2006年 8月

碩士學位論文

포도상구균으로부터

DNA topoisomerase । 유전자의
 클로닝 및 특성에 관한 연구

Molecular cloning and characterization of a type I DNA topoisomerase gene from Staphylococcus aureus

朝 鮮 大 學 校 大 學 院

生物新素材學科

金 炫 益

포도상구균으로부터

DNA topoisomerase । 유전자의
 클로닝 및 특성에 관한 연구

Molecular cloning and characterization of a type I DNA topoisomerase gene from Staphylococcus aureus

2006年 8月 25日

朝 鮮 大 學 校 大 學 院
生 物 新 素 材 學 科

金 炫 益

포도상구균으로부터
 DNA topoisomerase । 유전자의
 클로닝 및 특성에 관한 연구

指導敎授 李 正 檠

이 論文을 理學碩士學位 論文으로 提出함

2006年 4月

朝 鮮 大 學 校 大 學 院
生物新素村學科
金 炫 益

金 炫 益의 碩士學位論文을 認准함

委員長 朝鮮大學校 敦授
委員 朝鮮大學校 敦授
委員
朝鮮大學校 教授

2006年 5月 日

朝 鮮 大 學 校 大 學 院

CONTENT

LIST OF FIGURES iv
LIST OF TABLES v
ABSTRACT vi
I. INTRODUCTION 1
II. MATERIALS AND METHODS 6
II-1. Bacterial strains, plasmids and materials 6
II-2. Cultivation of Staphylococcus aureus and E.coli cells $\cdots 8$
II-3. Molecular cloning of a gene encoding topoisomerase I from Staphylococcus aureus sp. strain C-66 8
II-4. Protein expression of recombinant clone 9
II-5. Purification of the recombinant topoisomerase I 9
II-6. Assay of the relaxation activity on the purified enzyme 10
II -7. SDS - PAGE (SDS-polyacrylamide gel electrophoresis) .• 11
II-8. Determination of protein concentration 11
II-9. Measurement of topoisomerase I activity depending on time 12
II-10. Measurement of topoisomerase I activity depending on pH 12
II-11. Measurement of topoisomerase I activity depending
on temperature 13
II-12. Measurement of topoisomerase I activity depending on various inhibitors 14
II-13. Measurement of topoisomerase I activity depending on divalent cations 14
II-14. Measurenent of topoisomerase I activity depending on EDTA, NaCl and ATP 15
II-15. Purification and radiolabelling of oligonucleotides 16
II-16. Electrophoretic mobility shift assay (EMSA) 16
III. RESULTS AND DISCUSSION 17
III-1. PCR cloning of topoisomerase I gene from S. aureus 17
III-2. Purifiction of topoisomerase I from E. coli cells harboring DTP | 22
III-3. Effect of time, pH and temperature on the purified topoisomerase I activity 27
III-4. Effect of topoisomerase I activity depending on divalent cations 30
III-5. Effect of topoisomerase I activity depending on EDTA, NaCl , and ATP 32
III-6. Effect of topoisomerase I activity depending on various inhibitors 35
III-7. Analysis of the reaction intermediate 37
III-8. Comparison of the relaxation activity with S. aureus topoisomerase I and Methylophaga topoisomerase | 39
IV. 적요 41
V. Reference 43

LIST OF FIGURES

Figure 1. Construction of a pTP । 18
Figure 2. DNA sequence of a type \mid topoisomerase from Staphylococcus aureus 19
Figure 3. Alignment of predicted amino acid sequence encoded by type I topoisomerase genes of other S. aureus strains 21
Figure 4. FPLC elution profile topoisomerase from the Hitrap chelating column 24
Figure 5. SDS-PAGE analysis of protein purification of DNA topoisomerase I from S. aureus sp. strain C-66 25
Figure 6. Effect of incubation time on the relaxation activity of purified topoisomerase 28
Figure 7. Effect of pH and temperature on the relaxation activity of purified topoisomerase 29
Figure 8. Effect of divalent cations on the relaxation activity of purified topoisomerase 31
Figure 9. Effect of EDTA, NaCl and ATP on the relaxation activity of the purified topoisomerase 34
Figure 10. Effect of topoisomerase I specific inhibitors on relaxation activity of the purified topoisomerase 36
Figure 11. The enzyme makes covalent linkage with the $5^{\prime}-$ end of the nick 38

LIST OF TABLES

Table 1. The three different type of DNA topoisomerase families 5
Table 2. Bacterial strains and plasmids used in this study 7
Table 3. Summary of the purification of topoisomerase । 26
Table 4. Comparison of the relaxation activity with S. aureus topoisomerase I and Methylophaga topoisomerase I 40

ABSTRACT

Molecular cloning and characterization of a type I DNA topoisomerase gene from Staphylococcus aureus

By Kim, Hyun Ik
Advisor: Prof. Lee, Jung Sup, Ph. D.
Department of Bio-Materials Engineering,
Graduate School of Chosun University

Type I topoisomerase plays critical roles in DNA metabolism and cell survival. In this study, type 1 topoisomerase gene from Staphylococcus aureus sp. strain C-66 cells was cloned in pBAD /His A expression vector and expressed in E. coli Top 10 cells. The coding region of this gene was 2,070 nucleotides capable of encoding a polypeptide of 690 amino acids with a predicted molecular mass of 79.1 kDa . The recombinant plasmid named pTP | expressed active type I topoisomerase upon induction with 0.02\% L-arabinose. The topoisomerase expressed from pTP I plasmid in E. coli was purified through an affinity chromatography on Hitrap chelating column. The topoisomerase activity of the
purified enzyme was Mg^{2+}-dependent and ATP-independent when supercoiled DNA was used as a substrate. The enzyme could relax only negatively supercoiled DNA, not positively supercoiled DNA. The optimal temperature and pH for the enzyme activity were $37^{\circ} \mathrm{C}$ and 7.5, respectively. The activity of enzyme was significantly activated in the presence of 50 mM NaCl . The enzyme activity could be clearly inhibited by treatment with camptothecin, but not by nalidixic acid, etoposide, and spermidine. The enzyme made a single-stranded nick on negatively supercoiled DNA and the 5' end of the nick could covalently linked with the enzyme. All these results suggest that the purified enzyme is a typical type I DNA topoisomerase.

I. INTRODUCTION

DNA topoisomerase is a broad group of enzymes with the ability to manipulate the topological state of DNA. They catalyze the interconversion of topological isomers of DNA molecules and have been identified and purified from both prokaryotic and eukaryotic organisms. These enzymes modulate the topology of DNA during process such as replication, transcription and recombination. These enzymes also introduce a transient break in the phosphodiester backbone through formation of a covalent protein DNA intermediate and allow the DNA strands to pass through one another. These enzymes alter the linking number of DNA by catalyzing a three-step process. The first, the cleavage of one or both strands of DNA. The second step, the passage of a segment of DNA through this break and the last step is the resealing of the DNA break.

Based on their catalytic mechanisms, topoisomerases are classified into two classes, type I and type II, which are distinguished by their ability to cleave one or both strands of a DNA duplex (Wang, 1996 and 2002; Champoux, 2001). Type I DNA topoisomerases cleave a single DNA strand and allow "controlled rotation" of the strand to relieve torsional stress one linking number at a time (Champoux, 1994; Gupta , 1995; Stewart , 1998), which effect topological changes in DNA by transiently cleaving one DNA strand at a time to allow the passage of
another strand (Maxwell and Gellert 1986). These result in the change in linking number of DNA by steps of one. Whereas type II DNA topoisomerases cleave both DNA strands and change the linking number by two by passing intact, double stranded DNA through the cut (Chen, 1994; Corbett, 1993).

Type I topoisomerases are further divided into two structurally and mechanistically distinct subfamilies on the basis of the polarity of enzyme attachment to the broken strands (i.e., IA, IB) that share no structural similarity and differ in reaction chemistry. The relaxation activity of type I DNA topoisomerase is controlled by two methods. one is the enzyme-bridged mechanism, the other is the strand-rotation mechanism (Dekker, 2002). The enzyme -bridged mechanism for type IA topoisomerases have been proposed to function by binding to a locally denatured region of a double-stranded DNA helix, transiently nicking one of the stands, passing the uncut strand through the nick, and resealing the broken strand. In the DNA cleavage stage, the protein DNA covalent intermediate is formed between a tyrosyl residue and the 5'-phosphate at the DNA break site. These enzymes apparently work as monomers and are ATP independent, so the directionality of each reaction is determined by the free energies of the segments of DNA involved. Whereas the strand rotation mechainsm for type IB topoisomerase results in which the enzyme breaks one strand of the DNA helix by addition across a phosphodiester bond, allowing limited rotation about the intact
strand to relax several supercoils before resealing occurs. In contrast to the previous group, they bind preferentially to double -stranded DNA, and cleave one of the DNA strands of the duplex by forming a covalent protein DNA intermediate between a tyrosyl residue and the $3^{\prime}-$ phosphate at the break site. During the DNA cleavage stage, the unbroken strand can pass through this enzyme-operated nick and release the twisting stress of a DNA double helix (Champoux, 1990). Type IB topoisomerases can completely relax both overwound and underwound DNA duplexes, plus indications that in the DNA cleavage stage these enzymes do not hold the 5'-end of the broken DNA strand (McCoubrey and Champoux, 1986).

