
2006년 08월

박사학위논문

16채널 스트레인 게이지를 위한

무선 센서네트워크 시스템

조선대학교 대학원

제어계측공학과

원 용 일

[UCI]I804:24011-200000232654

16채널 스트레인 게이지를 위한

무선 센서네트워크 시스템

Wireless Sensor Network System

for 16 Channels Strain Gauge

2006년 08월 25일

조선대학교 대학원

제어계측공학과

원 용 일

16채널 스트레인 게이지를 위한

무선 센서네트워크 시스템

지도교수 장 순 석

이 논문을 공학박사학위신청 논문으로 제출함

2006년 월

조선대학교 대학원

제어계측공학과

원 용 일

원용일의 박사학위 논문을 인준함

위원장 조선대학교 교수 인

위 원 조선대학교 교수 인

위 원 조선대학교 교수 인

위 원 남부대학교 교수 인

위 원 남부대학교 교수 인

2006년 월 일

조선대학교 대학원

 i

Contents

Abstract

Chapter 1 Introduction …………………………… 1

1.1 Background ……………………………………………… 1

1.2 Technology Trend ……………………………………… 3

1.3 Purpose of Project …………………………………… 4

1.3.1 Network Control and Routing ………………………… 5

1.3.2 Collaborative Signal and Information Processing 6

1.3.3 Tasking and Querying ………………………………… 8

Chapter 2 Hardware Architecture ……………… 9

2.1 Sensor Module ………………………………………… 9

2.1.1 Beam Load Cell ………………………………………… 9

2.1.2 Instrumentation Amplifier ………………………… 10

2.1.3 Operational Amplifier ……………………………… 17

2.1.4 A/D Converter ………………………………………… 19

2.2 Processor Module …………………………………… 31

2.3 Radio Module ………………………………………… 39

2.4 TCP/IP Network Module ……………………………… 44

Chapter 3 Software Architecture ……………… 50

3.1 Software Architecture ……………………………… 50

3.2 Service Applications ……………………………… 52

3.2.1 Window Service Communication Architecture …… 52

 ii

3.2.2 Services Snap-In ……………………………………… 56

3.2.3 The Windows Service Application Architecture … 66

3.3 User Interface ……………………………………… 81

3.3.1 User Datagram Protocol ……………………………… 81

3.3.2 ODBC ……………………………………………………… 88

3.3.3 User Interface Implementation …………………… 92

Chapter 4 Conclusion ……………………………… 97

References …………………………………………… 99

 iii

List of Figures

Figure 1. LC4103 Beam Load Cell Strain Gauge ……………………… 9

Figure 2. Amplification Circuit Layout ……………………………… 11

Figure 3. Three Op Amp IA Design ……………………………………… 12

Figure 4. AD620 Connection Diagram …………………………………… 13

Figure 5. Three OP Amp IA Designs vs. AD620 ……………………… 14

Figure 6. AD620 Total Voltage Noise vs. Source Resistance …… 15

Figure 7. Differential Shield Driver ………………………………… 16

Figure 8. Common-Mode Shield Driver ………………………………… 17

Figure 9. HA17741 Pin Arrangement …………………………………… 18

Figure 10. HA17741 Circuit Structure ………………………………… 18

Figure 11. A/D Converter Circuit Layout ……………………………… 19

Figure 12. AD1674 Functional Block Diagram, Pin Configuration … 21

Figure 13. AD1674 Equivalent Internal Logic Circuitry …………… 23

Figure 14. Regulator Circuit Layout …………………………………… 24

Figure 15. Total Circuit Layout ………………………………………… 25

Figure 16. A/D Converter Top Layout …………………………………… 26

Figure 17. A/D Converter Bottom Layout ……………………………… 27

Figure 18. Controller Top Layout ……………………………………… 28

Figure 19. Controller Bottom Layout …………………………………… 29

Figure 20. Mainboard Layout ……………………………………………… 30

Figure 21.PICBASIC Programming Environment ………………………… 31

Figure 22. PBM-R5 Pinout ………………………………………………… 33

Figure 23. PICBASIC Studio Programming Interface ………………… 35

Figure 24. SD202 Components and Assembly …………………………… 41

Figure 25. Device Setting Menu ………………………………………… 42

Figure 26. DS100 Connectors and Controls …………………………… 44

Figure 27. DS Setting Dialog …………………………………………… 47

 iv

Figure 28. DS Routing Status Dialog ………………………………… 48

Figure 29. Program Flow Diagram ………………………………………… 50

Figure 30. Windows Service Communication Architecture …………… 56

Figure 31. Services Snap-in ……………………………………………… 58

Figure 32. General Tap for Windows Installer Service …………… 61

Figure 33. Log On Tab for the Distributed Link Tracking Service 63

Figure 34. Recovery tab for the Fax Service Service ……………… 65

Figure 35. Dependencies tab for the Workstation service ………… 66

Figure 36. Windows Service Application Architecture ……………… 69

Figure 37. UDP Message Encapsulation ………………………………… 84

Figure 38. The Structure of the UDP Header ………………………… 85

Figure 39. ODBC Data Source Administrator …………………………… 91

Figure 40. ODBC Configuration for MySQL ……………………………… 92

Figure 41. All Channel Output …………………………………………… 93

Figure 42. Saving Retrieved Data into Database …………………… 94

Figure 43. 1 Channel Sensor Module …………………………………… 97

Figure 44. Combined Controller Module with Bluetooth Tranceiver 98

Figure 45. Assembled System in Testing Lab ………………………… 98

 v

List of Tables

Table 1. LC4103 Beam Load Cell Specification ………………………… 10

Table 2. AD1674 Truth Table ……………………………………………… 22

Table 3. PBM-R5 Module Specification …………………………………… 32

Table 4. Bluetooth Serial Adapter SD202 Specification …………… 40

Table 5. DS100 Specification ……………………………………………… 45

Table 6. Some Services Installed on Microsoft Windows 2000 ……… 52

Table 7. Well-Known UDP Port Numbers …………………………………… 87

 vi

List of Lists

List 1. PICBASIC Source Code and Explanations ……………………… 36

List 2. SNServicedLib.cs …………………………………………………… 70

List 3. SNService.cs ………………………………………………………… 72

List 4. ProjecInstaller.cs ………………………………………………… 77

 vii

ABSTRACT

WirWirWirWireless Sensor Network Systemeless Sensor Network Systemeless Sensor Network Systemeless Sensor Network System

FFFFor 16 Channel Strain Gaugeor 16 Channel Strain Gaugeor 16 Channel Strain Gaugeor 16 Channel Strain Gauge

Won Yong-Il

Advisor: Prof. Soon-Suck Jarng

Dept. of Control & Instrumentation Eng.

Graduate School of Chosun University

This paper presents a wireless sensor network system in which

weight measuring instrumentation process, data conversion process,

and the series of signal controlling processes are seamlessly

cooperative. 16 strain gauges are working as incoming sensors. Each

output is amplified and filtered for proper analog signal processing.

Several measuring instrumentation OP amps and general-purpose OP amps

are used. 12 bits A/D converter transforms analog signal to digital

bits. PIC microprocessor controls the operations of measuring strain

gauges. RF RS232C module is adapted for wireless communication

between the PIC microprocessor and TCP/IP hosting device. Service

program is considered as seamless and stable monitoring operation

tool over Internet. Database-based data handling system could bring

firm basis for statistical data processing application. In order to

overcome the time sequence problem among different device parts, a

total communication system using handshaking method has been

developed.

 1

Chapter 1 Introduction

1.1 Background

A sensor network is a computer network of spatially distributed devices using

sensors to monitor conditions (such as temperature, sound, vibration, pressure,

motion or pollutants) at a variety of locations. Usually the devices are small

and inexpensive, allowing them to be produced and deployed in large numbers;

this constrains their resources in terms of energy, memory, computational speed

and bandwidth[4].

Each device is equipped with a radio transceiver, a small microcontroller, and

an energy source, most commonly a battery. The devices work off each other to

deliver data to the computer which has been set up to monitor the information.

Sensor networks involve three areas: sensing, communications, and computation

(hardware, software, algorithms). They are applied in many areas, such as video

surveillance, traffic monitoring, home monitoring and manufacturing.

The unique aspects of sensor network can best be examined with significant

numbers of prototype devices explicitly designed for this purpose, as opposed to

generic computing platforms. Some of the unique requirements for wireless

sensing network include:

• Small, lightweight form factor

 2

• Robustness to wide temperature ranges and other demanding environmental

conditions

• Battery or other stand-alone power sources

• Low power operation and access to internal power control mechanisms

• A small, low power radio having sufficient range

• A real-time execution environment

• The ability to write program code in a high level language for rapid

algorithm hosting and testing

• Reasonable cost

Sensor network technology is a key technology for the 21
st
 century. Cheap,

smart devices with multiple onboard sensors, networked through wireless links

and the Internet and deployed in large numbers, provide unprecedented

opportunities for measuring and controlling homes, cities, and the environment.

In addition, networked micro-sensors provide the technology for a broad spectrum

of systems in the defense arena, generating new capabilities for reconnaissance

and surveillance as well as other tactical applications.

