[UCI]1804: 24011- 200000232676

20065 8H
TR+ 27 3 3

DESIGN of SIP BASED
VIDEOCONFERENCING
APPLICATION BASED ON
UBIQUITOUS MULTIMEDIA
FRAMEW ORK

HEAXER X2EK
FHhBEGELEH

DAS BABITA

DESIGN of SIP BASED
VIDEOCONFERENCING
APPLICATION BASED ON
UBIQUITOUS MULTIMEDIA
FRAMEW ORK

20064 8 H 25 H

HEHEAXER XKBEK
HHEBETLERM

DAS BABITA

DESIGN of SIP BASED
VIDEOCONFERENCING
APPLICATION BASED ON
UBIQUITOUS MULTIMEDIA
FRAMEW ORK

BHEZR B % H

o] X< TEPLBMNEGH o= T

2006 & 4 A H

HEHEAXER KBEK
HHEBETLERM

DAS BABITA

DAS BABITA® HIT-Bf #LS
A dE S

Ak HIMXERK #IHE H & K 7
Z A HIEXBK #E Ww &x #H H

Z A HIEXEBEK & # ¥ R H

2006 # 5 H H

HIEFRRE K2

CONTENTS

AADSEIACE wereesererersssesmressstese st e et ettt ettt ettt a ettt iii
LlSt Of Figures .. iV
LASE OF Tables -+ -sererereesererererssseseseseitsteteseseststes ettt s ettt sees v
I . IntrOdUCtion ... 1
A' OVGrVieW .. 1
B' Motivation .. 4
C' TheSiS Outline ... 4
II Background .. 8
A' UbiQUitOUS Computing .. 8
B' Programming MOdel .. 14
C' Why Java Native Interface? ... 14
IH Design ISSUGS ... 31
A' Java Native Interface .. 32
B' Component Manager .. 3’7
C' Media prOCGSSing Component .. 3’7
D. Packet processing Component ... 3’7
E' COHtrOl and Signaling Component .. 3’7
IV Implementation .. 41
A. Implementation of SIP Video Conferencing Application === 37
B' Component Management Interface .. 3’7

C. Call control and Management Signaling Interface «----seeeeeeeeeeeeen 37

D. Media Stream Processing INterface -, 37
E. Event Handling and Call Processing - e, 37

V. Performanceccoccocoeiiiiinininncccteeet e

AL SIMUALION i

VL CONCIUSION wererererrerersmsmreemmmseeitnteseit ettt st s e eas e senes 50
ROLOTOIICES «#wrerererseresermssaseneseasetesese et et et ese et s st s st s s s st ss e 60
ACKNOWIEAZEIMENT ..o

ABSTRACT

DESIGN of SIP BASED VIDEOCONFERENCING
APPLICATION BASED ON UBIQUITOUS
MULTIMEDIA FRAMEW ORK

Das, Babita
Advisor : Prof. Han, Seung-Jo, Ph.D.
Department of Information & Communications,

Graduate School of Chosun University

SHIHEA ZEIOICIO 32018 JHEel E2l 250 [N HE 2 =82
ClgtolAztel OIZ2H0ICH. Ol =22 sge 2X0AM CIX) s L&t
Ch. &£ DICIHS AlZ=tE Ghs)] flet eIHHOoIA el =g Ael CI8tolA Of
ScAH0IES A== Rlet 220l CHoll XMetotd UCH. ofRFxsE J2d =S8

£ M3ot=S O ZHFCH 0l GtRFEsE &9 WX INI(
) wrapper'S Sol Atdt ZEIDICIH OHS2AH0I&ES O == U
otOdECE. delld AHSoHM C U CHE JHeE SHEHICI2 HSdsS < Olal

sdE M3 AHO 20l 2l, RTP A=, 12l OIUIN Ml 44 A

Inter face

Oledgh &0 26t =SHELZ 0l =22 SIPJt PDALE PCel XSS ?lol
QUL-HIUL OS2 Jiss AL A= BIUL HIHetA S22 01E& 0l

2
0
=
S
b
ol
N

-

=
njo
14
10
=
N

v

v —

HE X0 S 2

Figure

Figure

1:
2:

List of Figures

Java Native Interface Block Diagram

Proposed Framework Architecture

Figure 2.1 Proposed Framework Architecture

Figure
Figure
Figure
Figure
Figure

Figure

3:
4:
5:
6;
7

Layered architecture of SIP videoconference application
SIP Videoconferencing application

Call flow in SIP based video conferencing

Thread Performance

Multithreaded Java application simulation

Thread performance simulation

List of Tables

Table.l. Component management API
Table.2. Call control and Management Signaling API
Table.3. Voice stream processing API
Table.4. Video stream processing API

Table.b. Simulation Execution times

L Introduction

A. Overview

Research in Ubiquitous Computing has arrived at a crossroad: A point of
convergence where a technology proliferated environment meets with the ability
of people to interact with, and make use of, the possibilities that this
technology creates. Advances in the various fields of technology allow us to
create artifacts and environments that provide computing and communication
resources. Nowadays use of mobile devices has exponentially increased, there
will be no surprise in the near future that a single user may own multiple such
mobile devices or information appliances with different sizes, shapes,
functionalities, and capabilities. More and more computing platforms and devices
are developed and coming out to our everyday life. The old problem of adapting
applications to multiple platforms has become even more important with the
large diversity of ubiquitous computing that has emerged within the last couple
of years. Problems occur when the applications become collaborative, especially
when the users are using heterogeneous devices. These devices have different
capabilities in processors, memory, networking, screen sizes, input methods, and
software libraries. We also expect that future users are likely to own many
types of devices. We believe that there is a need for an application framework
that can both assist developers to build multi-platform applications that can run
on heterogeneous devices in an effortless manner.