Type II topoisomerases catalyze the ATP-dependent transport of one DNA duplex through a second DNA segment via a transient double-strand break (Wang, 1998). They carry out strand passage by first generation a transient double-strand (ds) DNA break in a 'gate' or G-segment through nucleophilic attack on the DNA backbone and the formation of 5^{\prime}-phosphotyrosyl enzyme-DNA linkages. The broken G-segment ends are then separated, a second duplex (the 'transfer' or T-segment) passed through the break and the broken G-segment duplex resealed.

Staphylococcus aureus is a gram-positive bacterium that cause a variety of different human diseases and one of the major causes of community-acquired and hospital-acquired infections. It produces numerous toxins including super antigens that cause
unique disease entities such as toxic-shock syndrome and Staphylococcal scarlet fever, and has acquired resistance to practically all antibiotics. Its main habitats are the nasal membrances and skin of warm-blooded animals, in whom it causes a range of infections from mild, such as skin infectious and food poisoning, to life-threatening, such as pneumonia, sepsis, osteomyelitis, and infectious endocarditis. The organism produces many toxins and is highly efficient at overcoming antibiotic effectiveness.

This study was performed to clone and characterize a gene encoding topoisomerase from Staphylococcus aureus sp. strain C-66. The topoisomerase gene was amplified by polymerase chain reaction (PCR) using a pair of specific PCR primers from the Staphylococcal strain, cloned into pBAD/His A vector, and expressed in E. coli cells. The expressed protein was purified using an affinity chromatography on Hitrap chelating column. In addition biochemical properties of the purified enzyme were also characterized and the physiological function of the purified enzyme related to the change of DNA topology was investigated.

Table 1 . The three different type of DNA topoisomerase families

Family	Characteristics	Enzyme	Gene	Organism
Type IA	- Cleave single DNA strands - Forming a 5'-phosphotyrosine covalent intermediate	- Bacterial DNA topoisomerase I - Bacterial DNA topoisomerase III - Eukaryotic DNA topoisomerase III - Reverse gyrase	$\begin{aligned} & \text { TOPA } \\ & \text { TOPB } \\ & \text { TOPB } \end{aligned}$	E. coli E. coli S. cerevisiae S. acidocaldarius
Type IB	- Bind duplex DNA cleave one of the strands, forming a 3^{\prime}-phosphotyrosine covalent intermediate	- Eukaryotic DNA topoisomerase I - DNA topoisomerase V - Vaccinia virus topoisomerase - Variola virus topoisomerase - Shope filbroma virus topoisomerase	TOP1	S. cerevisiae M. kandleri
Type II	- Cleave both strands of duplex DNA - Forming a pair of 5^{\prime}-phosphotyrosine covalent intermediates - Function as dyadic enzymes and ATP dependent	- Bacterial DNA gyrase - Bacterial DNA topoisomerase IV - Eukaryotic DNA topoisomerase II - Bacteriophage T4 topoisomerase - African swine fever virus topoisomerase	$\begin{gathered} \text { GyrA+GyrB } \alpha \\ \text { PAノC+ParE } \beta \\ \text { TOP2 } \\ \text { gn39+gn6O+gn52 } \end{gathered}$	E. coli E. coli S. cerevisiae D. melanogaster H. sapiens H. sapiens

E. coli, Escherichia coli; S. cerevisiae, Saccharomyces cereviseae; S. acidocaldarius, Sulphobus acidocaldarius; D. melanogaster, Drosophila melanogaster; H. sapiens, Homo sapiens; M. kandleri, Methanopyrus kandleri

II. Materials and Methods

II-1. Bacterial strains, plasmids and materials
S. aureus sp. strain C-66 cells were kindly given by Prof. Lim (Chosun University, Korea). E. coli strain DH 5α was purchased from Hanahan and the PBAD/His A vector was purchased from Invitrogen (USA). Reagents for SDS-PAGE, protein molecular weight standards, etoposide, camptothecin, EDTA, nalidixic acid, spermidine, ethidium bromide (EtBr), DTT, PMSF, BSA, SDS, TEMED, N, N-methylene-bis-acrylamide, acrylamide, agarose and Trizma base were purchased from Sigma Co. (St. Louis, USA). PD-10 desalting column and Hitrap chelating column were purchased from Amersham Pharmacia Biotech Co. (Uppasla, Sweden). Bradford protein assay kit, and molecular size marker were obtained from Bio-Rad. (California USA). Klenow fragment and T4 polynucleotide kinase were purchased from New England Biolabs (USA). The bacterial strains and plasmids used in this study are listed in Table 2. E. coli strain Top 10 used as host cells for amplification and transformation of recombinant plasmid.

Table 2. Bacterial strains and plasmids used in this study

Strain or plasmids	Relevant genotype or description	Source or reference
Strain		
Staphylococcus aureus sp. strain C-66	Wild type	Prof. Y. Lim (Chosun university of Medicine collage)
E. coli strain		
Top 10	F^{\prime} mrcA Δ (mrr-hsdRMS-mcrBC) Ф80lacZ \triangle M15 Δ lacX74 deoR recA1 araD139 $\Delta($ araA-leu $) 7697$ galU galK rpsL(Str ${ }^{\mathrm{P}}$) endA1 nupG	Invitrogen
DH5 α	SupE44 $\mathrm{\Delta lacU169}$ (8LacZ \triangle M15) hsdR17 recAl gyrA96 thi-1 relA1	Hanahan
plasmid		
pBAD/His A	Para BAD, araC, histidine fusion vector, Amp ${ }^{\text {R }}$	Invitrogen
pGEM3zf(-)	Transcription vector earring the 77 and sp6 promoters, $\mathrm{Amp}^{\text { }}$	Invitrogen

II-2. Cultivation of Staphylococcus aureus and E. coli cells.
E. coli strain Top 10 cells were grown on LB (Luria and Bertani, 1 g Bacto-tryptone, 0.5 g Bacto-yeast extract, 1 g NaCl) and Staphylococcus aureus C-66 cells were grown on 3\% Tryptic soy broth. The cells were cultured at $37^{\circ} \mathrm{C}$ with vigorous shaking.

II-3. Molecular cloning of a gene encoding topoisomerase I from Staphylococcus aureus sp. strain C-66.

A DNA fragment encoding Staphylococcus aureus topoisomerase I was amplified by polymerase chain reaction using genomic DNA template, Vent DNA polymerase (New England Biorab) with the following pair of primers : 5'-TGCACTCGAGATGGCAGATAATTTAGT CATTG-3' as forward primer containing a Xho I restriction site and 5'-CGGGGTACCTTATTTCTGCGCTGCCTCTTTAT-3' as reverse primer containing a Kpn I restriction site (Xho I and Kpn I sites are underlined). PCR was carried out on Applied Biosystem 9700 for 1 \min at $94^{\circ} \mathrm{C}, 40 \mathrm{~s}$ at $55^{\circ} \mathrm{C}$ and 2 min 30 s at $72^{\circ} \mathrm{C}$ for 30 cycles. The PCR products were purified with PCR purification kit (QIAGEN). The PCR products were inserted into the pBAD/His A expression vector at the Xho I/Kpn I site and constructs were checked by DNA sequencing.

II-4. Protein expression of recombinant clone

A single colony of recombinant clone was inoculated into 5 ml of LB medium (1% LB broth, 1% yeast extract and $0.5 \% \mathrm{NaCl}$) containing ampicillin ($50 \mathrm{\mu g} / \mathrm{ml}$) at $37^{\circ} \mathrm{C}$ for overnight. The inoculated cells were put into 6ℓ of LB media containing $50 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ ampicillin until A_{600} reached 0.5. Induction was carried out with 0.02% L-arabinose for 2 hr at $37^{\circ} \mathrm{C}$. About 15 g of cells were obtained from 6ℓ of culture.

