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| INTRODUCTION

The hydrodynamic performance of a vessel is strongly dependent on the
shape of the vessel's hull. It is thus important that the form of the hull be
carefully designed to achieve as optimal a performance as the constraints
(i.e. the pressure distribution for the present study) will permit. This should
be done at an early stage in the total vessel design schedule since any
subsequent changes to the hull form may incur large costs resulting from
other associated design modifications, for instance, the need to redesign
bulkhead.

Traditionally, naval architects have based new hull designs on hulls already
in service and known to perform well (i.e. parent ship), with any changes to
the design being investigated using expensive model towing tank tests. In
recent years advances in computational fluid dynamics have made possible
the analysis of new, possible novel, hull forms at a fraction of the cost of
model tests, with good estimates of the hydrodynamic forces acting on the
vessel being obtained (Van Oortmerssen 1990).

The wuse of computational techniques, however, requires a numerical
description of the hull shape. Various methods of defining the complex
free-form shape of hulls for use in design optimization methods can be
found in the literature ( Lin et al 1963, Wyatt & Chang 1990, Larsson & Kim
1992, Lowe et al 1994). However two user friendly methods of surface
representation commonly used in the field of computer—aided design are
Bezier and B-spline surface patches (Rogers & Adams 1990). Due to their
simplicity, B—spline surface technigue is used in this study.

Typically, the surface to be represented is broken into amesh of mainly
rectangular curvilinear regions, for example, the areas formed by the section
lines and waterlines of a vessel. A surface patch is then defined over each
region, its shape being determined by a set of control points. These points

form a polyhedrons which the surface approximates. The shape parameters in



this formulation are thus the coordinates of each control point, i.e. these
limited number of control points become the parameters in controlling the hull
surface geometry. In the present study the task is to redesign the bow of the
ship based on previous hull shape and new desire pressure distribution.
Therefore only the bow surface of hull is represented by B-spline surface.

With this in mind, the technigue of inverse design problem should beused
to design the new hull form in accordance with the desired pressure
distribution for the bow of ship. This desired pressure distribution can be
obtained by modifying the existence pressure distribution of the parent ship
whenever one found that there exists a drastic change in pressure on the
hull surface, since any drastic change in pressure represents flow separation
or large drag force.

The direct problem involves the determination of the hull surface pressure
distribution when the hull form is given. On the other hand the inverse design
problem is concerned with the determination of the modified hull form from
the given desire pressure distribution.

The present work addresses the development of an efficient method for
parameter estimation, i.e. the Levenberg—Marquardt algorithm, in estimating
the new hull form that satisfies the desired pressure distribution. The
Levenberg—Marquardt method has proved to be a powerful algorithm in
inverse calculations (Huang & Huang 1994, Huang & Ozisik 1991, Huang &
Wang 1996), especially in parameters estimation.

The method of hull surface generation and B-spline surface fitting is
described in Section 2. In Section 3 the method used to calculate the hull
surface pressure distribution by SHIPFLOW , The inverse design problem
involving the definition of cost function and Levenberg—Marquardt algorithm is
addressed in Section 4. Finally a computational procedure is summarized in

Sectionb.



Il. HULL GENERATION AND FOURIER NUBS METHOD

A. Coordinate system

The coordinate system which explains the present method [1] is shown in
Fig 1.

Fig 1. Coordinate system to express the girth line

The origin B is set on the girth line on the y-axis. Then the X -axis is

chosen such that it goes from the origin toward the point of the girth line on

the ship's center plane, A’. The Y-axis is normal to the X -Axis.
Furthermore, the X', Ycoordinate system is normalized by L, the length of
A'B, and the newly derived coordinate system is written in the X,Y system,

as shown in Fig 2.
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Fig 2. Transformed coordinate system for the girth line

B. Fourier expansion

The basic idea of this method is that the control points of the NUBS
function for expressing girth lines should be evaluated by the Fourier series.
In order to set the control points for determining girth lines, we need suitable
initial values of the coefficients of the Fourier series. In order to give suitable
Fourier coefficients for the girth lines, we expand the basic ship's girth lines,

say Y=f,;,(X). into a Fourier series as follows:

fapprox(X) = iz‘l(n)sm(mr)()
1”* D
A(n) :2/0 Jorig(X) sin(nmX)dX

Note that f(,,‘,;g(X) is the girth line of the basic ship in the transformed
coordinates X,Y,fum,,w(X) represents the approximate girth line, which may

contain some wiggles, and N is the number of terms of the Fourier series

expansion.
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Fig 3. Accuracy of curve fitting for various numbers of Fourier terms using
NUBS functions.