SIP based videoconferencing application is developed using the proposed
framework and it automatically selects the most appropriate adaptation strategy
at the component level for a target platform. The SIP [1] is a general-purpose
communication protocol supporting interactive session established across the
Internet. It defines a complete process mechanism for establishing a distant
communication session, which 1s independent of the underlying transport

protocol and without dependency on the type of session to be established and

also defines how to establish, maintain and terminate Internet sessions including
multimedia conferences. It supports personal mobility by discovering users and
locating devices, as well as the negotiation among session participants with
different capabilities to determine an agreed communication session and supports
various multi-party conferencing models, ranging from mixing in end systems
to multicast conferences. It seems to be the preferred standard, which provides

us with capabilities to architect applications over ubiquitous platforms.

The main objective of this work is to build a time efficient technique, which
requires less effort to port on any device. The entire framework components are
implemented using C/C++ [2] and are compiled as a library after wrapping
inside a Java Native Interface (JNI) wrapper. JNI [3] is a native programming
interface that allows Java programmers to integrate native code C/C++ into
their Java applications. This paper introduces the Framework elements, explains
the features and capabilities and delineates state-of-the—art design and

implementation of SIP based videoconferencing application.

B. Motivation

A framework is proposed, which is capable of running multimedia applications
on heterogeneous computing and communication devices with different hardware
and software capabilities. Heterogeneous devices are desktop computers,
notebooks, cell phones, or other emerging mobile devices and information
appliances. Currently different applications are needed to be developed for
running on different devices. This is an improvement over device-specific
applications development. However, application developers have to develop
different applications that perform the same function on different types of
devices. This is a waste of developers’ development time. Using this framework,
application developers can develop one application that can run on different

types of devices with effortless manner.

2

The focus of my work is to address the ubiquitous applications development
problem, which takes too much effort for authors to learn different
device—specific languages and tools, and then to implement and maintain a large
number of device-independent applications at design time. In order to solve this
problem, a technique 1is proposed, which assists developers to build
device-independent multi-platform applications at design time using less effort.
SIP based videoconferencing application [4] is developed, which is based on
splitting of an application into components, and it automatically selects the most
appropriate adaptation strategy at the component level for a target platform.
The framework of this multimedia application will be split into signal-control
and audio-visual components. By splitting this application into these two

components multi-plat form application for heterogeneous devices can be built.

The implementation of framework of this application is done using two
portable languages C/C++ as a back end and Java as a front end environment.
C/C++ needs less effort and short time to write codes as they already have
built-in functions, which makes easier for authors to develop applications. Once
the code will be written in C/C++, it will be embedded in Java and will run on
Java platform. For this I chose Java Native Interface, which allows Java code
that runs inside a Java Virtual Machine (VM) to interoperate with applications
and libraries written in other programming languages, such as C, C++, and

assembly.

C. Thesis Organization

The thesis is structured in the following way. In chapter 2 the terms of
Ubiquitous Computing is assessed. Then the concept of programming method is

introduced.

Chapter 3 follows the basic approach that concentrates on issues relevant for
supporting the design issues of framework of ubiquitous multimedia application.
An application model and platform is introduced which has natural distribution

properties built into the architecture.

In chapter 4, issues relevant for supporting the implementation of application
and a new method to ease design and implementation is introduced. A number
of prototypical implementations, following the approach, are presented. Libraries
and templates for the design of hardware, communication, and software are

provided.

The thread performance of this work is shown in chapter 5, where a simple

simulation is written in both languages and the execution time is measured.

In chapter 6 summarizes the contributions made in the thesis, but also
critically assesses the shortcomings and limitations detected in the course of the
research. Furthermore new issues that have been surfacing while working on

the thesis is addressed in the future work section of the chapter.

II. BACKGROUND

A. Ubiquitous Computing

When Mark Weiser coined the phrase "ubiquitous computing” in 1988 he
envisioned computers embedded in walls, in tabletops, and in everyday objects.
In ubiquitous computing, a person might interact with hundreds of computers at
a time, each invisibly embedded in the environment and wirelessly
communicating with each other [Weiser,03]. Weiser introduced the area of
ubiquitous computing (ubicomp) and put forth a vision of people and
environments augmented with computational resources that provide information
and services when and where desired [Weiser, 91]. For the past decade,
ubicomp researchers have attempted this augmentation with the implicit goal of
assisting everyday life and not overwhelming it. Weiser's vision described a
proliferation of devices at varying scales, ranging in size from hand-held
“inch-scale” personal devices to “yard-scale” shared devices. This proliferation
of devices has indeed occurred, with commonly used devices such as hand-held
personal digital assistants (PDAs), digital tablets, laptops, and wall-sized
electronic whiteboards. The development and deployment of necessary

infrastructure to support continuous mobile computation is arriving.