Current and potential applications of sensor networks include: military

sensing, physical security, air traffic control, traffic surveillance, video

surveillance, industrial and manufacturing automation, distributed robotics,

environment monitoring, and building and structures monitoring. The sensors in

these applications may be small or large, and the networks may be wired or

wireless. However, ubiquitous wireless networks of micro-sensors probably offer

the most potential in changing the world of sensing.

 3

1.2 Technology Trend

Current sensor networks can exploit technologies not available 20 years ago

and perform functions that were not even dreamed of at that time. Sensors,

processors, and communication devices are all getting much smaller and

cheaper[2].

Commercial companies such as Ember, Crossbow, and Sensoria are now building

and deploying small sensor nodes and systems. These companies provide a vision

of how our daily lives will be enhanced through a network of small, embedded

sensor nodes.

Wireless networks based upon IEEE 802.11 standards can now provide bandwidth

approaching those of wired networks. At the same time, the IEEE has noticed the

low expense and high capabilities that sensor networks offer. The organization

has defined the IEEE 802.15 standard for personal area networks (PANs), with

“personal networks” defined to have a radius of 5 to 10 m. Networks of short-

range sensors are the ideal technology to be employed in PANs. The IEEE

encouragement of the development of technologies and algorithms for such short

ranges ensures continued development of low-cost sensor nets. Furthermore,

increases in chip capacity and processor production capabilities have reduced

the energy per bit requirement for both computing and communication. Sensing,

computing, and communications can now be performed on a single chip, further

reducing the cost and allowing deployment in ever larger numbers[3].

 4

Looking into the future, we predict that advances in MEMS (Micro Electro

Mechanical System) technology will produce sensors that are even more capable

and versatile. For example, Dust Inc., Berkeley, CA, a company that sprung from

the late 1990s Smart Dust research project at the University of California,

Berkeley, is building MEMS sensors that can sense and communicate and yet are

tiny enough to fit inside a cubic millimeter. A Smart Dust optical mote uses

MEMS to aim sub-millimeter-sized mirrors for communications. Smart Dust sensors

can be deployed using a 3x10 mm “wavelet” shaped like a maple tree seed and

dropped to float to the ground. A wireless network of these ubiquitous, low-cost,

disposable micro-sensors can provide close-in sensing capabilities in many

applications[4].

1.3 Purpose of Project

While sensor networks for various applications may be quite different, they

share common technical issues. Therefore, one well-designed sensor network

system can be a great helper to variety of sensor network application. The

purpose of this project is to develop reusable type of sensor network system

that allows us to instrument, observe, and respond to phenomena in the natural

environment.

Since sensor network is the mixture of sensing, computing and communication

infrastructure, it generally poses considerable technical problems in data

processing, communication, and sensor management. Followings are common

technical challenges in sensor network implementation.

 5

1.3.1 Network Control and Routing

The network must deal with resources - energy, bandwidth, and the processing

power - that are dynamically changing, and the system should operate

autonomously, changing its configuration as required. Since there is no planned

connectivity in ad hoc networks, connectivity must emerge as needed from the

algorithms and software. Since communication links are unreliable and shadow

fading may eliminate links, the software and system design should generate the

required reliability. This requires research into issues such as network size or

the number of links and nodes needed to provide adequate redundancy. Also, for

networks on the ground, RF transmission degrades with distance much faster than

in free space, which means that communication distance and energy must be well

managed. Protocols must be internalized in design and not require operator

intervention.

Alternative approaches to traditional Internet methods, including mobile IP,

are needed. One of the benefits of not requiring IP addresses at each node is

that one can deploy network devices in very large numbers. Also, in contrast to

the case of IP, routes are built up from geo-information, on an as-needed basis,

and optimized for survivability and energy. This is a way to form connections on

demand, for data-specific or application-specific purposes. IP is not likely to

be a viable candidate in this context, since it needs to maintain routing tables

for the global topology, and because updates in a dynamic sensor network

environment incur heavy overhead in terms of time, memory, and energy.

 6

Survivability and adaptation to the environment are ensured through deploying

an adequate number of nodes to provide redundancy in paths, and algorithms to

find the right paths. Diffusion routing methods, which rely only upon

information at neighboring nodes, are a way to address this, although such

methods may not achieve the information-theoretic capacity of a spatially

distributed wireless network. Another important design issue is the

investigation of how system parameters such as network size and density of nodes

per square mile affect the tradeoffs between latency, reliability, and energy.

1.3.2 Collaborative Signal and Information Processing

The nodes in an ad hoc sensor network collaborate to collect and process data

to generate useful information. Collaborative signal and information processing

over a network is a new area of research and is related to distributed

information fusion. Important technical issues include the degree of information

sharing between nodes and how nodes fuse the information from other nodes.

Processing data from more sensors generally results in better performance but

also requires more communication resources (and, thus, energy). Similarly, less

information is lost when communicating information at a lower level (e.g., raw

signals), but requires more bandwidth. Therefore, one needs to consider the

multiple tradeoffs between performance and resource utilization in collaborative

signal and information processing using micro-sensors[1].

When a node receives information from another node, this information has to be

combined and fused with local information. Fusion approaches range from simple

rules of picking the best result to model-based techniques that consider how the

 7

information is generated. Again there is a tradeoff between performance and

robustness. Simple fusion rules are robust but suboptimal while more

sophisticated and higher performance fusion rules may be sensitive to the

underlying models. In a networked environment, information may arrive at a node

after traveling over multiple paths. The fusion algorithm should recognize the

dependency in the information to be fused and avoid double counting. Keeping

track of data pedigree is an approach used in networks with large and powerful

sensor nodes, but this approach may not be practical for ad hoc networks with

limited processing and communication resources.

Sensor networks are frequently used in the detection, tracking, and

classification of targets. Data association is an important problem when

multiple targets are present in a small region. Each node must associate its

measurements of the environment with individual targets. In addition, targets

detected by one node have to be associated with targets detected by other nodes

to avoid duplication and enable fusion. Optimal data association is

computationally expensive and requires significant bandwidth for communication.

Thus distributed data association is also a tradeoff between performance and

resource utilization, requiring distributed data association algorithms tailored

to sensor nets.

Other processing issues include how to meet mission latency and reliability

requirements, and how to maximize sensor network operational life. A dense

network of cheap sensors may allow spatial sampling without the need for

expensive algorithms. These algorithms must be asynchronous, as the processor

speeds and communication capabilities may vary or even disappear and reappear.

 8

Sensor nodes must determine results with progressively increasing accuracy, and

so the processes can be terminated when enough precision is gained.

1.3.3 Tasking and Querying

A sensor field is like a database with many unique features. Data is

dynamically acquired from the environment, as opposed to being entered by an

operator. The data is distributed across nodes, and geographically dispersed

nodes are connected by unreliable links. These features render the database view

more challenging, particularly for military applications given the low-latency,

real-time, and high-reliability requirements of the battlefield.

It is important that users have a simple interface to interactively task and

query the sensor network. An example of a human-network interface is a handheld

unit that accepts speech input. The users should be able to command access to

information, e.g., operational priority and type of target, while hiding details

about individual sensors. One challenge is to develop a language for querying

and tasking, as well as a database that can be readily queried. Other challenges

include finding efficient distributed mechanisms for query and task compilation

and placement, data organization, and caching.

Mobile platforms can carry sensors and query devices. As a result, seamless

internetworking between mobile and fixed devices in the absence of any

infrastructure is a critical and unique requirement for sensor networks. For

example, an airborne querying device could initiate a query, and then tell the

ground sensor network that it will be flying over a specific location after a

 9

minute, where the response to the query should be ex-filtrated.

 10

Chapter 2 Hardware Architecture

2.1 Sensor Module

Sensor module has three major parts: strain gauge sensor for each channel, A/D

converting part which amplifies and filters analog signal of sensor into digital

output, and controlling part which controls each channel for data collection and

sends collected data to communication part.

2.1.1 Beam Load Cell

Figure 1. LC4103 Beam Load Cell Strain Gauge[13]

This beam load cell has been mainly used for single point platform weighing.

 11

Its produced output signal is directly proportional to the applied weight. Since

the single point design is highly resistant to eccentric loading, the scale base

and weighing platform could be directly mounted conveniently. Following is its

specification[5].

Table 1. LC4103 Beam Load Cell Specification[13]

Rated Output 1.0mV/V±15/-0%

Error Range ±0.015% of R.O.

Safe Overload 300% of R.O.

Zero balance 20 ± 5% of R.O.

Compensated temperature range -10℃ - +40℃

Suggested voltage 12V

Maximum voltage 15V

Input terminal resistance Approx. 400Ω

Output terminal resistance 350Ω± 5Ω

Platform size 400×600㎜

Line length 2m

2.1.2 Instrumentation Amplifier

The differential input single-ended output instrumentation amplifier can be

selected as one of the most versatile signal processing amplifiers available. It

precisely amplifies differential dc or ac signals while rejects large values of

 12

common mode noise. By adapting integrating circuits, high level of performance

is obtained without incurring the cost problem[6].

