[ UCI]1804: 24011- 200000231649

20075 2H
EHBA /X

ZEROS OF SELF-RECIPROCAL
POLYNOMIALS

IRER RS KRB
BB R
7= T ¥



ZEROS OF SELF-RECIPROCAL
POLYNOMIALS

20074 2H 23H

SRR KEPE
B
=R



ZEROS OF SELF-RECIPROCAL
POLYNOMIALS

2006 10H

BB KERE
w2 R
i B W



FEWY BB wS RAES

ZER RARERERRS %

% B HEAER W
£ B HRAER 3
£ B WP TRER HiF

A
i

\
/

RIS RS Bl

20065 12H

AR REARE KRR



CONTENTS

TEL SR B et e s bR s ;
1. Introduction and Statements Of FESUILS - wsererrsimssresssrereresssasnsesanas 1
1.1 Introduction .......................................................................................... 1
1.2 Statements Of reSUlLs --ccceeetceesereeerenennmrreriieiiiiiiii e 5
2' Four typeS of Self_reciprocal DO].ynOmiaIS ....................................... 10
2.1 The zeros of PT(2) and P ~(z) weereersemimmminnnnininiininines 10
2.2 The zeros of Q@ T(2) and Q ~(2) wwreeserermmmrermissienninninisniiinie 15
3. An inequality and Enestrom-Kakeya types of problems «:+: 19
31 A new inequality .............................................................................. 19
32 Enestrém—Kakeya types of problems ......................................... 21
33 An open prOb].em .............................................................................. 28

Ref CTEILCES wre reessterarnmensnes ittt itttttiiuitittitiottaiteittirttisttortasttatitiernsnnsse 29



w9l Slol gAY Bl w9l o

o
=
.Eo

ol

)

oW

ol

i}

o Aol ddigkel o

&

7h&

oF
W
o}
i

il

-
2

o B

ﬂ,yl

Plo

T
o

[¢]

Enestrom-Kakeya



1. Introduction and statements of results

1.1 Introduction

Throughout this thesis, U denotes the unit circle and n is a positive
integer. A polynomial P(z) = anz™ + Ap_12"" L+ -+ ag is said to
be a self-inversive polynomial of degree n if it satisfies a, # 0 and

P(z) = pP*(z), where || =1 and
P*(z) = 2"P(1/z) = ap2" +@iz" "' + -+ + T,

In particular, if P(z) = 2" P(1/z), P(z) is called be a self-reciprocal
polynomial. Thus the zeros of a self-reciprocal polyﬁomial either lie
on U or occur in pairs conjugate to U. By Cohn’s theorem ([4]), a
polynomial Q(z) of degree n with all its zeros on U must be of the
form Q(z) = u2"Q(1/2) for some p, |u| = 1. Hence it is interesting to
mention the condition for a self-reciprocal polynomial with all zeros
on U. Besides problems for the zeros, a self-reciprocal polynomial
P(z) of degree n has the remarkable relation (see p. 153 of [11])

) =
max|F'(z)| = 5 max|P(z)].



Furthermore, every point of maximum modulus of P(z) on U is also
a point of maximum modulus of P’(z). In particular, this relation
holds for all polynomials of degree n whose zeros lie on U.

A useful tool for showing a self-inversive polynomial having all its

zeros on U is due to Cohn ([4]).

Theorem 1.1. (Cohn) Let P(z) be a self-inversive polynomial of
degree n. Suppose that P(z) has ezactly T zeros on U (counted ac-
cording to multiplicity) and exactly v critical points in the closed unit

disc (counted according to multiplicity). Then

T=2(r+1)—n.

Thus a necessary and sufficient condition for all zeros of a self-
inversive polynomial P(z2) to lie on U is that all zeros of P’(2) lie inside
or on U. Another approach to show a self-inversive polynomial having
all its zeros on U is by using Chebyshev transformation. Studying
the spectral properties of the Coxeter transformation, Lakatos ([8])
found sufficient conditions for self-reciprocal polynomials having all

their zeros on U by using Chebyshev transformation.