Ubiquitous computing assumes there will be large numbers of ’'invisible’
small computers embedded into the environment and interacting with mobile
users. Users will experience this world through a wide variety of devices, some
they will wear (e.g. medical monitoring systems), some they will carry (e.g.
personal communicators that integrate mobile phones and PDAs), and some that
are implanted in the vehicles they use (e.g. car information systems). This
heterogeneous collection of devices will interact with intelligent sensors and

actuators embedded in our homes, offices, transportation systems to form a

mobile ubiquitous computing environment which aids normal activities related to
work, education, entertainment or healthcare. There is a need for wireless
communication to support mobile interaction but the environment will also
provide access to wired backbone networks connected to the internet.

Although these intelligent communicators will be far more sophisticated than
current mobile phones, they will always have limited storage, processing,
display capabilities and battery power compared to fixed PCs. There is thus a
need to adapt information and applications so that they are compatible with the
limited capabilities of the devices but also to provide information or adapt
services that are relevant to the current context of the user. Sensors in the
environment, possibly in collaboration with personal devices, would determine
user’'s current activity — driving a car, walking down a street, in the cinema, in
a meeting, running for a bus, about to watch television. The ubiquitous
computing environment would thus support users in common day-to-day
activities by adjusting lights, switching on the television for favorite
programmes, record the programme when unable to watch it, monitor health
and alert emergency services in case of problems, warn drivers about potential
component failures in their car etc.

Approaches in Computer Science in the last 50 years can be related to the
quantitative relationship between computers and humans. At the very beginning
many people shared a single computer, then the idea that each user has a
single computer significantly changed the way people used computer systems.
In the last decade this changed further into a many-to—one relationship, where
one user has many computers, or at least devices with processing capabilities
available to, and surrounding a single user. This recently started era is referred
to as Ubiquitous Computing; however, Ubiquitous Computing raises many issues
beyond the quantitative relationship between computer and user [Weiser, 91],

[Weiser, 96]

A major challenge in Ubiquitous Computing is physical integration and

embedding of computing and communication technology into environments and
artifacts. Such developments lead to ‘augmented artifacts’, raising issues beyond
the physical integration. Embedding technology into everyday artifacts also
inevitably implies embedding the “computer” into tasks done by the user. This

leads to new research challenges and further questions.

B. Programming Model

Embedded devices, like PDA or mobile phones have known a great
development in the last few years. In the same time, their users required better
performances and richer applications. Today, such devices are mainly used to
manage calendars or emails, but adding multimedia data and high speed
wireless networks would allow new applications to appear: games, music and
video content playing.

Making them work in an efficient way is still a hot research topic. As
embedded devices have limited resources (processor, memory, energy), a lot of
work remains in several areas: hardware, operating systems and applications.

An execution environment for embedded architecture should:

e Make the concurrent execution of several applications efficient and robust;
e Minimize the energy consumption of the devices;
e Allow the execution of multimedia applications, with real-time constraints;
e Allow applications to be downloaded dynamically;

e Provide an open architecture, as portable as possible.

Meeting such requirements, a Java environment appears to be the best
solution. First, it allows the dynamic load of new applications. Then, Java
bytecodes are not architecture specific: applications can be ported to many
platforms without effort. Java also offers a great stability and security because

its memory 1is automatically managed. If the environment has a garbage

7

collector, no pointers are used and no direct memory accesses are possible. This
allows a regular user to download and run any Java program, while being
almost sure it will not mess—up the whole memory. Finally, Java appears to be
a popular language and an ever growing number of applications are developed,
particularly for embedded devices. Nevertheless, the main problem with the use
of Java 1is its execution performance. A virtual machine must always be
present, introducing more operations and thus leading to a performance loss and
bigger resources consumption. Thus, even if more and more mobile devices are
“Java Compliant” and can execute a program written in Java, this does not
mean that they can do it efficiently. Indeed, today there are no efficient couples
of hardware and software solutions. A lot of enhancements can still be made, in

term of performances, energy consumption and platform flexibility.

The implementation of framework of our application is done using two
portable languages C/C++ as a back end and Java as a front end environment.
C/C++ needs less effort and short time to write codes as they already have
built-in functions, which makes easier for authors to develop applications. Once
the code will be written in C/C++, it will be embedded in Java and will run on
Java platform. For this we chose Java Native Interface, which allows Java code
that runs inside a Java Virtual Machine (VM) to interoperate with applications
and libraries written in other programming languages, such as C, C++, and

assembly.