II-5. Purification of the recombinant topoisomerase I

All purification procedures were performed at $4^{\circ} \mathrm{C}$. A single colony of recombinant clone was inoculated up to 0.5 at A_{600}. Add 0.02% of L-arabinose in the culture to induce the protein expression for 2 hr . The cells were harvested from 6ℓ of culture by centrifugation at 4500 g for 30 min and then the cells resuspended in $100 \mathrm{~m} \ell$ of lysis buffer (25 mM Tris-HCl, $\mathrm{pH} 7.5,10 \%(\mathrm{v} / \mathrm{v}$) glycerol and 0.5 mM PMSF) and passed five times through a french pressure cell at 12,000 psi. The cell lysate was centrifuged at $10,000 \mathrm{~g}$ for 30 min at $4^{\circ} \mathrm{C}$ and the supernatant was collected as a cell-free extract. Ammonium sulfate was added to the cell-free extract to give 30% saturation and the protein precipitate was removed by centrifugation at $10,000 \mathrm{~g}$ for 20 min . The supernatant was collected and the ammonium sulfate
concentration was increased to 70%. The precipitate was collected by centrifugation at $10,000 \mathrm{~g}$ for 20 min and dissolved in $20 \mathrm{~m} \ell$ of buffer A (25 mM Tris-HCl, pH 7.5, 10\%(v/v) glycerol, 0.5 mM PMSF and 20 mM imidazol). After centrifugation at $10,000 \mathrm{~g}$ for 30 min , the supernatant was desalted on a PD-10 column and then loaded onto a Hitrap chelating column equilibrated with buffer A. The column was washed with 10 column volumes of buffer A and the bound proteins were eluted with buffer B (25 mM Tris-HCl, pH 7.5, 10\%(v/v) glycerol, 0.5 mM PMSF and 500 mM imidazol) under a linear gradient of imidazol from 20 to 500 mM . The chromatography was carried out with the FPLC system (Amersham Biosciences). Fractions with topoisomerase activitied were pooled, concentrated and used as the purified enzyme.

II-6. Assay of the relaxation activity on the purified activity

Topoisomerase । activity was measured by the relaxation of supercoiled plasmid pGEM3zf(-). The assay mixture contained 200 ng of DNA, 50 mM Tris-HCl (pH 8), 0.5 mM EDTA, $30 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ BSA, 0.5 mM DTT and $1 \mu \mathrm{~g}$ of enzyme. The sample incubated for 30 min at $37^{\circ} \mathrm{C}$ and the reaction stopped by the addition of $5 \mu \ell$ of stop solution (5% SDS and 50 mM EDTA). The reaction products were electrophoresed onto 1.2% agarose gel without EtBr. After the electrophoresis, the gel stained with $0.5 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ of EtBr to visualize the DNA bands. Quantitative
analysis was performed by densitomertric scanning of the negatives as described previously. One unit of topoisomerase activity was defined as the amount of enzyme required to relax 50% of the supercoiled pGEM3zf(-) plasmid DNA in the standard assay.

II-7. SDS-PAGE (SDS-polyacrylamide gel electrophoresis)

SDS-PAGE polyacrylamide gel electrophoresis was carried out as described by Laemmli (1970). Samples were completely denatured in SDS sample buffer (1.25% Tris-HCl, pH 6.8, 20% glycerol, $2 \% ~ \beta$-mercaptoethanol, 0.1% bromophenol blue, 10% SDS) by boiling in a water bath for 2 min and electrophoresed on 10% to 12% acrylamide gel. The gels were stained with coomassie blue solution (0.005% coomassie blue R-250 in solution A) for 1 hr . The gels were then destained with destain solution (50\% Methanol, 10% acetic acid).

II-8. Determination of protein concentration

The concentration of protein was determined by the method of Bradford (1776) using BSA as the standard. The $250 \mu \ell$ of various volume of protein solution was put into $1.5 \mathrm{~m} \ell$ of microcentrifuge tube and then 250μ of Bradford reagent was added to reaction
mixture and voltexed. Two hundred $\mu \ell$ of the mixture sample was put onto 96 well plate. The amount of the protein was measured by reading absorbance at 595 nm after 2 min.

II-9. Measurement of topoisomerase activity depending on time

The standard assay mixture contained with 200 ng of negatively supercoiled pGEM3zf(-) DNA, $2 \boldsymbol{\mu \ell}$ of $10 x$ reaction buffer (50 mM Tris-HCl, pH 8.0, BSA ($1 \mathrm{mg} / \mathrm{ml}$), 1 mM DTT, 2.5 mM EDTA, pH 8.0 , and 5 mM MgCl 2) and $0.5 \mu \ell$ of the sample to be tested and adjusted to a final volume of $20 \mu \ell$. The mixture was incubated for $5,10,15,20,25,30$ and 60 min at $37^{\circ} \mathrm{C}$. The reaction was terminated by addition of $5 \mu \ell$ of stop reagent (0.5 M EDTA, pH 8.0). Loading buffer was added and sample was run on 1.3% agarose gel without EtBr. After electrophoresis, the gel was stained with $\mathrm{EtBr}(0.5 \mu \mathrm{~g} / \mathrm{ml})$ and photographed under UV-illumination.

II-10. Measurement of topoisomerase activity depending on pH

The standard assay mixture contained with 200 ng of negatively supercoiled pGEM3zf(-) DNA, $2 \boldsymbol{\mu}$ of $10 x$ reaction buffer (50 mM Tris-HCl, pH 8.0, BSA ($1 \mathrm{mg} / \mathrm{ml}$), 1 mM DTT, 2.5 mM EDTA, pH 8.0 and 5 mM MgCl$)_{2}$) and $0.5 \mu \ell$ of the sample to be tested and
adjusted to a final volume of $20 \mu \ell$. The mixture was incubated for 30 min at $37^{\circ} \mathrm{C}$ on different pHs conditions (3.0, 4.0, 5.0, 6.0, $7.0,7.5,8.0,8.5,9.0,10.0$ and 11.0). The reaction was terminated by addition of $5 \mu \ell$ of stop reagent (0.5 M EDTA, pH 8.0). Loading buffer was added and sample was run on 1.3% agarose gel without EtBr ($0.5 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$) and photographed under UV-illumination.

II-11. Measurement of topoisomerase activity depending on temperature

The standard assay mixture contained with 200 ng of negatively supercoiled pGEM3zf(-) DNA, $2 \boldsymbol{\mu \ell}$ of $10 x$ reaction buffer (50 mM Tris-HCl, pH 8.0, BSA ($1 \mathrm{mg} / \mathrm{ml}$), 1 mM DTT, 2.5 mM EDTA, pH 8.0 , and 5 mM MgCl$)_{2}$, and $0.5 \mu \ell$ of the sample to be tested and adjusted to a final volume of $20 \mu \ell$. The mixture was incubated for 30 min at various temperature conditions ($15,20,30,40,50$, 55,60 and $70^{\circ} \mathrm{C}$). The reaction was terminated by addition of $1 \mu \ell$ of stop reagent (0.5 M EDTA, pH 8.0). Loading buffer was added and sample was run on 1.3% agarose gel without EtBr. After electrophoresis, the gel was stained with $\mathrm{EtBr}(0.5 \mu \mathrm{~g} / \mathrm{ml})$ and photographed under UV-illumination.

II-12. Measurement of topoisomerase activity depending on various inhibitors

The standard assay mixture contained with 200 ng of negatively supercoiled pGEM3zf(-) DNA, $2 \boldsymbol{\mu \ell}$ of $10 x$ reaction buffer (50 mM Tris-HCl, pH 8.0, BSA ($1 \mathrm{mg} / \mathrm{m} \ell$), 1 mM DTT, 2.5 mM EDTA, pH 8.0, and 5 mM MgCl 2), each inhibitor of various concentrations, such as camptothecin, nalidix acid, spermidine, etoposide and $0.5 \mu \ell$ of the sample to be tested and adjusted to a final volume of $20 \mu \ell$. The mixture was incubated for 30 min at $37^{\circ} \mathrm{C}$. The reaction was terminated by addition of $5 \mu \ell$ of stop reagent (0.5 M EDTA, pH 8.0). Loading buffer was added and sample was run on 1.3% agarose gel without EtBr. After electrophoresis, the gel was stained with $\mathrm{EtBr}(0.5 \mu \mathrm{~g} / \mathrm{ml})$ and photographed under UV-illumination.

II-13. Measurement of topoisomerase activity depending on divalent cations

The standard assay mixture contained with $3 \mu \ell$ of negatively supercoiled pGEM3zf(-) DNA, $2 \mu \ell$ of 10x reaction buffer (50 mM Tris-HCl, pH 8.0, BSA ($1 \mathrm{mg} / \mathrm{ml}$), 1 mM DTT, 2.5 mM EDTA, pH 8.0), 4 mM of various divalent ions $\left(\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}\right.$ and
Zn^{2+}) and then $0.5 \mu \ell$ of the sample to be tested and adjusted to a final volume of 20μ. The mixture was incubated for 30 min at $37^{\circ} \mathrm{C}$. The reaction was terminated by addition of 5μ of stop reagent (0.5 M EDTA, pH 8.0). Loading buffer was added and sample was run on 1.3% agarose gel without EtBr. After electrophoresis, the gel was stained with $\mathrm{EtBr}(0.5 \mu \mathrm{~m} / \mathrm{ml})$ and photographed under UV-illumination.