Figure 2. Amplification Circuit Layout

 13

Figure 3. Three Op Amp IA Design[6]

Figure 3 show a basic instrumentation amplifier which provides a 10 volt

output for 100 mW input, while rejecting greater than +/- 11V of common mode

noise. The input signal should be buffered two voltage followers to obtain good

input characteristics. The LM102 has 10,000 M Ω input impedance with 3 nA input

current. The high level of input impedance provides two benefits. First it makes

the instrumentation amplifier possibly being used with high source resistances

while still maintaining low error. Secondly it allows the source resistances to

be unbalanced by over 10,000 Ω with no degradation in common mode rejection.

The followers providing gain and rejecting the common mode voltage guide the

operation of a balanced differential amplifier, as show in Figure 3. By setting

 14

the ratio of R4 to R2 and R5 to R3, the gain could be decided. Calculating with

the values shown in Figure 3, the gain for differential signals is 100[6].

Figure 4. AD620 Connection Diagram[6]

The AD620 can set gains of 1 to 10,000 with only one external resistor.

Therefore, it can be called as a low cost, high accuracy instrumentation

amplifier. Furthermore, the AD620 features 8-lead SOIC and DIP packaging is

smaller than discrete designs. It offers lower power (only 1.3 mA max supply

current). With these features, the AD620 can be a good fit for battery-powered,

portable (or remote) applications.

The AD620 has high accuracy of 40 ppm maximum nonlinearity, low offset voltage

of 50 μV max, and offset drift of 0.6 μV/°C max. To consider these features,

the AD620 is quite useful in precision data acquisition systems, such as weigh

 15

scales and transducer interfaces. To consider more on the features of AD620 like

the low noise, low input bias current, and low power, it is not difficult to

find that AD620 is used in medical applications, such as ECG and noninvasive

blood pressure monitors[6].

Figure 5. Three OP Amp IA Designs vs. AD620[6]

With the use of Superbeta processing in the input stage, the low input bias

current of 1.0 nA max can be made. Due to its low input voltage noise of 9 nV/√

Hz at 1 kHz, 0.28 μV p-p in the 0.1 Hz to 10 Hz band, and 0.1 pA/√Hz input

current noise, the AD620 also works well as a preamplifier. To consider its

settling time of 15 μs to 0.01%, the AD620 is enough to fit into multiplexed

 16

applications, and its low cost fulfills the requirements for the designs with

one in-amp per channel[6].

Figure 6. AD620 Total Voltage Noise vs. Source Resistance[6]

Instrumentation amplifiers like the AD620 offer high CMR. CMR is a measure of

the change in output voltage when both inputs are changed by equal amounts.

Implementing a full-range input voltage change and a specified source imbalance,

these specifications are usually required.

To maintain optimal CMR level, the reference terminal should be tied to a low

impedance point. Differences in capacitance and resistance also should be kept

 17

to a minimum between the two inputs. In many applications, shielded cables are

adopted for noise minimization. For best CMR over frequency, the shield should

be properly driven. Figure 7 and Figure 8 show active data guards that are

configured to improve ac common-mode rejections. The capacitance mismatch

between the inputs can be minimized by bootstrapping the capacitances of input

cable shields.

Figure 7. Differential Shield Driver[6]

 18

Figure 8. Common-Mode Shield Driver[6]

2.1.3 Operational Amplifier

The term operational amplifier or op-amp refers to a class of high-gain DC

coupled amplifiers with two inputs and a single output. The modern integrated

circuit version is typified by the famous 741 op-amp. Some of the general

characteristics of the IC version are high gain, on the order of a million, high

input impedance, low output impedance, used with split supply, usually +/- 15V,

used with feedback, with gain determined by the feedback network.

The most common and most famous op-amp is the mA741C or just 741, which is

packaged in an 8-pin mini-DIP.

 19

Figure 9. HA17741 Pin Arrangement[6]

Figure 10. HA17741 Circuit Structure[6]

 20

2.1.4 A/D Converter

The AD1674 is a complete, multipurpose, 12-bit analog-to-digital converter. It

has a user-transparent onboard sample-and-hold amplifier (SHA), 10 volt

reference, clock and three-state output buffers for microprocessor interface[7].

The AD1674 is pin compatible with the industry standard AD574A and AD674A.

While delivering faster conversion rate, it also has a sampling function. The

on-chip SHA delivers a wide input bandwidth supporting 12-bit accuracy over the

full Nyquist bandwidth of the converter.

Figure 11. A/D Converter Circuit Layout

 21

Not only ac parameters (such as S/(N+D) ratio, THD, and IMD) but also dc

parameters (offset, full-scale error, etc.) is fully specified by the AD1674.

The AD1674 is ideal for use in signal processing and traditional dc measurement

applications since its support for both ac and dc specifications.

In order to combine high performance bipolar analog circuitry into the same

die with digital CMOS logic, The AD1674 design adapted Analog Devices’ BiMOS II

process.

According to temperature grades, there are five available grades. For

operation over the 0°C to +70°C temperature range, the AD1674J and K grades

are suitable. The A and B grades are for the temperature from –40°C to +85°C.

Finally the AD1674T grade is specified from –55°C to +125°C. The J and K

grades are available in both 28-lead plastic DIP and SOIC. The A and B grade

devices are available in 28-lead hermetically sealed ceramic DIP and 28-lead

SOIC. The T grade is available in 28-lead hermetically sealed ceramic DIP[7].

 22

Figure 12. AD1674 Functional Block Diagram, Pin Configuration[7]

The AD1674 is a complete 12-bit, 10 ms sampling analog-to-digital converter. A

block diagram of the AD1674 is shown on Figure 12.

In order to initiate a conversion, AD1674 commands the control section placing

the sample-and-hold amplifier (SHA) in the hold mode, enabling the clock, and

resetting the successive approximation register (SAR). During the conversion

cycle, its process cannot be stopped or restarted. Therefore, data is not

available from the output buffers. When the conversion has been completed, the

SAR, timed by the internal clock, will sequence through the conversion cycle and

return an end-of-convert flag to the control section. The control section will

then disable the clock. The SHA will be switched to sample mode. In order to

acquire 12-bit degree accuracy, the STS LOW going edge should be delayed. During

 23

the SHA acquisition interval, external command can ask the control section data

read functions anytime.

During the conversion cycle, the SAR sequences the internal 12-bit, 1 mA full-

scale current output DAC from the most significant bit (MSB) to the least

significant bit (LSB). Its output accurately balances the current through the 5

kW resistor from the input signal voltage held by the SHA. While maintaining a 1

mA full-scale output current through the 5 kW resistor for both ranges, the

SHA’s input scaling resistors divide the input voltage by 2 for the 10 V input

span and by 4 V for the 20 V input span, Following is the comparing process

determining whether the addition of each successively weighted bit current

causes the DAC current sum to be greater than or less than the input current. If

the sum is less, the bit is left on; if more, the bit is turned off. After

completing all bits test, the SAR contains a 12-bit binary code. The code

accurately represents the input signal to within ±1/2 LSB[7].

Table 2. AD1674 Truth Table[7]

 24

There are two operating mode in The AD1674, the full control mode and the

stand-alone mode. First, the full-control mode utilizes all the AD1674 control

signals. In this mode, through a single data bus, multiple devices can be

addressed simultaneously. On the other hand, the stand-alone mode is specialized

in systems with dedicated input ports available and thus not requiring full bus

interface capability.

Table 2 is a truth table for the AD1674, and Figure 13 illustrates the

internal logic circuitry.

Figure 13. AD1674 Equivalent Internal Logic Circuitry[7]

Following are related circuit diagrams.

 25

Figure 14. Regulator Circuit Layout

 26

Figure 15. Total Circuit Layout

 27

Figure 16. A/D Converter Top Layout

 28

Figure 17. A/D Converter Bottom Layout

 29

Figure 18. Controller Top Layout

 30

Figure 19. Controller Bottom Layout

 31

Figure 20. Mainboard Layout

 32

2.2 Processor Module

Simply PICBASIC 2000 is micro single board computer which can be applicable in

various field of automation control area such as automated machine, thermal

controller, inspection ZIG, ROBOT controller, data acquaintance device etc.

Based on BASIC language, the PICBASIC language has various useful single

instructions such as ADIN, PWN, and SEROUT etc. Since it take the printer port

interface of PC as programming channel, programming work could be more simple

and easy[10].

Figure 21.PICBASIC Programming Environment[10]

FLASH ROM 29C512 (64Kbyte) is used for the main memory of PBM-R5 module. SRAM

62256 (32Kbyte) and a EEPROM 24LC256 (32Kbyte) are both for its data memory[10].

 33

Table 3. PBM-R5 Module Specification[10]

Main memory 64K byte

Data memory 32K byte

I/O ports 34

Main processor PIC16F877

Oscillation frequency 20MHz

Memory access Serial

EEPROM for data 32K byte

No. of Pin 40

A/D channel (Resolution) 8 (10 bit)

12 bit A/D 2 channel

PWM channel (Resolution) 2 (10 bit)

String Available

32 bit integer, real number Available

RE232 buffering method Available

 34

Figure 22. PBM-R5 Pinout[10]

Pin

No.