C. Why Java Native Interface?

While we can write applications entirely in Java, there are situations where
Java alone does not meet the needs of your application. Programmers use the
JNI to write Java native methods to handle those situations when an application
cannot be written entirely in Java. The Java Native Interface (JNI) is a native

programming interface. It allows Java code that runs inside a Java Virtual

8

Machine (VM) to interoperate with applications and libraries written in other
programming languages, such as C, C++, and assembly. The most important
benefit of the JNI is that it imposes no restrictions on the implementation of
the underlying Java VM. Therefore, Java VM vendors can add the support for
the JNI without affecting other parts of the VM. Programmers can write one
version of native application or library and expect it to work with all Java VMs

supporting the JNIL

The following examples illustrate when we may need to use Java native

methods:

e The standard Java class library may not support the platform-dependent
features needed by the application.

e You may already have a library written in another language, and wish to
make it accessible to Java code through the JNI.

e You may want to implement a small portion of time-—critical code in a

lower-level language such as assembly.

By programming through the JNI, we can use native methods to:

e create, inspect, and update Java objects (including arrays and strings)

call Java methods

catch and throw exceptions

load classes and obtain class information

e perform runtime type checking

We can also use the JNI with the Invocation API to enable an arbitrary
native application to load and access the Java VM. This allows programmers to
easily make their existing applications Java—enabled without having to link with

the VM source code.

Application
C Side Java Side
Exceptions
Functions J
N Classes
Libraries I
Wil

Fig.1. Java Native Interface Block Diagram

The JNI specification is formed following a series of discussions among Java
Soft and the licenses on the design of a standard native method interface. In
particular, all major Java VM vendors played an active role and made extensive
contributions to the JNI design.

Using Java to interoperate with natively compiled code usually removes the
portability benefits Java brings to the table. However, there are cases when
doing so 1is acceptable, even required, such as when interfacing with legacy
libraries, interfacing with hardware or the operating system, or even just
improving performance. Writing to the JNI standard does at least guarantee that

the native code will work with any JVM implementation.

‘IO

3. DESIGN ISSUES

The framework is a set of media and control management interfaces and
utilities that may be used in multimedia communications applications. The user
develops custom applications using the framework application-programming
interface (API) [7] to control and manage the system software components. The

framework includes:

Java Native Interface
Component Manager
Media processing component

Packet processing component

o~ W

Control and signaling component

User Applications

Component Manager & JNI

Media Packet

Processing | Processing| Signaling 2g Network
aVlanageme
]

omponentjComponent; Componen

Fig.2. Proposed Framew ork Architecture

11

Ubiquitous Multimedia Applications

Audio-visual Signal-control

Java Native Interface

Media Processing Packet Processing Control and Signaling
Component Component Component

= %

Proposed Framework

Fig.2.1 Proposed Framew ork Architecture

The architecture of the framework is outlined in the following sections and

the components are described in the sections that follow.

12

A. Java Native Interface (JNI)

The Java Native Interface [3] is a powerful framework for seamless
integration between Java and other programming languages (called “native
languages” in the JNI terminology). The JNI is useful when existing libraries
need to be integrated into Java code, or when portions of the code are
implemented in other languages for improved performance. A common case of
using the JNI is when a system architect wants to benefit from both worlds;
implementing communication protocols in Java and computationally expensive
algorithmic parts in C++ (the latter are usually compiled into a dynamic library,
which is then invoked from the Java code). The JNI renders native applications
with much of the functionality of Java, allowing them to call Java methods,
access and modify Java variables, manipulate Java exceptions, ensure
thread-safety through Java thread synchronization mechanisms, and ultimately

to directly invoke the Java Virtual Machine.

The Java Native Interface is extremely flexible, allowing Java methods to
invoke native methods and vice versa, as well as allowing native functions to
manipulate Java objects. However, this flexibility comes at the expense of extra
effort for the native language programmer, who has to explicitly specify how to

connect to various Java objects.

The main objective of using JNI i1s to allow the developers to build a
device—-independent application. This layer provides interface to Java
programmers to make calls to native code and use our C/C++ based designed
components as shown in above figurel. The most important benefit of the JNI
is that it imposes no restrictions on the implementation of the underlying Java
Virtual Machine (VM). Therefore, Java VM vendors can add the support for the
JNI without affecting other parts of the VM. Programmers can Wwrite one

version of native application or library and expect it to work with all Java VMs

13

supporting the JNI.

B. Component Manager

The Component Manager as the name suggests manages all the components
in the Framework. It instantiates the various components to be added in the
system as directed by the application developer, provides an interface to the
application to interact with system components, activates and deactivates the
components and allows the runtime addition and removal of the components

from the system.

C. Media Processing Component

Media-processing, such as signal processing, 2D- and 3D-graphics rendering,
and 1image and audio compression and decompression are the dominant
workloads in many systems today. Media applications demand large amounts of
absolute performance and high performance densities (performance per unit area
and per unit power). Therefore, media processing applications often use special

purpose fixed-function hardware.

The content creation system of multimedia streaming services may have one
or more media sources (e.g., a camera and a microphone). In order to compose
a multimedia clip consisting of different media types, the raw data captured
from the sources are edited. It should be noted that multimedia content could
also be synthetically created without a natural media source. In order to
facilitate attractive multimedia retrieval service over commonly available
transport channels such as low-bit-rate modem connections, the media clips are
also compressed in the editing phase before they are handed to a server.
Typically, several clients can access the server over a determined network.