II-14. Measurement of topoisomerase activity depending on EDTA, NaCl and ATP

The standard assay mixture contained with $3 \mu \ell$ of negatively supercoiled pGEM3zf(-) DNA, $2 \mu \ell$ of $10 x$ reaction buffer (50 mM Tris-HCl, pH 8.0, BSA ($1 \mathrm{mg} / \mathrm{ml}$), 1 mM DTT, 5 mM MgCl), EDTA, NaCl and ATP of various concentrations and $0.5 \mu \ell$ of the sample to be tested and adjusted to a final volume of $20 \mu \boldsymbol{\mu}$. The mixture was incubated for 30 min at $37^{\circ} \mathrm{C}$. The reaction was terminated by addition of 5μ of stop reagent (0.5 M EDTA, pH 8.0). Loading buffer was added and sample was run on 1.3% agarose gel without EtBr. After electrophoresis, the gel was stained with EtBr ($0.5 \mathrm{\mu g} / \mathrm{ml}$) and photographed under UV-illumination.

II-15. Purification and radiolabelling of oligonucleotides

DNA fragments generated after restriction enzyme digestion with EcoR I and were end-filled with either [$\left.\alpha{ }^{-32} \mathrm{P}\right]$ dATP or $\left[~ \gamma^{-32} P\right] A T P$, using Klenow fragment or T4 polynucleotide kinase. Radiolabeled fragments were purified using Sephadex G-50 spin columns.

II-16. Electrophoretic mobility shift assay (EMSA)

Non-covalent enzyme-DNA complexes were formed by using 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8), 0.5 \mathrm{mM}$ EDTA, with or without $5 \mathrm{mM} \mathrm{MgCl}, 100$ fmol radiolabeled oligonucleotide and 2-4 U of purified enzyme by incubation on $37^{\circ} \mathrm{C}$ for 30 min . The products were separated in an 8% native polyacryamide gel (30: 0.8) using $0.5 \times$ TBE as the running buffer. The gels were electrophoresed at 100 V at room temperature, dried on 3 mm paper and then subjected to autoradiography.

III. Results and Discussion

III-1. PCR cloning of topoisomerase I gene from Staphylococcus aureus

To clone the topoisomerase gene l, chromosomal DNA was extracted from Staphylococcus aureus sp. strain C-66 cells and amplified the gene by polymerase chain reaction. The amplified DNA fragments were ligated into the Xho I/Kpn I-cleaved pBAD/His A expression vectors with T4 DNA ligase. The ligated DNA was transformed and expressed in E. coli strain Top 10. Fig. 1 shows the physical map of recombinant pTP | plasmid. The 6.1 kb recombinant plasmid pTP I containing 2,070 bp insert and pBAD/His A expression vector (Fig. 2). The nucleotide sequence of the cloned topoisomerase I gene was translated to amino acid and the deduced sequence was compared with those of other Staphylococcus aureus. Overall amino acid sequence conservation among topoisomerases \mid could be seen in the amino acid alignment. As shown in Fig. 3, 99\% of the amino acid sequence was conserved in the alignment.

Figure 1. Construction of a pTP I. A: physical map of pTP I. B: Restriction digest of pTP1. Lane M, λ /Hind III cut marker; Lane 1, pBAD/His A vector digested with Xho I and Kpn I; Lane 2, pTPI digested with Xhol and Kpn I.

```
TTGGCAGATAATTTAGTCATTGTTGAATCGCCTGCAAAAGCAAAAACCATTGAAAAGTAT60
    M A D N L V V I V E E S P P A Flllllllllll
TTAGGTAAGAAATATAAAGTTATAGCTTCAATGGGACACGTCAGAGACTTACCAAGAAGT 120
    L
CAAATGGGTGTCGACACTGAAGATAATTACGAACCAAAATATATAACAATACGCGGAAAA 180
    Q M G V D T I E D N N Y E E P F K Y Y I P
GGTCCTGTTGTAAAAGAATTGAAAAAACATGCAAAAAAAGCGAAAAACGTCTTTCTCGCA 240
    G P V V V K K E L L K K K H A A K Klllllllllll
AGTGACCCCGACCGTGAAGGTGAAGCAATTGCTTGGCATTTATCAAAAATTTTAGAGCTT 300
    S D D P D R E G E A I I A W W H
GAAGATTCTAAAGAAAATCGCGTTGTTTTCAACGAAATAACTAAAGACGCTGTTAAAGAA 360
    E D D S K E E N R R V V V F N N E F I T T K D D A N V K E
AGTTTTAAAAATCCTAGAGAAATTGAAATGAACTTAGTCGATGCACAACAAGCGCGTCGA 420
    S F F K N P P R E E I E E M N N L L V D D A P
ATATTAGATAGATTGGTTGGCTATAACATCTCGCCAGTTCTATGGAAAAAAGTGAAAAAA 480
    I L D R L V G Y N I I S P P V L W N K K V V K K
GGGTTGTCAGCGGGTCGAGTTCAATCTGTTGCACTTCGTTTAGTCATTGACCGTGAAAAT 540
```



```
GAAATACGAAACTTTAAACCAGAAGAATATTGGACTATTGAAGGAGAATTTAGATACAAA 600
```



```
AAATCAAAATTCAATGCTAAATTCCTTCATTATAAAAATAAACCTTTTAAATTAAAAACG }66
    K
AAAAAAGATGTTGAGAAAATTACAACTGCATTAGATGGAGATCAATTCGAAATTACAAAC 720
    K Klllllllllllllllllllllll
GTGACTAAAAAAGAAAAAACGCGTAATCCAGCAAACCCATTTACAACTTCTACATTACAA }78
    V Tlllllllllllllllllllllllll
CAAGAGGCGGCACGTAAATTAAACTTTAAAGCTAGAAAAACAATGATGGTCGCACAACAA 840
    Q E A A A R R K L L N N F Klllllllllllllll
TTATATGAAGGTATAGATTTGAAAAAACAAGGTACGATTGGTTTAATAACATATATGAGA 900
    L Y E G I D L K K \ Q G T I I G L L I I T F
ACCGATTCTACACGTATTTCAGATACTGCCAAAGCTGAAGCAAAACAGTATATAACTAAT 960
```



```
AAATACGGTGAATCTTACACTTCTAAACGTAAAGCATCAGGGAAACAAGGTGACCAAGAT 1020
```



```
GCCCATGAGGCTATTAGACCTTCAAGTACTATGCGTACGCCAGATGATATGAAGTCATTT 1080
    A H
```

To be continued,

TTAACGAAAGACCAATACCGATTATACAAATTAATTTGGGAACGATTTGTTGCTAGTCAA 1140
 ATGGCTCCAGCAATACTTGATACAGTCTCATTAGACATAACACAAGGTGACATTAAATTT 1200
 AGAGCGAATGGTCAAACAATCAAGTTCAAAGGATTTATGACACTTTATGTAGAAACTAAA 1260

GATGATAGTGATAGCGAAAAGGAAAATAAACTGCCTAAATTAGAGCAAGGTGATAAAGTC 1320
 ACAGCAACTCAAATTGAACCAGCTCAACACTATACACAACCACCTCCTAGATATACTGAG 1380

GCGAGATTAGTAAAAACACTAGAAGAATTGAAAATTGGGCGACCATCAACTTATGCACCG 1440
$\begin{array}{lllllllllllllllllllll}\text { A } & \mathrm{R} & \mathrm{L} & \mathrm{V} & \mathrm{K} & \mathrm{T} & \mathrm{L} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{I} & \mathrm{G} & \mathrm{R} & \mathrm{P} & \mathrm{S} & \mathrm{T} & \mathrm{Y} & \mathrm{A} & \mathrm{P}\end{array}$
ACAATAGATACGATTCAAAAGCGTAACTATGTCAAATTAGAAAGTAAGCGTTTTGTTCCT 1500

ACTGAGTTGGGAGAAATAGTTCATGAACAAGTGAAAGAATACTTCCCAGAGATTATTGAT 1560

GTGGAATTCACAGTGAATATGGAAACGTTACTTGATAAGATTGCAGAAGGCGACATTACA 1620

TGGAGAAAAGTAATCGACGGTTTCTTTAGTAGCTTTAAACAAGATGTTGAACGTGCTGAA 1680

GAAGAGATGGAAAAGATTGAAATCAAAGATGAGCCAGCCGGTGAAGACTGTGAAGTTTGT 1740

GGTTCTCCTATGGTTATAAAAATGGGGCGCTATGGTAAGTTTATGGCTTGCTCAAACTTC 1800
$\begin{array}{lllllllllllllllllllll}G & S & \mathrm{P} & \mathrm{M} & \mathrm{V} & \mathrm{I} & \mathrm{K} & \mathrm{M} & \mathrm{G} & \mathrm{R} & \mathrm{Y} & \mathrm{G} & \mathrm{K} & \mathrm{F} & \mathrm{M} & \mathrm{A} & \mathrm{C} & \mathrm{S} & \mathrm{N} & \mathrm{F}\end{array}$
CCGGATTGTCGTAATACAAAAGCGATAGTTAAGTCTATTGGTGTTAAATGTCCAAAATGT 1860