This transformation was also used for the study of zeros of certain
sums of two self-reciprocal polynomials. A convex combination of
two self-reciprocal polynomials that are products with same degree
of finitely many finite geometric series with each having even degree
does not always have all its zeros on U. However Kim ([7]) showed
that, if a polynomial is obtained by adding a finite geometric series
multiplied by a large constant to such a convex combination, it has all
its zeros on U by using the transformation. Schinzel ([10]) generalized
Lakatos’s result ([9]) above for self-inversive polynomials by proving

that all zeros of the polynomials P(2) =Y ,_, axz® where
an #0, ax €C, and edy = ap— (0<k<n)witheeC, |¢f=1

lie on U provided that
n

> inf Z ap — d™ *a
|an| = c,dG}C,Idl=1 k=0lc k nl

holds. Schinzel’s proof was based on a theorem of Cohn ([4]) and on

the estimate

min
2€C,|z|=1

2

STE

n
§ : kzn—k
k=1




Lakatos and Losonczi ([9]) again improved Lakatos’s previous result
-and above Schinzel’s result for polynomials of odd degrees. However
their method didn’t work for even degree polynomials.

Our first goal in this thesis is to investigate the zero distribution of
certain self-reciprocal polynomials. More precisely, we will have some
results about the zero distribution of real self-reciprocal polynomials
of even degrees with five terms whose absolute values of middle coef-
ficients are equal to the sum of all other coefficients. While studying
this, we will get a new inequality and Enestrom-Kakeya ([6]) types
of results. We end this section with introducing one of the most fun-
damental theorems, Rouché’s theorem (p. 48 of [11]), related to this

study in complex analysis. It will be often used in the sequel.

Theorem 1.2. (Rouché) Suppose f(z) and g(z) are analytic inside
and on a simple closed contour C, with |g(2)| < |f(2)] on C. Then

f(2) + g(2) has the same number of zeros as f(z) inside C.



1.2 Statements of results

All real self-reciprocal polynomials of even degrees with three terms
whose absolute values of middle coefficients are equal to the sum of

all other coefficients are of the form
AZ?™ £2A2™ + A= A(z™ £1)2,

and have all their zeros on U. This induces our attention naturally
how zeros of the same kinds of self-reciprocal polynomials with five
terms are located around U. In fact, there are exactly four types of
such polynomials as follows. For integers m, n with m > n > 0 and

positive real numbers a, b, we let
Pt(2) = az®™ — bz™" 4+ 2(a — b)2™ — b2™ " +a,
P~ (2) = az®™ — b2z™t" — 2(a — b)2™ — b2™" +a,
Q1 (2) = az®™ + b2™ " + 2(a + b)2™ + b2™"" + a,

Q (2) = a2®™ + bz™t" — 2(a + b)2™ 4+ b2™" +a.

The first purpose of this thesis is to investigate zero distribution of



above four polynomials around U. In Section 2.1, we will show that
for a > b > 0 all zeros of P*(z) and P~(z) lie on U. However these
polynomials for b > a > 0 will be studied for some special cases. In
Section 2.2, we will see that the number of zeros of Q% (z) and Q@ (2),
respectively on U relies on the greatest common divisor of 2m, m+mn,
and m —n. All results for P (z), P~(z), Q1 (z) and Q@ () are given
below. Throughout these theorems, we assume that m, n are integers
with m > n > 0 and a, b are positive real numbers as above. We will

prove Theorems 1.3, 1.4 and 1.5 in Chapter 2.

Theorem 1.3. For a >b > 0, all zeros of PY(2) and P~(z) lie on
U.

Theorem 1.4. Let d be the greatest common divisor of 2m, m+n,
and m —n. Then we have the following.

(a) If d| m, Q*(2) has no zero on U.