Then the client decompresses and plays the clip. In the playback phase, the

14

client utilizes one or more output devices, most often the screen and the
loudspeaker of the client. By streaming, a media server opens a connection to
the client terminal and begins to stream the media to the client at
approximately the playout rate. During media receiving, the client plays the
media with a small delay or no delay at all. This technique not only frees up
precious terminal memory, but also allows for media to be sent live to clients

as the media event happens.

D. Packet Processing Component

Realtime transport protocol (RTP) [8] is an IP-based protocol providing
support for the transport of real-time data such as video and audio streams.
The services provided by RTP include time reconstruction, loss detection,
security and content identification. RTP is primarily designed for multicast of
real-time data, but it can be also used in unicast. It can be used for one-way
transport such as video—-on—-demand as well as interactive services such as
Internet telephony. RTP provides the basic functionality needed for carrying
real-time data over packet networks. It does not offer mechanisms for reliable
data delivery or protocol-specific flow and congestion controls such as the ones
offered by TCP. RTP relies on other protocol layers, capable of managing and
controlling network resources, to provide on-time delivery and the framing
service. The services provided by RTP include payload-type identification,
sequence numbering, time stamping and delivery monitoring. RTP typically runs

on top of user datagram protocol (UDP).

RTP has been standardized by IETF (Internet Engineering Task Force) as
RFC (1889). It provides end-to—-end network delivery services for real-time
media. This is achieved primarily through the RTP [5] packet header, which is
appended to the data as it descends through the protocol stack. This header has

a variety of fields which the sender or receiver can use to manipulate the data

15

stream. For example, a 32-bit timestamp field can be wused to discard
time-delayed packets at the receiver, or synchronizes two incoming streams.
This additional information is necessary for time based media to be presented
correctly and serves to illustrate why RTP is necessary on top of UDP. While
RTP does not provide any mechanism to ensure timely delivery or provide
other QoS guarantees, it is augmented by a control protocol, called Real-time
Transport Control Protocol (RTCP), which monitors the quality of the data
distribution. This protocol can also be used to provide information about the
source, such as its geographical location, as well as providing general signaling
functions such as notifying the receiver that the end of the data stream has

been reached.

E. Control and Management Signaling Component

Session Initiation Protocol (SIP) seems to be the preferred standard, which
provides us with capabilities to architect applications over ubiquitous platforms.
This paper introduces the Framework elements, explains the features and
capabilities and delineates state-of-the-art design and implementation of SIP

based video conferencing system.

The deployment of SIP (Session Initiation Protocol) in enterprise networks
gives users significantly greater flexibility to use and control commonly used
communication technologies. An interesting feature of SIP is the ability to
separate the control and media portions of a connection. In fact, they may take
place at different devices. Thus SIP allows a level of indirection and late
binding of the media device. This is a powerful concept and has the potential
to do for communications what pointers did for programming by separating data
from addresses and virtual memory did for large programs by creating virtual

addresses to overcome limits of real addresses.

16

Since the ability to exercise control places very few requirements on end
devices, it is possible to make wearable devices with a TCP/IP stack part of
the SIP infrastructure. In this paper we argue that wearable computers are
ideally suited for setting up sessions because of their availability and ability to
get the user’s attention in varied situations. Wearable computers also contain
information that can be used to personalize and improve the user experience.
Similarly stationary devices are better suited to play the media because they
have fewer constraints in terms of power, size, networking, etc. The above
balance is unlikely to change because it is based on human behavior patterns

and basic physics.

17

IV. IMPLEMENTATION

A. Implementation of SIP Video Conferencing Application

The general architecture of the Framework deployed in SIP video
conferencing application is shown in fig 2. It consists of a pre—compiled library
containing SIP signaling stack, RTP stack and media processing components for
voice and video handling. The framework is designed to allow the configuration
of the existing components and a seamless integration of new components in
the framework. The design ensures that no changes are required in media
management component when the application is mapped to different hardware

architectures and operating systems.

Video Conference User Application
Java
Application Class
Component Manager
Native
Me diaprocessing Packet Processing SIP signaling
Component C omponent Component
Framework

Fig.3. Layered architecture of SIP videoconference application

It consists of a number of components and a manager that registers and

manages them and aims at providing the necessary details to develop a SIP

18

based Videoconferencing application. The User Application is implemented by
extending the application class provided by the framework. It provides the user
with a communication interface to the underlying library through an event
handler. The underlying components can send events/ messages to this Java
application class by calling certain call back functions. The base class also
provides default functionality for handling these status and error notifications.
The wuser application is developed as an extension of this class and the
developer can over write the default functionality. The wuser application

communicates with the system components through the component manager

using JNL
X SIP Phone : : : [ZI[=10¢]
o ——
STPPhvite
—— = =
File Preferences Speed Dial Configure Help I \
Available Lines
| IAne [loLE
[Linez JIDLE

Lines | [IDLE
[res JFOLE

| accept |[Reject |[Hoia || Transter|

Address

l chosun@220.67.222.46 '!
2] 3]C3]

(E4] 58 H o) Video Pannel
vl | el le

& @&

retsions (2] (=0
/

Bar
I I

Fig.4.SIP Videoconferencing Application
This section describes the API provided by library. The API [1] is divided into

subsections that deal with management of components (like addition, deletion,

configuration etc.), call control management and media control interfaces.