In order to investigate suitable value for N, define the area error due to the
discrepancy of the girth lines as

decktop decktop
555=(" | Byel2) ~ Fgl2) 102/ | w2l @)
—d, —dy

where F,,, 0. (x,2),F,,(x.z) are the breadths of the calculated and original

girth lines at (x,z), respectively.

C. Hull generation

The definition of a NUBS function [1] is



n—1

t—t; tieg—t
N.m(t) :t — ]V;Tnfl(t)_kt +—t ]ViJrl,mfl(t)}
i+m—1 ) i+m i+ 1 (4)
N (4) = 1 (t =t <tj1)
=10 (<t tiar = 1)

where ¢ is the coordinates of the set of control points, m is the order of
the NUBS function, which is set to 4 in this work: & is the set of knot
vectors, and P(t) is the interpolated function. In this method, the X

coordinates of the control points are determined as described below

1. Divide the 0 < X < 1domain in to N+ 1 equilength segments. Since
the highest order of a Fourier series expansion is N, the number of
segments should suit set V and not set N+ 1. However, numerical trials
have shown that N4 1 divisions gives a much better results. Then the

control points are located on both ends of each segment.

2. Near X=0 and X =1, Fourier series expansions may not follow an
original curve with a very large or small gradient, and in order to protect
against this drawback, more control points are put around these regions. In
this study, the ma and me segments adjacent to X=0 and X=1 are set
and within in these segments, the number of control points are set at

nc(ma) and nc(me), receptively (Fig 4.).
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Fig 4. Schematic figure for the location of control points on the Fourier
NUBS curve

3. The region around a peak point with a large curvature is also difficult to
express without enough control points. In this work, only the region
containing the highest peak point is used to set an additional nc(peak)
control points. Here, the segment whose center coincides with the peak point
is found, and then as additional nc(peak) control points are set in that
segment. It may be necessary to use 4 or 5 points to reflect a sharp corner
(Fig.4). In this study, the parameters ma and me are set to 2 for V< 10,
and 3 for N < 11. In both cases, nc(ma) and nc(me) are 5 and nc(peak)

is set to 4.

4. After determining all the X coordinates of the control points, the Y
coordinates of the control points can be computed by the first part of Eq.1.
In the computation of Y, if a control point exceeds tlimiting lines AC or BC,
the control point is reset on the line. This process ensures that the

computed girth line does not pass over the limitation line owing to the



convex hull properties of B-spline interpolation. After all the procedures are
complete, the control points are established and then we can calculate the
girth lines with the NUBS functions is Egs.2 and 3. In this study, a uniformly
distributed knot vector was used. Then the NUBS function becomes a simple

B-spline function. Alternatively, we can use the equation

t(] == 2‘;mfl 207 tm:' = t7l+TIL+1 = 1;

1 j+77’7—2
tj+m—1:m ; S (j=1,n—m)

where n is the number of control points, m is the order of NUBS, and &

is often taken as the distance along the set of the given points.

D. Inverse transformation of the coordinate system

After setting all the control points, a new girth line is calculated by the

NUBS function. Then the curve in X,Y space is inversely transformed so
that the Fourier NUBS girth line can be obtained in (Y,Z) space. In this
method, note that one girth line can be expressed with N4 2 design
parameters, i.e., breadth at the deck top by, and depth dy, and N

coefficients of the Fourier sine series.