(b) If d¥ m and m = dk+r for some integers k, r with 1 <r < d—1,
Q*(2) has ezactly d/2 zeros on U without counting multiplicities.

Such zeros are the d/2-th roots of —1.



Theorem 1.5. Let d be the greatest common diwvisor of 2m, m+n,
and m — n. Then we have the following.

(a) If d| m, Q™ (z) has ezxactly d zeros on U without counting multi-
plicities. Such zeros are the d-th roots of —1.

(b) Ifd’[m and m = dk+r for some integers k, r with1 <r <d-—1,
QR (2) has ezactly d/2 zeros on U without counting multiplicities.

Such zeros are the d/2-th roots of —1.

The polynomials P*+(z) and P~ (z) are of interest. For example, a

special case of P+ (z) with a = m? and b = n?, ie.,
T(2) := m?2®™ — n?z™t" 4 2(m2”— nz)zm —n22™ " £+ m?,
plays a role in the study of inequalities. In fact, it follows from
T(z)>0 for0<z<1
that we have a new inequality.
Theorem 1.6. Fory > x>0 and 0 < A <1, we have an inequality

(1.1) 22+ 2(1 — Azy + 32 > N2 (@A 2y,



We observe that, in (1.1), if A = 0, (z + %)% > 0, and if A = 1, the
both sides are equal to z2 + y?. The proof of Theorem 1.6 will be
given in Section 3.1. Also the zeros of a special case of P~(z) with

2

a =n? and b = m? are those of the equation

nf12m—1 Q:zm 120 —1)?
m z—1 nz—1) "

z2m—1
z—1

This is interesting because is an analogue of m. Finally
some self-reciprocal polynomials that are factors of P~ (z) seem to be

related to Enestrom-Kakeya ([6]) types of problems.

Theorem 1.7. (Enestrém-Kakeya) Let ag, a1, - , an be real num-
bers satisfying

ag > a1 > 2 an > 0.
n

Then the polynomial P(z) = Zakz has no zeros inside U.
k=0

For the proof of Enestrém-Kakeya Theorem above, see p. 12 of [2].
In fact, if m — n = 1, then the first half terms starting with constant

terms of the self-reciprocal polynomials

2m—2
U6 = G = 2 et



where ar = b+ k(b — a), seem to have their coefficients in increasing
order. From the increment of the order, it is natural to investigate
how zeros of U(z) are located around U. We will prove in Section
3.2 the theorem below about the zero distribution of the generalized

polynomial of U(z) above.

2m+1
Theorem 1.8. Let P(z) = Z aiz" be a real self-reciprocal poly-

nomial and ar, = 1+kr, k = 1],63?- -+ ,m. Then we have the following.
(a) If r < —2, then P(z) has 2m — 1 zeros on U and a zero in {0, 1],
(b) If -2 <r <2, then P(2) has all its zeros on U,

(c) If2<r <2+2 andm is even, then P(z) has all its zeros on U,
(d) Ifr =2+ 2 and m is even, then P(z) has all its zeros on U,

(e) If r > 2+ 2, then P(z) has 2m — 1 zeros on U.

In above theorem, the three cases “2 <r <2+ ;2; and m is odd”,

« _2» «

— _ 2 s » .
r=—="“ =242 and m is odd” remain open problems.



2. Four types of self-reciprocal polynomials

We often use Theorems 1.1 and 1.2 to prove our results Theorems

1.3, 1.4 and 1.5 in Section 1.2.
2.1 The zeros of P*(z) and P~ (z)
We first prove Theorem 1.3.

Proof of Theorem 1.8. We use Theorem 1.1 and Theorem 1.2. Let
Pt(2)
p(z) == %?n“i%%]“f = 2amz™ " —b(m+n)2*" +2(a—b)ymz" —b(m—n).
For € > 0, we define the polynomial
pe(2) := (2am + €)2™™ — b(m + n)2*" + 2(a — b)mz" — b(m — n).