19

B. Component Management Interface

The Component Manager functions as a registry of existing components. It
also provides the capability of configuring all underlying components under the
command of the User Application. It also provides the interface for
communicating to all the components in the system included as a compiled
image or added at run time. The derived User Application class has access to
all the API functions of the Component Manager supported in native interface.
Component Manager has a list of all the components in the system
corresponding to their IDs. These IDs are assigned to the components at the
time of their addition (compile/run time). Any further reference to an added
component in the system is therefore through this identifier.

Each component implements this function to complete any initialization tasks
like thread creation etc. This is done by the application by calling the
ActivateComponents function of the Component Manager which in turn calls the
StartComponent() function of the components present in the system. The
Component Manager passes the functions to the corresponding component only

if it is in the active state.

InstantiateComponents()

ActivateComponents()

ActivateComponents(final int componentld)

DeactivateComponents()

DeactivateComponents(final int componentld)

GetComponentStatus(final int componentld,param pStatus)

GetComponentConfiguration(final int componentld,Param pConfiguration)

SetComponentConfiguration(final int componentld,Param pConfiguration)

Table.1. Component management API

20

C. Call control and Management Signaling Interface

Call Control and Management Protocols fall into this category. Examples are
SIP, H323, MGCP etc. This component has a listener thread that receives
incoming signals from the Transport, parses the messages according to the
specific protocol and then intimates the application of the action that need to be
taken. The signaling gateway comprises of a number of Signaling Terminations.
An incoming new request is first directed to the application that decides the

termination to route this request to.

AddSignaling Termination (int terminationld, Param pConfig)

RemoveSignaling Termination (int terminationld)

ApplyEventToSignaling (int terminationld, Enum event,Param 1Param)

DisconnectSignaling Termination (int terminationld)

SetCofiguration (Param pConfig)

GetConfiguration(Param pConfig)

GetStatus(Param pStatus)

Table.2. Call control and Management Signaling API

D. Media Stream Processing Interface

The media processing components are Voice Controller and Video Controller.
Voice Controller handles the different Audio Codecs on the system. It has a
record of all the audio codecs that are present in the system along with their
parameters like the input stream size on which they operate, the output stream
size that they generate, state sizes if any is required etc. It also keeps a record
of the different channels that have been created by the application and their

current state (e.g. active or suspended). The I/O data buffers on which the

2‘]

tasks operate are provided by the application.

LocateVoiceMedia(Enum enumVoice,java.lang.String filename);

getVoiceConrtol(Enum voiceData,Param VoicObj);

setVoiceControl(Enum voiceData,Param VoiceObj);

Table.3. Voice stream processing API

Video Controller handles the different Video Codecs on the system. It has a
record of all the video codecs that are present in the system along with their
parameters like the input stream size on which they operate, the output stream
size that they generate, state sizes if any is required etc. It also keeps a record
of the different channels that have been created by the application and their

current state (e.g. active or suspended).

LocateVideoMedia(Enum enumVideo,java.lang.String filename)

GetMediaStream(java.lang.string [] videostream,param videoObj)

getVideoControl(Enum videoEnum,param Videoparam)

SetVideoControl(Enum videoEnum,param Videoparam)

Table.4. Video stream processing API

E. Event Handling and Call Processing

The real power of the framework lies in its extendibility. This section talks
of the extended functionality of the user Application such as Handling of events
that are detected in the Application as well as configuration of most of the

components through SNMP.

22

The Application class pvroides a function HandleEvents, which is called
whenever a component wants to request some information or signal an event.
This is a virtual function and can be overloaded by the derived class. A simple

implementation is shown below:

errCode HandleEvents(
final int sourceld,
final Enum code,
final Param paramObj)
{
switch (code)
{
default:

super.HandleEvents(sourceld, code, paramObj);

The event code allows the user to write custom handlers. If there is no event
handler attached with a specific code, the default case calls the HandleEvents
method of the base class. Following diagram shows the flow of in SIP bases
video conferencing application which has been developed on top the

above-described

23

Liblmpl

Caller
USER GUI

-
>

o

L

configure Local
Address()

Dial()

-t
-+

get Call Back
(message,
lineNumber)

A

Callee gets RING
from Caller

Session
established

Liblrmpl

A

Initialize()

configure Local
Address()

get Call Back
(message,
lineNumber)

Y

getCall Back
(message,
lineNumber)

Y

Accept()

getCall Back
(message,
lineNumber)

Callee
User GUI

Fig.b. Call flow in SIP based videoconferencing

This provides the default functionality

following code provides examples of some event handlers, which a derived class

should handle:

The constructor

counterparts in the destructor. The following code shows a sample code for the

destructor.

operations

in the previous

24

section

should have their

for a particular event code.

