[UCI] 1804: 24011- 200000232654

2006 08

SFAF

0

Fl =

[0

1672 AE2Q HOIKE 28
oM AAHEST AlAE

1632 AEHQ HOIKE 2
oM AAHEST AlAE

Wireless Sensor Network System

for 16 Channels Strain Gauge

2006 08E 25¢

5t

=

=

Il

A Ol X

2|
28 MAHHERD AlAH

<H

-t

KO

<
3

100
KK

=

O
ild
H

K0
<
oF
ol
ol
ol
El
ol

Ild
H

20069

ofJ
ol

E

ol
0

g
K

MO AH =SS

o0
Kk

oJ

oln
OH
Hl

OF
ol

-l

ol

o]
oll
040

oK

<
3

E
ol

)
K

P

KO
or
ok

<
3

E
ol
7
KA
ofJ

<
E

E
ol
7
KA
ofJ

S+
3

E
ol

il

-t

10
oF

S+
3

E
ol

il

-t

10
oH

ol
=

=

2006

ofJ
ol

E

ol
0

g
K

Contents

Abstract

Chapter 1 INtroduction srereeesemeereereereemeninn

1.1 BaCKQrOUNG «+reeeeesserremmmeseeemie ettt
1.2 Technology Trend «reeooesesrerrmme et
1.3 PUrpoSe Of Project «ooeeerrerrmmereimneinne
131 NetWOfk COﬂtrOl and ROUting
1.3.2 Collaborative Signal and Information Processing
1.3.3 Tasking and QUErying ««««eeeeereeremrenemmemmemnemneunannen

Chapter 2 Hardware Architecture «:oeseeeeeeeeesees

D 1 SENSOr MOQU| @ +vvvrrerrrrrrenmeeeneennnaeineeereienineeanaes
2 1.1 Beam Load Gl | «wrererrrrrermenmenmenneaneneneiienenenenns
2.1.2 Instrumentation AMPlifier «oooeeeerereemmmmmmeienin.
2.1.3 Operational AMplifier «ooeererremremmmemem,
D 1.4 AJD CONVET LEE +rrrreerrerrmmerenmmmrneeeniiteeeiitiee e

2 D ProcesSSOr MOQU|E ««-rrerrererremmmemmeeiereetine e,

2 3 RAATO MOCAUIE #+rvrerenrreneernseeneeineeereeeiseeanan

2.4 TCP/IP Network Module ««-eeeeeeeeremmmmiiannini.n.

Chapter 3 Software Architecture «:eeeeeeeeeeeee

3.2.1 Window Service Communication Architecture -

10
17
19
31
39
44

50

50
52
52

3‘2‘2 Sel’V|CeS Snap—ln ---
3.2.3 The Windows Service Application Architecture -
3.3 User |nterface oo oee s ee see sesseesee see seesesscecee seeseenes

3‘3‘1 User Datagram Protocol
3‘3‘2 ODBC ...
3.3.3 User Interface Implementation ««-eeererereeeeeeeneens

Chapter 11 CO”C'USiCﬁ] et eeeeeseeseseteasasasscesaesnnnans

[%efe}reru:es St eeeseecescessesaesees cescssass s st 0 saenan

66
81
81
88
92

97

99

List of Figures

—_

. LC4103 Beam Load Cell Strain Gauge ::-eeereereerrereeeeeeees 9
Anplification Circuit Layout «e-eeeereeeeeemmeemmemeinin... 11
Three Op AMP A DESiQN ++reerrrrsrsrseresssrmeaeniiiieeiitain 12
ADB20 CONNECT 0N Diagram ««-ewwreesesrersrernssenemsmus e, 13
Three OP Amp |A Designs vs. ADB2Q «w:eeeeeveereemreneeneenee 14
AD620 Total Voltage Noise vs. Source Resistance - 15
Differential Shield Driver c---ceeeeeemmreemseemmmeeinaeneennes 16
Common-Mode Shield Driver «c-ereeeseeermeermneenmeeemnmeenenenen 17
HA17741 Pin Arrangement «««eeeeeseeeeeesmmeememmonnenniiinnn 18
CHAT7741 CirCUIt SITUCTUIE rrrrrvrerrrrrnreenmnnearnineneeannans 18
Figure 11. A/D Converter Circuit Layout «we-eeerrermrmemereeeeenne. 19

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

© O N o o0 b~ W M

Figure

(@]

Figure

Figure 12. AD1674 Functional Block Diagram, Pin Configuration --- 21
Figure 13. AD1674 Equivalent Internal Logic Circuitry -reeeeeeeeeeees 23
Figure 14. Regulator Circuit Layout s=-ereeereesresmemmmnmanni 24
Figure 15. Total Circuit Layout «ooreeesessresmmrmeeniiiiee 25
Figure 16. A/D Converter Top LayQut srresresserrrrrssrsmmsmmmiinisniines DB
Figure 17. A/D Converter Bottom LayQut «e-sseeeeeeeessmeemmemsinniiennn... 27
Figure 18. Controller Top Layout «ereeeeeessssrseresmmmeemmniiineiiin 28
Figure 19. Controller Bottom LayQut swre-ressrrerersrrsmmmmmmiiniesnnins 2Q
Figure 20. Mainboard LayOUt B 80
Figure 21.PICBASIC Programming Environment «eceoeeeeeseeevereeeeeeeenee 31
Figure 22. PBM—R5 PinOUt «eereeessrreeessssrrssmsunnirriiit ittt 33
Figure 23. PICBASIC Studio Programming Interface ---eeoeeeeeeeeeeeeee 35
Figure 24. SD202 Components and ASSemply «eeeoeeevereeeeemvereeeeeeeeeee 41
Figure 25. Device Setting Menu «««-ereoeeesmsrrmeremmtamiiiiitiieins 42
Figure 26. DS100 Connectors and Controlg «eeeeeeeeereeseeerereeeeeeeeeee 44
Figure 27. DS Setting Dialog --ewweeeererrrsmmsnserenimitanniiiiieiie e 47

1ii

Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Figure 40
Figure 41
Figure 42

Figure 43.

Figure 44
Figure 45

General Tap for Windows Installer Service «-seoeeereeeees

Log On Tab for the Distributed Link Tracking Service

UDP Message Encapsu|ation
The StI’UC’[UI’e Of the UDP Header

. Saving Retrieved Data into Database :«::orrereereeeeeeeeenes
1 Channel Sensor Module esseecsesesetetestaeaeesesseecatare e nan
. Combined Controller Module with Bluetooth Tranceiver

. Assembled System in Testing Lab

Program FlOW Diagram
Windows Service Communication Architecture «=-eoreeeeeeees

Recovery tab for the Fax Service Service «r-oreeeereeeeeees
Dependencies tab for the Workstation service «:--w-eee--

Windows Service Application Architecture «oseoeeereereeeees

ODBC Data SOUrce Administrator

48
50
56
58
61
63
65
66
69
84
85
91
92
93
94
97
98
98

Table
Table
Table
Table
Table
Table
Table

~N OO O~ W N

List of Tables

. LC4103 Beam Load Cel| Specification «:roseeeresreresereeeeeeeeeee

Bluetooth Serial Adapter SD202 Specification -------

Some Services Installed on Microsoft Windows 2000

X We| |_KnOWn UDP Port Numbers

10
22
32
40
45
52
87

List 1.
List 2.
List 3.
List 4.

List of Lists

PICBASIC Source Code and Explanations

SNSeercedle.CS A
SNSeerce.CS P eeeeeevs set s sneettene sestes eeeae s seesee s oessae usese ey vre

Projeclnstal |er o R TR)

Vi

ABSTRACT

Wireless Sensor Network System

For 16 Channel Strain Gauge

Won Yong-1|
Advisor: Prof. Soon-Suck Jarng
Dept. of Control & Instrumentation Eng.

Graduate School of Chosun University

This paper presents a wireless sensor network system in which
weight measuring instrumentation process, data conversion process,
and the series of signal controlling processes are seamlessly
cooperative. 16 strain gauges are working as incoming sensors. Each
output is amplified and filtered for proper analog signal processing.
Several measuring instrumentation OP amps and general-purpose OP amps
are used. 12 bits A/D converter transforms analog signal to digital
bits. PIC microprocessor controls the operations of measuring strain
gauges. RF RS232C module is adapted for wireless communication
between the PIC microprocessor and TCP/IP hosting device. Service
program is considered as seamless and stable monitoring operation
tool over Internet. Database-based data handling system could bring
firm basis for statistical data processing application. In order to
overcome the time sequence problem among different device parts, a
total communication system using handshaking method has been

developed.

Vil

Chapter 1 Introduction

1.1 Background

A sensor network is a computer network of spatially distributed devices using
sensors to monitor conditions (such as temperature, sound, vibration, pressure,
motion or pollutants) at a variety of locations. Usually the devices are small
and inexpensive, allowing them to be produced and deployed in large numbers;
this constrains their resources in terms of energy, memory, computational speed

and bandwidth[4].

Each device is equipped with a radio transceiver, a small microcontroller, and
an energy source, most commonly a battery. The devices work off each other to
deliver data to the computer which has been set up to monitor the information.
Sensor networks involve three areas: sensing, communications, and computation
(hardware, software, algorithms). They are applied in many areas, such as video

surveillance, traffic monitoring, home monitoring and manufacturing.

The unique aspects of sensor network can best be examined with significant
numbers of prototype devices explicitly designed for this purpose, as opposed to
generic computing platforms. Some of the unique requirements for wireless

sensing network include:

e Small, lightweight form factor

* Robustness to wide temperature ranges and other demanding environmental
conditions

» Battery or other stand-alone power sources

* Low power operation and access to internal power control mechanisms

e A small, low power radio having sufficient range

A real-time execution environment

» The ability to write program code in a high level language for rapid
algorithm hosting and testing

» Reasonable cost

Sensor network technology is a key technology for the 21°' century. Cheap,
smart devices with multiple onboard sensors, networked through wireless links
and the Internet and deployed in large numbers, provide unprecedented
opportunities for measuring and controlling homes, cities, and the environment.
In addition, networked micro—sensors provide the technology for a broad spectrum
of systems in the defense arena, generating new capabilities for reconnaissance

and surveillance as well as other tactical applications.

Current and potential applications of sensor networks include: military
sensing, physical security, air traffic control, traffic surveillance, video
surveillance, industrial and manufacturing automation, distributed robotics,
environment monitoring, and building and structures monitoring. The sensors in
these applications may be small or large, and the networks may be wired or
wireless. However, ubiquitous wireless networks of micro-sensors probably offer

the most potential in changing the world of sensing.

1.2 Technology Trend

Current sensor networks can exploit technologies not available 20 years ago
and perform functions that were not even dreamed of at that time. Sensors,
processors, and communication devices are all getting much smaller and

cheaper [2].

Commercial companies such as Ember, Crossbow, and Sensoria are now building
and deploying small sensor nodes and systems. These companies provide a vision
of how our daily lives will be enhanced through a network of small, embedded

sensor nodes.

Wireless networks based upon IEEE 802.11 standards can now provide bandwidth
approaching those of wired networks. At the same time, the IEEE has noticed the
low expense and high capabilities that sensor networks offer. The organization
has defined the IEEE 802.15 standard for personal area networks (PANs), with

“personal networks” defined to have a radius of 5 to 10 m. Networks of short-
range sensors are the ideal technology to be employed in PANs. The |EEE
encouragement of the development of technologies and algorithms for such short
ranges ensures continued development of low-cost sensor nets. Furthermore,
increases in chip capacity and processor production capabilities have reduced
the energy per bit requirement for both computing and communication. Sensing,
computing, and communications can now be performed on a single chip, further

reducing the cost and allowing deployment in ever larger numbers[3].