Since a > b > 0, for |z]| = 1, we have

|(2am + €)2™"| = (2am + €) > 2am
= b(m +n) +2(a — b)m + b(m — n)

> | — b(m + n)2®" + 2(a — bymz" — b(m — n)|.

10



By Theorem 1.2 p.(z) has all its zeros strictly inside U which implies
that all zeros of p(z) lie inside or on U. Now Theorem 1.1 completes

the proof. The result for P~(z) can be proved in the same way. [

We can also prove all zeros of P~(z) lying on U by using the
following theorem ([3]).

Theorem 2.1. (Chen) A necessary and sufficient condition for all
the zeros of Pn(z) = i arz®, an # 0 with complex coefficients to
lie on the unit circle iI;:t(;Lat there is a polynomial g,—;(z) with all its
zeros in or on the unit circle such that

Po(2) = 2'an1(2) + €05y (2), where g5_y(2) = 2" 'qn1(1/Z)

for some nonnegative integer I and real 6.

The suitable g,—;(2) in Theorem 2.1 for P~ (z) is

az™ —bz"™ — (a —b).

11



In fact, we have

P~ (2) = 2™[az™ — bz" — (a — b)] + [-(a — b)z™ — bz™"" + 4q]
= z"[az™ — b2" — (a — b)] + [az™ — b2" — (a — b)|*
and az™ — bz"™ — (a — b) has all its zeros in or on U. See p. 227 of
[1] for the zero distribution of az™ — bz™ — (a — b). The polynomials
P*(z) and P~(z) for b > a > 0 are studied for some special cases.

The problems about the number of zeros on U for these polynomials

in the general case remain open.

Proposition 2.2. If n|m, and 0 < b < a, then P*(z) has at least

2n zeros on U.

Proof. We note that

Z"P*(2) = az™(2%™ 4 22™ + 1) — b2™(2*" + 22" + 1)

=az"(z™ +1)% = bz™(z" + 1)°.

For n|m, we have

12



Zz"Pt(z)
:azn(zn + 1)2(zm—n _ zm—2n e 1)2 _ bzm(zn + 1)2

— (zn 4 1)2[azn(zm—n . Zm—2n R 1)2 _ bzm],

which proves the proposition. U

Proposition 2.3. Ifm—n=b—a =1 and a > n, then all zeros of

P=(z) lieon U.

Proof. It follows from m —n =b—a =1 that

P (z)= a2’ — (a+ 1) + 2" — (a+ 1)z +a
=2 az" — (a+1)2" + 1) + (" — (a + 1)z + a)

= 2" az" ~ (a+1)2" + 1) + (a2z" — (a + 1)2" + 1)*.
By Theorem 2.1, it suffices to show that
az"t —(a+1)2" +1
has all its zeros inside or on U. On the other hand,

2"t —(a+ 12" +1=(z—D(az" — 2" — 2" —... — 2z 1).

13



Since @ > n, az™ — 2”1 — 22 — ... — z — 1 has all its zeros inside
U by Theorem 1.2 and the assumption ¢ > n. This completes the

proof. [

Proposition 2.4. Ifn|m and 0 < b < a, then P~ (z) has at least 2n

zeros on U.

Proof. Note that
2"P~(2) = az™ (2™ — 1)? — b2™ (2" — 1)2.
For n|m, we have

Z"P~(2)
=azn(zn _ 1)2(zm—n + zm—2n a2+ 1)2 _ bzm(zn _ 1)2

:(zn __‘1)2[azn(zm—n+zm—2n+.__+zn+1)2_bzm],

which proves the proposition. [

14



2.2 The zeros of Q1 (z) and Q™ (2)
We prove Theorems 1.4 and 1.5 in this section.

Proof of Theorem 1.4. For € > 0, we define the polynomial
QT (2) = a2®™ +b2™ " + (2(a +b) + €)2™ + b2™ " +a.
For |z| =1,
QY (2)| > 2(a+b)+e—2a—2b=¢€>0,

which implies that Q}(2) does not have a zero on U. Also it follows
from Theorem 1.2 that Q7 (2) has exactly m zeros strictly inside U,

say aq,- - ,Qm. Suppose that, as e — 0, some of these tend to U, say
a; —ef%, 0, eR.
Since Q*(z;) = 0, where z; = €%, we have
laz3™ + bzt + b2 " + a| = 2(a + b).