AATGATGGTGACGTCGTAGAAAGAAAATCTAAAAAGAATCGTGTCTTTTATGGATGTTCG 1920
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{D} & \mathrm{G} & \mathrm{D} & \mathrm{V} & \mathrm{V} & \mathrm{E} & \mathrm{R} & \mathrm{K} & \mathrm{S} & \mathrm{K} & \mathrm{K} & \mathrm{N} & \mathrm{R} & \mathrm{V} & \mathrm{F} & \mathrm{Y} & \mathrm{G} & \mathrm{C} & \mathrm{S}\end{array}$
AAATATCCTGAATGCGACTTTATCTCTTGGGATAAGCCGATTGGAAGAGATTGTCCAAAA 1980

TGTAACCAATATCTTGTTGAAAATAAAAAAGGCAAGACAACACAAGTAATATGTTCAAAT 2040
 TGCGATTATAAAGAGGCAGCGCAGAAATAA

2070 C D $\quad \mathrm{D} \quad \mathrm{K} \quad \mathrm{E} \quad \mathrm{A} \quad \mathrm{A} \quad \mathrm{Q} \quad \mathrm{K} \quad$ \#

Figure 2. DNA sequence of a topoisomerase I gene from
Staphylococcus aureus

MRSA252	LADNLVIVESPAKAKTIEKYLGKKYKVIASMGHVRDLPRSQMGVDTEDNYEPKYITIRGK	60	MRSA252
COL	LADNLVIVESPAKAKTIEKYLGKKYKVIASMGHVRDLPRSQMGVDTEDNYEPKYITIRGK	60	COL
c-66	LADNLVIVESPAKAKTIEKYLGKKYKVIASMGHVRDLPRSQMGVDTEDNYEPKYITIRGK	60	C-66
MSSA476	LADNLVIVESPAKAKTIEKYLGKKYKvIASMGHVRDLPRSQMGVDTEDNYEPKYITIRGK	60	MSSA476
MRSA252	GPVVKELKKHAKKAKNVFLASDPDREGEAIAWHLSKILELEDSKENRVVFNEITKDAVKE	120	MRSA252
COL	GPVVKELKKHAKKAKNVFLASDPDREGEAIAWHLSKILELEDSKENRVVFNEITKDAVKE	120	COL
C-66	GPVVKELKKHAKKAKNVFLASDPDREGEAIAWHLSKILELEDSKENRVVFNEITKDAVKE	120	C-66
MSSA476	GPVVKELKKHAKKAKNVFLASDPDREGEAIAWHLSKILELEDSKENRVVFNEITKDAVKE	120	MSSA476

MRSA252	SFKNPREIEMNLVDAQQARRILDRLVGYNISPVLWKKvKKGLSAGRVQSVALRLVIDREN	180	MRSA252
COL	SFKNPREIEMNLVDAQQARRILDRLVGYNISPVLWKKVKKGLSAGRVQSVALRLVIDREN	180	COL
C-66	SFKNPREIEMNLVDAQQARRILDRLVGYNISPVLWKKVKKGLSAGRVQSVALRLVIDREN	180	C-66
MSSA476	SFKNPREIEMNLVDAQQARRILDRLVGYNISPVLWKKvKKGLSAGRVQSVALRLVIDREN	180	MSSA476

MRSA252	EIRNFKPEEYWTIEGEFRYKKSKFNAKFLHYKNKPFKLKTKKDVEKI ${ }^{\text {A }}$ /LDGDQFEITN	240	MRSA252
COL	EIRNFKPEEYWTIEGEFRYKKSKFNAKFLHYKNKPFKLKTKKDVEKI AALDGD@FEITN	240	COL
C-66	EIRNFKPEEYWTIEGEFRYKKSKFNAKFLHYKNKPFKLKTKKDVEKITTALDGDQFEITN	240	C-66
MSSA476	EIRNFKPEEYWTIEGEFRYKKSKFNAKFLHYKNKPFKLKTKKDVEKITAALDGDQFEITN	240	MSSA476
MRSA252	VTKKEKTRNPANPFTTSTLQQEAARKLNFKARKTMMVAQQLYEGIDLKKQGTIGLITYMR	300	MRSA252
COL	VTKKEKTRNPANPFTTSTLQQEAARKLNFKARKTMMVAQQLYEGIDLKKQGTIGLITYMR	300	COL
c-66	VTKKEKTRNP ANPFTTSTLQQEAARKLNFKARKTMMVAQQLYEGIDLKKQGTIGLITYMR	300	C-66
MSSA476	VTKKEKTRNP ANPFTTSTLQQEAARKLNFKARKTMMVAQQLYEGIDLKKQGTIGLITYMR	300	MSSA476
	寿		
MRSA252	TDSTRISDTAKARAKQYi ${ }^{\text {D }}$ RYGESYTSKRKASGKQGDQDAHEAIRPSSTMRTPDDMKSF	360	MRSA252
COL	TDSTRISDTAKV湱AKQYITDKYGESYTSKRKASGKQGDQDAHEAIRPSSTMRTPDDMKSF	360	COL
C-66	TDSTRISDTAKA\&AKQYI ${ }^{\text {NNKYGESYTSKRKASGKQGDQDAHEAIRPSSTMRTPDDMKSF }}$	360	C-66
MSSA476		360	MSSA476

LTKDQYRLYKLIWERFVASQMAPAILDTVSLDITQGDIKFRANGQTIKFKGFMTLYVETK 420 LTKDQYRL YKLIWERFVASQMAPAILDTVSLDITQGDIKFRANGQTIKFKGFMTLYVETK 420 LTKDQYRLYKLIWERFVASQMAPAILDTVSLDITQGDIKFRANGQTIKFKGFMTLYVETK 420
LTKDQYRLYKLTWERFVASOMAPAILDTVSLDITOGDIKFRANGOTIKFKGFMTLYVETK 420 TKDQYRLYKLIWERFVASQMAPAILDTVSLDITQGDIKFRANGQTIKFKGFMTLYVETK

DDSDSEKENKLPKLEQGDKVTATQIEPAQHYTQPPPRYTEARLVKTLEELKIGRPSTYAP 480 DSSDEKENKLPKLEQGDKVTATQIEPAQHYTQPPPRYTEARLVKTLEELKIGRPSTYAP 480 DDSDSEKENKLPKLEQGDKVTATQIEPAQHYTQPPPRYTEARLVKTLEELKIGRPSTYAP 480 DSDSEKENKLPRLEQGDKVTATQIEPAQHYTQPPPRYTEARLVKTLEELKIGRPSTYAP 480

IIDTIQKRNYVKLESKRFVPTELGEIVHEQVKEYFPEIIDVEFTVNMETLLDKIAEGDIT 540 TIDTIQKRNYVKLESKRFVPTELGEIVHEQVKEYFPEIIDVEFTVNMETLLDKIAEGDIT 540 TIDTIQKRNYVKLESKRFVPTELGEIVHEQVKEYFPEIIDVEFTVNMETLLDKIAEGDIT 540 IIDTIQKRNYVKLESKRFVPTELGEIVHEQVKEYFPEIIDVEFTVNMETLLDKIAEGDIT 540

PDCRNTKAIVKSIGVKCPKCNDGDVVERKSKKNRVFYGCSKYPECDFISWDKPIGRDCPK 660 PDCRNTKAIVKSIGVKCPKCNDGDVVERKSKKNRVFYGCSKYPECDEISWDKPIGRDCPK 660
PDCRNTKAIVKSIGVKCPKCNDGDVVERKSKKNRVFYGCSKYPECDFISWDKPIGRDCPK 660 PDCRNTKAIVKSIGVKCPKCNDGDVVERKSKKNRVFYGCSKYPECDFISWDKPIGRDCPK 660 DCRNTKAIVKSIGVKCPKCNDGDVVERKSKKNRVFYGCSKYPECDFISNDKPIGRDCPK

CNQYLVENKKGKTTOVICSNCDYKEAAQK 689 CNQYLVENKKGKTTQVICSNCDYKEAAQK 689 CNQYLVENKKGKTTQVICSNCDYKEAAQK 689 CNOYLVENKKGKTTQVICSNCDYKEAAQK 6

Figure 3. Alignment of predicted amino acid sequence encoded by topoisomerase I
genes of other Staphylococcus aureus strains

III-2. Purification of a topoisomerase I from E. coli cells harboring pTP I

To purify the topoisomerase from E. coli cells harboring pTP I, the cultured cells were harvested and sonicated. Upon induction with 0.02% L-arabinose, E. coli strain Top 10 cells harboring the recombinant plasmid overproduced a polypeptide with an estimated molecular mass of 79.1 kDa , a size similar to that expected for the putative Staphylococcus aureus topoisomerase I, respectively.