Looking into the future, we predict that advances in MEMS (Micro Electro
Mechanical System) technology will produce sensors that are even more capable
and versatile. For example, Dust Inc., Berkeley, CA, a company that sprung from
the late 1990s Smart Dust research project at the University of California,
Berkeley, is building MEMS sensors that can sense and communicate and yet are
tiny enough to fit inside a cubic millimeter. A Smart Dust optical mote uses
MEMS to aim sub-millimeter—-sized mirrors for communications. Smart Dust sensors
can be deployed using a 3x10 mm “wavelet” shaped like a maple tree seed and
dropped to float to the ground. A wireless network of these ubiquitous, low-cost,
disposable micro—sensors can provide close-in sensing capabilities in many

applications[4].

1.3 Purpose of Project

While sensor networks for various applications may be quite different, they
share common technical issues. Therefore, one well-designed sensor network
system can be a great helper to variety of sensor network application. The
purpose of this project is to develop reusable type of sensor network system
that allows us to instrument, observe, and respond to phenomena in the natural

environment.

Since sensor network is the mixture of sensing, computing and communication
infrastructure, it generally poses considerable technical problems in data
processing, communication, and sensor management. Followings are common

technical challenges in sensor network implementation.

1.3.1 Network Control and Routing

The network must deal with resources - energy, bandwidth, and the processing
power - that are dynamically changing, and the system should operate
autonomously, changing its configuration as required. Since there is no planned
connectivity in ad hoc networks, connectivity must emerge as needed from the
algorithms and software. Since communication links are unreliable and shadow
fading may eliminate links, the software and system design should generate the
required reliability. This requires research into issues such as network size or
the number of links and nodes needed to provide adequate redundancy. Also, for
networks on the ground, RF transmission degrades with distance much faster than
in free space, which means that communication distance and energy must be well
managed. Protocols must be internalized in design and not require operator

intervention.

Alternative approaches to traditional Internet methods, including mobile I[P,
are needed. One of the benefits of not requiring IP addresses at each node is
that one can deploy network devices in very large numbers. Also, in contrast to
the case of IP, routes are built up from geo—information, on an as-needed basis,
and optimized for survivability and energy. This is a way to form connections on
demand, for data-specific or application—specific purposes. IP is not likely to
be a viable candidate in this context, since it needs to maintain routing tables
for the global topology, and because updates in a dynamic sensor network

environment incur heavy overhead in terms of time, memory, and energy.

Survivability and adaptation to the environment are ensured through deploying
an adeqguate number of nodes to provide redundancy in paths, and algorithms to
find the right paths. Diffusion routing methods, which rely only upon
information at neighboring nodes, are a way to address this, although such
methods may not achieve the information-theoretic capacity of a spatially
distributed wireless network. Another important design issue is the
investigation of how system parameters such as network size and density of nodes

per square mile affect the tradeoffs between latency, reliability, and energy.

1.3.2 Col laborative Signal and Information Processing

The nodes in an ad hoc sensor network collaborate to collect and process data
to generate useful information. Collaborative signal and information processing
over a network is a new area of research and is related to distributed
information fusion. Important technical issues include the degree of information
sharing between nodes and how nodes fuse the information from other nodes.
Processing data from more sensors generally results in better performance but
also requires more communication resources (and, thus, energy). Similarly, less
information is lost when communicating information at a lower level (e.g., raw
signals), but requires more bandwidth. Therefore, one needs to consider the
multiple tradeoffs between performance and resource utilization in collaborative

signal and information processing using micro-sensors[1].

When a node receives information from another node, this information has to be
combined and fused with local information. Fusion approaches range from simple

rules of picking the best result to model-based techniques that consider how the

information is generated. Again there is a tradeoff between performance and
robustness. Simple fusion rules are robust but suboptimal while more
sophisticated and higher performance fusion rules may be sensitive to the
under lying models. In a networked environment, information may arrive at a node
after traveling over multiple paths. The fusion algorithm should recognize the
dependency in the information to be fused and avoid double counting. Keeping
track of data pedigree is an approach used in networks with large and powerful
sensor nodes, but this approach may not be practical for ad hoc networks with

limited processing and communication resources.

Sensor networks are frequently wused in the detection, tracking, and
classification of targets. Data association is an important problem when
multiple targets are present in a small region. Each node must associate its
measurements of the environment with individual targets. In addition, targets
detected by one node have to be associated with targets detected by other nodes
to avoid duplication and enable fusion. Optimal data association is
computational ly expensive and requires significant bandwidth for communication.
Thus distributed data association is also a tradeoff between performance and
resource utilization, requiring distributed data association algorithms tailored

to sensor nets.

Other processing issues include how to meet mission latency and reliability
requirements, and how to maximize sensor network operational l|ife. A dense
network of cheap sensors may allow spatial sampling without the need for
expensive algorithms. These algorithms must be asynchronous, as the processor

speeds and communication capabilities may vary or even disappear and reappear.

Sensor nodes must determine results with progressively increasing accuracy, and

so the processes can be terminated when enough precision is gained.

1.3.3 Tasking and Querying

A sensor field is like a database with many unique features. Data is
dynamically acquired from the environment, as opposed to being entered by an
operator. The data is distributed across nodes, and geographically dispersed
nodes are connected by unreliable links. These features render the database view
more challenging, particularly for military applications given the low-latency,

real-time, and high-reliability requirements of the battlefield.

[t is important that users have a simple interface to interactively task and
query the sensor network. An example of a human-network interface is a handheld
unit that accepts speech input. The users should be able to command access to
information, e.g., operational priority and type of target, while hiding details
about individual sensors. One challenge is to develop a language for querying
and tasking, as well as a database that can be readily queried. Other challenges
include finding efficient distributed mechanisms for query and task compilation

and placement, data organization, and caching.

Mobile platforms can carry sensors and query devices. As a result, seamless
internetworking between mobile and fixed devices in the absence of any
infrastructure is a critical and unique requirement for sensor networks. For
example, an airborne querying device could initiate a query, and then tell the

ground sensor network that it will be flying over a specific location after a

minute, where the response to the query should be ex—filtrated.

Chapter 2 Hardware Architecture

2.1 Sensor Module

Sensor module has three major parts: strain gauge sensor for each channel, A/D
converting part which amplifies and filters analog signal of sensor into digital
output, and controlling part which controls each channel for data collection and

sends col lected data to communication part.

2.1.1 Beam Load Cel |

Figure 1. LC4103 Beam Load Cell Strain Gauge[13]

This beam load cell has been mainly used for single point platform weighing.

10

Its produced output signal

is directly proportional to the applied weight. Since

the single point design is highly resistant to eccentric loading, the scale base

and weighing platform could be directly mounted conveniently. Following is its

specification[5].

Table 1. LC4103 Beam Load Cell Specification[13]

Rated Output

1.0mV/V+£15/-0%

Error Range

+0.015% of R.O.

Safe Over load

300% of R.O.

Zero balance

20 = 5% of R.0.

Compensated temperature range -10C - +407C
Suggested voltage 12V
Maximum voltage 15V

Input terminal resistance

Approx. 400Q

Output terminal resistance 350Q + 5Q
Platform size 400 x 600mm
Line length 2m

2.1.2 Instrumentation Amplifier

The differential

input single-ended output

instrumentation amplifier

can be

selected as one of the most versatile signal processing amplifiers available. It

precisely amplifies differential dc or ac signals while rejects large values of

11

common mode noise. By adapting integrating circuits, high level of performance

is obtained without incurring the cost problem[6].

Figure 2. Amplification Circuit Layout

¥ Capture CIS - [/ ~ (SCHEMATIC]I : PAGE1)]] g
3

File Edit Wiew Place Macra Accessories Options Mindow Help .8

olz|l 8 i uE T[] [connasvrepTe +] S[RIQl@] vl @l w]

- T : : -
U3 MC7B05/TO j”"i'
v 2 vour |2 -l =
[& (o518 & D3 s
TN4001 |
1 i3 o GF o
| DGNDW 1
= D4 E=
ol cle A 1nao0t 5 il
s g w2 il <51 s
us =J
MCTI0&TO E
-
|
i)
~
x|
0
=]
N 2
A

JUMPERY

e |

[Ditems selected Brale=140% k=240 V=580

12

Figure 3. Three Op Amp |A Design[6]

QuTPUT

Figure 3 show a basic instrumentation amplifier which provides a 10 volt
output for 100 mW input, while rejecting greater than +/- 11V of common mode
noise. The input signal should be buffered two voltage followers to obtain good
input characteristics. The LM102 has 10,000 M Q input impedance with 3 nA input
current. The high level of input impedance provides two benefits. First it makes
the instrumentation amplifier possibly being used with high source resistances
while still maintaining low error. Secondly it allows the source resistances to
be unbalanced by over 10,000 @ with no degradation in common mode rejection.
The followers providing gain and rejecting the common mode voltage guide the

operation of a balanced differential amplifier, as show in Figure 3. By setting

13

the ratio of R4 to R2 and R5 to R3, the gain could be decided. Calculating with

the values shown in Figure 3, the gain for differential signals is 100[6].

Figure 4. AD620 Connection Diagram[6]

Rg E E Re
-IN E - E Vg
+IN E + E OUTPUT
vs[¢| ape20 [5]rer

TOP VIEW

The AD620 can set gains of 1 to 10,000 with only one external resistor.
Therefore, it can be called as a low cost, high accuracy instrumentation
amplifier. Furthermore, the AD620 features 8-lead SOIC and DIP packaging is
smaller than discrete designs. It offers lower power (only 1.3 mA max supply
current). With these features, the AD620 can be a good fit for battery-powered,

portable (or remote) applications.

The AD620 has high accuracy of 40 ppm maximum nonlinearity, low offset voltage
of 50 pV max, and offset drift of 0.6 pV/® C max. To consider these features,

the AD620 is quite useful in precision data acquisition systems, such as weigh

14

scales and transducer interfaces. To consider more on the features of AD620 |ike
the low noise, low input bias current, and low power, it is not difficult to
find that AD620 is used in medical applications, such as ECG and noninvasive

blood pressure monitors[6].

Figure 5. Three OP Amp IA Designs vs. AD620[6]

30,000 l
4
25,000 30PAMP — |
/ IN-AMP
(3 OP-07s)

20,000]

15,000 "/

TOTAL ERROR, PPM OF FULL SCALE

ADG620A
10,000 |— — —]
Rg
5,000
0
0 5 10 15 20

SUPPLY CURRENT (mA)

With the use of Superbeta processing in the input stage, the low input bias
current of 1.0 nA max can be made. Due to its low input voltage noise of 9 nV/+
Hz at 1 kHz, 0.28 uV p—p in the 0.1 Hz to 10 Hz band, and 0.1 pA/+Hz input
current noise, the AD620 also works well as a preamplifier. To consider its

settling time of 15 uys to 0.01%, the AD620 is enough to fit into multiplexed

15

applications, and its low cost fulfills the requirements for the designs with

one in-amp per channel [6].

Figure 6. AD620 Total Voltage Noise vs. Source Resistance[6]

10,000
1,000 ra
TYPICAL STANDARD
e BIPOLAR INPUT
oa IN-AMP
Z% 100 rd g
W=
=) G =100
53)
2y 10 v 7
EE
AD620 SUPERBETA
BIPOLAR INPUT
1 —/f IN-AMP —
————
0.1
1K 10k 100k 1M 10M 100M

SOURCE RESISTANCE (Q)

Instrumentation amplifiers |ike the AD620 offer high CMR. CMR is a measure of
the change in output voltage when both inputs are changed by equal amounts.
Implementing a full-range input voltage change and a specified source imbalance,

these specifications are usually required.