ShutDown ()
{//The signaling terminations are unregsitered and removed from the //signaling
gateways. Anyother memory allocated and threads created in //the sample
application are destroyed here.
HashMap termsigMap = new hashMap ();
Iterator iter = set.iterator();
while (iter.hasNext())
{
INT32 termld,compld;
termId=termsigMap.get(‘termId’);
termConfig=term,sigMap.get(‘config’);
compld=config.compManagerConfig.termSigMap.get(‘gatewayld’);
pCompManager.RemoveSignaling Termination(compld,termld,termConfig);
}//All the components in the stack are then stopped and deactivated.
PCompManager.DeactivateComponents();

PCompManager.RemoveComponents();

}

Sample Application then deactivates all the components present in the system.
This is Dbeing done here by calling Component Manager's function
deactivatecomponents() which in turn calls the StopComponent() function of
all the components its handling. In the implementation of these functions, the
functions deallocate any memory that was previously allocated, stop and
terminate any threads that were created at start up and do any other resource
release that was used by them. Remove component then deletes their instances

from the system.

25

V. PERFORMANCE

To compare the performance of the proposed framework on following different
platforms and different devices with different capabilities a simple simulation
was written in both languages Java and C++ versions of the library in order to
show the thread performance of these different platforms. The table below
shows the different platform used and the device capabilities on which these

platforms are deployed.

Platform Average Execution time over 5 runs
RTLinux on intel 9341 ms
Windows on Intel 1538 ms
Windows CE (mobile)PDA 12910 ms
Solaris Stand-alone Java 11214 ms
Solaris C++ 1568 ms

Table.5. Simulation Execution times

A. Simulation

Many modern operating systems directly support both time-sliced and
multiprocessor threading with a process scheduler. The operating system kernel
allows programmers to manipulate threads via the system call interface. Some
implementations are called kernel threads, whereas lightweight processes is a
specific type of kernel threads that share the same states and informations.
Each simulation object runs in its own thread, so the performance of the
underlying threading system 1s important for large simulations. The Java
runtime system uses the underlying operating system for thread support or its

own software emulation if the OS does not support threads.

26

Normalized Speedup

Total Time | Number of threads (seconds)

—
=

Thread Performance -a—

i0 100 1000
MNumier of threads

Fig.6. Thread Performance

oo
T

thread migrat'ir:rn ——
initial placement —8—

Fig.7. Multithreaded Java application simulation

27

Throughput

Initial I;3\I.emement — a8
Thread migration ——7

o

8 16

NMumber of nodes

Fig.8. Thread performance simulation

28

VI CONCLUSION

We have developed and implemented a framework, which is based on two
components, signal-control component and audio-visual component. Splitting of
multimedia application into these two components provides an edge to build
multi-plat form application for heterogeneous devices. This framework enables
advanced developers to design multimedia applications in Java through a Java
Native Interface (JNI) wrapper and seamlessly extends interface to support
pre—compiled library of signaling stack, RTP stack and media processing
components for voice and video handling developed in C and C++. The
framework 1s designed to allow the configuration of the existing components
and a seamless integration of new components in the framework. The design
ensures that no changes are required in media management component when
the application is mapped to different hardware architectures and operating
systems. Based on this scheme, we developed SIP based videoconferencing
application that uses callbacks to manage audio-visual for running on PC as

well as on PDA. This framework can save significant time for developers.

Usually with each prototype finished, each system evaluated, and each paper
published a number of new issues that pose interesting challenges appear. In
future this framework can be used for migration system that facilitates
transparent migration from one server to another during their life time. To
assist further development of the augmented scenario—based design process, we
need to take it through the rigors of developing an actual working system
prototype. This will provide first hand experience of its adequacy as an aid to
the design process. The evaluation challenge of ubiquitous computing systems
still persists, mainly because the effect of actual use situations is very difficult

to recreate in lab settings.

29

REFERENCES

[1] S Berger, A Acharya, and C Narayanaswami, “Unleashing the Power of
Wearable Devices in a SIP Infrastructure”, 3rd IEEE International Conference on
Pervasive Computing and Communications.

[2] Stroustrup B, "The C++ Programming Language”, 3rd edition, Addison
Wesley, 1990.

[3] Sheng Liang, “The Java Native Interface: Programmer’s Guide and
Specification”

[4] S Zhou and J Cheung, “A Simple Platform Independent Video/Voice over IP
Application”, Software Engineering and Applications— SEA, 2004.

[5] Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport
protocol for real-time applications”, IETF RFC 1889, January 1996.

[6]] Bates, D Halls, and J Bacon, "A migration framework for ubiquitous
computing applied in mobile applications”, Mobile Networks and Applications,
1996.

[7] Douglas Kramer, Bill Joy, and David Spenhoff, “The Java Platform”-A
White Paper. JavaSoft White Paper, ftp://ftp.javasoft.com/docs/JavaPlatform.ps,
May 1996.