E. Set of the surface net of control points for surface NUBS interpolations

Consider the net of points on the surface B ; and the net of control points

2 J

q,:- Then the NUBS surface interpolation can be written as



v—1 nv—1

B = ZN/W (7 ZMWUJQH*;NAN u; ) Ry, )

(Z:O:'":npu_17 ]:OJanv_l)

Here, mu and muov are the order of the spline functions in the uw and v
directions, respectively, nu and nv are the number of control points in the u
and v directions, respectively, and npu and npv are the number of points of
the £ ; net in the u and v directions, respectively. w and v; are the

parameters of 7 ;, which is often given as the distance parameter. In Eq. 6,

nv—1

Z:SNIW Jau is used. Then, if the surface points P, ; are given,

we can calculate the net of control points ¢, by inversing Eag. 6 in the

following manner. First we solve the inverse equation

nuf 1 1

_\Z ‘/V;CNLU U; \} Pi,j (7)

This equation shows that the calculated £, ; can be regarded as the

control points for the isoparameter w line, especially in this study, since it

corresponds to each set of control points along the girth line, and this

process can be skipped. Next we solve the inverse equation

(nu—l \ 1
i;% M rrw " j Rk',j (8)

Then the surface net of control points can be evaluated. However, in order
to use the above method, we need to adjust the number of control points

for each girth line. In the present method, we newly interpolate



(N+1) Xne (peak) control points for each girth line using the control points

calculated with the above—mentioned process (Egs. 1,3-5). After attaining the

net of control points, the hull surface interpolation can be carried out by

calculating Eqg. 6.

- 10 -



IIl. SHIPFLOW ANALYSIS

A. About SHIPFLOW

Applications of computational fluid dynamics(CFD) to the maritime industry
continue to grow as this advanced technology takes advantage of the
increasing speed of computers. Numerical approaches have evolved to a
level of accuracy which allows them to be used during the design process to
predict ship resistance. Significant progress has been made in predicting flow
characteristics around a given ship hull. Ship designers ca use this
information to improve a ship's design. However, not much effort has been
dedicated to determining viscous drag, an important element in the
development of a new design. The final checking and analysis of the bulb
design is done In the CFD module SHIPFLOW. The wave making and
frictional resistance as well as the flow round the hull for various bulb
shapes have been calculated using SHIPFLOW. The flow around a body can
be described mathematically as a function of fluid pressure and the three
components of velocity. A set of governing equations of motions can be
created, like the Navier—Stokes equations for turbulent flow, and solved in
association with specific boundary condition. These equations are often
complex to solve and rely on the use of Computational Fluid Dynamics
(CFD). SHIPFLOW is a CFD tool specifically developed to solve marine
related problems (SHIPFLOW, 1999). To investigate the flow around a ship or
ship model, SHIPFLOW splits the flow into three regions, shown in Figure
below; the region of potential flow, which neglectl| viscous effects and is
associated with the wave—making pattern, the region of boundary—layer flow

and the region where the complete Navier—Stokes equations are solved.

In CFD analyses of marine vehicles, it is customary to use |, j and k to

describe the grid dimensions, where |-direction is in the axial direction, j is

- 11 -



normal to the body, and k is around the body's girth

The following potential flow techniques are used in Zone 1 to predict
pressures, velocities and streamlines. By assuming non-viscous (ideal) and
irrotational flow the governing equations produced are the linear, partial
differential Laplace equations based on mass continuity. The non-linear
free-surface boundary conditions are linearised and solved by using an
iterative process until satisfactory convergence is reached.

In Zone w the development of the boundary layer is investigated using
momentum integral equations for the thin viscous layer along the hull. By
ignoring cross flow in the boundary layer, which is created due to a pressure
gradient in the vertical direction of the ship hull the results are ordinary
differential equations which are solved by Runge-Kutta techniques. The
prediction cannot be used at the stern of a ship where a thick viscous
region occurs due to convergence of the streamlines. Towards the stern of
the vessel, Reynolds—averaged Navier-Stokes(RANS) equations along with
mass continuity equations describe the flow in Zone 3. The solution of the
complex Navier—Stokes equations requires a lot of computational time and is
therefore restricted to the stern of the vessel only, where a denser
panelization is created. The unsteadiness of the turbulent region is averaged
out and instantaneous values of pressure and velocity are separated into a
mean with fluctuations by the introduction of Reynolds stresses.

The programming is split into six modules and SHIPFLOW considers each
module do no affect, for example, the second module. These six modules

are listed below, in the order in which SHIPFLOW assesses them

1. XFLOW

Defines the general physical properties of the surroundings, for examples

the fluid, characteristics, initial ship position, ship speed, etc.