To maintain optimal CMR level, the reference terminal should be tied to a low

impedance point. Differences in capacitance and resistance also should be kept

16

to a minimum between the two inputs. In many applications, shielded cables are
adopted for noise minimization. For best CMR over frequency, the shield should
be properly driven. Figure 7 and Figure 8 show active data guards that are
configured to improve ac common—-mode rejections. The capacitance mismatch
between the inputs can be minimized by bootstrapping the capacitances of input

cable shields.

Figure 7. Differential Shield Driver[6]

+ INPUT

17

Figure 8. Common-Mode Shield Driver[6]

— INPUT

1000 ' -
AD548

+

+ INPUT

2.1.3 Operational Amplifier

The term operational amplifier or op-amp refers to a class of high-gain DC
coupled amplifiers with two inputs and a single output. The modern integrated
circuit version is typified by the famous 741 op-amp. Some of the general
characteristics of the IC version are high gain, on the order of a million, high
input impedance, low output impedance, used with split supply, usually +/- 15V,

used with feedback, with gain determined by the feedback network.

The most common and most famous op-amp is the mA741C or just 741, which is

packaged in an 8-pin mini-DIP.

18

Figure 9. HA17741 Pin Arrangement [6]

O
=
O
i

/
Offset 1_
Null |
Vin(-) | 2
Vin(+) | 3
Vee | 4
(Top view)

NC

Vee

Vout

Offset
Null

Figure 10. HA17741 Circuit Structurel[6]

= Vee
C
vm-+;,_%< _
vmij;- Eﬁ:} ____W;;::ti
}—‘;- H—l ;; '%i;Vout
To Ve Hmvm o
L} k:h——k(K
Lo [[4
Lpin l.@Pm Vee

R —

“

Offset Null

19

2.1.4 A/D Converter

The AD1674 is a complete, multipurpose, 12-bit analog-to-digital converter. It
has a user—transparent onboard sample-and-hold amplifier (SHA), 10 volt

reference, clock and three-state output buffers for microprocessor interface[7].

The AD1674 is pin compatible with the industry standard AD574A and AD674A.
While delivering faster conversion rate, it also has a sampling function. The
on—chip SHA delivers a wide input bandwidth supporting 12-bit accuracy over the

full Nyguist bandwidth of the converter.

Figure 11. A/D Converter Circuit Layout

i3 Capture CIS - [/ - (ECHEMATICI : PAGE!)] L EX)
El File Edit View Place Macro Acceccories Options Window Help -3 x
olzd| 8 52| 2 T|Z| connasvyrepT s -] BG|R|E
£y T T
T AGHD
, Dz
Car A 1n400t
i VEE
VEE VG @
3 c8Y piu o
ci+ D3 1k =
A oo =
L WCF | Dot B
DGND ||| cdim =
1" [BIeF] |
D4 bl A Tl
= H D03 bl
i A a0t neo_ [nwo hu [IR oY - Y1) 5
i 3 15 DOO Wi
L g B oo L4
> 2 B0 oo =
R13 o0 10 D2 5 Doa~] pos I
REFIN 03 o =
Blperour i (D L
12 51 ooy pos
05 O
3] i B 0 0
LI s o7 o] A2 =
RIC! L 5| AL 08 55 pos] oor kil
RIC = =
il B B e
TeE D10 5ot =
o cs D11 -
o o
13 = 2 ap1grd D08
X VN &
T L opp - o 2B —
23 pia
o i = | =] Do1a —
THAu T
— Dot i
feolinlspionl
CECM R
L] v
== Ditems selected Seale=40% X740 V=540

20

Not only ac parameters (such as S/(N+D) ratio, THD, and IMD) but also dc
parameters (offset, full-scale error, etc.) is fully specified by the AD1674.
The AD1674 is ideal for use in signal processing and traditional dc measurement

applications since its support for both ac and dc specifications.

In order to combine high performance bipolar analog circuitry into the same
die with digital CMOS logic, The AD1674 design adapted Analog Devices’ BiMOS ||

process.

According to temperature grades, there are five available grades. For
operation over the 0° C to +70° C temperature range, the AD1674J and K grades
are suitable. The A and B grades are for the temperature from -40° C to +85° C.
Finally the AD1674T grade is specified from -55° C to +125° C. The J and K
grades are available in both 28-lead plastic DIP and SOIC. The A and B grade
devices are available in 28-lead hermetically sealed ceramic DIP and 28-lead

SOIC. The T grade is available in 28-lead hermetically sealed ceramic DIP[7].

21

Figure 12. AD1674 Functional Block Diagram, Pin Configuration[7]

FUNCTIONAL BLOCK DIAGRAM PIN CONFIGURATION
- =
1(2:_"2 > Viosic [1]* 28] TS
| STS 12/8 27
A, > CONTROL — 28 2] 21 DE11(MSE)
. » s 3 25 DB10
CE ©
RIC > e Ag [1] 23] pBY
— ¥ * + 5 rRC [5] 24 pB8
" CE 5] 7| De7
REF OUT <_| 10v CLOCK SAR |—/— 5
REF 2 |g Vee [T ‘:::::: 22 DB6
g DB11 {MSB} REF OUT % {Not to Scale) % DB5
AGND = - AGND | s 20] DB4
20k V7 Lie “Comp <[2 " |oBo(LsB) REFIN [0] 083
REF IN W\ 1 12 0
5k 10k & Vee [11] 18] DB2
Blng\f F W @ BIP OFF [12] 7] DBA
N s 10k 9 DAC E 10V, [13] [15] DBO(LSE)
vy, 4 IDAC o] 20vyy [14] 15| DGND
ks N sk &
s B AD1674
A\

The AD1674 is a complete 12-bit, 10 ms sampling analog-to—digital converter. A

block diagram of the AD1674 is shown on Figure 12.

In order to initiate a conversion, AD1674 commands the control section placing
the sample-and-hold amplifier (SHA) in the hold mode, enabling the clock, and
resetting the successive approximation register (SAR). During the conversion
cycle, its process cannot be stopped or restarted. Therefore, data is not
available from the output buffers. When the conversion has been completed, the
SAR, timed by the internal clock, will sequence through the conversion cycle and
return an end-of-convert flag to the control section. The control section wil
then disable the clock. The SHA will be switched to sample mode. In order to

acquire 12-bit degree accuracy, the STS LOW going edge should be delayed. During

22

the SHA acquisition interval, external command can ask the control section data

read functions anytime.

During the conversion cycle, the SAR sequences the internal 12-bit, 1 mA full-
scale current output DAC from the most significant bit (MSB) to the least
significant bit (LSB). Its output accurately balances the current through the 5
kW resistor from the input signal voltage held by the SHA. While maintaining a 1
mA full-scale output current through the 5 kW resistor for both ranges, the
SHA" s input scaling resistors divide the input voltage by 2 for the 10 V input
span and by 4 V for the 20 V input span, Following is the comparing process
determining whether the addition of each successively weighted bit current
causes the DAC current sum to be greater than or less than the input current. If
the sum is less, the bit is left on; if more, the bit is turned off. After
completing all bits test, the SAR contains a 12-bit binary code. The code

accurately represents the input signal to within +1/2 LSB[7].

Table 2. AD1674 Truth Table[7]

R/C | 12/8 | A, | Operation

None
None

Initiate 12-Bit Conversion
Initiate 8-Bit Conversion

Enable 12-Bit Parallel Output

Enable 8 Most Significant Bits
Enable 4 LSBs +4 Trailing Zeroes

— b ><D
co © oo =X |A
W

OO = kM M
— O X — O XX

23

There are two operating mode in The AD1674, the full control mode and the
stand-alone mode. First, the full-control mode utilizes all the AD1674 control
signals. In this mode, through a single data bus, multiple devices can be
addressed simultaneously. On the other hand, the stand-alone mode is specialized
in systems with dedicated input ports available and thus not requiring full bus

interface capability.

Table 2 is a truth table for the AD1674, and Figure 13 illustrates the

internal logic circuitry.

Figure 13. AD1674 Equivalent Internal Logic Circuitry[7]

VALUE OF A, AT LAST
a # CONVERT CUMMAND

SAR RESET

1ps DELAY-HOLD SETTLING
»

— CLK ENABLE
o
_ 1> T_D_D-—l— STATUS
RIC —>=

-
1us DELAY-ACQUISITION

HOLD/SAMPLE
By —>o>4

L] NYBBLE A
1278 I — — READ NYBELEB
g | TO QUTPUT
D NYBBLE C BUFFERS

NYBELEB =0

Following are related circuit diagrams.

24

Figure 14. Regulator Circuit Layout

Capiure CI

/ - (SCHEMATICI : PAGE1)]
cro Accessorizs Dptions Window Help

[connasyrePTe -] BRG] U
I

IKH|

LM MCTE12T0

1
% v 2 vour |2 NCC
Fl cls ‘ Q@ | oi; D1
5 = A 1naont
[0.33u Tul
7 7 TR
g
3 3 2 D2
fox P Ch+ AR 14001
2
CONMASY RGPT 9 I’E 2 N 5 1 VEE
Uz mMCTaaTo
U3 MCTB0STO
v 2 vour |2 —<H]
= g . D3
TN4001
1 CRE i
| DGND|,
L
l i 0s
et cle A& 1nanot
o
iz ourdE N2 i <5}
us
MCTA08TO
FEEE
g9 f e
=
i g 5

[Ready

RiC'

[Dftems selected

Brale=140% X=2.80 Y=2.60

25

Figure 15. Total Circuit Layout

13 Capture CIS - [/ - (SCHEMATICI : PAGEI)]
Bl Flle Edit Mew Place Macto Accessories Options IMindow Help

ole(a] 8] ¢ = connasvReeTs <] @[BJalm] vl
- ‘ -

et a
A

N

14l | »

[Ready [Dftems selected [Srale=T0% X=650 Y=6.10

26

Figure 16. A/D Converter Top Layout

% Layout Plus — D:#WWORKSWPCBWADC_VODIWADC_VO01-5-2.MAX

Eile Edit Mew Tool Opfions Auto Window

851510 affi 6 3l 1121

¥ 3—57;;_

< | B
—
[1575.-5675] RAM: 7994K Used, -1234309K Available

27

Figure 17. A/D Converter Bottom Layout

1 Layout Plus —- D; WWORKSWPCBWADC_VOOIWADC_VO01-5-2. MAX

Ei t wew Tool Opons At Window Hel
claa i) 8lei5in] off Bl 2 gl 3121 31

#l Design - Component Tool (DAC ON) ﬁ_‘]@@
-

—
| [1700,-100] RAM: 7994k Used, -1215696K Available

28

Figure 18. Controller Top Layout

| Layout Plus WORKSWPCBWPICBASIC— | WRICBASIC-2000-1.MAX

File Edit Mew Tool Opfions Auto Window Help

#IE| 822 L e]

¥ [7o00 21 55T

< | B
— —
[675,7000] RAM: 7732K Used, -1155211K Available

29

Figure 19. Controller Bottom Layout

& Layout Plus — D WWORKSWPCBWPICBASIC |WPICBASIC-2000-1.MAX

] i) 32 2]

File Edit Mew Tool Opfions Auto Window Help

¥ [6575 21 55T

sign - Component Tool (DAC ON)

< | B
—
[-650,6575] RAM: 7732K Used, -1204434K Available

30

Figure 20. Mainboard Layout

& Layout Plus — D WWORKSWPCBWMOTHERBOARDWMAIN-3.MAX

t Mew Tool Options Auto Window Help

]) =) e] o] QI @B T 5] W) 515 2 2]
[OE ~

o |

‘ ~

—
[-5250,-3500] RAM: 7994K Used, -1129816K Available

31

2.2 Processor Module

Simply PICBASIC 2000 is micro single board computer which can be applicable in
various field of automation control area such as automated machine, thermal
controller, inspection ZIG, ROBOT controller, data acquaintance device etc.
Based on BASIC language, the PICBASIC language has various useful single
instructions such as ADIN, PWN, and SEROUT etc. Since it take the printer port

interface of PC as programming channel, programming work could be more simple

and easy[10].

