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CHAPTER1
INTRODUCTION & BACKGROUND

1.1 INTRODUCTION

Edge waves are gravity waves that progress alangltbreline. These waves, often difficult to
visualize are coastal trapped, i.e. their amplitudeagimal at the shoreline and decays rapidly
offshore. They produce on the beach beautiful rumpagperns although propagation is along
the straight shoreline and the waveform is sinudoid the long shore. Edge wavese
produced by the variability of wave energy reachamgre. Waves tend to come in groups,
especially when waves come from distant stormssEweral minutes breakers may be smaller
than average, then a few very large waves will ar&&e minute-to-minute variation in the
height of breakers produces low-frequency varigbih the along-shore current. This, in turn,
drives a low-frequency edge wave attached to ttectbeStudy of edge waves is a rapidly
growing area in near shore hydrodynamics. A samigkeine of edge wave along the shore is

shown below.

Fig: 1.1 Edge Wave Pattern
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Several mechanisms for generating edge waves asbfm in nature. On a large scale edge
waves can be excited by wind stress directly alibeewater. Munk, Snodgrass, Carrier and
Green Span (1956) have studied the effect of prestviation in storm surges. Smaller scale
edge waves can be excited by a nonlinear mechapiissub harmonic resonance. Medium-
scale edge waves can also be excited by a longogubishort swells through a nonlinear

mechanism

1.2 STOKES SOLUTION

The first analytic evidence for the existence ofves which propagate parallel to and are
trapped against a shoaling beach, was provided bkeSt(1846). He found the following

solutions to the inviscid linear equations of motapplied to a wedge-like fluid domain with a
constant angl@. The Potential function and surface elevation ajeedaves are derived as

shown below respectively.

Fig: 1.2 Incoming Wave angle to the Shore



§.(5.3.2.0) = B sin( ) exp(~Hyx cos(f) + k.2 sial ) sin(k,y - )

a1]

7,(x.2.8) = 4 sin(f) e (~k,xcos(8) coslk,y - @)

Where the subscript “e” now refers to the properti# a wave traveling parallel to the
shore. For a confined beach, edge waves with agrialt number of half wavelengths along
the beach may form standing edge waves. If thetbmamfinite in extent, then edge waves

will propagate in both directions along the shoreline ahgeaf frequencies.

1.3. OTHER MAJOR DEVELOPMENTSIN THE STUDY OF EDGE WAVES

Bowen and Inman (1969) found field evidence of dilagp edge waves of periods comparable
in order of magnitude to the period of the incomswgell. The amplified edge waves cause
long shore modulation of the incident swell, whichynbe sufficiently short to break near the
shore. The periodic cells of currents, which, in tlead to beach cusps. Motivated by these
interests, Guza and Davis (1974) made a systemaimigation of the non-linear mechanism
of sub harmonic resonance in which a standing edge: of frequencw was resonated by a
normally incoming and reflected wave of frequency. Buza and Bowen (1974) employed
Airy’s shallow-water approximation as the basistléir theory. In addition to the initial
instability of edge waves, the incident and refldcteaves were found to leak energy by
radiation due to quadratic nonlinearity. Considerthg cubic nonlinearity and of radiation
damping enabled them to predict both the initimoreant growth and the final equilibrium

amplitude. Their own experiments strongly supported tfiadangs.

1.4 LINEAR INCOMING AND REFLECTING WAVESON A SLOPING BEACH

For finding the resonance first we need the equation ofistaméive. Here we consider the
special case of a standing wave in a sloped beach, which cemibes as shown below.
In terms of horizontal velocity u = u (x, t) and free surfaceaglenn =n (x, t), equations for

shallow water waves over a non uniform bottom y = -h (x) are

W +uk +gx =0 (1.4.1)



H+ (uH)x = 0 (1.4.2)
Where the total depthl (X, t) = h (X) +n(x, t).
In the linear theory, disturbances are assumed tentmdl. Hence we also assume that the
derivatives are of same order. The equafibr#}.2) can be rewritten in terms of h andas

given below.
Nt +ud(X) +hy +nuy+up, = 0 (1.4.3)

And assuming first order assumption to the equdflod.1) (1.4.2)we can write

W+ gx =0, nt +ui(x)+hy = 0.,
By eliminating the term “u” from these equation

Ne - gH(X)Nx -ghnxx = 0 (1.4.4)
We now consider the waves on sloping beach that is inclireéef3 with the horizontal. For
using this theory we have to assume that the ghdasesmall.
For smallB, h =sx

And the equation (5.4) becomes
Nt -9S Ox - XNx)= 0 (1.4.5)