To obtain the Staphylococcus aureus topoisomearase I, ammonium sulfate fractionation and affinity chromatography on Hitrap chelating column were performed in order. Most of type I topoisomerase activities were recovered from crude cell extract between 30 and 70% saturation of ammonium sulfate. The ammonium sulfate fractionated proteins were subjected to PD-10 column to remove salt and the proteins were concentrated as descried in Materials and Methods.

The concentrated proteins were separated by Hitrap chelating chromatography. The Hitrap chelating chromatography resulted in the elimination of the majority of non-specific proteins with good recovery of topoisomerase. There was no nonspecific nuclease activity. As shown in Fig. 4, the topoisomerase activity was recovered at 0.1 M imidazol and formed a broad trailing peak up to 0.25 M imidazol. The highest activity was found around 0.2 M
imidazol.
The DNA relaxation assay was used to monitor the enzyme activity at a step of purification (Fig. 4). The purified enzyme was serially diluted and incubated with native pTP I plasmid under the standard assay conditions. As shown in Fig. 4, the purified topoisomerase I activity emerged in the fractions from 10 to 17. Protein fractions were separated on a 12\% SDS-polyacrylamide gel. The major band was correlated with the relaxation activity of plasmid DNA, as shown in Fig. 2. Total activity of the enzyme was 9,900 units (Table 2).

The purified enzyme showed a typical relaxation activity on covalently closed circular DNA (form I). In standard reaction condition, the relaxation activity occurred rapidly on added substrate DNA (form I) and then the substrate DNA (form I) relaxed to open circular DNA (form II). These results suggest that the purified enzyme has an efficient relaxation activity on negatively supercoiled DNA.

Figure 4. FPLC elution profile of the Hitrap chelating column. Typical topoisomerase activity assay with each fraction was performed in a standard reaction mixture and products were visualized on 1.3% agarose gel.

Figure 5. SDS-PAGE analysis of protein purification of topoisomerase I from Staphylococcus aureus sp. strain C-66. Lane M, protein size marker; lane 1, crude cell extract; lane 2, Hitrap chelating column.

Table 3. Summary of purification of topoisomerase I from E. coli Top 10

Fraction	Total protein (mg)	Total activity (U)	Specific activity (U/mg)	Yield (\%)
Cell extract	375.64	$\mathrm{ND}^{\text {b }}$	ND^{b}	ND^{b}
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}{ }^{\text {c }}$	170.61	128,242	754	100
Hitrap chelating Column	1.98	9,900	5,000	7.7
a. One unit topoisomerase activity was defined as the amount of enzyme required to relax 50% of supercoiled pGEM3zf(-) DNA (200 ng) for 30 min at $37^{\circ} \mathrm{C}$ in the presence of 5 mM of MgCl_{2}. b. ND, not detectable c. The range of saturation concentration for the fractionation was $20 \sim 70 \%$.				

III-3. Effect of time, pH and temperature on purified topoisomerase activity

To check the effects of various times, pHs and temperatures an purified topoisomerase activity were investigated (Figs. 4, 5A and 5B). Standard assay mixtures were incubated by the addition of the enzyme at different time. As shown in Fig. 4, the relaxation activity of the purified enzyme was exerted its catalytic activity after 10 min and was activated at 30 min after adding the DNA substrates (Fig. 4). These results indicate that the purified topoisomerase possesses the relaxation activity, especially after 30 min . The relaxation activity was determined by various range of pH and temperature. As shown in Fig. 5A, the enzyme was active especially in pH 7.5. The enzyme also was active at $37 \sim 40^{\circ} \mathrm{C}$ of temperature and the optimal temperature was found to be approximately $37^{\circ} \mathrm{C}$.

Figure 6. Effect of incubation time on the enzyme activity of the purified topoisomerase. The enzyme activity was assayed in the standard reaction mixture.

Figure 7. Effect of pH and temperature on the relaxation activity of the purified topoisomerase. The enzyme activity was assayed in the standard reaction mixture under different experiment conditions.

III-4. Effect of relaxation activity depending on divalent cations

It is known that most of prokaryotic DNA topoisomerases absolutely require divalent cations for their activities (Bouthier, 1993). Fig. 6 shows the effect of various divalent cations $\left(\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}\right.$, $\mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}$ and Zn^{2+}) on DNA relaxation activity of the purified enzyme. The enzyme was inactive in the absence of a divalent cation. $\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}$ and Ca^{2+} were able to support the DNA relaxation activity of the enzyme, whereas Cu^{2+} and Zn^{2+} cations were inhibitory. Mg^{2+} was the most preferred ion for the purified enzyme, as all prokaryotic type I DNA topoisomerases. Especially, in the case of purified enzyme, the relaxation activity is strongly activated by $\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}$ and Cu^{2+}, whereas there was no effect by Ca^{2+} and Zn^{2+}. The results indicate that a divalent cation, expecially Mg^{2+} cation, is indispensable for the relaxation activity of a type I topoisomerase.

Figure 8. Effect of divalent cations on the relaxation activity of purified topoisomerase. Various kinds of 4 mM divalent cations were added to the standard reaction mixture and the standard reaction mixture was incubated for 30 min at $37^{\circ} \mathrm{C}$. The reaction products were analyzed on 1.3\% agarose gel.

III-5. Effect of relaxation activity depending on EDTA, NaCl and ATP

The effect of some inhibitors on topoisomerase l activity are shown in Fig. 7. The purified topoisomerase activity was inhibited by EDTA. As shown in Fig. 7A, it activated the relaxation activity at a lower concentration of EDTA, but strongly inhibited the relaxation activity of topoisomerase I at a higher concentration (5 and 10 mM) of EDTA.

The effect of NaCl on the relaxation activity of Staphylococcus aureus topoisomerase I is presented in Fig. 7B. The enzyme shows a predominantly processive mode in the absence of NaCl and gradually shifts to a distributive mode with the increase in the NaCl concentration. The results shows that there is an increase in the number of partially relaxed DNA, which reflects a distributive mode of action by the enzyme. However, as the salt concentration increased, the enzyme appeared to have switched to a distributive mode in which all of the input DNA molecules were relaxed to a similar but progressively smaller extent. The similar switch in the mode of action in response to the change in salt concentration was described previously for M. smegatis topoisomerase I (Bhaduri , 1998). It is possible that high concentrations of NaCl reduce the affinity of a topoisomerase for DNA, facilitating the dissociation of the enzyme from the substrate before the completion of the relaxation reaction.

The type of topoisomerase for the purified enzyme was also determined on the basis of ATP-requirement. As shown in Fig. 7C,
the purified topoisomerase did not require ATP for the relaxation activity. The substrate DNA was relaxed by the purified topoisomerase \mid in the absence or presence of ATP. These results indicate that the purified enzyme is a topoisomerase I which possess ATP-independent manner.

Figure 9. Effect of EDTA, NaCl and ATP on the relaxation activity of purified topoisomerase. Enzyme activity was assayed in standard reaction mixture containing either different concentrations of EDTA (A), NaCl (B) and ATP (C).

III-6. Effect of relaxation activity depending on various inhibitors

To determine whether the enzyme belongs to type I or type II DNA topoisomerase, the effects of various inhibitors on the purified enzyme, such as camptothecin, nalidixic acid, spermidine, and etoposide were examined. Camptothecin and nalidixic acid were used as type I- and type II-specific inhibitors respectively (Morris and Geller, 1996; Desai, 1997; Alkorta, 1999; Carlos, 2000; Miller and Niell, 2001). Camptothecin stimulates DNA single strand breaks by preferentially trapping a subset of the topoisomerase I cleavage sites (Jaxel, 1991; Pommier, 1995; Kjeldsen, 1988). It has been established that camptothecin inhibits specifically topoisomerase । by stabilizing the cleavable complexes, which are enzyme-catalyzed DNA single-strand breaks with the enzyme linked to the 3'-terminus of the break (Fukasawa, 1998). As shown in Figure 8, the enzyme activity was completely inhibited by treatment with 0.2 mM camptothecin but not by nalidixic acid. These results suggest that the purified topoisomerase belongs to type I topoisomerase.

However, as shown in Fig. 8, topoisomerase II-specific inhibitors, such as nalidixic acid, etoposide, and spermidine had no inhibitory effect on the purified topoisomerase. Taken together, the results suggest that the purified topoisomerase from Staphylococcus aureus sp . strain C-66 belongs to the prokaryotic DNA topoisomerase I.

Figure 10. Effect of topoisomerase-specific inhibitors on the relaxation activity of purified topoisomerase. (A) Camptothecin; (B) Nalidixic acid; (C) Spermidine; (D) Etoposide. Various concentrations of inhibitors were added to the standard reaction mixture as indicated and incubated for 30 min at $37^{\circ} \mathrm{C}$.