Figure 21.PICBASIC Programming Environment[10]

PICBASIC studio /////,,«——;%Efifii?badcob@
Singl

st Printer port
EHIIIMI

0

Downloading program through
dedicated cable (Rev.B cable)

User target board

FLASH ROM 29C512 (64Kbyte) is used for the main memory of PBM-R5 module. SRAM
62256 (32Kbyte) and a EEPROM 24LC256 (32Kbyte) are both for its data memory[10].

32

Table 3. PBM-R5 Module Specification[10]

Main memory 64K byte
Data memory 32K byte
/0 ports 34

Main processor PI1C16F877
Oscillation frequency 20MHz
Memory access Serial
EEPROM for data 32K byte
No. of Pin 40

A/D channel (Resolution) 8 (10 bit)
12 bit A/D 2 channel
PWM channel (Resolution) 2 (10 bit)
String Available
32 bit integer, real number Available
RE232 buffering method Available

33

Figure 22. PBM-R5 Pinout[10]

+sv| 40 @ | veB
RES| @ 2 39 @ PICBUS
GND ® 3 slngle Board c°mputer g @ I/033-ADCHI
/OO-ADO| @ 4 37 @ I/032-ADCHO
JO1-AD1| @ 5 36 e 1f031
/O2-AD2| ® 6 PICB ASIC 35 @ | 1j030
IfO3-AD3| ® 7 34 @ |1/029
IfO4-ADA| ® 8 33 e /028
i | 2 ¢ 2000 pEEuk
JO7-AD7 | @ 11 30@ |1oas
”Oggf'&m : :g Flash 64K, RAM 32K, EEPROM 32K, 12bit ADC, RIC, 34 1O gg : :igg‘a‘
e | g LA 2 e |02
yo12| e 16 25 @ | 1j020
o3| e 17 24 @ fO19
o1 Rx| e 19 COMFILE % : |3
CLKIN| @ 20 TECHNOLOGY 7] ¢ /016
Pin | Description Port Input | Function
No. block
1 15V Power ,5V
2 /RES Reset,5V
3 GND Ground
4 [/00/ADO Port 0 BlockO TTL 10bits AD input
5 [/01/AD1 Port 1 BlockO TTL 10bits AD input
6 | /02/AD2 Port 2 BlockO TTL 10bits AD input
7 | /03/AD3 Port 3 BlockO TTL 10bits AD input
8 | /04/AD4 Port 4 BlockO TTL 10bits AD input
9 | /05/AD5 Port 5 BlockO TTL 10bits AD input
10 | /06/AD6 Port 6 BlockO TTL 10bits AD input

34

i | /07/AD7 Port 7 BlockO TTL 10bits AD input
12 | /08/ INT Port 8 Block1 ST Edge interrupt
13 [/09/PWMO Port 9 Block ST 10bi tsPWMpor t
14 [/010/PWM1 Port 10 Block1 ST 10bi tsPWMpor t
15 /011 Port 11 Block1 ST

16 | 1/012 Port 12 Block1 ST

17 | 1/013 Port 13 Block1 ST

18 1/014/TX Port 14 Block1 ST RS232C trans
19 I /015/RX Port 15 Block1 ST RS232C recv
20 CLKIN Count IN ST

21 1/016 Port 16 Block2 ST

22 /017 Port 17 Block? ST

23 1/018 Port 18 Block? ST

24 11/019 Port 19 Block2 ST

25 | 1/020 Port 20 Block2 ST

26 1 /021 Port 21 Block? ST

27 1 /022 Port 22 Block? ST

28 /023 Port 23 Block?2 ST

29 1 /024 Port 24 Block3 ST

30 1 /025 Port 25 Block3 ST

31 1 /026 Port 26 Block3 ST

32 | 1/027 Port 27 Block3 ST

33 1/028 Port 28 Block3 ST

34 1 /029 Port 29 Block3 ST

35 1 /030 Port 30 Block3 ST

35

36 1 /031 Por t31 Block3 ST

37 | /032/ADCO Port32 AD only 12bits,ADinput
38 | /033/ACD1 Port 33 AD only 12bits,ADinput
39 | PICBUS LCD port

40 | VBB RTC Battery ™ Terminal

PICBASIC has PICBASIC studio as Integrated Development Environment. By
including Compiler, Editor, Debugger and etc into one programming environment,
developing process could be simple like a word processing job. It is compatible

with Microsoft Windows series and not with MAC and UNIX platform.

Figure 23. PICBASIC Studio Programming Interface[10]

« PICBASIC Debug Window o Check Variable
Debug Variable i : 0 OH
Step Into Step Dver Step Dut | Madify Yariable Erase Flash Exit |

[TEST TOR RS23Z COMMUNICATION | =

CONST DEVICE = RS
SET R3IIZ3Z 386000
DIM J 1% BYTE
ON RECY GOSUB 100
10 GOTO 10
100 GET J
FOT J
RETURH

When programming in PICBASIC, most common interface is very RS232C
communication since it is widely used in PC as well as other devices such as
card reader, small-size printer, display, etc. PICBASIC language includes
various instructions for RS232C such as SERIN, SEROUT, PUT and GET. Furthermore

it is worth mentioning its instructions for dealing with receiving interrupt

36

such as ON RECV etc.

In order to get the data from chosen channel, OV digital signal should be on
into A/D converter’ s chip selection pin of chosen channel. Each channel of A/C
converter could send 12 bits digital signal to AD1674 and Three-state buffer
with only one digital signal line. Therefore, two digital signal lines from
microprocessor are needed, one for channel selection and one for A/C Conversion.

Following is a part of PIC BASIC source code we programmed and some explanations.

List 1. PICBASIC Source Code and Explanations

CONST DEVICE = R5 ‘Device = PBM-R5 Module

SET RS232 38400 ‘Declare RS232C communication baud rate
‘as 38400 baud rate

DIM KH AS BYTE ‘Declaration of High 8 bits Integer

DIM KH_BUF AS BYTE ‘Declaration of High 8 bits Integer Buffer
DIM KL AS BYTE ‘Declaration of Low 8 bits Integer

DIM KK AS BYTE ‘Declaration of Operation Code

KH =0 ‘Initialization of variables

KL =0

KH_BUF = 0

KK =0

ON RECV GOSuB 100 ‘RS232C Receiving Interrupt

37

10 OUT 29, O
GOTO 10

100 GET KK

IF KK = 97 THEN

KH_BUF = 0

ot 29, 0
outT 12, 1
outT 13, 1
outT 31, 1
ouT 30, 0
DELAY 1

ouT 29, 1
DELAY 1

‘This instruction calls label 100 when RX pin
“(1/0 15'™) receives data while RS232C hardware
‘is used. |f RS232C receives data while a
‘program operates, the program stores data in

‘extra buffer after jumping to specific routine.

‘Yes, Copy RECV to KK

‘Operation code = Read Low

‘Initialization for routine case

‘Delay by millisecond for synchronization

‘The range of delay is 0-65535

38

KL = BYTEIN(2) ‘Input by byte from port block 2

KH = BYTEIN(3) “Input by byte from port block 3
‘This instruction reads eight ports
‘simultaneously and save them at a variable by
‘Bbits. Port block is a unit of combined eight
‘ports. R5 module has four port blocks.

outT 29, 0

DELAY 1

KH_BUF = KH AND &B00001111
‘Take only 4 bits of high bits
‘We do 12bits Conversion
‘L8 + H4

PUT KL ‘Output Low 8 bits to RS232C
‘This instruction outputs data through RS232C
‘hardware. The data is outputted through 1/0
‘port 12 in the formant of 8bit, none parity and
‘1 stop bit. Before using this instruction, you

‘must execute SET RS232 instruction.

END IF
IF KK = 90 THEN ‘Operation code = Read high
PUT KH_BUF ‘Output High 4 bits to RS232C

39

END IF
RETURN

2.3 Radio Module

The radio module uses Promi-SD202 Bluetooth as a terminal device for wireless
serial communication using the Bluetooth technology that is international
standard of short range wireless communications. |ts communication range can be
reached up to 100m. In term of noise, it delivers better quality of
communication than standard RS232 cables. The FHSS (Frequency Hopping Spread
Spectrum) technique of Bluetooth let SD202 have less radio interference and less

danger of hacking in air[9].

40

Table 4. Bluetooth Serial Adapter SD202 Specification[9]

Description External type wireless serial adapter
Power Class Class1
RF Range Up to 100m

Power Connector

DC plug or 9pin

Power Supply

5V-12V

Serial Interface

RS-232

Applicable Antenna

Stub, Dipole, Patch

Bluetooth Qualified

Fully

Type Approved

TELEC, MIC, CE, FCC

Dimensions(H*W+D)

62.5%31.2%16.3

41

Figure 24. SD202 Components and Assembly[9]

Promi-8D101/SD202/SD205

DC 5V Power Cable

Antenna is left-hand threaded.

Use of non-authorized power
adapter is not recommended.

42

Figure 25. Device Setting Menul[9]

~ Serial port was open: COM |, 9600, No Parity, One Stopbit

Praomifir
Digvice Mame PEOn3k-16213F
Device Hardware Address O0B&S31R215F
Current Made MODED
d Current Statusg Standby
Davice Seting Security
_ Security Don't use
b Encryption Dionff use
Connectonfout) ' Lart Sedting
Eaud Hate =i
[g:l StopBit : One Stophbit
Connectionting Parity Mo Parity
HY Flow contral - (8]
Heftesh

= Serial port was open: COM 1, 9600, No Parity, One Stopbit

Prarri ¥
i Hard Hesel | Retum PramiS0 tofaciony default setting
3/ ———
o Fmatlan Dperation ode

 I40DED (Standby status for Elustooth connection)
d { MODET { This Prami-S0 shall connect ta the last connected davice anly)

™ MODEZ { This Prami-E0 shall be connected fiom the |ast connectad device only)
™ MODE3 [&llow any Eluetooth davices digcoverfoannact to this PromiSD)

- *You must be in Panding status in MODES to be discoverablefconnectable,
i To be in Pending status, please click MODES and press "Apply" buitan

Connacton{out) arf -

Uzvice seling|

Dleice N | PEDNAE-16213F
Baud Rate Igagu _:J - I

E] Parity Im Sacurty Oation AT Cormmand

Connectionting Slogit h—*]] a'luthenhcmlinn I Encreptian ™ ON
¢ HW Flow Caniral _med| " OFF
Apaly

43

Serial port was open: COM 1, 96500, No Parity, One Stopbit

Framilfin
| i T ~Saarch Fzauft
Infitrriation | Devee Adess | Device Name | £ob |
y | Prof =]
i 00081800314 C HWIECN-LERPTOR
| DO0B2420056E FromH=F 20056 00200

[Davice Zeting

-
¥

Connactonfouty

Eg] Cancel Searth 110 ﬂ Defing the nurber of nearby devicss to be =sarched
Connectionting
Hrect]EIDDEEQEIIIEEB Cornect to Specified devices

Draop the Connection

Serfal port was open: COM 1, 9500, Mo Parity, One Swopbit

Framie
- 1
\l() i~ Oition
Informmation ¥ Cther Bluetooth Devices can discover this Prami-50 (Inguiry scan)
d v Alowe other Blustooth Dewces to Cannect | Page scan)

Desice Setin 2 ;
5 (- Sacands for waiting connection -

Yy IFyou 52t the time forveaiting connection to O, it will wait ifinitely
Connaction(out 300 :_ Seeorid
| alalug
Eg] Waiting Cannection

Connectionting

44

2.4 TCP/IP Network Module

Tibbo DS100 device is a Ehternet-to-Serial converting module for external use.
Combining one 10BaseT Ethernet port, one serial port and an internal processor,
DS100 glues network and serial sides together. The internal processor of DS100

is based on the EM100 Ehternet Module[8].