Description Port

block

Input Function

1 +5V Power,5V

2 /RES Reset,5V

3 GND Ground

4 I/O0/AD0 Port 0 Block0 TTL 10bits AD input

5 I/O1/AD1 Port 1 Block0 TTL 10bits AD input

6 I/O2/AD2 Port 2 Block0 TTL 10bits AD input

7 I/O3/AD3 Port 3 Block0 TTL 10bits AD input

8 I/O4/AD4 Port 4 Block0 TTL 10bits AD input

9 I/O5/AD5 Port 5 Block0 TTL 10bits AD input

10 I/O6/AD6 Port 6 Block0 TTL 10bits AD input

 35

11 I/O7/AD7 Port 7 Block0 TTL 10bits AD input

12 I/O8/INT Port 8 Block1 ST Edge interrupt

13 I/O9/PWM0 Port 9 Block1 ST 10bitsPWMport

14 I/O10/PWM1 Port 10 Block1 ST 10bitsPWMport

15 I/O11 Port 11 Block1 ST

16 I/O12 Port 12 Block1 ST

17 I/O13 Port 13 Block1 ST

18 I/O14/TX Port 14 Block1 ST RS232C trans

19 I/O15/RX Port 15 Block1 ST RS232C recv

20 CLKIN Count IN ST

21 I/O16 Port 16 Block2 ST

22 I/O17 Port 17 Block2 ST

23 I/O18 Port 18 Block2 ST

24 I/O19 Port 19 Block2 ST

25 I/O20 Port 20 Block2 ST

26 I/O21 Port 21 Block2 ST

27 I/O22 Port 22 Block2 ST

28 I/O23 Port 23 Block2 ST

29 I/O24 Port 24 Block3 ST

30 I/O25 Port 25 Block3 ST

31 I/O26 Port 26 Block3 ST

32 I/O27 Port 27 Block3 ST

33 I/O28 Port 28 Block3 ST

34 I/O29 Port 29 Block3 ST

35 I/O30 Port 30 Block3 ST

 36

36 I/O31 Port31 Block3 ST

37 I/O32/ADC0 Port32 AD only 12bits,ADinput

38 I/O33/ACD1 Port 33 AD only 12bits,ADinput

39 PICBUS LCD port

40 VBB RTC Battery TM Terminal

PICBASIC has PICBASIC studio as Integrated Development Environment. By

including Compiler, Editor, Debugger and etc into one programming environment,

developing process could be simple like a word processing job. It is compatible

with Microsoft Windows series and not with MAC and UNIX platform.

Figure 23. PICBASIC Studio Programming Interface[10]

When programming in PICBASIC, most common interface is very RS232C

communication since it is widely used in PC as well as other devices such as

card reader, small-size printer, display, etc. PICBASIC language includes

various instructions for RS232C such as SERIN, SEROUT, PUT and GET. Furthermore

it is worth mentioning its instructions for dealing with receiving interrupt

 37

such as ON RECV etc.

In order to get the data from chosen channel, OV digital signal should be on

into A/D converter’s chip selection pin of chosen channel. Each channel of A/C

converter could send 12 bits digital signal to AD1674 and Three-state buffer

with only one digital signal line. Therefore, two digital signal lines from

microprocessor are needed, one for channel selection and one for A/C Conversion.

Following is a part of PIC BASIC source code we programmed and some explanations.

List 1. PICBASIC Source Code and Explanations

CONST DEVICE = R5 ‘Device = PBM-R5 Module

SET RS232 38400 ‘Declare RS232C communication baud rate

 ‘as 38400 baud rate

DIM KH AS BYTE ‘Declaration of High 8 bits Integer

DIM KH_BUF AS BYTE ‘Declaration of High 8 bits Integer Buffer

DIM KL AS BYTE ‘Declaration of Low 8 bits Integer

DIM KK AS BYTE ‘Declaration of Operation Code

KH = 0 ‘Initialization of variables

KL = 0

KH_BUF = 0

KK = 0

ON RECV GOSUB 100 ‘RS232C Receiving Interrupt

 38

‘This instruction calls label 100 when RX pin

‘(I/O 15
th
) receives data while RS232C hardware

‘is used. If RS232C receives data while a

‘program operates, the program stores data in

‘extra buffer after jumping to specific routine.

10 OUT 29, 0

GOTO 10

100 GET KK ‘Yes, Copy RECV to KK

IF KK = 97 THEN ‘Operation code = Read Low

KH = 0 ‘Initialization for routine case

KL = 0

KH_BUF = 0

OUT 29, 0

OUT 12, 1

OUT 13, 1

OUT 31, 1

OUT 30, 0

DELAY 1 ‘Delay by millisecond for synchronization

 ‘The range of delay is 0-65535

OUT 29, 1

DELAY 1

 39

KL = BYTEIN(2) ‘Input by byte from port block 2

KH = BYTEIN(3) ‘Input by byte from port block 3

 ‘This instruction reads eight ports

‘simultaneously and save them at a variable by

‘8bits. Port block is a unit of combined eight

‘ports. R5 module has four port blocks.

OUT 29, 0

DELAY 1

KH_BUF = KH AND &B00001111

 ‘Take only 4 bits of high bits

 ‘We do 12bits Conversion

 ‘L8 + H4

PUT KL ‘Output Low 8 bits to RS232C

 ‘This instruction outputs data through RS232C

 ‘hardware. The data is outputted through I/O

 ‘port 12 in the formant of 8bit, none parity and

 ‘1 stop bit. Before using this instruction, you

 ‘must execute SET RS232 instruction.

END IF

.

.

.

IF KK = 90 THEN ‘Operation code = Read high

PUT KH_BUF ‘Output High 4 bits to RS232C

 40

END IF

RETURN

2.3 Radio Module

The radio module uses Promi-SD202 Bluetooth as a terminal device for wireless

serial communication using the Bluetooth technology that is international

standard of short range wireless communications. Its communication range can be

reached up to 100m. In term of noise, it delivers better quality of

communication than standard RS232 cables. The FHSS (Frequency Hopping Spread

Spectrum) technique of Bluetooth let SD202 have less radio interference and less

danger of hacking in air[9].

 41

Table 4. Bluetooth Serial Adapter SD202 Specification[9]

Description External type wireless serial adapter

Power Class Class1

RF Range Up to 100m

Power Connector DC plug or 9pin

Power Supply 5V-12V

Serial Interface RS-232

Applicable Antenna Stub, Dipole, Patch

Bluetooth Qualified Fully

Type Approved TELEC, MIC, CE, FCC

Dimensions(H*W*D) 62.5*31.2*16.3

 42

Figure 24. SD202 Components and Assembly[9]

 43

Figure 25. Device Setting Menu[9]

 44

 45

2.4 TCP/IP Network Module

Tibbo DS100 device is a Ehternet-to-Serial converting module for external use.

Combining one 10BaseT Ethernet port, one serial port and an internal processor,

DS100 glues network and serial sides together. The internal processor of DS100

is based on the EM100 Ehternet Module[8].

As an universal hardware platform , the DS100 can run a variety of network and

serial communications-related application.

Figure 26. DS100 Connectors and Controls[8]

Power jack of the DS100 fits into large power connectors with 5.5mm diameter.

At least 500mA of current rating and 12VDC of nominal voltage should be

maintained. The ground of the power jack is located on the outside.

10BaseT-type Ethernet port of the DS100 is working well with all 10BaseT

 46

Ethernet hubs and also 99% of 100BaseT hubs, since most 100BaseT hubs are

actually 100/10 devices that auto-detect the type of device connected to each

port.

Table 5. DS100 Specification[8]

Ethernet interface 10 BaseT Ethernet

Serial interface and I/O lines RS232 (TX, RX, RTS, CTS)

Routing Buffers size 510 bytes x 2

Power requirements DC12V, app. 100mA

Operating temperature -5 to +70 degrees C

Operating relative humidity 10-90 %

Mechanical dimensions 95x57x30mm

Carton dimensions (bare DS100) 130x100x65mm

Gross weight (bare DS100) 170g

Carton dimensions (DS100-KIT) 320x45x90mm

Gross weight (DS100-KIT) 950g

Operation setting parameters stored in the non-volatile memory (EEPROM) of the

DS100 are functioning permanently. Once set by user, they remain intact even

when the DS100 is powered off. Most settings require the DS100 to be rebooted

for the new setting value to take effect. The baudrate (BR) setting defining the

baudrate of the serial port could be quite an example.

 47

As essential requirements for all of Ethernet devices, the DS100 has a unique

MAC-address and an assigned valid IP-address to operate properly on the network.

Since MAC-address is unique identification number preset into ROM during the

production, it cannot be changed. In contrast, IP-address should be properly set

according to the local area network setting. DHCP (Dynamic Host Configuration

Protocol) is the popular and convenient way of setting IP-address

automatically[8].

To route the data between attached serial device and the network host, the

DS100 needs to establish and maintain a data connection. Depending on current

transport protocol, the data connections can use TCP/IP or UDP/IP. In this

project, UDP data connection has been used since considering the size of packets,

a connection-less protocol is more effective than connection-based protocol.

The DS100 can allow a single data connection only because the serial port is

not a shared media and cannot be controlled by more than a single source at any

given time. This is due to the COM port architecture of the PC - One peripheral

device could be opened by one program at a time.

 48

Figure 27. DS Setting Dialog[8]

 49

Figure 28. DS Routing Status Dialog[8]

 50

Listening port parameter defining the listening port number will be associated

with transport protocols. Listening port usage of TCP/IP and UDP/IP is slightly

different.

