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1. INTRODUCTION

One of the well-known problems in differential geometry is that of
whether a given smooth function on a compact Riemannian manifold
is necessarily the scalar curvature of some metric. In order to study
these kinds of problems, we need some analytic methods in differential
geometry, because they have the forms of differential equations.

In particular, the problem of showing when a Riemannian metric of
constant scalar curvature can be produced én a product manifold B x F
be a warped product construction is studied very widely in differential
geometry. The warped product has been used in making some special
examples in Riemannian geometry and Lorentzian geometry.

For Riemannian manifolds, warped products have been useful in pro-
ducing examples of spe~ct.ral behavior, examples of manifolds of negative
curvature (cf. [4], [5], [6], [7], [8], [10], [11], [14], [20], [21], [23]), and also
in studying La—cohomology (cf. [27]).

For Lorentzian manifolds, warped products have been used widely in
studying the space-times (cf. [1], 3], [12], [13], [15], [19], [16,17,18], [22],

[25]). Since warped product have proven important in global Riemannian



geometry, it is thus not surprising that the equivalent Lorentzian concept
is also quite useful.

Perhaps even moré interestingly on physical grounds than purely Rie-
mannian constructions employing warped products, many of known ex-
act solutions of the Einstein field equations of General Relativity are
warped product metrics of the form Bx ; F', where (B, gg) is a Lorentzian
manifold and (F, gr) is a Riemannian manifold. A most notable class of
examples are the Robertson-Walker space-time of cosmology theory as
well as the Schwarzschild space-time. So, in Loren'czian géometry, the
warped product is also widely used for studying space-times with various
applications (cf. [1], [7], [9], [13], [22], etc.).

In recent work, some authors have considered the problem of scalar
curvature functions on a warped product manifold and obtained partial
results about the existence and nonexistence of a warped metric with
some prescri’t;ed scalar curvature function (cf. [15}, [16,17,18], [19]).

In this paper, using upper solution and lower solution methods, we
consider the solution of some partial differential equations on a warped
product manifold. That is, we express the scalar curvature of a warped
product manifold M = B x ¢ F' in terms of its warping function f and the

scalar curvatures of B and F. Using upper solution and lower solution



methods, we treat the existence of a warping function f such that the
resulting metric admits the prescribed scalar curvature function.

In [18], authors showed that if R(t,z) = R(t) € C®([a,0)) is a
positive function such that

4n
n+1

b2 R(t) 2

158

fOT' t Z tO,

where o > a, a < 2, C and b are positive constants, then equation (3.4)
has a positive solution on [a,oc) and the resulting Lorentzian warped
product metric is a future geodesically complete metric of positive scalar
curvature outside a compact set.

| In this paper, we extend the results of [18]. That is, we show that if
R(t,z) = R(t) € C*°([a,0)) is a positive function such that

i C
.2 for t>t,

4
—nBth’ > R(t) >
n+1l i@

n+4+1

where tp > ¢, 0< < 2,0< 8 < ni_‘_l, C and B are positive constants,
then equation (3.4) haé a positive solution on [a,oc) and the resulting
Lorentzian warped product metric is a future geodesically complete met-
ric of positive S(:a.da,r curvature outside a combact set.

This thesis is constituted as follows:

In Section 2, we introduce the basic concepts and some results about

warped product manifolds.



In Section 3, we discuss the method of using warped products to
construct complete warped product metrics on M = B x ¢ N with specific
scalar curvatures when N is a manifold with constant scalar curvature.
It is shown that if the fiber manifold N admits é metric of constant scalar
curvature and if R(t,z) = R(t) € C*([a,o0)) is a positive function such
that
4n C

Bt? > > .= >t
T _R(t)__n+1 to for t>to,

4n

where g > a,0<a<2,0<8< n—i—l, C and B are positive constants,

then M admits a Lorentzian metric with scalar curvature R(t).



2. PRELIMINARIES ON A

WARPED PRODUCT MANIFOLD

First of all, in order to induce a partial differential equation, we
need some definitions of connections, curvatures and some results about

warped product manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields
defined on M, and let F(M) denote the ring of all smooth real-valued

functions on M. A connection V on a smooth manifold M is a function
V:X(M) x X(M) — X(M)

with the properties that

(D1) Vy(X+Y)=Vy X +VyY
(D2) Vivinw(X) = fVy X +hVy X
(D3) Vv(fW) =V ()W + fVyW

for all f,h € F(M) and all X,Y, VW € X(M).