As an universal hardware platform , the DS100 can run a variety of network and

serial communications-related application.

Figure 26. DS100 Connectors and Controls[8]

P

iy
Uf selection jumper i

Power jack of the DS100 fits into large power connectors with 5.5mm diameter.

At least 500mA of current rating and 12VDC of nominal voltage should be

maintained. The ground of the power jack is located on the outside.

10BaseT-type Ethernet port of the DS100 is working well with all 10BaseT

45

Ethernet hubs and also 99% of 100BaseT hubs, since most 100BaseT hubs are
actually 100/10 devices that auto-detect the type of device connected to each

port.

Table 5. DS100 Specification[8]

Ethernet interface 10 BaseT Ethernet
Serial interface and 1/0 lines RS232 (TX, RX, RTS, CTS)
Routing Buffers size 510 bytes x 2

Power requirements DC12V, app. 100mA
Operating temperature -5 to +70 degrees C
Operating relative humidity 10-90 %

Mechanical dimensions 95x57x30mm

Carton dimensions (bare DS100) 130x100x65mm

Gross weight (bare DS100) 1709

Carton dimensions (DS100-KIT) 320x45x90mm

Gross weight (DS100-KIT) 9509

Operation setting parameters stored in the non-volatile memory (EEPROM) of the
DS100 are functioning permanently. Once set by user, they remain intact even
when the DS100 is powered off. Most settings require the DS100 to be rebooted
for the new setting value to take effect. The baudrate (BR) setting defining the

baudrate of the serial port could be quite an example.

46

As essential requirements for all of Ethernet devices, the DS100 has a unique
MAC-address and an assigned valid IP-address to operate properly on the network.
Since MAC-address is unique identification number preset into ROM during the
production, it cannot be changed. In contrast, IP-address should be properly set
according to the local area network setting. DHCP (Dynamic Host Configuration
Protocol) is the popular and convenient way of setting IP-address

automatically[8].

To route the data between attached serial device and the network host, the
DS100 needs to establish and maintain a data connection. Depending on current
transport protocol, the data connections can use TCP/IP or UDP/IP. In this
project, UDP data connection has been used since considering the size of packets,

a connection—less protocol is more effective than connection-based protocol.

The DS100 can allow a single data connection only because the serial port is
not a shared media and cannot be controlled by more than a single source at any
given time. This is due to the COM port architecture of the PC — One peripheral

device could be opened by one program at a time.

47

Figure 27. DS Setting Dialog[8]

48

Figure 28. DS Routing Status Dialog[8]

49

Listening port parameter defining the listening port number will be associated
with transport protocols. Listening port usage of TCP/IP and UDP/IP is slightly

different.

Looking at the UDP/IP transport protocol, there are two different working
modes. First, when the routing mode is set as client, incoming connections are
not allowed. Therefore, the listening port parameter is irrelevant. DS100 sends
its own UDP datagram containing an automatically generated port number. Secondly,
when the routing mode is server, the listening port parameter defines the
listening port on which incoming UDP datagram is accepted and is also used as
the port from which outgoing UDP datagram is sent. DS100 should be set as server

in this project.

50

Chapter 3 Software Architecture

3.1 Software Architecture

In order to support experimentation and algorithm development, a flexible
software environment is essential so that applications can be written in a high-
level language while maintaining access to low—level hardware functions. The key

wireless sensing node software functions are organized in the following layers:

Figure 29. Program Flow Diagram

E SErILe
ensor Module Pro
Sarvice Control
HN.‘ System Manager
RuniRES Application
Erviranment P
Datahase User Interface

Processs

Monitor/Hardware abstraction layer (HAL) provides routines for initialization,
external communication, program loading and debugging, and interrupt processing.
A packet protocol interpreter routes packets arriving from either the radio or

the external RS-232 to internal tasks. Program loading can occur either through

5l

an attached device or through the radio.

Run-time environment, this real-time kernel on each node provides the Ilow-
level distributed wireless network infrastructure. The low-level controls for

communication protocols as well as the sensor drivers are hosted at this level.

System Applications that perform signal processing computations and higher
layer network functions (e.g., scheduling, routing). Written in a conventional
high-level programming language such as C, new applications may be downloaded

onto sensor nodes deployed in the field via the RF network.

A database management system can be an extremely complex set of software
programs that controls the organization, storage and retrieval of data (fields,
records and files) in a database. It also controls the security and integrity of
the database. The DBMS accepts requests for data from the application program
and instructs the operating system to transfer the appropriate data. When a DBMS
is used, information systems can be changed much more easily as the
organization’ s information requirements change. New categories of data can be

added to the database without disruption to the existing system.

User interface applications hosted on PCs that allow users to perform various
tasks and to interact with the sensor network. An interface for communicating
with the network through a gateway is supported as well as display and logging

of network information.

52

3.2 Service Applications

3.2.1 Window Service Communication Architecture

The Microsoft Windows operating system offers various facilities that make
implementing the server-side portion of a client-server application easier. As
you know, a server is a Windows application that performs server-side duties.

Microsoft recommends that server applications be implemented as services.

A service is a normal Windows application containing additional infrastructure
that enables it to receive special treatment by the operating system - for
example, the ability to be remotely administered, allowing an administrator to
start or stop the application from a remote machine. By turning your server

application into a service, you'll get this and other features for free[11].
Following Table lists some of the services installed on my machine running
Microsoft Windows 2000 and the name of the executable files containing the code

for the services.

Table 6. Some Services Installed on Microsoft Windows 2000

Service Name Description
Alerter Notifies users and computers of administrative alerts
DHCP Client Registers and updates |P addresses and DNS names
Event Log Logs event messages issued by programs and Windows

53

Net Logon Suppor ts pass—through authentication of account logon

events for computers in a domain

Plug and Play Manages device installation and configuration, and

notifies programs of device changes

Remote Procedure Provides the endpoint mapper and other miscel laneous
Call (RPC) RPC services

Task Scheduler Enables a program to run at a designated time
Telephony Provides Telephony APl (TAPI) support

Windows Installer Installs, repairs, and removes software according to

instructions contained in .msi files

Windows Management Provides system management information

Instrumentation

First and foremost, a service application is just a 32-bit or 64-bit
executable, so everything you already know about DOLLs, structured exception
handling, memory-mapped files, virtual memory, device I/0, thread-local storage,
thread synchronization, Unicode, and other Windows facilities is available to a
service. And this means that converting an existing server application into a

service should be relatively easy and straightforward for you.

Second, you need to know that a service should have absolutely no user
interface. Most services run on a server machine locked away in a closet
somewhere. So if your service presented any user interface elements, such as
message boxes, no user would be in front of the machine to see and then dismiss

them. And, as you'll see later in this chapter, any windows created would

54

probably appear on a window station or desktop different from the one the user
was sitting in front of, and thus the message wouldn't be visible to the user
anyway. Because a service won't have a user interface, it doesn't matter whether
you choose to implement your service as a graphical user interface (GUI)
application (with (w)WinMain as its entry point) or as a console user interface

(CUI) application (with (w)main as its entry point).

If a service is not supposed to present any user interface, how do you
configure the service? How can you start and stop a service? How can the service
issue warnings or error messages? How can the service report statistical data
about its performance? The answer to all these questions is that a service can
be remotely administered. Windows offers a number of administrative tools that
allow a service to be managed from other machines connected on the network so
that it is not necessary for someone to physically check (or even have physical
access to) the computer running the service. You are probably already familiar
with many of these tools: the Microsoft Management Console (MMC), with its
Services, Event Viewer, and System Monitor snap-ins; the registry editor; and

the Net.exe command-1ine tool.

These facilities are provided by Windows to simplify the development effort of
the service writer. They also give an administrator a consistent way to manage
machines remotely and locally. Note that these facilities are not exclusive to

services: any application (or device driver) can take advantage of them.

Three types of components are involved in making services work[11]:

55

« Service Control Manager (SCM, pronounced scum) - Each Windows 2000 system
ships with a component called the Service Control Manager. This component
lives in the Services.exe file; it is automatically invoked when the
operating system boots, and terminates when the system is shut down. The
SCM runs with system privileges and provides a unified and secure means
of controlling service applications. The SCM is responsible for
communicating with the various services, telling them to start, stop,
pause, continue, and so on

* Service application - This is an application that usually presents a user
interface that allows a user to start, stop, pause, continue, and
otherwise control all the services installed on a machine. The service
control program calls special Windows functions that let it talk to the
SCM.

« Service Control Program (SCP) - This is an application that usually
presents a user interface that allows a user to start, stop, pause,
continue, and otherwise control all the services installed on a machine.
The service control program calls special Windows functions that let it

talk to the SCM.

Figure 30 shows how all these components communicate with one another. Notice
that SCP applications do not communicate with services directly; all
communication goes through the SCM. This architecture is precisely what makes
the remote administration transparent to the SCP and service applications. It is
possible to implement an architecture and a protocol that enables your SCP
application to talk directly with your service application, but you must write

the communication code yourself.

56

Figure 30. Windows Service Communication Architecture[11]

Cilant or Sarver Machina Server Machina
S0P SO
{Adminisiratan 16 preseatng Ut
S —r APC Sanar

RPC Cilant

Commumicatos wiln oo al or romole SCM Fecenns tagquesls Irom the S0P

Foraards raquosts ta & Lervico
R&lwrns sarvice imlo back ko the SCP

&
Smpla PG
mechanism

L

Zarvica

Hecaves notficalicn trom 1he local SCM
Communicales S1atle infoemalion
ek by tho local SCM

0f these three components, you will never implement the SCM itself. Microsoft
implements the SCM and packages it into every version of Windows 2000. What you
will implement are services and SCPs. This chapter will cover what you need to
know to design and implement a service, and the next chapter will cover the

details of writing an SCP.

3.2.2 Services Snap—In

The SCP application with which you should become most familiar is the Services
snap—in, shown in Figure 31. This snap—in shows the list of all services
installed on the target machine. The Name and Description columns identify each
service's name and offer an informative description of the service's function.

The Status column indicates whether the service is Started, Paused, or Stopped

o7

(blank entries indicate "stopped"). The Startup Type column indicates when the
SCM should invoke the service, and the Log On As column indicates the security

context used by the service when it is running.