This equality holds only if the four points z?-m, z;n"'”, z;" " and 1

have the same argument, so

15



(2m)8; = (m+n)8; = (m —n)f; =0 (mod 2).

Hence €% is a d-th root of unity, where
(2.1) d = ged (2m, m 4+ n,m — n).
If d|m, then

Qt (w) = aw®™ + bw™ ™ + 2(a + b)w™ + bw™ " +a
=a+b+2a+bwm+b+ta

=2(a+b)(1+w™)=4(a+b) #0.

Thus Q% (z) has no zero on U. We now suppose that d { m and
m = dk +r for some integers k, r with 1 <r < d—1, then d must be
even since, for d odd, d | 2m and so d | m. Also d | 2m implies that
d | 2r. Letting 2r = du for some positive integer u, we have du/2 < d

and sou =1, ie., d=2r. Now

QF (w) = aw?™ + bw™ ™ 4 2(a + b)w™ + bw™ " +a
=a+b+2(a+buwm+b+a

=2(a+b)(1+w™) =2(a+b)(1 +w¥?).

16



Since the d/2-th roots of —1 are contained in the d/2-th roots of unity,
Q1 (2) has exactly d/2 zeros on U without counting multiplicities.

Such zeros are the d/2-th roots of —1. O

Proof of Theorem 1.5. For € > 0, we define the polynomial
Q: (2) = az®™ +b2™" — (2(a +b) + €)™ + 02" 7" +a.

For Q (z), we follow exactly same procedure of the proof of Theorem
1.4 until (2.1). Then we can see that if the zeros of Q7 (2) on U exist,
they must be d-th roots of unity as in proof of Theorem 1.4. If d|m,
then

Q™ (w) = aw®™ + bw™*" — 2(a + b)w™ + bw™ " +a
=a+b-2a+buwm+b+a

=2(a+b)(1 —w™).

Hence Q~(w) has exactly d zeros on U that are the d-th roots of
unity. We now suppose that d{m and m = dk + r for some integers

k,r with 1 <r <d—1, then d = 2r as in the proof of Theorem 1.4.

17



Now

Q™ (w) = aw®™ + bw™ "™ — 2(a + b)w™ + bw™ " +a
=a+b—2(a+b)w"+b+a

=2(a+b)(1—-—wm)=2(a+b)(1—w").

Since the d/2-th roots of —1 are contained in the d/2-th roots of unity,
Q™ (z) has exactly d/2 zeros on U without counting multiplicities.

Such zeros are the d/2-th roots of —1. [1

18



3. An inequality and Enestrém-Kakeya types of problems

3.1 A new inequality
Now we prove Theorem 1.6 in section 1.2.
Proof of Theorem 1.6. Let, for 0 < z < 1, where m > n > 0,
T(z) := m22%™ — n22™+" 4 2(m? — n?)2™ — n?2™ ™" + m?.

Then we have

T(z) >0 for0<z<1.

This is because

T(z) = 27 ((m?2"(z™ + 1)%) — n22™ (2" + 1)?)), 2" > 2™,

and
m2(z™ +1)2 > n?(z" 4 1)2.
In fact
3.1) mz™ —nz"+m—n>nz" —mz"+m—n>0.

For the second inequality of (3.1), see pp. 39-42 of [5].