Vv W is called the covariant derivative of W with respect to V for
the connection V. The vector VxY|, = Vx(p)Y at the point p € M

depends only on the connection V, the value X (p) = X, of X at p, and



the values of Y along a smooth curve which passes through p and has
tangent X (p) at p.
In particular, given a semi-Riemannian manifold (M, g), there is a

unique connection V on M such that
[V\W]=VyW —-VyV,

and

X(g(V,\W)) = g(VxV,W) + g(V,Vx W)

for all X,V,W € X(M), where [, ] is the Lie bracket. This connection
V is called the Levi — Civita connection of M, which is characterized

by the Koszul formula ([2], [24]).

Definition 2.2. The curvature R of V is a function which assigns to

each pair X,Y € 3E(M) the f-linear map R(X,Y) : X(M) — X(M)
R(X,Y)Z = VxVyZ - VyVxZ - Vix\%,

for all Z € X(M).

It is well-known that R(X,Y)Z at p depends only upon the values of

X,Y, and Z at p. In a local chart, we denote by RL,-J- the [-th component



of R(5%, 5% ) 5% Le,R(3%, 25 ) 5% = Ye leU 5.7, Which is called

the component of the curvature tensor, and
R, ZF=V;V;Z' - V;V,Z".
If {I‘fj} are Christoffel symbols of V, it follows that

Rgcij = alrgk 0; Flk + Fzm ik~ F]m ik

Definition 2.3. From the curvature tensor R, a nonzero tensor (or its
negative) can be obtained by contraction, which is called the Ricct tensor.

Its components are R;; = Z leJ The Ricci tensor is symmetric and

n .
its contraction S = E R;;g" is called the scalar curvature.
i7j=1

Definition 2.4. Let ¢ : M — N be a smooth mapping. If A € FO(N)

with s > 1, that is, an (0, s) tensor over Ty, (IV), let

(" A)(v1,v2, -+, vs) = A(d(vs), -+, d(vs))

for all v; € T,(M), p € M. Then ¢*(A) is called the pullback of A by ¢.

At each point p in M, ¢*(A) gives an R—multilinear function from

T,(M)* to R, that is, an (0,s) tensor over T,(M). In the special case



if a (0,0) tensor f € F(N), is given the pullback to M is defined to be

¢*(f) = f o ¢ € F(M). Note that ¢*(df) = d(¢" f).

We briefly recall some results on warped product manifolds. Complete
details may be found in [2], or [24]. On a semi-Riemannian product
manifold B x F, let 7 and o be the projections of B x F onto B and F,

respectively, and let f > 0 be a smooth function on B.

Definition 2.5. The warped product manifold M = B xj F' is the

product manifold M = B x F furnished with the metric tensor

g=m*(gp) + (f om)*s*(gr),

where gp and gg are metric tensors of B and F, respectively. In other

words, if v is tangent to M at (p, q), then

9(v,v) = gp(dn(v), dn(v)) + f*(p)gr(do(v), do(v)).

Here B is called the base of Af and F the fiber. We denote the metric
g by ( , ). In view of Remark 2.6 (1) and Lemma 2.7, we may also

denote the metric gg by ( , ).

-10-



Remark 2.6. Some well known elementary properties of the warped
product manifold M = B xy F are as follows;

(1) For each q € F, the map 7|,-1(g)=pxq 15 an isometry onto B.

(2) For each p € B, the map &Iﬂ—l(p)=pxp is a positive homothetic
map onto F' with homothetic factor ﬁ..

(3) For each (p,q) € M, the horizontal leaf B x q and the vertical
fiber p x F are orthogonal at (p, q).

(4) The horizontal leaf 0~1(q) = B x q is a totally geodesic submani-
fold of M and the vertical fiber m*(p) = px F is a totally umbilic
submanifold of M.

(5) If ¢ is an isometry of F, then 1 X ¢ is an isometry of M, and
if ¢ is an isometry of B such that f = fo, then ¥ X 1 is an

isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector
tangent to fibers are called vertical. From now on, we will often use a

natural identification
Tp.)(B x5 F) = Ty, (B x F) = T, B x T,F.