This information is kept in the SCM's database, which lives inside the

registry under the following subkey:

HKEY_LOCAL_MACH INEWSYSTEMCur rentControlSett#Services

You should never access this subkey directly; instead, an SCP should call the
Windows functions (discussed in the next chapter) that manipulate the database
in this subkey. Directly modifying the contents of this key will vyield
unpredictable results. When you install a product that includes a service, the
setup program for that product is an SCP that adds the service's information to

the SCM's database.

o8

Figure 31. Services Snap-in[11]

T Cimmnpen s imgrvnrnd ==
Lo |) 2 e R 0B e
Tris | = [Sierrpsen. I
[Corto Mareageored T, | Tsten [T ——
4 [l Sontom ook s Aapder svacwn bl maagmresiy e]
Shesmon iy i k. Supperh CipBlack Vs, whch sl pag
= s Lervmes ared Appkcatons B D0 Everd Syiiow Py gbsrain: Selsfh e o peedy o g
= [Feeprony S Compater Bioni Mirigr gnipiodae bl of conpuimion Slaied Roealc Locafieiem
WA Condrol iy [P ot laraget reireon. confurshon by sogrtern. Tlwied Faforashc Lox o grtery
Seraces G Drmitated Pl System Mg g vkt | Bibbated 1ol . Tlated Mioeatn Locefem
Irataind Sl B Crattted Link Dracirg £l Serch nohiconons of fiss sovng betemen. . Slated Autorwdic Locafosm
= W brderven etcumecsiints Sotr 1o Do iend Link Tiichirg S Shiv i tiomtion s st ket parvnd bt M LiogaFpmem
ﬁtlrlhmd Trwruachon Coor ~ ocadirade; nwreschors far we debbuind . Slwied Aunomatc Lok alrmem
iy [Clord Rewbort i caches Dorman Haw Srcbemy Slded Bufomale Lecafytom
Sk werd Lo Loge dvend abiLagel Wised by apgiet & Gleled Aaoeah Locafomem
LA, pgs e s dred oot | e o Lesalstar
i Pl Pl e by e e e bz et o e B by [Py L afritrm
‘.rﬂa.\:rm’.nm Bioen sdrmrnksto o Wb wrd F I e fiwims dabomaic | o o prem
L T T Tem——— Mg]
i i i M patiagng et Toradreg ard roc EeTg M ages bed Dirakiet Lecalgteom
B 175 C ko g Mo 1P sbcunty pobcp and it P TS Ghmted Bunests Locafieem
i K etz Ky Diziobubion G Siersasies spronn iy and grands v Diratins Lok o'
i Loz L S ervie Sigted Puiveate Lotafiaen
i B _ﬁl.o-cmll]rt Hprages gl Cogh Baragey ' sidog Serace Slated doeadtc Locdfeem |

You can view a remote SCM's service database by selecting the Computer
Management node in the left pane of the Computer Management console and then

choosing Connect To Another Computer from the Action menu.

So now that you're looking at the Services snap-in, you're probably wondering
about all the tasks you can perform with it. Here are the most common

operations[11]:

Start a service

The administrator starts a service by selecting the service from the list and

clicking the Start toolbar button. Only services with a Startup Type of

Automatic or Manual can be started; disabled services cannot. Disabling a

service is useful for troubleshooting problems with a machine.

59

Stop a service

The administrator stops a service by selecting the service and clicking the
Stop toolbar button. Note that some services do not allow themselves to be
stopped after they are started. The Event Log service is an example; it stops

only when the machine shuts down.

Pause and resume a service

The administrator pauses a service by selecting a running service and clicking
the Pause toolbar button. Note that most services do not allow themselves to be
paused. Also note that "pause" has no exact definition. For one service, pausing
can mean that the service won't accept client requests until it finishes
processing the outstanding requests. For another service, pausing can mean that
the service can no longer process any of its operations. Paused services can be

resumed by clicking the Start toolbar button.

Restart a service

The administrator restarts a service by selecting a running or paused service
and clicking the Restart toolbar button. Restarting a service causes the snap—in
to stop the service and then start the service. This is simply a convenience

feature and is very useful when debugging your own service.

The preceding |ist certainly accounts for 99 percent of what administrators do

with the Services snap—in, but the snap—in can also be used to reconfigure a

60

service. To change a service's settings, you select the service and then display
its Properties dialog box. This dialog box contains four tabs; each tab allows
the administrator to reconfigure parts of the selected service. The configurable

settings are discussed in the following sections.

The General tab (shown in Figure. 32) allows the administrator to examine and
reconfigure general information about the service. The first fact you need to
know is that each service goes by two string names: an internal name (used for
programmatic purposes) and a display name (a pretty string presented to
administrators and users). After being added to the machine's service database,
a service's internal name cannot be altered, but the administrator can modify
the service's display name and description. The General tab also shows the
service's pathname but does not allow the administrator to change it. (This is a
limitation imposed by the tab, not by the system.) The administrator can change

the service's Startup Type to one of the following[11]:

61

Figure 32. General Tap for Windows Installer Service[11]

Windows Inztaller Properties [Local Computer) ki E3

O]

Service name: MSIServer

Display hame: }Winduwslmtallar

Q&sﬂ!iptiun: ilnstalls, repairs and removes software according to inste
Palh to executable:

i[‘;"\MN M T hepetem32\maieres exe S

Staitup vpe:] M ariLial j

Service status Stopped

Start | binn ' e I Fesurme I

Your can zpecify the start parameters that apply when you stat the serice
from here.

Stat parameters: I

I e

* Automatic - One of the features of a service is that the SCM can
automatically start it for you. If the service has a Startup Type of
Automatic, the SCM spawns the service when the operating system boots. |t
is important to note that automatic services run before any user
interactively logs on to the machine. In fact, many machines that run
Windows are set up to run only services — no one ever logs on to the

machine interactively. For example, machines running Windows and the

62

Server service allow clients to access subdirectories, files, and
printers on a networked machine.

Manual - A manual service tells the SCM not to start the service when the
machine boots. An administrator can start this service manually using an
SCP. A manual service (alternately known as a demand-start service) will
also start when another service that depends on the manual service is
started. |'ll talk about service dependencies more in the next chapter.
Disabled — A disabled service tells the SCM not to start it under any
circumstance. You disable the DHCP Client service when you manually
assign an |P address to your machine rather than have it dynamically
obtain an |P address from a machine running the DHCP Server service.
Disabling a service is also quite useful when troubleshooting a system by

allowing you to take a specific service out of the equation.

63

Figure 33. Log On Tab for the Distributed Link Tracking Service[11]

Diztnbuted Link Tracking Chent Properties [Local Computer] EHE

General ”-':'Elﬁ"TI Recovery | Dependencies |

............ rrre—d

Log on as:

0+ | ocal System account
[Allow service to interact with deskton

" This account | Bratse.. |

Hazaword |

[Earifir passtr |

You'can enable or dizable thig service for the hardware profiles listed below

_Hardware Profie | Service I
Phafile 1 Enabled
Eriable | Qisal:ﬂe' |

[] cencel | B |

In addition to configuring the actual service, the administrator can
reconfigure the security context under which the service will execute on the Log
On tab, shown in Figure 33. The security context can be one of the

following[11]:

» LocalSystem Account — A service running under the LocalSystem account can

do just about anything on the computer: open any file, shut down the

64

machine, change the system time, and so on. A service running under the
LocalSystem account can optionally be allowed to interact with the
desktop. Most services don't require this option, and you are strongly
discouraged from using it.

e This Account - A service can also execute under a specific security
context (identified by a user's name and password). This restricts the

service to accessing the resources accessible to the specified account.

The Log On tab also allows the administrator to specify which hardware
profiles the service is enabled in. Hardware profiles allow you to configure
services according to your hardware configuration. For example, you might want
the fax service to run when your laptop computer is docked and not run when it

is undocked.

The Recovery tab, shown in Figure 34, allows the administrator to tell the SCM
what actions to perform should the service terminate abnormally. Abnormal
termination means that the service stopped without reporting a status of
SERVICE_STOPPED (discussed later in this chapter). For the first, second, and
subsequent attempts, the SCM can do nothing, automatically restart the service,
run an executable, or reboot the computer. Note that running an executable and
rebooting the computer can fail if the account under which the service is

running doesn't have the appropriate privileges or permissions.

65

Figure 34. Recovery tab for the Fax Service Service[11]
Fax Service Properties [Local Computer] EHE
General | Log On [Fecoven] Dependencies |

Select the computer's response if this service Fails,

First failuire: |Restart the Service |
Second failure: |Hel:u:n:ut the Computer j
Subsaguent falwes: |Run a File 4|

Reset fail count after. |1 days
Restart service after: |1 minutes

— Ruir file
File:
IF‘ageM e.EXE Brawze... |
Command line pararmeters: I'I 2005551212 '"Semice Failure"
[™ Append fal count to end of command ine (/fail=%1%)

Restat Computer Optiors... |

[ok] cencel | appy |

The Dependencies tab, shown in Figure 35, shows the services on which the
selected service depends and also what services depend on the selected service.
In the figure, you'll see six services dependent on the Workstation service. If
the administrator attempts to stop the Workstation service and any dependent
services are running, the SCM fails the call. Many SCP programs are written to
notify the user that dependent services are running, and to allow the user to
choose whether to also stop the dependent services. The Dependencies tab does

not allow an administrator to modify any of these dependencies.

66

Figure 35. Dependencies tab for the Workstation service[11]

Workstation Properties [Local Computer) i E3
General | Log On | Recovery Danahdsmdss]

Some services depend on other services. IF 3 semvice is stopped or iz niot
munning propery, dependent services can be affectad,

“Workztation'' dependsz on theze services
2.2} Mo Depsndancies:

Thess services depend on “wWodkstation's

Y ete]
H 8y Computer Browser
48 Distributed File System

Messenger
Met Logon
% Remote Procedure Call [RPC] Locator

[#]:

3

[#- %

3.2.3 The Windows Service Application Architecture

In this section, the additional infrastructure that turns a server application
into a service will be explained, thus allowing your application to be remotely
administered. Microsoft's service architecture seems to be a little difficult to
understand at first. The difficulty is due to the fact that every service

process always contains at least two threads, and these threads must communicate

67

with one another. So you have to deal with thread synchronization issues and

inter—-thread communication issues.

Another issue that should be considered is that a single executable file can
contain several services. Many services can be contained inside the Services.exe
file. Most of these services (such as DHCP Client, Messenger, and Alerter) are
fairly simple in their implementation. It would be very inefficient if each of
these services had to run as a separate process, with its own address space and
additional process overhead. Because of this overhead, Microsoft allows a single
executable to contain several services. The Services.exe file actually contains

about 20 different services inside of it, including the three just mentioned.

When designing a service executable, you must concern yourself with three

kinds of functions[11]:

Process's entry-point function This function is your standard (w)main or
(w)WinMain function with which you should be extremely familiar by now. For a
service, this function initializes the process as a whole and then calls a
special function that connects the process with the local system's SCM. At this
point, the SCM takes control of your primary thread for its own purposes. Your
code will regain control only when all of the services in the executable have

stopped running.

Service's ServiceMain function You must implement a ServiceMain function for
each service contained inside your executable file. To run a service, the SCM

spawns a thread in your process that executes your ServiceMain function. When

68

the thread returns from ServiceMain, the SCM considers the service stopped. Note
that this function does not have to be called ServiceMain; you can give it any

name you desire.

Service's HandlerEx function Each service must have a HandlerEx function
associated with it. The SCM communicates with the service by calling the
service's HandlerEx function. The code in the HandlerEx function is executed by
your process's primary thread. The HandlerEx function either executes the
necessary action, or it must communicate the SCM's instructions to the thread
that is executing the service's ServiceMain function by using some form of
interthread communication. Note that each service can have its own Handler&x
function, or multiple services (in a single executable) can share a single
HandlerEx function. One of the parameters passed to the HandlerEx function
indicates which service the SCM wishes to communicate with. Note that this
function does not have to be called HandlerEx; you can give it any name you

desire.

Figure 36 will help you put this architecture in perspective. |t shows the
functions necessary to implement a service executable that houses two services
as well as the lines of interprocess communication (IPC) and interthread
communication (ITC). In the upcoming sections, | will examine these three
functions in detail and flesh out exactly what their responsibilities are. |

recommend that you refer to this figure while reading.

69

Figure 36. Windows Service Application Architecture[11]

Spawns SanviceThread!
Spawns SordcaTrread?
Uses PrimaryThread for HardlerEx

Sorvice Exoculable
i ¥OID maing] | /F Executed by primary thread
SCM = StartServiceCir i spatcher [ServiceMainl, SeryicoMaln?];:
p— freturns when afl services stopd
I A Proceis termlnates
NOID BandlerEddd | fF Executed by primary thread E
witeh (Servlcesurbes) | 2
cogn SRervicel; 5
FostQueund Completionitatusd, .. 0: i g
break: g.
case Service?: e
Postduesed Comletionitatusd. ..)
bEBak;
]
b #F Primary thread retuens to Startierviceltri0ispatcher
YOID Servicedainl(} |/ Executed Dy ServiceThreadl
Fig = Mgl gterServl celont rolHandl er (Hanal er EX] ﬂ
while (TRUE) | %
- Gt DueuedCom et onstatus! . . ; - 5
sethervicestatisthes, oo &
1 8
| A Service stops
YOI Servicedatn2{y | 4/ Executed By Servicelhread?
hig = ReglsterbervicelontrolHandl eriHandl era); g
while (TRUE) | =
Get tueuadfonp] eticnitatusi, . .0 ¢ e ——) :
i SetServiceStatusihss, ...b: H
) a
L]
| M Lprvice stops

70

Following are our implementations and explanations.