19



1
We replace z by (%) ™ (with y > z) so that we obtain

2\ 2 2\ 1R z 2\1"=
m? (—-) —n? (—) +2(m? —n?) (—) —n? (—) +m? > 0.
Y Y Y Y

Letting n/m = X and dividing m2y~? of each side give

xz _ Ale—I-)\yl—/\ + 2(1 _ A2)$y _ Ale_)\yl-'-}\ + y2 > 0 D

20



3.2 Enestrom-Kakeya types of problems
In this section, we prove Theorem 1.8.

Proof of Theorem 1.8. We first prove (a). Observe that

(! DA +rz+r22 - 2™ +zm+i)
z—1 '

P(z) =

So P(z) has at least m zeros, (m + 1)-th roots of unity except 1, on
U. Let

uw(z) i=14rz+r2? + o 4 rz™ 4+ 2m

Then we observe that
(z—Du(z) =22+ (r—1)z™ — (r — 1)z — L.

To use Theorem 1.1, we show that (z — 1)u(z) has exactly m critical
points inside or on U. Differentiating (z — 1)u(z) with respect to z
gives

(m+2)2™ " 4+ (r —1)(m+1)z™ — (r — 1).

Let
f(z) = (m+2)2" +(r—1)(m+1)2™— (r—1).

21



Then, for |z| =1,

(r— D(m+1)2™ = (1 —r)(m+1)
>(m+2)+(1-r)

> [(m+ 2)zm+1 —(r —v1)|.

So f(z) has m zeros inside U by Theorem 1.2. It follows from f(1) =
2+rm <0 and f(z) — oo as z — oo that f(z) has at least one zero
in (1,00). Thus f(z) has m zeros inside or on U, and so (z — 1)u(z)
has exactly m critical points inside or on U. Now the fact P(0) =1
and P(1) = (m +1)(2 + mr) < 0 deduce that P(z) has at least one
zero in (0,1). Next we prove (b). The cases for r = 0,1 are trivial.

For —2 < r <0, it suffices to show that
W'(2) =71+ 2rz+3r2% + -+ mrz™ "+ (m 4 1)2™
has all its zeros inside or on U by Theorem 1.1. For |z| =1,

Ir+2rz +3rz2 + -+« + mrz™ Y
+1
7am(m )

<—r—-2r—-3r—---—mr=-— >

<m+1=|(m+1)z"|.

22



Thus Theorem 1.2 proves the result. In case 0 < r < 1, we consider
(3.1) (z—1)’P(2) = q(2)(z™+' - 1),

where

q(z) =22+ (r —1)2™H — (r - 1)z — 1.

Then q(z) has all its zeros on U. In fact, g(2) is self-inversive and all

the zeros of
32) d@)=m+2)2""+(r-D(m+1)2"—(r—1)
lie inside or on U since, for |2| =1,

[(r — 1)(m+ 1)2™ — (r — 1)
<@-7)(m+1)+(Q-r)=1-r)(m+2)

<(m+2) = |(m+2)zm+1|.

Theorem 1.1 and Theorem 1.2 prove the case. It remains the case
1 < r < 2 to complete the proof of (b). A proof for the case 1 <r <2

is very similar to that of the case 0 < r < 1 above.

23



From (3.1), it is enough to show that all zeros of
q'(z) = (m+2)2z" 4 (r— 1) (m+1)2™ —(r—1)
lie inside or on U by Theorem1.1. For |z| =1,

[(r —1)(m+1)z™ — (r — 1)]
<(r—1)(m+1)+(r—-1)=(r—-1)(m+2)

<(m+2) =|(m+2)zm.

By Theorem 1.2, ¢’(2) has all its zeros inside U. The final case r = 2

is easily checked from

(z—1)2P(2) = (2™ — 1)(z™ 2 + 2™ — 2 - 1)

= (2™ — 1)z + 1)(z™ - 1).