- 12 -



2. XMESH

Using the information from XFLOW, XMESH generates the panelization of
for use by the third module XPAN. The

model can be viewed in the post processor.

the free surface and the vessel

STRU STRM STRD
STAU STAM STAD
e e e e
DFU DLU DFM DLM DFD DLD
2
XUps _sfafions XBOW DF1 XSTE XDOW
N L T T T (N 14
- (xuZ, yu2) (xd1, yd1)
= | |
% (xut, yut) (xd2,’yd2)
1 | (xud, yud 3
1 (xd3, yd3)
/ xulS yu3) (xd4 yd4g
[ | A hY
¥ .Y Pan X
Y4SIDE 4
Fig. 5. XMESH
3. XPAN
XPAN computes the potential flow around the model(i.e. Zone 1) and

free-surface, which are made up of quadrilateral panels each containing
Rankine sources. XPAN can operate under linear or non-linear free—surface
boundary conditions. Results obtained from XPAN are displayed by the post
listed The

streamlines,

processor and in output files. results include wave making

coefficient(Cw), wave pattern, potential pressure and velocity

contours.

- 13 -



4. XBOUND

XBOUND is concerned with the thin turbulent boundary layer surrounding
the hull (i.e. Zone 2). Using momentum integral equations SHIPFLOW
provides the frictional resistance coefficient (Cf), boundary layer thickness, as

well as other parameters associated with the boundary layer.

5. XGRID

XGRID generates the grid towards the stern of the vessel used to represent

Zone 3 where the Navier—Stokes equations describe the fluid flow.
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Fig. 6 Grid surrounding the aft half
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6. XVISC

The final module of SHIPFLOW solves the Reynolds—averaged Navier—stokes
equations. XVISC provides the viscous pressure resistance coefficient (Cvp)
and therefore the total resistance Ct can be estimated. XVISC can also be
used to investigate the wake and values such as axial, radial and tangential
velocities at various planes towards the stern are obtained. The frictional,
wave and total resistance coefficients as computed by SHIPFLOW, together
with the total resistance as measured from the experiments and the

Schoenherr and ITTC ship model correlation lines.
V. THE INVERSE DESIGN PROBLEM

For the inverse problem, the hull form is regarded as being unknown and
controlled by a set of control points, in addition, the desired distribution of

dimensionless pressure coefficients (p, on the hull surface are considered

available.
Let the desired pressure coefficients the hull surface be denoted by

Cp(x,y;,z) = Cp;,1=1 to I, where [ represents the number of panel for the

redesign portion of hull. Then the inverse problem can be stated as follows:

by utilizing the above mentioned desired pressure coefficients Cp;, design the

new hull shape.
The solution of the present inverse design problem is to be obtained in

such a way that the following functional is minimized:

JQBl= N, B opl*=v"U ; j=110 J (9)

here, Ch are the estimated or computed pressure coefficients on the hull

- 15 -



locations (x,1;,%). These quantities are determined from the solution of the

direct problem given previously by using an estimated hull form Q(B) J
represents the number of control points, i.e. J=(n+1) X(m+1). Here the

hat " ©~ " denotes the estimated quantities.

A. The Levenberg—Marguardt method for minimization

If the redesigned hull shape is discretized into | panels and J control

points are used, Eg. 10 is minimized with respect to the estimated

parameters B to obtain

J02 B joB = Eﬂaq”]"—chL_ cj=1toJ (10)

1=1

where should be equal to or greater than .J, otherwise an under determined
system of equations will be obtained and it is impossible to calculate the
inverse solutions under this situation. Eq. 11 is linearized by expanding
Ch; (B) in Taylor series and retaining the first order terms. Then a damping

parameter mn is added to the resulting expression to improve convergence,

leading to the Levenberg—Marquardt method (Marquardt 1963) given by

(F+ " )AB= D (11a)
where

F=1Ty (11b)
D=yTU (11c)
AB=B"1t1— (11d)



here the superscript n and 7 represent the iteration index and transport
matrix, respectively, [ is the identity matrix and ) denotes the Jacobian

matrix defined as

p=22 (12a)

Eqg. 11a is now written in a form suitable for iterative calculation as
Bz+l:Bz_'_(wTw_'_Mn[)—le(C/\rp_Cp) (12b)

When pu"=0, the Newton's method is obtained, as p"—co, the
steepest—descent method is obtained. For fast convergence the

steepest—-descent method is applied first, then the value of p" is decreased,

finally the Newton's method is used to obtain the inverse solution. The

algorithm of choosing this damping value p" is described in detailed in

(Marquardt 1963).