III-7. Analysis of the reaction intermediate

The covalent protein DNA intermediate complex formation described above could be mediated either by the 3^{\prime} or 5^{\prime}-end of nicked DNA. The experimental strategy to determine the linkage of S. aureus enzyme is shown in Fig. 9. This experiment is based on the observation that covalent protein-DNA complex migrates more slowly than free DNA molecule when it subjected to 8% native polyacrylamide gel electrophoresis. Determination of the linkage could be established by employing DNA substrates labeled at 3'-end. Covalent protein DNA intermediate complex was migrate more slowly than free DNA molecules when the 3^{\prime}-end labeled DNA substrates were used. When 5'-end labeled DNA substrates were used, no appreciable complex formation was observed (Fig. 9). These results demonstrate that covalent complex formation is mediated through the 5 '-end of the nicked DNA.

Figure 11. The enzyme makes covalent linkage with the 5 '-end of the nick. A, the experimental stratagy. B, 5^{\prime} and 3^{\prime} end labeled fragment were complexed with protein. The complexes were electrophoresed on 8% native polyacryamide gel followed by electrophoretic mobility shift assay.

III-8. Comparison of the relaxation activity with S. aureus topoisomerase I and Methylophaga topoisomerase I

In this study, the purified topoisomerase । was characterized at various conditions. These results predict that the purified enzyme is an ATP-independent topoisomerase I. And the relaxation activity of the purified enzyme was compared with Methylophaga topoisomerase I. The relaxation activity of both S. aureus and Methylophaga topoisomerase I showed the typical prokaryotic DNA topoisomerase I. Nevertheless, There is a few difference between two enzymes. As shown in Table 4, The purified topoisomerase observed that is a specific topoisomerase possessing a very strong activity in treatment of NaCl , EDTA and camptothecin compared with Methylophaga topoisomerase I. And the purified enzyme has no activity in the presence Cu^{2+}. As a result, comparison of the relaxation activity with Methylophaga topoisomerase suggest that the purified enzyme is a typical prokaryotic topoisomerase I.

Table 4. Comparison of the relaxation activity with S. aureus topoisomerase I and Methylophaga topoisomerase I

Property	Topoisomerase I		
	S. aureus	Methylophaga	
Cofactor requirement for relaxation activity		Mn^{2+}	+

> V. 적 요

포도상구균으로부터 DNA topoisomerase । 유전자의 클로닝 및 특성에 관한 연구

김 현 익
조선대학교 대학원 생물신소재학과

본 연구에서 type I DNA topoisomerase 유전자을 황색포도상구균 균주 C-66 세포로부터 염색체 DNA를 분리하고 중합연쇄반응을 통하 여 그 유전자를 증폭시킨 후 pBAD/His A 발현벡터에 클로닝하고 대장 균 Top 10 세포에서 발현을 유도하였다. 정제한 topoisomerase의 유 전자는 630 개의 아미노산을 암호화할 수 있는 2,070 개의 뉴클레오타이 드로 구성되어 있었다. 0.02% 의 L-arabinose를 처리하여 topoisomerase 의 발현을 유도한 후 Hitrap chelating column을 이용 하여 정제하였다. 분리한 효소는 $37^{\circ} \mathrm{C}$ 와 pH 7.5 에서 가장 높은 활성을 보였고, 효소의 활성에 Mg^{2+} 이온이 필요함을 관찰하였다. 또한 EDTA와 $\mathrm{NaCl}, \mathrm{ATP}$ 에 대한 영향을 관찰한 결과, 10 mM 의 EDTA, 400 mM 의 NaCl 있을 때 효소의 활성이 완전히 사라짐을 관찰하였다.

정제된 효소의 특성을 규명하기 위하여 다양한 topoisomerase 억제제를 이용하여 효소 활성을 측정한 결과 type I DNA topoisomerase 의 억제제 인 camptothecin을 처리하였을 때 효소의 활성은 억제되지만 type ॥ topoisomerase 억제제인 nalidixic acid, etoposide 그리고 spermidine 을 처리하였을 경우, 그 활성은 억제되지 않았다. 또한 정제된 효소는 5^{\prime}

끝 부위를 절단하여 효소의 기작이 시작됨을 electrophoretic mobility shift assay를 통하여 증명하였다.

이상의 결과는 정제된 topoisomerase는 전형적인 ATP 비의존적 type I DNA topoisomerase임을 제시하는 것이다.

VI. REFERENCE

Alkorta, I., Park, C., Kong, J., Garbisu, C. and Alberti, M. (1999) Rhodobacter capsulatus DNA topoisomerase I purification and characterization. Archives of Biochemisitry and Biophysics. 362; 123-130.

Anderluzzi, D. and Pedrini, A. M. (1993) Structural similarities between M. luteus and E. coli DNA topoisomerase I. Biochem. Biophys. Res. Co. 192; 657-664.

Badaracco, G., Landsberger, N., and Benfante, R. (1992) Purification and characterization of a proteolytic active fragment of DNA topoisomerase I from the brine shrimp Artemia franciscana. Biochem. J. 282; 249-254.

Bouthier, T. C., Portemer, C., Forterre, P., Hube, R. and Duguet, M. (1993) ATP-independent DNA topoisomerase from Fevidobacterium islandicum. Biochin. Biophys. Acta. 1216; 213-220.

Bhaduri, T., Banui, T. K., Sikder, D. and V. Nagaraja. (1998) DNA topoisomerase I from Mycobacterium smegmatis. An enzyme with distinct features. J. Biol. Chem. 273:13925-13932

Carlos, R. G., Kristine, R., Clinton, F. S., Wayne, F., Victor, M. S. and Houghton, P. J. (2000) Clinical use of topoisomerase I inhibitors in anticancer treatment. Medical and pediatric oncology. 35; 385-402.

Champoux, J. J., Cozzarelli, N. R. and Wang, J. C. (1990) In DNA topology and its biological effects. Cold Spring Laboratory Press. pp. 217-242.

Champoux, J. J. (1994) Mechanism of catalysis by eukaryotic DNA topoisomerase I. Adv. Pharmacol. 29A: 71-82

Champoux, J. J. (2001) DNA topoisomerases: structure, function and mechanism. Annu. Rev. Biochem., 70, 369-413

Chen, A. Y. and L. F. Liu. (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu. Rev. Pharmacol. Toxicol. 34: 191-218

Coderoni, S., Paparelli, M. and Gianfraneeschi, G. L. (1990) Optimum DNA relaxation reaction conditions for calf thymus DNA-topoisomerase I are determined by specific enzyme features. Mol. Biol. REp. 14; 255-259.

Cook, D. N., Ma, D., Pon, N. G. and Hearst, J. E. (1992) Dynamics of DNA supercoiling by transcription in Escherichia coli. PNAS. 89; 10603-10607.

Corbett, A. H. and N. Osheroff. (1993) When good enzymes go bad: conversion of topoisomerase II to a cellular toxin by antineoplastic drugs. Chem. Res. Toxicol. 6: 585-597

Cozzarelli, N. R. (1980) DNA topoisomerase. Cell. 22; 327-328.

Dekker N. H., Rybenkov V. V., Duguet M., Crisona N. J., Cozzarelli N. R. and Croquette V. (2002) The mechanism of type IA topoisomerases. Proc. Natl. Acad. Sci USA 19, 12126-12131.

Desai, S. D., Liu, L. F., Vazquez-Abad, D. and D'Arpa, P. (1997) Ubiquitin-dependent destruction of topoisomerase । is stimulated by the antitumor drug camptothecin. J. Biol. Chem. 272(39); 24159-24164.

Dorman, C. J., Barr, G. C., Bhriain, N. N. and Higgins, C. F. (1988) DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J. Bacteriol. 170; 2816-2826.

Fukasawa, K., Komatani, H., Hara, Y., Suda, H., Okura, A., Nishimura, T. and Yoshinari, T. (1998) Sequence-selective DNA
cleavage by a topoisomerase I. Int. J. Cancer. 75; 145-150.

Gellert, M., Mizuuchi, K., O'Dea, M. and Nash, H. (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA. 73; 3872-3876.

Gupta, M., Fujimori, A. and Pommier, Y. (1995) Eukaryotic DNA topoisomerase I. Biochem. Biophys. Acta 1262: 1-14

Higgins, C. F., Dorman, C. J., Stirling, D. A., Waddell, I. R., Booth, G. and Bremer, E. (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. Typhimurium and E. coli Cell. 52; 569-584.

Jaxel, C., Capranico, G., Kerrigan, D., Kohn, K. W. and Leteurtre, Y. (1991) Effect of local DNA sequence on topoisomerase I cleavage in the presence or absence of camptothecin. J. Biol. Chem. 266, 20418-20423

Kang, M. R., Mark, T. M. and Chung, I. K. (2004) Telomeric DNA damage by topoisomerase I. J. Biol. Chem. 13; 12535-12541

Kwack, M. S., Park, J. E., Park, J. K. and Lee, J. S. (2005) Purification and characterization of a novel ATP-independent type I DNA topoisomerase from a marine methylotroph. Arch. Biochem.