Looking at the UDP/IP transport protocol, there are two different working

modes. First, when the routing mode is set as client, incoming connections are

not allowed. Therefore, the listening port parameter is irrelevant. DS100 sends

its own UDP datagram containing an automatically generated port number. Secondly,

when the routing mode is server, the listening port parameter defines the

listening port on which incoming UDP datagram is accepted and is also used as

the port from which outgoing UDP datagram is sent. DS100 should be set as server

in this project.

 51

Chapter 3 Software Architecture

3.1 Software Architecture

In order to support experimentation and algorithm development, a flexible

software environment is essential so that applications can be written in a high-

level language while maintaining access to low-level hardware functions. The key

wireless sensing node software functions are organized in the following layers:

Figure 29. Program Flow Diagram

Monitor/Hardware abstraction layer (HAL) provides routines for initialization,

external communication, program loading and debugging, and interrupt processing.

A packet protocol interpreter routes packets arriving from either the radio or

the external RS-232 to internal tasks. Program loading can occur either through

 52

an attached device or through the radio.

Run-time environment, this real-time kernel on each node provides the low-

level distributed wireless network infrastructure. The low-level controls for

communication protocols as well as the sensor drivers are hosted at this level.

System Applications that perform signal processing computations and higher

layer network functions (e.g., scheduling, routing). Written in a conventional

high-level programming language such as C, new applications may be downloaded

onto sensor nodes deployed in the field via the RF network.

A database management system can be an extremely complex set of software

programs that controls the organization, storage and retrieval of data (fields,

records and files) in a database. It also controls the security and integrity of

the database. The DBMS accepts requests for data from the application program

and instructs the operating system to transfer the appropriate data. When a DBMS

is used, information systems can be changed much more easily as the

organization’s information requirements change. New categories of data can be

added to the database without disruption to the existing system.

User interface applications hosted on PCs that allow users to perform various

tasks and to interact with the sensor network. An interface for communicating

with the network through a gateway is supported as well as display and logging

of network information.

 53

3.2 Service Applications

3.2.1 Window Service Communication Architecture

The Microsoft Windows operating system offers various facilities that make

implementing the server-side portion of a client-server application easier. As

you know, a server is a Windows application that performs server-side duties.

Microsoft recommends that server applications be implemented as services.

A service is a normal Windows application containing additional infrastructure

that enables it to receive special treatment by the operating system - for

example, the ability to be remotely administered, allowing an administrator to

start or stop the application from a remote machine. By turning your server

application into a service, you'll get this and other features for free[11].

Following Table lists some of the services installed on my machine running

Microsoft Windows 2000 and the name of the executable files containing the code

for the services.

Table 6. Some Services Installed on Microsoft Windows 2000

Service Name Description

Alerter Notifies users and computers of administrative alerts

DHCP Client Registers and updates IP addresses and DNS names

Event Log Logs event messages issued by programs and Windows

 54

Net Logon Supports pass-through authentication of account logon

events for computers in a domain

Plug and Play Manages device installation and configuration, and

notifies programs of device changes

Remote Procedure

Call (RPC)

Provides the endpoint mapper and other miscellaneous

RPC services

Task Scheduler Enables a program to run at a designated time

Telephony Provides Telephony API (TAPI) support

Windows Installer Installs, repairs, and removes software according to

instructions contained in .msi files

Windows Management

Instrumentation

Provides system management information

First and foremost, a service application is just a 32-bit or 64-bit

executable, so everything you already know about DLLs, structured exception

handling, memory-mapped files, virtual memory, device I/O, thread-local storage,

thread synchronization, Unicode, and other Windows facilities is available to a

service. And this means that converting an existing server application into a

service should be relatively easy and straightforward for you.

Second, you need to know that a service should have absolutely no user

interface. Most services run on a server machine locked away in a closet

somewhere. So if your service presented any user interface elements, such as

message boxes, no user would be in front of the machine to see and then dismiss

them. And, as you'll see later in this chapter, any windows created would

 55

probably appear on a window station or desktop different from the one the user

was sitting in front of, and thus the message wouldn't be visible to the user

anyway. Because a service won't have a user interface, it doesn't matter whether

you choose to implement your service as a graphical user interface (GUI)

application (with (w)WinMain as its entry point) or as a console user interface

(CUI) application (with (w)main as its entry point).

If a service is not supposed to present any user interface, how do you

configure the service? How can you start and stop a service? How can the service

issue warnings or error messages? How can the service report statistical data

about its performance? The answer to all these questions is that a service can

be remotely administered. Windows offers a number of administrative tools that

allow a service to be managed from other machines connected on the network so

that it is not necessary for someone to physically check (or even have physical

access to) the computer running the service. You are probably already familiar

with many of these tools: the Microsoft Management Console (MMC), with its

Services, Event Viewer, and System Monitor snap-ins; the registry editor; and

the Net.exe command-line tool.

These facilities are provided by Windows to simplify the development effort of

the service writer. They also give an administrator a consistent way to manage

machines remotely and locally. Note that these facilities are not exclusive to

services: any application (or device driver) can take advantage of them.

Three types of components are involved in making services work[11]:

 56

• Service Control Manager (SCM, pronounced scum) - Each Windows 2000 system

ships with a component called the Service Control Manager. This component

lives in the Services.exe file; it is automatically invoked when the

operating system boots, and terminates when the system is shut down. The

SCM runs with system privileges and provides a unified and secure means

of controlling service applications. The SCM is responsible for

communicating with the various services, telling them to start, stop,

pause, continue, and so on

• Service application - This is an application that usually presents a user

interface that allows a user to start, stop, pause, continue, and

otherwise control all the services installed on a machine. The service

control program calls special Windows functions that let it talk to the

SCM.

• Service Control Program (SCP) - This is an application that usually

presents a user interface that allows a user to start, stop, pause,

continue, and otherwise control all the services installed on a machine.

The service control program calls special Windows functions that let it

talk to the SCM.

Figure 30 shows how all these components communicate with one another. Notice

that SCP applications do not communicate with services directly; all

communication goes through the SCM. This architecture is precisely what makes

the remote administration transparent to the SCP and service applications. It is

possible to implement an architecture and a protocol that enables your SCP

application to talk directly with your service application, but you must write

the communication code yourself.

 57

Figure 30. Windows Service Communication Architecture[11]

Of these three components, you will never implement the SCM itself. Microsoft

implements the SCM and packages it into every version of Windows 2000. What you

will implement are services and SCPs. This chapter will cover what you need to

know to design and implement a service, and the next chapter will cover the

details of writing an SCP.

3.2.2 Services Snap-In

The SCP application with which you should become most familiar is the Services

snap-in, shown in Figure 31. This snap-in shows the list of all services

installed on the target machine. The Name and Description columns identify each

service's name and offer an informative description of the service's function.

The Status column indicates whether the service is Started, Paused, or Stopped

 58

(blank entries indicate "stopped"). The Startup Type column indicates when the

SCM should invoke the service, and the Log On As column indicates the security

context used by the service when it is running.

This information is kept in the SCM's database, which lives inside the

registry under the following subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

You should never access this subkey directly; instead, an SCP should call the

Windows functions (discussed in the next chapter) that manipulate the database

in this subkey. Directly modifying the contents of this key will yield

unpredictable results. When you install a product that includes a service, the

setup program for that product is an SCP that adds the service's information to

the SCM's database.

 59

Figure 31. Services Snap-in[11]

You can view a remote SCM's service database by selecting the Computer

Management node in the left pane of the Computer Management console and then

choosing Connect To Another Computer from the Action menu.

So now that you're looking at the Services snap-in, you're probably wondering

about all the tasks you can perform with it. Here are the most common

operations[11]:

Start a service Start a service Start a service Start a service

The administrator starts a service by selecting the service from the list and

clicking the Start toolbar button. Only services with a Startup Type of

Automatic or Manual can be started; disabled services cannot. Disabling a

service is useful for troubleshooting problems with a machine.

 60

Stop a service Stop a service Stop a service Stop a service

The administrator stops a service by selecting the service and clicking the

Stop toolbar button. Note that some services do not allow themselves to be

stopped after they are started. The Event Log service is an example; it stops

only when the machine shuts down.

Pause and resume a service Pause and resume a service Pause and resume a service Pause and resume a service

The administrator pauses a service by selecting a running service and clicking

the Pause toolbar button. Note that most services do not allow themselves to be

paused. Also note that "pause" has no exact definition. For one service, pausing

can mean that the service won't accept client requests until it finishes

processing the outstanding requests. For another service, pausing can mean that

the service can no longer process any of its operations. Paused services can be

resumed by clicking the Start toolbar button.

Restart a service Restart a service Restart a service Restart a service

The administrator restarts a service by selecting a running or paused service

and clicking the Restart toolbar button. Restarting a service causes the snap-in

to stop the service and then start the service. This is simply a convenience

feature and is very useful when debugging your own service.

The preceding list certainly accounts for 99 percent of what administrators do

with the Services snap-in, but the snap-in can also be used to reconfigure a

 61

service. To change a service's settings, you select the service and then display

its Properties dialog box. This dialog box contains four tabs; each tab allows

the administrator to reconfigure parts of the selected service. The configurable

settings are discussed in the following sections.