- 17 -



V. EXAMPLES

A. EXAMPLE 1.

\ B

- SERIES 60

||I|
\ |I||I
'||I

Fig. 7 Body plan of Series 60

In the first example, the parent ship is a series—60 ship and is shown in
Figure 5. The Froude number Fr is taken as 0.316 and Cb is 0.6.

The pressure distribution can thus be calculated and used as the design
criterion. Fig. 8 ~ 11 shows the contour plot of pressure coefficient (Cp) of
Series 60.

- 18 -
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Fig. 9 Cp value of series 60 original. Stern
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Fig. 10 Cp value of series 60 original. Sideview
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Fig. 11 Cp value of series 60 original. Bottom view

The inverse calculations are then performed by following the Levenberg -
Marguardt method (LMM). The initial guesses of Bj are obtained by using
Fourier NUBS surface fitting for the parent ship. With only 4 iterations a very

accurate solution can be obtained.

- 20 -



original
————— calculated

Fig. 12 Comparison of girth lines with original lines

respectively. From Fig. 12, conclude that the Levenberg - Marqguardt
method has been applied successfully in estimating the optimal hull form in
this numerical example.

In order to show the natural of generality for the Levenberg - Marquardt

method in the optimization problem, we will perform another numerical

experiment.
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B. EXAMPLE 2

- KCS (KRISO CONTAINERSHIP 3600TEU)

Fig. 13 Front view of KCS

.

Fig. 14 Bottom (Above) and side (Below) view of KCS

In the second example, the parent ship is a container ship and is shown in
Fig. 13 ~ 14. The whole ship is divided into four blocks and the first block
is the bow. The Froude number Fr is taken as 0.2599 and the principle

particulars of KCS Model test model is as shown in Table 1.

- 22 -



Table 1 The principle particulars of KCS

Ship Model

Scale ratio 1.0 1/31.6
Speed (m/s) 12.3467 2.1964
Fn 0.26 0.26

Re 2.4%10° 1.4%10"

Lpp (m) 230.0 7.2786
B (m) 32.2 1.0190

D (m) 19.0 0.6013

T (m) 10.8 0.3418

S (m2) 9,498.0 9.5121
Displacement (m®) 52,030.0 1.6490
CB 0.6505 0.6505

Fig. 15 Cp values of KCS.
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The reason why the contour plot of Cp becomes denser within the hull
form region for the exact ship is the same as that stated in example 1.

The inverse calculations are performed again by using the
Levenberg—Marquardt method (LMM). The initial guesses of B; are obtained
by using Fourier NUBS surface fitting for the parent ship. After only 4

iterations a very accurate solution can be obtained.
———— Original
— — — — Calcilated

Fig. 16 Comparison of body plans for Original and Calculated hull form

R T T o e

07— KCS original (CFD) -
; KCS Calculated (CFD) |-

0.24 0.25 0.26 027
Fn

Fig. 17 Comparison of Cw for Original and Calculated hull form
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Fig. 18 Comparison of Cv for Original and Calculated hull form

From Fig. 17 ~ 18 and Appendix 2, conclude again that the
Levenberg—Marquardt method has been applied successfully in estimating the

optimal hull form in this numerical example.
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VI. CONCLUSIONS

An inverse design problem in estimating the optimal hull form from the
knowledge of desired pressure distribution by the technigues of Fourier NUBS
surface fitting and Levenberg—-Marquardt method has been developed and
applied successfully.

Results show that the present algorithm needs only a few iterations to
obtained the optimal hull form if enough number of control points are given.
One should note that even though more control points describe the unknown
surface more accurate, on the other hand, it takes more computer time to
obtain the inverse solutions.

