is integrable, we set |f(0)| = B, and |f(0) — g(0)| < |f(0)] + |9(0)| < 2B.
Then we get
1 2m

f=gll> = — 1 £(0) — g(O)]]£(0) — g(0)] b
—/2” 0) do

Now we may approximate g by a trigonometric polynomial P so that ||g — P|| <
€/2. Then

IN

<

f =Pl <IIf —gll +]lg = Pl <Ce

If we apply the best approximation lemma 12, we complete the proof. O
We now summarize the results of this Chapter.
Theorem 11. Let f be an integrable function on the circle with f ~ > >0 a,e™.
Then we have
(i) Mean-square convergence of the Fourier series
1 2m
o
(ii) Parseval’s identity

3 Jauf? = 3 |16

n=—oo

1£(0) — Sn(f)(O)?d) — 0 as N — oc.

Remark 3. We may associate to every integrable function the sequence {a,} formed
by its Fourier coefficients. Parseval’s identity guarantees that {a,} € [*>(Z). Since
I%(Z) is a Hilbert space, the failure of R to be complete, discussed earlier, may be
understood as follows: there exist sequences {an}ne(z) such that 3 lan|* < oo,

yet no Riemann integrable function F has n'* Fourier coefficients equal to a,, for all
n. We have an example.

Example 7. Consider the sequence {ay}32 ___ defined by
1k ifk>1,
ap = .
0 if £ <0.

Note that {a;} € [*(Z), but that no Riemann integrable function has k™" Fourier

coefficient equal to ay for all k.
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Finally, we study that if a function is differentiable at a point, then its Fourier
series converges to that point (see [6]).

Proposition 3. Let f be a bounded function on the compact interval |a,b]. If
c € (a,b), and if for all small 6 > 0 the function f is integrable on the intervals
la,c — 6] and [c + 0,b], then f in integrable on [a,b].

Theorem 12. Let f be an integrable function on the circle which is differentiable
at a point 6y. Then Sn(f)(0o) — f(6y) as N tends to infinity.

Theorem 13. Suppose f and g are two integrable functions defined on the circle,
and for some 0y there exist an open interval I containing 0y such that

f(0)=g(0) forall 6el.
Then Sn(f)(6o) — Sn(g)(0o) — 0 as N tends to infinity.

Proof. . The function f — g is 0 in I, so it is differentiable at 6y, and we may apply
the previous theorem 12 to conclude the proof. O
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