The General tab (shown in Figure. 32) allows the administrator to examine and

reconfigure general information about the service. The first fact you need to

know is that each service goes by two string names: an internal name (used for

programmatic purposes) and a display name (a pretty string presented to

administrators and users). After being added to the machine's service database,

a service's internal name cannot be altered, but the administrator can modify

the service's display name and description. The General tab also shows the

service's pathname but does not allow the administrator to change it. (This is a

limitation imposed by the tab, not by the system.) The administrator can change

the service's Startup Type to one of the following[11]:

 62

Figure 32. General Tap for Windows Installer Service[11]

• Automatic - One of the features of a service is that the SCM can

automatically start it for you. If the service has a Startup Type of

Automatic, the SCM spawns the service when the operating system boots. It

is important to note that automatic services run before any user

interactively logs on to the machine. In fact, many machines that run

Windows are set up to run only services - no one ever logs on to the

machine interactively. For example, machines running Windows and the

 63

Server service allow clients to access subdirectories, files, and

printers on a networked machine.

• Manual - A manual service tells the SCM not to start the service when the

machine boots. An administrator can start this service manually using an

SCP. A manual service (alternately known as a demand-start service) will

also start when another service that depends on the manual service is

started. I'll talk about service dependencies more in the next chapter.

• Disabled - A disabled service tells the SCM not to start it under any

circumstance. You disable the DHCP Client service when you manually

assign an IP address to your machine rather than have it dynamically

obtain an IP address from a machine running the DHCP Server service.

Disabling a service is also quite useful when troubleshooting a system by

allowing you to take a specific service out of the equation.

 64

Figure 33. Log On Tab for the Distributed Link Tracking Service[11]

In addition to configuring the actual service, the administrator can

reconfigure the security context under which the service will execute on the Log

On tab, shown in Figure 33. The security context can be one of the

following[11]:

• LocalSystem Account - A service running under the LocalSystem account can

do just about anything on the computer: open any file, shut down the

 65

machine, change the system time, and so on. A service running under the

LocalSystem account can optionally be allowed to interact with the

desktop. Most services don't require this option, and you are strongly

discouraged from using it.

• This Account - A service can also execute under a specific security

context (identified by a user's name and password). This restricts the

service to accessing the resources accessible to the specified account.

The Log On tab also allows the administrator to specify which hardware

profiles the service is enabled in. Hardware profiles allow you to configure

services according to your hardware configuration. For example, you might want

the fax service to run when your laptop computer is docked and not run when it

is undocked.

The Recovery tab, shown in Figure 34, allows the administrator to tell the SCM

what actions to perform should the service terminate abnormally. Abnormal

termination means that the service stopped without reporting a status of

SERVICE_STOPPED (discussed later in this chapter). For the first, second, and

subsequent attempts, the SCM can do nothing, automatically restart the service,

run an executable, or reboot the computer. Note that running an executable and

rebooting the computer can fail if the account under which the service is

running doesn't have the appropriate privileges or permissions.

 66

Figure 34. Recovery tab for the Fax Service Service[11]

The Dependencies tab, shown in Figure 35, shows the services on which the

selected service depends and also what services depend on the selected service.

In the figure, you'll see six services dependent on the Workstation service. If

the administrator attempts to stop the Workstation service and any dependent

services are running, the SCM fails the call. Many SCP programs are written to

notify the user that dependent services are running, and to allow the user to

choose whether to also stop the dependent services. The Dependencies tab does

not allow an administrator to modify any of these dependencies.

 67

Figure 35. Dependencies tab for the Workstation service[11]

3.2.3 The Windows Service Application Architecture

In this section, the additional infrastructure that turns a server application

into a service will be explained, thus allowing your application to be remotely

administered. Microsoft's service architecture seems to be a little difficult to

understand at first. The difficulty is due to the fact that every service

process always contains at least two threads, and these threads must communicate

 68

with one another. So you have to deal with thread synchronization issues and

inter-thread communication issues.

Another issue that should be considered is that a single executable file can

contain several services. Many services can be contained inside the Services.exe

file. Most of these services (such as DHCP Client, Messenger, and Alerter) are

fairly simple in their implementation. It would be very inefficient if each of

these services had to run as a separate process, with its own address space and

additional process overhead. Because of this overhead, Microsoft allows a single

executable to contain several services. The Services.exe file actually contains

about 20 different services inside of it, including the three just mentioned.

When designing a service executable, you must concern yourself with three

kinds of functions[11]:

Process's entry-point function This function is your standard (w)main or

(w)WinMain function with which you should be extremely familiar by now. For a

service, this function initializes the process as a whole and then calls a

special function that connects the process with the local system's SCM. At this

point, the SCM takes control of your primary thread for its own purposes. Your

code will regain control only when all of the services in the executable have

stopped running.

Service's ServiceMain function You must implement a ServiceMain function for

each service contained inside your executable file. To run a service, the SCM

spawns a thread in your process that executes your ServiceMain function. When

 69

the thread returns from ServiceMain, the SCM considers the service stopped. Note

that this function does not have to be called ServiceMain; you can give it any

name you desire.

Service's HandlerEx function Each service must have a HandlerEx function

associated with it. The SCM communicates with the service by calling the

service's HandlerEx function. The code in the HandlerEx function is executed by

your process's primary thread. The HandlerEx function either executes the

necessary action, or it must communicate the SCM's instructions to the thread

that is executing the service's ServiceMain function by using some form of

interthread communication. Note that each service can have its own HandlerEx

function, or multiple services (in a single executable) can share a single

HandlerEx function. One of the parameters passed to the HandlerEx function

indicates which service the SCM wishes to communicate with. Note that this

function does not have to be called HandlerEx; you can give it any name you

desire.

Figure 36 will help you put this architecture in perspective. It shows the

functions necessary to implement a service executable that houses two services

as well as the lines of interprocess communication (IPC) and interthread

communication (ITC). In the upcoming sections, I will examine these three

functions in detail and flesh out exactly what their responsibilities are. I

recommend that you refer to this figure while reading.

 70

Figure 36. Windows Service Application Architecture[11]

 71

Following are our implementations and explanations.

List 2. SNServicedLib.cs

using System;

using System.IO;

using System.Text;

using System.Threading;

using JSSHandlingDatabase;

namespace SNServiceLib

{

/// <summary>

/// DLL Implementation of Service

/// </summary>

public class SNServiceLibClass

{

private Thread svThread;

private StreamWriter write;

private string logFilePath = @"C:\ServiceLog.txt";

private string curTime;

public SNServiceLibClass()

{

//

// Constructor

 72

//

svThread = new Thread(new ThreadStart(this.ServiceLoop));

write = new StreamWriter(logFilePath, true, Encoding.Unicode);

}

protected void ServiceLoop()

{

while (true)

{

HandlingDatabase db = new HandlingDatabase();

 db.InsertData();

 curTime = System.DateTime.Now.ToString();

 write.WriteLine(curTime + " : Running Service");

 Thread.Sleep(10000);

}

}

public void Start()

{

svThread.Start();

curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Start Service");

}

public void Stop()

{

 73

svThread.Abort();

curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Stop Service");

write.Close();

}

public void Suspend()

{

svThread.Suspend();

curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Pause Service");

}

public void Resume()

{

svThread.Resume();

curTime = System.DateTime.Now.ToString();

write.WriteLine(curTime + " : Continue Service");

}

}

}

List 3. SNService.cs

using System;

using System.Collections;

 74

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.ServiceProcess;

using SNServiceLib;

namespace SNService

{

public class MyService : System.ServiceProcess.ServiceBase

{

/// <summary>

/// Essential Designer Variables

/// </summary>

private System.ComponentModel.Container components = null;

private SNServiceLibClass service;

public SNService()

{

// Windows.Forms needs this

InitializeComponent();

// TODO: Define After InitComponent Jobs Here

}

// Main Entrance of Process

static void Main()

{

 75

System.ServiceProcess.ServiceBase[] ServicesToRun;

// More than two can be run inside one process

// If you want insert another services,

// change next lines. For exmaple

//

// ServicesToRun = New System.ServiceProcess.ServiceBase[]

// {new Service1(), new MySecondUserService()};

//

ServicesToRun = new System.ServiceProcess.ServiceBase[]

{

new SNService()

};

System.ServiceProcess.ServiceBase.Run(ServicesToRun);

}

/// <summary>

/// Methods for Designer

/// Do not edit this code by code editor

/// </summary>

private void InitializeComponent()

{

//

// SNService

//

 76

this.CanPauseAndContinue = true;

this.ServiceName = "SNService";

}

/// <summary>

/// Close all resources

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

components.Dispose();

 }

}

base.Dispose(disposing);

}

/// <summary>

/// Define what services do here

/// </summary>

protected override void OnStart(string[] args)

{

// TODO: Service starting code here

service = new MyServiceLibClass();

 77

service.Start();

}

/// <summary>

/// Stop Service

/// </summary>

protected override void OnStop()

{

// TODO: What should do before stop service

service.Stop();

}

protected override void OnPause()

{

service.Suspend();