The advantages of using the technigue of inverse design problem in
designing the optimal hull form line in that distorting the parent hull form by
changing the control points to obtain an exact (or desire) hull from, the time
needed in fundamental design can be shorten and calculate the pressure
distribution for the exact hull form and retain the pressure distribution around
bow as the desire pressure distribution Cp, the cost for model test can be

reduced.
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APPENDIX 1

The Flow characteristics around the Series 60




Fig. 1 Wave profile and Wave pattern of KCS (Above) and New KCS (Below)
at Fn 0.316

Fig. 2 Grid for Series 60
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1.10e-001

Fig. 3 Dynamic Pressure Coefficient for Series 60 at Station 3 (x=0.85)

1.46e-001

1.10e-001

-1.05e-001

Fig. 4 Dynamic Pressure Coefficient for Series 60 at Station 2 (x=0.9)
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Fig. 5 Dynamic Pressure Coefficient for Series 60 at Station 1 (x=0.95)

1.10e-001

Fig. 6 Dynamic Pressure Coefficient for Series 60 at AP (x=1.0)



Fig. 8 Velocity vectors for Series 60 at Station 2 (x=0.9)



Fig. 9 Velocity vectors for Series 60 at Station 1 (x=0.95)

Fig. 10 Velocity vectors for Series 60 at AP (x=1.0)



Fig. 12 Turbulence kinetic energy for Series 60 at Station 2 (x=0.9)



4.042-003

-1.1Ze-004

Fig. 13 Turbulence kinetic energy for Series 60 at Station 1 (x=0.95)

Fig. 14 Turbulence kinetic energy for Series 60 at AP (x=1.0)



APPENDIX 2

Comparison of flow characteristics around the KCS, New KCS




KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 15 Comparison of Wave profile and Wave pattern at 20knots
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New KCS ( Developed Hull Form)

Fig. 16 Comparison of Wave profile and Wave pattern at 21knots
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New KCS ( Developed Hull Form)

Fig. 17 Comparison of Wave profile and Wave pattern at 22knots
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New KCS ( Developed Hull Form)

Fig. 18 Comparison of Wave profile and Wave pattern at 23knots
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New KCS ( Developed Hull Form)

Fig. 19 Comparison of Wave profile and Wave pattern at 24knots
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New KCS ( Developed Hull Form)

Fig. 20 Comparison of Wave profile and Wave pattern at 25knots

- 15 -



New KCS ( Developed Hull Form)

Fig. 21 Comparison of Wave profile and Wave pattern at 26knots
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KCS (Original Hull form)
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New KCS ( Developed Hull Form)

Fig. 22 Comparison of Dynamic Pressure Coefficient at Station 3 (x=0.85)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 23 Comparison of Dynamic Pressure Coefficient at Station 2 (x=0.9)
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KCS (Original Hull form)

-001

New KCS ( Developed Hull Form)

Fig. 24 Comparison of Dynamic Pressure Coefficient at Station 1 (x=0.95)
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-1.10e-001

New KCS ( Developed Hull Form)
Fig. 25 Comparison of Dynamic Pressure Coefficient at propeller plane
(x=0.98625)
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New KCS ( Developed Hull Form)

Fig. 26 Comparison of Dynamic Pressure Coefficient at AP (x=1.0)

- 21 -



KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 27 Comparison of Velocity vectors at Station 3 (x=0.85)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 28 Comparison of Velocity vectors at station 2 (x=0.9)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 29 Comparison of Velocity vectors at Station 1 (x=0.95)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 30 Comparison of Velocity vectors at propeller plane (x=0.98625)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 31 Comparison of Velocity vectors at AP (x=1.0)
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KCS (Original Hull form)
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New KCS ( Developed Hull Form)

Fig. 32 Comparison of Turbulence kinetic energy at Station 3 (x=0.85)
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New KCS ( Developed Hull Form)

Fig. 33 Comparison of Turbulence kinetic energy at Station 2 (x=0.9)
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Fig. 34 Comparison of Turbulence kinetic energy at Station 1 (x=0.95)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)
Fig. 35 Comparison of Turbulence kinetic energy at propeller plane
(x=0.98625)
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KCS (Original Hull form)

New KCS ( Developed Hull Form)

Fig. 36 Comparison of Turbulence kinetic energy at AP (x=1.0)
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