Biophys. 437; 168-177

Kim, R. A. and Wang, J. C. (1992) Identification of the yeast TOP3 gene product as a single strand specific DNA topoisomerase I. J. Biol. Chem. 267; 17178-17185

Kjeldsen, E., Millerup, S., Thomsen, B., Bonven, B. J., Bolund, L. and Westergaard, O. (1988) Sequence-dependent effect of camptothecin on human topoisomerase I DNA cleavage. J. Mol. Biol. 202, 333-342

Kohichi, Y., Hiroshi, I., Tarou, H., Tomoko, B., Atsushi, H., Nobuyuki, H., Shigeaki, O. and Kawakami, Y. (1987) Topoisomerase II content and topoisomerase II catalytic activity cannot explain drug sensitivities to topoisomerase II inhibitors in lung cancer cell line. Cancer Chemother Pharmacol. 39; 192-198.

Kozyavkin, S. A., Krah, R., Gellert, M., Stetter, K. O., Lake, J. A. and Slesarev, A. I. (1994) A reverse gyrase with an unusual structure. A type I DNA topoisomerase from the hyperthermophile Methanopyrus kandleri is a two-subunit protein. J. Biol. Chem. 15; 11081-11089.

Kranz, R. G., Beckman, D. L. and Foster-Hartnett, D. (1992) DNA gyrase activities from Rhodobacter capsulatus: analysis of target
of coumarins and cloning of the gryB locus. FEMS 72; 25-32.

Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage 4. Nature. 227; 680-685.

Liu, L. F. and Wang, J. C. (1979) Interaction between DNA and Escherichia coli DNA topoisomerase I. Formation of complexes between the protein and superhelical and nonsuperhelical duplex DNAs. J. Biol. Chem. 254; 11082-11088.

Maxwell, A. and Gellert, M. (1986) Mechanistic aspects of DNA topoisomerases. Adv. Protein Chem. 38; 69-107

McCoubrey, W. K. and Champoux, J. J. (1986) The role of single-strand breaks in the catenation reaction catalyzed by the rat type I topoisomerase. J. Biol Chem. 261;5130-51377.

Miller, A. A. and Niell, H. B. (2001) Phase I and phamacologic study of sequencial topotecan, carboplatin, and etoposide. Lung Cancer. 33; 241-248.

Morris, E. J. and Geller, H. M. (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerse I: Evidence for cell cycle-independent toxicity. The Journal of cell biology. 134(4); 757-770.

Mukherjee, S. K., Reddy M. K., Kumar, D. and Tewari. K. K. (1994) Purification and characterization of a eukaryotic type I topoisomerase from pea chloroplast. J. Biol. Chem. 269; 3793-3801.

Nesbit, S. P. and G. Breitenbeck, A. (1992) A laboratory study of factors influencing methane uptake by soils. Agric, Ecosyst. Environ. 41; 39-54.

Park, H. and Rolf. S. (1999) Identification and characterization of the genes for two topoisomerase I-interaction proteins from Saccharomyces cereviseae. Yeast. 15; 35-41.

Park, S. M. and Koo. H. S. (1994) Purification of caenorhabditis elegans DNA topoisomerase I. Biochim. Biophys. Acta. 1219; 47-54.

Penggao D., Wang Y., Ye R. Chen L. and Hung L. (2003) DNA topoisomerase III from the hyperthermophilic archaeon Sulfolobus solfataricus with specific DNA cleavage activity. J. Bacteriol. 185; 5500-5507.

Pommier, Y., Kohlhagen, G., Kohn, K. W., Leteurtre, F., Wani, M. C. and Wall, M. E. (1995) Interaction of an alkylating camptothecin derivative with a DNA base at topoisomerase I-DNA cleavage
sites. Proc. NatI. Acd. Sci. U.S.A. 92, 8861-8865

Powel, K A. and Rogers, B. L. F. (1984) Single-cell protein. In Methylotorhs; microbiology, biochemistry and genetics., CRC Press, Boca Raton, Florida. pp. 119-144.

Projan, S. J. and Novick, R. P. (1997) The molecular basis of pathogenicity. n: Crossley K. B., Archer, G. L., eds. The Staphylococci in human diseases. New York: Churchill Livingstone, 55-81.

Roca, J. (1995) The mechanisms of DNA topoisomerases. Trends Biochem. sci. 20;156-160

Rowe, T. C., Rusche, J. R., Brougham, M, J. and Holloman, W. K. (1981) Purification and properties of a topoisomerase from Ustilago maydis. J. Biol. Chem. 256; 10354-10361.

Rukiyah, T. D. and Marilyn M. S. (2002) Molecular characterization of recombinant Pneumocystis carinii topoisomerase I: Differential interactions with human topoisomerase I poisons and pentmidine.

Schmitt, B., Buhre, U. and Vosberg, H. P. (1984) Characterization of size variants of type I DNA topoisomerase isolated from Calf thymus. Eur. J. Biochem. 144; 127-134.

Shuman, S., Golder, M. and Moss, B. (1988) Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli. J. Biol. Chem. 263; 16401-16407.

Slesarev, A. I., Lake, J. A., Stetter, K. O., Gellert, M. and Kozyavkin, S. A. (1994) Purification and characterization of DNA topoisomerase V. An enzyme from the hyperthermophilic prokaryote Methanopyrus Kandleri that oresembles eukaryotic topoisomerase I. J. Biol. Chem. 269; 3295-3303.

Slesarev, A. I., Zaizev, D. A., Kopylov, V. M., Stetter, K. O. and Kozyavkin, S. A. (1991) DNA topoisomerase III from extremely thermophilic archaebateria. ATP-independent type I topoisomerase from Desulfurococcus amylolyticus drives extensive unwinding of closed circular DNA at high temperature. J. Biol. Chem. 266; 12321-12328.

Springer, K., Chou, H. H., Fan, W. H., Eun, S. and Lidstom, M. E. (1995) Methanol oxidation mutants in Methylobacterium extroquens AM1: Identification of new genetic complementation grous. Microbiology. 141; 2985-2993.

Stewrt, L., Redinbo M. R., Qiu X., Hol W. G. and Champoux J. J. (1998) A model for the mechanism of human topoisomerase I. Science. 279: 1534-1541.

Thierry V., Valerie L., Michel D. and Claire B. (2001) Hyperthermophilic topoisomerase l from Thermotoga maritima. J. Biol. Chem. 276; 46495-46503.

Tisha B., Devanjan S. and Valakunja N. (1998) Sequence specific interaction of Mycobacterium smegmatis topoisomerase । with duplex DNA. Nucleic Acids Research. 26: 1668-1674.

Tisha B., Tapan K. B., Devanjan S., and Valakunja N. (1998) DNA topoisomerase I from Mycobcterioum smegmatis. J. Biol. Chem. 273; 13925-13932

Trask, D. K., Didonato, J. A. and Muller, M. T. (1984) Rapid detection and isolation of covalent DNA/protein complexes: appliction to topoisomerase I and II. EMBO. J. 3; 671-676.

Vosberg, H. P., Grossman, L. I. and Vinograd, J. (1975) Isolation and partial characterization of the relaxation protein from nuclei of cultured mouse and human cells. Eur. J. Biochem. 55; 79-93.

Wang, J. C. (1971) Interaction between DNA and an Escherichia coli protein omega. J. Mol. Biol. 55; 523-33.

Wang, J. C., Pech, L. J. and Becherer, K. (1983) DNA supercoiling and its effects on DNA structure and function. Cold.

Spring. Harb. Sump. Quant. Biol. 47; 85-91.

Wang, J. C. (1985) DNA topoisomerases. Annu. Rev. Biochem. 54; 665-697.

Wang, J. C. Cozzarelli, N. R. (1990) in DNA Topology and Its Biological Effects. 321-340, Cold Spring Harbor Laboratory Press.

Wang, J. C. (1996) DNA topoisomerases. Annu. Rev. Biochem., 65, 635-692

Wang, J. C. (1998) Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107-144

Wang, J. C. (2002) Cellular roles of topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol., 3, 430-440

Wang, J. C. Caron, P. R. and Kim, R. A. (1990) The role of DNA topoisomerases in recombination and genome stability; a double-edged sword. 62; 403.

Zhu, Y. S. and Hearst, J. E. (1988) Transcription of oxygen-regulated photosynthetic genes requires DNA gyrase in Rhodobacter capsulatus. Proc. Natl. Sci. USA. 85; 4209-4213.

Zhu, Q., Pongpech, P. and DiGate, R. J. (2001) Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. PNAS. 98; 9766-9771.