List 2. SNServicedLib.cs

using System;

using System. 10;

using System.Text;
using System.Threading;

using JSSHandl ingDatabase;

namespace SNServicelLib
{
/// <summary>
/// DLL Implementation of Service
/// </summary>
public class SNServicelLibClass
{
private Thread svThread;
private Streamlriter write;
private string logFilePath = @"C:WServicelLog.txt";

private string curTime;

public SNServiceLibClass()
{
//

// Constructor

71

//
svThread = new Thread(new ThreadStart(this.ServicelLoop));

write = new StreamWriter(logFilePath, true, Encoding.Unicode);

protected void ServicelLoop()
{
while (true)
{
HandlingDatabase db = new HandlingDatabase();
db. InsertData();
curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Running Service");

Thread.Sleep(10000);

public void Start()
{
svThread.Start();
curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Start Service");

public void Stop()
{

72

svThread.Abort();
curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Stop Service");

write.Close();

public void Suspend()
{
svThread. Suspend();
curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Pause Service");

public void Resume()
{
svThread.Resume();
curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Continue Service");

List 3. SNService.cs

using System;

using System.Collections;

73

using System.ComponentModel ;
using System.Data;

using System.Diagnostics;
using System.ServiceProcess;

using SNServicelLib;

namespace SNService

{
public class MyService : System.ServiceProcess.ServiceBase
{
/// <summary>
/// Essential Designer Variables
/// </summary>
private System.ComponentModel.Container components = null;

private SNServicelLibClass service;

public SNService()

{
// Windows.Forms needs this
InitializeComponent();

// TODO: Define After InitComponent Jobs Here

// Main Entrance of Process

static void Main()

{

74

System.ServiceProcess.ServiceBase[] ServicesToRun;

// More than two can be run inside one process

// 1f you want insert another services,

// change next lines. For exmaple

1/

/] ServicesToRun = New System.ServiceProcess.ServiceBasel]
// {new Servicel(), new MySecondUserService()}:

1/

ServicesToRun = new System.ServiceProcess.ServiceBase[]

{

new SNService()

System.ServiceProcess.ServiceBase.Run(ServicesToRun);

/// <summary>
/// Methods for Designer
/// Do not edit this code by code editor
/// </summary>
private void InitializeComponent ()
{
!/
// SNService
/]

75

this.CanPauseAndContinue = true;

this.ServiceName = "SNService";

/// <summary>
/// Close all resources
/// </summary>
protected override void Dispose(bool disposing)
{

if(disposing)

{

if (components != null)

{

components.Dispose():

}

base.Dispose(disposing);

/// <summary>
/// Define what services do here
/// </summary>
protected override void OnStart(stringl] args)
{
// TODO: Service starting code here

service = new MyServicelLibClass();

76

service.Start();

/// <summary>
/// Stop Service
/// </summary>

protected override void OnStop()

{
// TODO: What should do before stop service

service.Stop();

protected override void OnPause()
{

service.Suspend();

protected override void OnContinue()

{

service.Resume();

77

List 4. Projeclnstaller.cs

using System;
using System.Col lections;
using System.ComponentModel ;

using System.Configuration.Install;

namespace SNService
{
/// <summary>
/// Summary on ProjectlInstaller
/// </summary>
[Runinstaller(true)]
public class Projectinstaller :System.Configuration.Install.Installer
{
private System.ServiceProcess.ServiceProcessinstaller
serviceProcesslinstal ler1;
private System.ServiceProcess.Servicelnstaller servicelnstallert;
/// <summary>
/// Essential Designer Variables
/// </summary>

private System.ComponentModel.Container components = null;

public ProjectInstaller()
{

// This call is for designer

78

InitializeComponent();

/// <summary>
//] Close all resources
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing)
{
i f (components != null)
{

components.Dispose():

}

base.Dispose(disposing);

#region Component Designer Generated Code
/// <summary>

/// Methods for Designer

/// Do not edit this code by code editor
/// </summary>

private void InitializeComponent()

{

79

this.serviceProcessinstaller1 = new
System.ServiceProcess.ServiceProcessinstaller():

this.servicelnstaller1 = new System.ServiceProcess.Servicelnstaller();

//

// serviceProcessinstaller1

//

this.serviceProcesslinstaller1.Account =
System.ServiceProcess.ServiceAccount.LocalSystem;

this.serviceProcesslInstaller1.Password = null;

this.serviceProcessinstalleri.Username = null;

this.serviceProcessinstalleri.AfterInstall += new
System.Configuration. Install.Instal|EventHandler (
this.serviceProcessInstaller1_AfterInstall);

//

// servicelnstalleri

//

this.servicelnstaller1.DisplayName = "SNService":

this.servicelnstaller1.ServiceName = "SNService";

//
// Projectinstaller
//
this.Installers.AddRange(new System.Configuration.Install.Installer[]
{
this.serviceProcessinstaller1, this.servicelnstaller?
}

80

}

#tendregion

private void serviceProcessinstaller1_AfterInstall(object sender,

Instal |EventArgs e)

private void servicelnstaller1_AfterInstall(

object sender, InstallEventArgs e)

81

3.3 User Interface

User interface applications hosted on personal computer that allow users to
perform various tasks and to interact with the sensor network. An interface for
communicating with the network through gateway is supported as well as display

and logging of network information.

3.3.1 User Datagram Protocol

There are two protocols at the Transport Layer that Application Layer
protocols typically use for transporting data: Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). UDP is the Transport Layer protocol that
offers a minimum of services, but also has the minimum overhead for Application

Layer protocols that do not require an end-to—end reliable delivery service.

UDP is a minimal Transport Layer protocol that is a direct reflection of the
datagram services of [P, except that UDP provides a method to pass the message
portion of the UDP message to the Application Layer protocol. UDP has the

following characteristics[12]:

1 Connectionless — UDP messages are sent without a UDP-based connection
establishment negotiation.

1 Unreliable - UDP messages are sent as datagrams without sequencing or
acknowledgment. The Application Layer protocol must recover lost
messages. Typical UDP-based Application Layer protocols either provide

their own reliable service or retransmit UDP messages periodically or

82

after a defined time-out value.

1 Provides identification of Application Layer protocols — UDP provides a
mechanism to send messages to a specific Application Layer protocol or
process on an internetwork host. The UDP header provides both source and
destination process identification.

1 Provides checksum of UDP message - The UDP header provides a 16-bit

checksum over the entire UDP message.

UDP does not provide the following services for end-to-end delivery:[12]

1 Buffering — UDP does not provide any buffering of incoming or outgoing
data. The Application Layer protocol must provide all buffering.

1 Segmentation — UDP does not provide any segmentation of large blocks of
data. Therefore, the application must send data in small enough blocks
so that the [P datagrams for the UDP messages are no larger than the
Maximum Transmission Unit (MTU) of the interface on which they are sent;
otherwise IP on the sending host fragments the UDP message.

1 Flow control — UDP does not provide any sender-side or receiver-side
flow control. UDP message senders can react to the receipt of an
Internet Control Message Protocol (ICMP) Source Quench message, but it

is not required.

Because UDP does not provide any services beyond Application Layer protocol

identification and a checksum, it is hard to imagine why UDP is needed at all

However, the following are specific uses for sending data using UDP:[12]

83

1 Lightweight protocol

To conserve memory and processor resources, some Application Layer
protocols require the use of a lightweight protocol that performs a specific
function using a simple exchange of messages. A good example of a
lightweight protocol is Domain Name System (DNS) name queries. Typically, a
ONS client sends a DNS Name Query message to a DNS server. The DNS server
responds with a DNS Name Query Response message. |f the DNS server does not

respond, the DNS client retransmits the DNS Name Query.

Imagine the resources required at the DNS server if all the DNS clients
used TCP rather than UDP. All DNS interactions would be sent reliably, but
the DNS server would have to support hundreds or, on the Internet, thousands
of TCP connections. The low-overhead solution of using UDP is the best

choice for simple request-reply-based Application Layer protocols.

1 Reliability provided by the Application Layer protocol

|f the Application Layer protocol provides its own reliable data transfer

service, there is no need for the reliable services of TCP. Examples of

reliable Application Layer protocols are Trivial File Transfer Protocol

(TFTP) and Network File System (NFS).

1 Reliability not required due to periodic advertisement process

|f theApplication Layer protocol periodically advertises information,

84

reliable delivery is not required. |f an advertisement is lost, it is
announced again at the period interval. An example of an Application Layer
protocol that wuses periodic advertisements is the Routing Information

Protocol (RIP).

1 One-to-many delivery

UDP is used as the Transport Layer protocol whenever Application Layer
data must be sent to multiple destinations using an |P multicast or
broadcast address. TCP can be used only for one-to-one delivery. For example,

a broadcast NetBIOS Name Query is sent using UDP.

UDP messages are sent as |P datagrams. A UDP message consisting of a UDP

header and a message is encapsulated with an IP header using IP Protocol number

17 (0x11). The message can be a maximum Size of 65,507 bytes: 65,535 minus the

minimum-size IP header (20 bytes) and the UDP header (8 bytes). The resulting IP

datagram is thenencapsulated with the appropriate Network Interface Layer header

and trailer. Figure 37 shows the resulting frame. UDP is described in RFC

768[12]

Figure 37. UDP Message Encapsulation[12]

Metwaork une Metwork
Intarface IP hzadear header Message Interface
header trailer

"
4%

UDF message

- MNebwork Interface Layer frame

L

IF datagram ———

85

In the |P header of UDP messages, the Source [P Address field is set to the

host interface that sent the UDP message. The Destination |P Address field is

set to the unicast address of a specific host, an |P broadcast address, or an I[P

multicast address.

The UDP header is a fixed-length size of 8 bytes consisting of four fixed-

length fields, as Figure 38 shows.

Figure 38. The Structure of the UDP Header[12]

Source Port |||||||

Destination Port |[|]]|]|

tength. | [|]][]

Checksum |||||||

The fields in the UDP header are defined as follows[12]:

1 Source Port

A 2-byte field used to identify the source Application Layer protocol

sending the UDP message. The use of a source port is optional and, when not

used, is set to 0. IP multicast traffic, such as videocasts sent using UDP,

86

can use 0O because no reply to the video traffic is assumed. Typical
Application Layer protocols use the source port of the incoming UDP message

as the destination port for replies.

1 Destination Port

A 2-byte field used to identify the destination Application Layer protocol.
The combination of the IP header's destination IP address and the UDP
header's destination port provides a unique, globally significant address

for the process to which the message is sent.

1 Length

A 2-byte field used to indicate the length in bytes of the UDP message
(UDP header and message). The minimum length is 8 bytes (the UDP header's
size), and the maximum is 65,515 bytes (maximum-sized IP datagram of 65,535
bytes minus the minimum-sized IP header of 20 bytes). The actual maximum
length is confined by the MTU of the link on which the UDP message is sent.
The Length field is a redundant field. The UDP length can always be
calculated from the Total Length and the I[P Header Length fields in the IP
header (UDP length = payload length = total length - 4x IP header length [in
32-bit words]).