[8] C Wong, H Chu, and M Katagiri, "A single authoring technique for building
device Independent presentations”, W3C Workshop on Device Independent
Authoring, 2002.

[9] Albrecht Schmidt, “Ubiquitous Computing - Computing in Context: a thesis
on Context-Awareness, Context Aware Computing, and Ubiquitous Computing”,
November, 2002.

[10]JArnaud Guiton and Michel Banatre, “An experimental study of Java objects
behavior for mobile architectures”, January, 2005.

[11] Michael David Pinkerton, “Ubiquitous Computing: Extending access to
mobile data”, Masters Thesis, Georgia Institute of Technology, June, 1997.

[12] Gregory D. Abowd and Elizabeth D. Mynatt, “Charting Past, Present, and

30

Future Research in Ubiquitous Computing”, ACM Transactions on
Computer—-Human Interaction, Vol. 7, No. 1, March 2000.

[13] Frank Siegemund, “Cooperating Smart Everyday Objects - Exploiting.
Heterogeneity and Pervasiveness in Smart Environments”, Phd. Thesis, ETH
Zurich, 2004.

[14] Song, H., Chu, H., Kurakake, and S. Browser, "Session Preservation and
Migration”. In Poster Session of WWW 2002, Hawai, USA. 7-11. May, 2002.
[15] YI CUI, KLARA NAHRSTEDT, and DONGYAN XU, “Seamless
User-Level Handoff in Ubiquitous Multimedia Service Delivery”. Multimedia
Tools and Applications, Springer Netherlands, February 2004.

[16] Candy Wong, Hao-hua Chu, and Masaji Katagiri, “W3C Workshop on
Device Independent Authoring Techniques”. DoCoMo Communications
Laboratories USA, Inc. August 14, 2002

[17] Manfred Glesner, Thomas Hollstein, Tudor Murgan, “System Design
Challenges in Ubiquitous Computing Environments”, IEEE, 2004.

[18] Gregory D. Abowd. “Software Design Issues for Ubiquitous Computing”,
College of Computing &. Graphics, Visualization and Usability Center.

[19] Arup Acharya, Stefan Berger, and Chandra Narayanaswami, “Unleashing
the Power of Wearable Devices in a SIP Infrastructure”, Proceedings of the 3rd
IEEE Int'l Conf. on Pervasive Computing and Communications (PerCom 2005).
[20] CS Perkins and J. Crowcroft, “Notes on the use of RTP for shared
workspace applications”, ACM Computer Communication Review, Volume 30,
Number 2, April 2000.

[21] Weiser, M, “The Computer for the 2lst Century”, Scientific American,
265(3):94-104, September 1991. [Weiser, 91].

[22] Weiser, M, “Some Computer Science Issues in Ubiquitous Computing”,
Communications of the ACM, 36(7):75-84, 1993. [Weiser, 93].

[23] Weiser, M, "Ubiquiotus Computing Homepage”,
http://www.ubiqg.com/hypertext/weiser/UbiHome.html, March 1996. [Weiser, 96].

3‘]

[24] Tatsuo Nakajima, Kaori Fujinami, Eiji Tokunaga, and Hiroo Ishikawa,
"Middleware Design Issues For Ubiquiotus Computing” Proceedings of the 3rd
international conference on Mobile and ubiquitous multimedia, 2004

[25] Eila Niemela and Juhani Latvakoski, "Survey of requirements and solutions
for ubiquitous software”, Proceedings MUM '04 Citation.

[26] Christoph Endres, Andreas Butz, and Asa MacWilliams, "A survey of
software infrastructures and frameworks for ubiquitous computing”, Mobile
Information Systems, 2005.

[27] Zhexuan Song, Ryusuke Masuoka, Jonathan Agre, and Yannis Labrou,
"Task computing for ubiquitous multimedia services”, International conference on
Mobile and ubiquitous multimedia, 2004.

[28] A Ranganathan, Robert E. McGrath, Roy H. Campbell, and M. Dennis
Mickunas, "Ontologies in a Pervasive Computing Environment”. Proceedings of
the Workshop on Ontologies and Distributed , 2003.

[29] Stefan Berger, Henning Schulzrinne, Stylianos Sidiroglou, and Xiaotao Wu,
"Ubiquitous computing using SIP”, Proceedings of the 13th international
workshop on Network, 2003.

[30] Gregory D. Abowd, "Ubiquitous Computing Research Themes and Open

Issues from an Applications Perspective”.

32

	Ⅰ. Introduction
	A. Overview
	B. Motivation
	C. Thesis Outline

	II. Background
	A. Ubiquitous Computing
	B. Programming Model
	C. Why Java Native Interface?

	Ⅲ. Design Issues
	A. Java Native Interface
	B. Component Manager
	C. Media processing component
	D. Packet processing component
	E. Control and signaling component

	IV. Implementation
	A. Implementation of SIP Video Conferencing Application
	B. Component Management Interface
	C. Call control and Management Signaling Interface
	D. Media Stream Processing Interface
	E. Event Handling and Call Processing

	V. Performance
	A. Simulation

	VI. Conclusion
	References