}

protected override void OnContinue()

{

service.Resume();

}

}

}

 78

List 4. ProjecInstaller.cs

using System;

using System.Collections;

using System.ComponentModel;

using System.Configuration.Install;

namespace SNService

{

/// <summary>

/// Summary on ProjectInstaller

/// </summary>

[RunInstaller(true)]

public class ProjectInstaller :System.Configuration.Install.Installer

{

private System.ServiceProcess.ServiceProcessInstaller

serviceProcessInstaller1;

private System.ServiceProcess.ServiceInstaller serviceInstaller1;

/// <summary>

/// Essential Designer Variables

/// </summary>

private System.ComponentModel.Container components = null;

public ProjectInstaller()

{

// This call is for designer

 79

InitializeComponent();

}

/// <summary>

/// Close all resources

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

if(components != null)

 {

components.Dispose();

}

}

base.Dispose(disposing);

}

#region Component Designer Generated Code

/// <summary>

/// Methods for Designer

/// Do not edit this code by code editor

/// </summary>

private void InitializeComponent()

{

 80

this.serviceProcessInstaller1 = new

System.ServiceProcess.ServiceProcessInstaller();

 this.serviceInstaller1 = new System.ServiceProcess.ServiceInstaller();

 //

 // serviceProcessInstaller1

 //

 this.serviceProcessInstaller1.Account =

System.ServiceProcess.ServiceAccount.LocalSystem;

 this.serviceProcessInstaller1.Password = null;

 this.serviceProcessInstaller1.Username = null;

 this.serviceProcessInstaller1.AfterInstall += new

System.Configuration.Install.InstallEventHandler(

this.serviceProcessInstaller1_AfterInstall);

 //

 // serviceInstaller1

 //

 this.serviceInstaller1.DisplayName = "SNService";

 this.serviceInstaller1.ServiceName = "SNService";

 //

 // ProjectInstaller

 //

 this.Installers.AddRange(new System.Configuration.Install.Installer[]

{

 this.serviceProcessInstaller1, this.serviceInstaller1

}

);

 81

}

#endregion

private void serviceProcessInstaller1_AfterInstall(object sender,

InstallEventArgs e)

 {

}

private void serviceInstaller1_AfterInstall(

object sender, InstallEventArgs e)

 {

 }

}

}

 82

3.3 User Interface

User interface applications hosted on personal computer that allow users to

perform various tasks and to interact with the sensor network. An interface for

communicating with the network through gateway is supported as well as display

and logging of network information.

3.3.1 User Datagram Protocol

There are two protocols at the Transport Layer that Application Layer

protocols typically use for transporting data: Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP). UDP is the Transport Layer protocol that

offers a minimum of services, but also has the minimum overhead for Application

Layer protocols that do not require an end-to-end reliable delivery service.

UDP is a minimal Transport Layer protocol that is a direct reflection of the

datagram services of IP, except that UDP provides a method to pass the message

portion of the UDP message to the Application Layer protocol. UDP has the

following characteristics[12]:

l Connectionless - UDP messages are sent without a UDP-based connection

establishment negotiation.

l Unreliable - UDP messages are sent as datagrams without sequencing or

acknowledgment. The Application Layer protocol must recover lost

messages. Typical UDP-based Application Layer protocols either provide

their own reliable service or retransmit UDP messages periodically or

 83

after a defined time-out value.

l Provides identification of Application Layer protocols - UDP provides a

mechanism to send messages to a specific Application Layer protocol or

process on an internetwork host. The UDP header provides both source and

destination process identification.

l Provides checksum of UDP message - The UDP header provides a 16-bit

checksum over the entire UDP message.

UDP does not provide the following services for end-to-end delivery:[12]

l Buffering - UDP does not provide any buffering of incoming or outgoing

data. The Application Layer protocol must provide all buffering.

l Segmentation - UDP does not provide any segmentation of large blocks of

data. Therefore, the application must send data in small enough blocks

so that the IP datagrams for the UDP messages are no larger than the

Maximum Transmission Unit (MTU) of the interface on which they are sent;

otherwise IP on the sending host fragments the UDP message.

l Flow control - UDP does not provide any sender-side or receiver-side

flow control. UDP message senders can react to the receipt of an

Internet Control Message Protocol (ICMP) Source Quench message, but it

is not required.

Because UDP does not provide any services beyond Application Layer protocol

identification and a checksum, it is hard to imagine why UDP is needed at all.

However, the following are specific uses for sending data using UDP:[12]

 84

l Lightweight protocol

To conserve memory and processor resources, some Application Layer

protocols require the use of a lightweight protocol that performs a specific

function using a simple exchange of messages. A good example of a

lightweight protocol is Domain Name System (DNS) name queries. Typically, a

DNS client sends a DNS Name Query message to a DNS server. The DNS server

responds with a DNS Name Query Response message. If the DNS server does not

respond, the DNS client retransmits the DNS Name Query.

Imagine the resources required at the DNS server if all the DNS clients

used TCP rather than UDP. All DNS interactions would be sent reliably, but

the DNS server would have to support hundreds or, on the Internet, thousands

of TCP connections. The low-overhead solution of using UDP is the best

choice for simple request-reply-based Application Layer protocols.

l Reliability provided by the Application Layer protocol

If the Application Layer protocol provides its own reliable data transfer

service, there is no need for the reliable services of TCP. Examples of

reliable Application Layer protocols are Trivial File Transfer Protocol

(TFTP) and Network File System (NFS).

l Reliability not required due to periodic advertisement process

If theApplication Layer protocol periodically advertises information,

 85

reliable delivery is not required. If an advertisement is lost, it is

announced again at the period interval. An example of an Application Layer

protocol that uses periodic advertisements is the Routing Information

Protocol (RIP).

l One-to-many delivery

UDP is used as the Transport Layer protocol whenever Application Layer

data must be sent to multiple destinations using an IP multicast or

broadcast address. TCP can be used only for one-to-one delivery. For example,

a broadcast NetBIOS Name Query is sent using UDP.

UDP messages are sent as IP datagrams. A UDP message consisting of a UDP

header and a message is encapsulated with an IP header using IP Protocol number

17 (0x11). The message can be a maximum size of 65,507 bytes: 65,535 minus the

minimum-size IP header (20 bytes) and the UDP header (8 bytes). The resulting IP

datagram is thenencapsulated with the appropriate Network Interface Layer header

and trailer. Figure 37 shows the resulting frame. UDP is described in RFC

768[12].

Figure 37. UDP Message Encapsulation[12]

 86

In the IP header of UDP messages, the Source IP Address field is set to the

host interface that sent the UDP message. The Destination IP Address field is

set to the unicast address of a specific host, an IP broadcast address, or an IP

multicast address.

The UDP header is a fixed-length size of 8 bytes consisting of four fixed-

length fields, as Figure 38 shows.

Figure 38. The Structure of the UDP Header[12]

The fields in the UDP header are defined as follows[12]:

l Source Port

A 2-byte field used to identify the source Application Layer protocol

sending the UDP message. The use of a source port is optional and, when not

used, is set to 0. IP multicast traffic, such as videocasts sent using UDP,

 87

can use 0 because no reply to the video traffic is assumed. Typical

Application Layer protocols use the source port of the incoming UDP message

as the destination port for replies.

l Destination Port

A 2-byte field used to identify the destination Application Layer protocol.

The combination of the IP header's destination IP address and the UDP

header's destination port provides a unique, globally significant address

for the process to which the message is sent.

l Length

A 2-byte field used to indicate the length in bytes of the UDP message

(UDP header and message). The minimum length is 8 bytes (the UDP header's

size), and the maximum is 65,515 bytes (maximum-sized IP datagram of 65,535

bytes minus the minimum-sized IP header of 20 bytes). The actual maximum

length is confined by the MTU of the link on which the UDP message is sent.

The Length field is a redundant field. The UDP length can always be

calculated from the Total Length and the IP Header Length fields in the IP

header (UDP length = payload length = total length – 4×IP header length [in

32-bit words]).

l Checksum

A 2-byte field that provides a bit-level integrity check for the UDP

 88

message (UDP header and message). The UDP checksum calculation uses the same

method as the IP header checksum over the UDP pseudo header, the UDP header,

the message, and, if needed, a padding byte of 0x00. The padding byte is

used only if the message's length is an odd number of bytes. The use of the

UDP Checksum field is optional. If not used, the UDP Checksum field is set

to 0.

A UDP port defines a location or message queue for the delivery of messages

for Application Layer protocols using UDP services. Included in each UDP message

is the source port (the message queue from which the message was sent) and a

destination port (the message queue to which the message was sent). The Internet

Assigned Numbers Authority (IANA) assigns port numbers, known as well-known port

numbers, to specific Application Layer protocols. Table 7 shows well-known UDP

port numbers used by the Windows Server 2003 family and Windows XP components.