The decomposition of vectors into horizontal and vertical parts plays

a role in our proofs. If X is a vector field on B, we define X at (p,q)

-11-



by setting X (p,q) = (Xp,0,). Then X is m—related to X and o—related
to the zero vector field on F. Similarly, if Y is a vector field on F, Y is

defined by Y (p, q) = (05, Y,).

Lemma 2.7. If h is a smooth function on B, then the gradient of the

lift how of h to M 1is the lift to M of gradient of h on B. -

Proof. See Lemma 7.34 in [24]. u

In view of Lemma 2.7, we simplify the notations by writting h for hon
and grad(h) for grad (hox). For a covariant tensor A on B, its lift A to
M is just its pullback 7*(A) under the projection 7 : M — B. That is,
if Ais a (1, s)—tensor, and if vy, -+ ,v5 € T(p.)M, then A(vy, -+ ,v5) =
A(dm(v1),- -+ ,dn(vs)) € T,(B). Hence if vy is vertical, then 4 = 0 on
B. For example, if f is a smooth function on B, the lift to M of the
Hessian of f is also denoted by HY. This agrees with the Hessian of the
lift fom generally only on horizontal vectors. For detailed computations,
see Lemma 5.1 in [3].

Now we recall the formula for the R.i_cci curvature tensor Ric if the
warped p?oduct manifold M = B x; F. We write Ric? for the pullback

by 7 of the Ricci curvature of B and similarly for RicF.

-12-



Lemma 2.8. On a warped product manifold M = B x; F with n =
dim F > 1, let X,Y be horizontal and V,W vertical.

Then

(1) Rie(X,Y) = RicB(X,Y) - 2HI(X,Y)

(2) Ric(X,V)=0

(3) Ric(V,W) = RicF (V,W) — (V,W)f#,
where f# = éf.{ +(n— I)MM, and Af = trace(H') is the

Laplacian on B.

Proof. See Corollary 7.43 in [24] ]

On the given warped product manifold M = B x; F, we also write
S B for the pullback by 7 of the scalar curvature Sg of B and similarly

for S¥. From now on, we denote grad(f) by V.

Theorem 2.9. IfS is the scalar curvature of M = B X5 F with n =dim
EF>1, then

SF_Af A
(2.1) 5=SB+F—2n——f——n(n—1)—< 2 )

where A is the Laplacian on B.

Proof. For each (p, q) € M = Bx 7 F, let {e;} be an orthonormal basis for

T,B. Then by the natural isomorphism {&; = (e;,0)} is an orthonormal

-13-



set in Tip o) M. We can choose {d;} on T, F such that {;,d;} forms an

orthonormal basis for Tip,yM. Then
1= (d;,d;) = f(p)*(d;,d;) = (f(p)d;, F(p)d;)

which implies that {f(p)d;} forms an orthonormal basis for T, F.

By Lemma 2.8 (1) and (3), for each i and j
Ric(%:, &) = RicP(&,&) - Y ?H’ (&, %),

and

Rie(®, &) = Rie® @, &) — (05, (L + (n - LTI,
Hence, for £, = g(eq, €q)
Q) = ZEaRaa
= ZE Ric(e;, e; +Z€JR1 'i_ d_
SF. A Vf,V
=sB<p,q)+F—zn7f - n(n - LTI,

-14-



3. MAIN RESULTS

Let (N,g) be a Riemannian manifold of dimension n and let f :
[a,00) — R* be smooth function, where a is a positive number. The
Lorentzian warped product of N and [a, 00) with warping function f is

defined to be the product manifold ([a, ) x¢ N, g ) with
(3.1) g =—dt* + f2(t)g

Let R(g) be the scalar curvature of (V, g). Then Theorem 2.9 implies

that the scalar curvature R(¢,z) of g is given by the equation

(32)  R(t2) = 5 ~{R(0)&) +2nf@®)f (&) + n(n — DIf (1)}

f2(t)

for t € [a,00) and z € N (for details, cf. [6] or [12]). If we denote
u(t) =7 (t), t>a,

then equation (3.2) can be changed into

4n

(3:3) n+1

u - R(t,z)u(t) + R(g )(:17)1L(7‘,)1_n—4+_T =0.

In this paper, we assume that the fiber manifold N is noncinpty,
connected and a compact Riemannian n-manifold without boundary.
Then, by Theorem 3.1, Theorem 3.5 and Theorem 3.7 in [12], we have

the following proposition.