1 Checksum

A 2-byte field that provides a bit-level integrity check for the UDP

87

A
for
is t

dest

message (UDP header and message). The UDP checksum calculation uses the same
method as the [P header checksum over the UDP pseudo header, the UDP header,
the message, and, if needed, a padding byte of 0x00. The padding byte is
used only if the message's length is an odd number of bytes. The use of the
UDP Checksum field is optional. |f not used, the UDP Checksum field is set

to 0.

UDP port defines a location or message queue for the delivery of messages
Application Layer protocols using UDP services. Included in each UDP message
he source port (the message queue from which the message was sent) and a

ination port (the message queue to which the message was sent). The Internet

Assigned Numbers Authority (IANA) assigns port numbers, known as wel|l-known port

numbers, to specific Application Layer protocols. Table 7 shows well-known UDP

port

numbers used by the Windows Server 2003 family and Windows XP components.

Table 7. Well-Known UDP Port Numbers[12]

Port Number | Application Layer Protocol

53 ONS

67 BOOTP client (Dynamic Host Configuration Protocol [DHCP])

68 BOOTP server (DHCP)

69 TFTP

137 NetBIOS Name Service

138 NetBIOS Datagram Service

161 Simple Network Management Protocol (SNMP)

445 Direct hosting of Server Message Block (SMB) datagrams over

88

TCP/ 1P

520 RIP

1812, 1813 Remote Authentication Dial-In User Service (RADIUS)

UDP provides a connectionless and unreliable delivery service for applications
that do not require the guaranteed delivery service of TCP. Application Layer
protocols use UDP for [lightweight interaction, for broadcast or multicast
traffic, or when the Application Layer protocol provides its own reliable
delivery service. The UDP header provides a checksum and the identification of
source and destination port numbers to multiplex UDP message data to the proper
Application Layer protocol. To consider the characteristics of sensor network

traffic, UDP can be perfectly fit in.

3.3.2 0DBC

Open DataBase Connectivity (ODBC) is an Application Programming Interface
(AP1) that allows a programmer to abstract a program from a database. When
writing code to interact with a database, you usually have to add code that
talks to a particular database using a proprietary language. |f you want your
program to talk to an Access, Fox and Oracle databases you have to code your

program with three different database |anguages.

When programming to interact with ODBC you only need to talk the ODBC language
(a combination of O0DBC APl function calls and the SQL language). The O0DBC
Manager will figure out how to contend with the type of database you are

targeting. Regardless of the database type you are using, all of your calls will

89

be to the ODBC API. All that you need to do is having installed an ODBC driver

that is specific to the type of database you will be using.

Over the years Microsoft has modified what they call ODBC. |t used to be that
you would download their ODBC manager. You would then download and install any
database specific ODBC drivers that you need. However times have changed and so

has marketing.

Now there are a bunch of different layers of database software. You can find
ADO, RDO, OLE DB and a variety of others. Microsoft has merged all of these
technologies into one nifty installation package called MDAC (Microsoft Data
Access Components). Basically it consists of several components that provide
various database technologies; including ODBC. MDAC is a royalty-free

redistributable package that you can install on a Windows machine without a cost.

Here are some examples of using Win32::00BC used as a CGl script. It fully

outlines ODBC usage basics.

1. First you need to create a DSN (Data Source Name) which is a name that
represents the database file (or connection) and ODBC driver as well

as user id and password.

2. Second you add the following USE line to the beginning of your Perl

script: use Win32::0DBC;

3. Third you open a connection to your database with (note that this

90

example checks for failure):

$OSN = "My DSN";
if (1($db = new Win32::00BC($DSN))){
print "Error connecting to $DSN#n";
print "Error: " . Win32::00BC::Error() . "#n";

exit;

4. Fourth vyou execute vyour SQL command (NOTE: due to backward
compatibility with NT::00BC the Sgl() method returns undef if it was

successful and a non zero integer error number if it fails):

$SqlStatement = "SELECT * FROM Foo";

if ($db—>Sqgl($SqlStatement)) {
print "SQL failed.#n";
print "Error: " . $db—>Error() . "Wn";
$db—>Close();

exit;

5. Fifth you fetch the next row of data until there are no more left to

fetch. For each row you retrieve data and process it:

whi le($db—>FetchRow()){

undef %Data;

91

%Data = $db—>DataHash();

...process the data...

6. Sixth you close the connection to the database:

$db—>Close();

Figure 39. ODBC Data Source Administrator[11]

€ 0ODBC Data Source Administrator N 2| x|

User DSN | System DSN | File DSN | Diivers | Tracing | Connection Pocling | About |

User Data Sources:
I Name | Driver | Add.. |
IBM DBZ ODBC DRIVER
myadbe MySOL Driver Bemaove |
myodbc3 MySOL ODBC 3.51 Driver
myodbe3-test MypSOL ODBC 3.51 Driver
test MySOL Driver

An ODBC User data source stores information about how to conhect to
the indicated data provider, & Liser data source is only visible to you,
and can only be used on the current machine. A

3

[ok]| cancel | fosh | Hep |

92

Figure 40. 0DBC Configuration for MySQL[11]

MySQL ODBC 3.51 Driver - DSN Configuration

connect to MySOL server

This dialog helps you in configuring the DDBC Data Source Name, that pou can use to

~ DSN Information

Data Source Mame: imyodbﬂ

Description: IMySQL ODEC 3.51 Driver DSN

~MypSOL Connection Parameters

Host/Server Namefor IP). [localhost

Database Mame: itest

User. IF
Password: 1"”""

Port (if not 3308): {3308

"

Mysau

S0L command on connect: l

Cancel | Optiores >

[o]

Test Data Source

Help

3.3.3. User Interface Implementation

C# version of user interface program

interlocking with database and service

program has been coded for system verification. Real-time channel value, weight

variations of strain gauge sensor, can be

Figure 41 shows the output screen of program when all

999 had been entered.

93

retrieved over Internet connection.

channel selection value

Figure 41. All Channel Qutput

=10l x|

D [waLUE | All Channel

0 4095

4093 4093

252 248

Fe 200

G4 G4

4093 4093

Output @ 220 R4

e | 999 1952 216

DB reading | DB writing Clear

Following code is a core part of this process. There are two connections for 12
bits data retrieval since RS232 communication is based on 1 byte. As | mentioned
in process module part, asynchronous problem of 2 bytes serial communication has

been prevented graceful ly.

data = Encoding.Default.GetBytes("A");

server .SendTo(data, data.Length, SocketFlags.None, ipep);
recv_size = server.ReceiveFrom(data, ref remote);

int rst = datal0];

data = Encoding.Default.GetBytes("Z");
server.SendTo(data, data.Length, SocketFlags.None, ipep);
recv_size = server.ReceiveFrom(data, ref remote);

rst = rst + data[0] * 256;

94

label2.Text="";

label2.Text=Convert.ToString(rst)

An example of ODBC database connection has been presented on Figure 42 with

associated source code.

Figure 42. Saving Retrieved Data into Database

-of x|
ID [WaLUE | &Il Channel
gl T 1959
0 #g 4095
Output @
e [b |
DB feading DB writing | Clear

private void button1_Click(object sender, System.EventArgs e)
{
string source = "DRIVER={MySQL ODBC 3.51 Driver};" +
"SERVER=220.67.220.150;" +
"DATABASE=test;" +
"UlD=root;" +

"PASSWORD=;" +

95

"OPTION=3";

OdbcConnection MyConnection = new OdbcConnection(source);

MyConnect ion.Open();

OdbcDataAdapter adapter = new OdbcDataAdapter();

DataSet ds = new DataSet();

string sql1 = "insert into embedded(name, input)

values('"+textBox1.Text+"HA L "+"" '"+label2.Text+"")";

adapter .SelectCommand = new OdbcCommand(sql1, MyConnection);

adapter .Fill(ds);

MyConnection.Close() ;

private void button2_Click(object sender, System.EventArgs e)

{

listView!.ltems.Clear();

string source = "DRIVER={MySQL ODBC 3.51 Driver};" +
"SERVER=220.67.220.150;" +
"DATABASE=test;" +
"UID=root;" +

"PASSWORD=;" +

96

"OPTION=3";

OdbcConnection MyConnection = new OdbcConnection(source);

MyConnect ion.Open();

OdbcDataAdapter adapter = new OdbcDataAdapter();

DataSet ds = new DataSet();

string sqgl = "SELECT * FROM embedded";

adapter .SelectCommand = new OdbcCommand(sql, MyConnection);

adapter .Fill(ds);

DataTable dt = ds.Tables[0];

foreach (DataRow row in dt.Rows)

{

ListViewltem item = new ListViewltem(row[0].ToString());

item.Subltems.Add(row[1].ToString());

listViewl.|tems.Add(item);

MyConnection.Close();

97

Chapter 4 Conclusion

This paper describes one type of wireless sensor network in which sensor
embedded system, RF communication system, and remote measuring system over
Internet are mixed and balanced. In order to overcome the time sequence problem
among different device parts, a total communication system using handshaking
method has been developed. This kind of system can be used in many new
applications with minor changes, ranging from environment monitoring to
industrial sensing. In fact, the applications are only limited by our

imagination.

Figure 43. 1 Channel Sensor Module

Lk L
; ol

E-..-.

98

Figure 44. Combined Controller Module with Bluetooth Tranceiver

"-II e __:I

99

References

[1] S. Arimoto, “Linear controllable system,” Nature, vol. 135, pp. 18-27,
July, 1990.

[2] “21 ideas for the 21st century,” Business Week, pp. 78-167, Aug. 30, 1999.

[3] Proceedings of the Distributed Sensor Nets Workshop. Pittsburgh, PA: Dept.
Comput. Sci., Carnegie Mellon Univ., 1978.

[4] “Distributed sensor networks,” MIT Lincoln Laboratory, Lexington, MA, Rep.
No. ESD-TR-88-175, 1986.

[5] LC4103 serious Specification, http://www.andk.co.kr/product/rod/
no_1c4103.php

[6] AD620 Instrumentation Amp Data Sheets http://www.analog.com/UploadedFiles/
Data_Sheets/897653854AD620_g. pdf

[7] AD1674 12-Bit, 100kSPS, Complete ADC Data Sheets http://www.analog.com/
UploadedFiles/Data_Sheets/346669145AD1674_c.pdf

[8] Tibbo Technology DS100 Serial Device Server http://www.tibbo.com/ds100.php

[9] Promi-DS wireless serial communicationn manual http://www.initium.co.kr/
bizdata/userguide/Promi-SD_User%20manual_V2.5.pdf

[10] Comfile Technology PICBASIC Databook http://www.comfile.co.kr/
download/pb/PBMAN10. pdf

[11] Microsoft Developer Network http://msdn.microsoft.com/

[12] Steven W.Richard, “TCP/IP Illustrated Volume 1: The Protocols,” Addison-
Wesley, 1993

[13]

el

F=AND LC4103 Series http://www.andk.co.kr/product/rod/no_1c4103.php

100

	Chapter 1 Introduction
	1.1 Background
	1.2 Technology Trend
	1.3 Purpose of Project
	1.3.1 Network Control and Routing
	1.3.2 Collaborative Signal and Information Processing
	1.3.3 Tasking and Querying

	Chapter 2 Hardware Architecture
	2.1 Sensor Module
	2.1.1 Beam Load Cell
	2.1.2 Instrumentation Amplifier
	2.1.3 Operational Amplifier
	2.1.4 A/D Converter

	2.2 Processor Module
	2.3 Radio Module
	2.4 TCP/IP Network Module

	Chapter 3 Software Architecture
	3.1 Software Architecture
	3.2 Service Applications
	3.2.1 Window Service Communication Architecture
	3.2.2 Services Snap-In
	3.2.3 The Windows Service Application Architecture

	3.3 User Interface
	3.3.1 User Datagram Protocol
	3.3.2 ODBC
	3.3.3 User Interface Implementation

	Chapter 4 Conclusion
	References