Table 7. Well-Known UDP Port Numbers[12]

Port Number Application Layer Protocol

53 DNS

67 BOOTP client (Dynamic Host Configuration Protocol [DHCP])

68 BOOTP server (DHCP)

69 TFTP

137 NetBIOS Name Service

138 NetBIOS Datagram Service

161 Simple Network Management Protocol (SNMP)

445 Direct hosting of Server Message Block (SMB) datagrams over

 89

TCP/IP

520 RIP

1812, 1813 Remote Authentication Dial-In User Service (RADIUS)

UDP provides a connectionless and unreliable delivery service for applications

that do not require the guaranteed delivery service of TCP. Application Layer

protocols use UDP for lightweight interaction, for broadcast or multicast

traffic, or when the Application Layer protocol provides its own reliable

delivery service. The UDP header provides a checksum and the identification of

source and destination port numbers to multiplex UDP message data to the proper

Application Layer protocol. To consider the characteristics of sensor network

traffic, UDP can be perfectly fit in.

3.3.2 ODBC

Open DataBase Connectivity (ODBC) is an Application Programming Interface

(API) that allows a programmer to abstract a program from a database. When

writing code to interact with a database, you usually have to add code that

talks to a particular database using a proprietary language. If you want your

program to talk to an Access, Fox and Oracle databases you have to code your

program with three different database languages.

When programming to interact with ODBC you only need to talk the ODBC language

(a combination of ODBC API function calls and the SQL language). The ODBC

Manager will figure out how to contend with the type of database you are

targeting. Regardless of the database type you are using, all of your calls will

 90

be to the ODBC API. All that you need to do is having installed an ODBC driver

that is specific to the type of database you will be using.

Over the years Microsoft has modified what they call ODBC. It used to be that

you would download their ODBC manager. You would then download and install any

database specific ODBC drivers that you need. However times have changed and so

has marketing.

Now there are a bunch of different layers of database software. You can find

ADO, RDO, OLE DB and a variety of others. Microsoft has merged all of these

technologies into one nifty installation package called MDAC (Microsoft Data

Access Components). Basically it consists of several components that provide

various database technologies; including ODBC. MDAC is a royalty-free

redistributable package that you can install on a Windows machine without a cost.

Here are some examples of using Win32::ODBC used as a CGI script. It fully

outlines ODBC usage basics.

1. First you need to create a DSN (Data Source Name) which is a name that

represents the database file (or connection) and ODBC driver as well

as user id and password.

2. Second you add the following USE line to the beginning of your Perl

script: use Win32::ODBC;

3. Third you open a connection to your database with (note that this

 91

example checks for failure):

$DSN = "My DSN";

if (!($db = new Win32::ODBC($DSN))){

 print "Error connecting to $DSN\n";

 print "Error: " . Win32::ODBC::Error() . "\n";

 exit;

}

4. Fourth you execute your SQL command (NOTE: due to backward

compatibility with NT::ODBC the Sql() method returns undef if it was

successful and a non zero integer error number if it fails):

$SqlStatement = "SELECT * FROM Foo";

if ($db->Sql($SqlStatement)) {

 print "SQL failed.\n";

 print "Error: " . $db->Error() . "\n";

 $db->Close();

 exit;

}

5. Fifth you fetch the next row of data until there are no more left to

fetch. For each row you retrieve data and process it:

while($db->FetchRow()){

 undef %Data;

 92

 %Data = $db->DataHash();

 ...process the data...

}

6. Sixth you close the connection to the database:

$db->Close();

Figure 39. ODBC Data Source Administrator[11]

 93

Figure 40. ODBC Configuration for MySQL[11]

3.3.3. User Interface Implementation

C# version of user interface program interlocking with database and service

program has been coded for system verification. Real-time channel value, weight

variations of strain gauge sensor, can be retrieved over Internet connection.

Figure 41 shows the output screen of program when all channel selection value

999 had been entered.

 94

Figure 41. All Channel Output

Following code is a core part of this process. There are two connections for 12

bits data retrieval since RS232 communication is based on 1 byte. As I mentioned

in process module part, asynchronous problem of 2 bytes serial communication has

been prevented gracefully.

data = Encoding.Default.GetBytes("A");

server.SendTo(data, data.Length, SocketFlags.None, ipep);

recv_size = server.ReceiveFrom(data, ref remote);

int rst = data[0];

data = Encoding.Default.GetBytes("Z");

server.SendTo(data, data.Length, SocketFlags.None, ipep);

recv_size = server.ReceiveFrom(data, ref remote);

rst = rst + data[0] * 256;

 95

label2.Text="";

label2.Text=Convert.ToString(rst)

An example of ODBC database connection has been presented on Figure 42 with

associated source code.

Figure 42. Saving Retrieved Data into Database

private void button1_Click(object sender, System.EventArgs e)

{

string source = "DRIVER={MySQL ODBC 3.51 Driver};" +

"SERVER=220.67.220.150;" +

 "DATABASE=test;" +

 "UID=root;" +

 "PASSWORD=;" +

 96

 "OPTION=3";

OdbcConnection MyConnection = new OdbcConnection(source);

MyConnection.Open();

OdbcDataAdapter adapter = new OdbcDataAdapter();

DataSet ds = new DataSet();

string sql1 = "insert into embedded(name, input)

values('"+textBox1.Text+"번채널"+"','"+label2.Text+"')";

adapter.SelectCommand = new OdbcCommand(sql1, MyConnection);

adapter.Fill(ds);

MyConnection.Close();

}

private void button2_Click(object sender, System.EventArgs e)

{

listView1.Items.Clear();

string source = "DRIVER={MySQL ODBC 3.51 Driver};" +

 "SERVER=220.67.220.150;" +

 "DATABASE=test;" +

 "UID=root;" +

 "PASSWORD=;" +

 97

 "OPTION=3";

OdbcConnection MyConnection = new OdbcConnection(source);

MyConnection.Open();

OdbcDataAdapter adapter = new OdbcDataAdapter();

DataSet ds = new DataSet();

string sql = "SELECT * FROM embedded";

adapter.SelectCommand = new OdbcCommand(sql, MyConnection);

adapter.Fill(ds);

DataTable dt = ds.Tables[0];

foreach (DataRow row in dt.Rows)

{

ListViewItem item = new ListViewItem(row[0].ToString());

item.SubItems.Add(row[1].ToString());

listView1.Items.Add(item);

}

MyConnection.Close();

}

 98

Chapter 4 Conclusion

This paper describes one type of wireless sensor network in which sensor

embedded system, RF communication system, and remote measuring system over

Internet are mixed and balanced. In order to overcome the time sequence problem

among different device parts, a total communication system using handshaking

method has been developed. This kind of system can be used in many new

applications with minor changes, ranging from environment monitoring to

industrial sensing. In fact, the applications are only limited by our

imagination.

Figure 43. 1 Channel Sensor Module

 99

Figure 44. Combined Controller Module with Bluetooth Tranceiver

Figure 45. Assembled System in Testing Lab

 100

References

[1] S. Arimoto, “Linear controllable system,” Nature, vol. 135, pp. 18-27,

July, 1990.

[2] “21 ideas for the 21st century,” Business Week, pp. 78–167, Aug. 30, 1999.

[3] Proceedings of the Distributed Sensor Nets Workshop. Pittsburgh, PA: Dept.

Comput. Sci., Carnegie Mellon Univ., 1978.

[4] “Distributed sensor networks,” MIT Lincoln Laboratory, Lexington, MA, Rep.

No. ESD-TR-88-175, 1986.

[5] LC4103 serious Specification, http://www.andk.co.kr/product/rod/

no_lc4103.php

[6] AD620 Instrumentation Amp Data Sheets http://www.analog.com/UploadedFiles/

Data_Sheets/897653854AD620_g.pdf

[7] AD1674 12-Bit, 100kSPS, Complete ADC Data Sheets http://www.analog.com/

UploadedFiles/Data_Sheets/346669145AD1674_c.pdf

[8] Tibbo Technology DS100 Serial Device Server http://www.tibbo.com/ds100.php

[9] Promi-DS wireless serial communicationn manual http://www.initium.co.kr/

bizdata/userguide/Promi-SD_User%20manual_V2.5.pdf

[10] Comfile Technology PICBASIC Databook http://www.comfile.co.kr/

download/pb/PBMAN10.pdf

[11] Microsoft Developer Network http://msdn.microsoft.com/

[12] Steven W.Richard, “TCP/IP Illustrated Volume 1: The Protocols,” Addison-

Wesley, 1993

[13] 한국AND LC4103 Series http://www.andk.co.kr/product/rod/no_lc4103.php

	Chapter 1 Introduction
	1.1 Background
	1.2 Technology Trend
	1.3 Purpose of Project
	1.3.1 Network Control and Routing
	1.3.2 Collaborative Signal and Information Processing
	1.3.3 Tasking and Querying

	Chapter 2 Hardware Architecture
	2.1 Sensor Module
	2.1.1 Beam Load Cell
	2.1.2 Instrumentation Amplifier
	2.1.3 Operational Amplifier
	2.1.4 A/D Converter

	2.2 Processor Module
	2.3 Radio Module
	2.4 TCP/IP Network Module

	Chapter 3 Software Architecture
	3.1 Software Architecture
	3.2 Service Applications
	3.2.1 Window Service Communication Architecture
	3.2.2 Services Snap-In
	3.2.3 The Windows Service Application Architecture

	3.3 User Interface
	3.3.1 User Datagram Protocol
	3.3.2 ODBC
	3.3.3 User Interface Implementation

	Chapter 4 Conclusion
	References