-15-



Proposition 3.1. If the scalar curvature of the fiber manifold N is
arbitrary constant, then there exists a nonconstant warping function f(t)
on [a,00) such that the resulting Lorentzian warped product metric on

[a,00) x ¢ N produces positive constant scalar curvature.

However, the results of [12] show that there may exist some obstruc-
tion about the Lorentzian warped product metric with negative or zero
scalar curvature even when the fiber manifold has constant scalar cur-

vature.

Remark 3.2. By Remark 2.58 in [2] and Corollary 5.6 in [25], if (a,b)
is a finite interval and n = 3, then all nonspacelike geodesics are incom-
plete. But on (—o0, +00) there exists a warping function so that all non-
spacelike geodesics are complete. For Theorem 5.5 in [25] implies that all
timelike geodesics are future (resp.past) complete on (=00, +00) X4y N
if and only if f;:oo (ﬁ)% dt = +oo (resp. fﬁ"m (ﬁ;)% dt = +o0) and
Remark 2.58 in [2] implies that all null geodesics are future (resp. past)
complete if and only if ftjw vidt = “+oo(resp. f_t”x vidt = +00) (cf.

Theorem 4.1 and Remark 4.2 in [3]).

We assume that the fiber manifold N of M = [a,00) Xy N has a

positive scalar curvature, where a is a positive number. If we let u(t) =

-16-



t*, where a € (0,1) is a constant, then we have

Rit,z)> -7
n+

By the similar proof like as Theorem 2.4 in [17], we have the following:

Theorem 3.3. If R(g) is positive, then there is no positive solution to

equation (3.8) with

—4n ¢ 1
nr1 1 E otz

R(t) <

where ¢ > 1 and tg > a are constants.

If N ahs a positive scalar curvature, then any smooth function on N
is the scalar curvature of some Riemannian metric. So we can take a
Riemannian metric g on N with scalar curvature R(g) = :—flkz , where

k is a positive constant. Then equation (3.3) becomes

4 " 4
_:_llu (t) + ;_—:—'Ikzu(t)l_%ﬂ — R(t,z)u(t) = 0.

(3.4)

If R(¢,x) is the function of only t-variable, then we have the following

theorem.

Theorem 3.4. Suppose that R(g) = 7;4—_:_‘11»‘2 and R(t,z) = R(t) €

C>([a,00)). Assume that for t > to, there exist an upper solution u (t)

~-17-



and a lower solution u_(t) of equation (8.4) such that 0 < u_(t) <
- u4(t). Then there exists a solution u(t) of equation (3.4) such that for

t>t 0<u_(t) <ult) <uslt).

Proof. . We have only to show that there exist an upper solution % (t)
and a lower solution u_(t) such that for all t € [a,00) @_(t) < @4(¢).
Since R(t) € C*°([a,0)), there exists a positive constant d such that
|R(t)] < 2d? for ¢t € [a,t0]. We assume that u4(t) > 1 for ¢ € [a, to).

Then we have

4n 4
—— ul (t) + -y 1’“ Puy ()17 — R(t)u (t)
4n "
<~ T 1u+(t) + —k2u+(t) + —_—*_—dzu_,_(t)
4n

= [ () + (k2 + d®)us ().

And if we devide the given interval [a,fo] into small intervals {I;}*,,
then for each interval I, we have an upper solution ui(t) by parallel
transporting c)cos(vkZ + d2t) such that ul (t) > 1 for some.constant
c1. That is to say, for each interval I, +1u+(f)” + ;fffk2u+(t)1‘n+r1 -
R(t)u’ (t) < ::1 (u+(t) + (k% + d*)u? (1)) = 0, which means that v}, (¢)
is an upper solution for each interval I;. Then put @4 (t) = u’ (¢) for

t € I; and 4 (t) = uy(t) for t > tp, which is our desired (weak) upper

solution on [a,b) such that @4 (t) > 1 for all ¢ € [a, to].

-18-



Put a_(t) = e~ for t € [a,tp] and some large positive e, which will
be determined later, and 4_(t) = u_(t) for t > to. Then, for t € [a, o],
A1 (8) + A5k (01T 4 R(uo () > A5 (1) — dPu_(t) =

n4_,'_‘1 e (a2 — d?) > 0 for large a. Thus @%_(t) is our desired (weak)

lower solution such that for all ¢ € [a,00) 0 < a_(t) < @4 (t).