Now we prove (c). For 2 < r < 2+ 2 and m is even, it suffices to
show that g(z) has all its zeros on U in (3.1). We consider the zeros

of g(—2) instead of g(z). Then we have

9(—2) = (z = Dr(2),

where r(2) = 2"t + (2 —7r)z2m + (2—7)z™ 1+ +(2—1)2z+ L

24



The r(2) has all its zeros on U. In fact, 7(z) is a self-inversive poly-

nomial and all zeros of
() =m+1D2"+m@2—-r)z™ 4 22 —-1)2+(2-7)
lie inside or on U, since for |z| = 1,

[(m+1)2"|=m+1> (r—2)m(m+1)/2
=m(r—2)+(m—1)(r —2)+--+2(r—2)+(r —2)
= |m(2 —r)z™ | +|(m—1)(2 - )z +- -

+12(2 - )zl + (2 -7
> m(2 — )2+ (m— 1)@~ )22

+2(2-r)z+(2—-1)).

The (c) is proved Theorem 1.1 and Theorem 1.2. Now we prove (d).
For r =2+ % and m is even, we follow exactly the same procedure

of the proof (b) until (3.2). In (3.2), we observe

¢(~2) = (14 1/n)[-2n2""*1 + 2n +1)22" - 1]

=—(1+1/n)(z—-1)2@2n" "1 + (20— 1)2*"" 2 4 ... + 22+ 1),

where m=2n,n=1,2,---.

25



By Theorem 1.7, 2n2?"~1 4 (2n — 1)z?"=2 + ... + 2z + 1 has all its
zeros inside U. So all zeros of ¢’(z) lie inside or on U. Now we prove

(e). In (3.1), it is enough to show that
) =m+2)" +(r-Dm+1)2"—(r—1)
has exactly m zeros inside or on U by Theorem 1.1. For |z| =1,

(m+2)z" —(r—1)|<m+2+7r~1

<(m+D(r-1)=|m+1)(r-1)2"|.

By Theorem 1.2, ¢ (z) has m zeros inside U. If m is odd, then
gd(-1) = 2(m+2) —r(m+2) < 0 and ¢'(z) S 00 88 2 — —00.
If m is even, then ¢'(—1) = —2m — 2+ rm > 0 and ¢’'(z) — —o0 as
z — —00. Hence ¢'(z) has at least a zero (—oo, —1). Finally ¢’(z) has

exactly m zeros inside or on U. O

It can be proved by Theorem 2.1 that the zeros of P(z) has all its

zeros on U if 0 < r < 2. From (3.1) it suffices to show that

(3.3) 22 L (r— 1) - (r~ 1)z -1
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has all its zeros on U. The suitable ¢,,—;(z) in Theorem 2.1 for (3.3)

is z+r — 1. In fact, we have

2" (r— 1) - (r—1)2—1
="z 4+r—-1)—[(r—1)z+1]

="Mz +r—-1)—[z+r—-1]*

and z + 7 — 1 has all its zeros on U since 0 < r < 2.
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3.3 An open problem

There have been a number of literatures about the relationship
between the coeflicients of a polynomial and the location of its zeros.
One of the most beautiful results in this subject is maybe Theorem 1.7
which is Enestrém—Kakéya’s theorem. While studying the materials
the previous sections, we encountered with the following Enestrom-

Kakeya type of problem. We end with introducing our conjecture.

Conjecture 3.1. Let P(z) =Y _, axz® be a polynomial of degree
n Ifan > apn—1 > -2 a2 >a; >0, a9 <0 and P(—1) > 0, then

all zeros of P(z) lie in |2| < 1.

As an example of the conjecture, we consider

2
P(z) =142'% + —23211 +1121° +102% + %zs + 827

1 1
+?526+725+?6z4+5z3+3z2+z—2.

By computer algebra, we can compute the absolute values of the zeros

of P(z) as following.

0.90611---, 0.89104---, 0.89104---, 0.88194---,
0.88194---, 0.90514---, 0.90514---, 0.91057---,
0.91057---, 0.45139---, 0.91245---, 0.91245---.
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