Theorem 3.5. Assume that R(t,z) = R(t) € C*®([a,)) is a positive

function such that

in C
t—a- fOT‘ tZto,

(), n+1

where to >a,0<a<2,0<0< C and B are positive constants.

n+1’
Then equation (3.4) has a positive solution on [a,00) and the resulting

Lorentzian warped product metric is a future geodesically complete metric

of positive scalar curvature outside a compact set.

Proof. We let uy = t™ and u_ = t~% | where m and ¢ are positive
numbers. If we take m large enough so that m—5 > 2, then we have,

t > ty for some large to,

4

—u +(t)+—k-2u (BT~ R(t)us(t)
4dn 4dn in  C

< £) 4+ —2 g2y, ()i w — t
e O F R a1 mr®
4n . [m(m—1) k2 C

= ¢ 2 t -
n+ 1 t gt te

<0,

-19-



which is possible for large fixed m since o < 2. And since the exponent

1- ni-i-l is less than 1 and R(t) < :—_&Btﬂ , if we take 0 < § < 1 so that

4
6m>ﬁ,then
idn » ) 4n 4
- Ku_ ()7 — R(t)u_(t

n+1u.(t)+n+1 u_(t) "7 — R(t)u_(1)
47?, ” 477, 4 4n

> t Ku_ ()71 — BtPu_(t

2 -+ k- mer )
dn s —2 2,624 8

= ¢ { W2+ k nl—Bt]>0
1 (6 + 1)t7° 4+ k7t'w >

for large t. Since ¢ > tg > a > 0, we can take the Jower solution

u_(t) = t7% so that 0 < u—(t) < us(t). So by the upper and lower

solution method, we obtain a positive solution u(t) = f (t)%l‘ such that

0 <u_(t) <u(t) <uy(t) . Hence

1
+00 3 +00 (Y2 T 2
/ ( @) ) dt =/ u(t) +12 di
o \1+f(t) to \1+u(t)=
1
4+ —éﬂ—:’— 2 o0
2/ L—-}}— dt_>_l/ t~ T dt = 00
to 14t ntt 2 to

and

+(X3 1 oo 1 oo 3
/ f(t)idt=/ u(t)n_ﬂdtZ/ t A dt = 40
t

t() t() 0

which, by Remark 3.2, implies that the resulting warped product metric

is a future geodesically complete one.

-20-



Theorem 3.6. Assume that R(t,z) = R(t) € C*®([a,)) is a positive

function such that

4n
n+1

¢

Bt? > R(t) > =

for t2>to,

where tg > a, 0 < 8 < n——‘l—_*_l, B and C are positive constants. If C >

n(n — 1), then equation (8.4) has a positive solution on [a,c0) and the
resulting Lorentzian warped metric is a future nonspacelike geodesically

complete metric of positive scalar curvature outside a compact set.

Proof. In case C > n(n — 1), we may take uy = C+t%l , where C is

a positive constant. Then

4n ” 4n. 2 1— A
[ (8) + — R ()T — R(us ()
4n  n-3 [n?2 -1 -4 n+1
<C tz K2C, ™ — cl<o
- +n+1 2 ’: 4 + C+ n =Y

which is possible if we take C to be large enough since (—"ia(ﬁ_—l) -

2tlC, < 0. And we take u_(t) as in the proof of Theorem 3.5. In this

case, we also obtain a positive solution as in Theorem 3.5. Hence

1
+20 —5:25 2 oo
t n+il 1
2/ —— dtz—/ =" dt = 0o
to 14 ¢ 074 2 J4,

-21-



and

+0oo ) +o0 1 400 s
/ flt)zdt = / u(t)"Fidt > / t~ R dt = 400
to to to

which, by Remark 3.2, implies that the resulting warped product metric

is a future nonspacelike geodesically complete one.

Remark 3.7. By Theorem 3.4 and Corollary 3.5 in [15], the result in

Theorem 3.5 is almost sharp as we can get as close to % as possible.

For example, let R(g) = 22-k? and f(t) = tint for t > a. Then we have

n+1
1] 4n k? 2n 1,
- .42 — 1)1 4+ —
R t2 [n-{-l (lnt)2+lnt+n(n 1( +lnt) ’

which converges to "(':—2_1) as t goes to oo.

-22-
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