The simplest solution of this equatiornjs= €™ f (x)
Substituting in the above equation will reduce the equation
froe)+@Wxf ' )+ @/gs)Lf(x) =0,
Where 0 < x <0. This equation has regular singular point at x and an irregular singular
point at x =eo. The transformatiorx = (gs /w?)(X/2)? can be reduce the above equation to
zero order Bessel equation.
frX)+@ X)X+ f(x) =0
Where general solution of this equation is given by
f (X) =Ak (BVX) — iBYo (B VX) (1.4.6)
Where A and B are constants and X @rate as given below.
X=BVx andB= (4’/gs)”?
Thus the final solution is
nix,t) = e ot [AJo (BVX) — iBYo (B VX)]. (1.4.7)
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Using the asymptotic representation of Bessel functiok for oo
n O (4/12p%x )Y (A+B)/2) exp {-i[BVX + ot + T1/4) } +
(A+B)/2) exp {-i BVx - wt - T1/4)}
The first term of this result represents an incgnivave and the second term corresponds to

outgoing wave. The amplitude of the former wave depends on x.

The wave number and the frequency of the outgoing waves lgyven
K(x,t) =6 =w/ vV gsx
We need only first term of the Bessel final solatio find resonance in our problem. So in

general we can take the equation of standing waves as

cl)0 = AOJO(IB&)G_ZM (1.4.8)

1.5 EQUATION OF EDGE WAVES

For getting simplified equation for edge wave feing in this problem, we consider a straight
and long beach with constant slope. Let the mearebhe coincide with the y-axis and the
water be in the region x> 0. The bottom is described by

Z=-h = -sx x>0,s=const.

Because the coefficients are constant in y and t, wedrgdhution

¢=n(x) e

From the linearized long wave theory considering filass and momentum conservation and

using the above equation we will get
6()2

Xn"+n' +(—-k*x)n =0 (1.5.1)
S

By applying the following transformation

= 2kx

— o Er2
n=et?f @
We will get the following equation

ff"+(1—5)f'+[0~%ksg—1/2]f =0 (1.5.2)



This is similar to Kummer's equation. In generalrthare 2 homogeneous solutions, one of
which is singular at the shorelide= 0 and it can be discarded.
Non Trivial Solutions which renden finite at £ = 0 and zero a§ — 0 exist wheno

corresponds to the following discrete values.
®w2/2Bsg =n +%n=0,1,23...

The associated Eigen functions are proportional to Lagyelynomials

_\n| gn _n_2 n-1 nz(n_l)z n-2 _ nz(n_l)z(n_z)z n-3
L (&) ={ )I T AT 3 <
+..+(=)"n

The first few modes of edge waves can be plotteshas/n below.
10 N
o
1.0
SN\ ‘
"0 N -~

& 5 6w
Fig: 1.3 Different Modes of Edge Wave

ecause these Eigen functions correspond to modes, whiapgreable, only near the

shore they are called edge waves. These Eigen functiondtemenormal in the

following sense
[e’L,L,dé=0,
0

For our problem we use only the simplest mode of edge a@wation that is given as below

— —kx A (ky+wt)
o ,=Aee (1.5.3)
Considering the edge waves in both directions we can thigt@ equations as
— —kx i (ky—-wt) — —kx i (Ky+wt
(Del - A\el €€ q)ez - A\eZ € el(ky )
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CHAPTER 2
PROCEDURE AND DERIVATION

2.1. SUBHARMONIC RESONANCE OF EDGE WAVES

It is already mentioned that progressive waves beagenerated by a storm traveling along the
coast at a speed close to the phase velocity efdge wave mode. The typical period of this
kind of edge wave is related to the spatial exténhe storm area and is of the order of several
hours. If the coastline has an indentation, a limespnance is possible. Here we are trying to
analyze the Resonance interactions between thetadgd of edge waves with frequeney
and a standing wave of frequenay also considering the spatial variations for a heaith
small slope.

Since the slopes are assumed to be small due tnthk inclination in the beach we can use

the equations [Guza and Bowen]

{ +l(sx+ ), ] +[(sx+ )@, ], =0 (2.1.1)

1
o, +§(q>§ +q>§)+gz =0 (2.1.2)

2.2. DERIVATION OF MODULATION EQUATION

Eliminating { from the above equation we can write the single liv@ar equation as shown

below.

DCD = _q)tt + Sg[()(cpx)x + Xq)yy] = 2(CDXCDXt + q)yq)yt) + th (q)xx + (Dyy)
1

+§(qax2 +O ) (P + D)+ DD + DD +20 D D

Here we can substitute our equation doias a sum of the above 3 equations we mentioned

before.

P=0p,+P  +P_, +Conjugate(P, + P, +P,) (2.2.1)



— -2iwt —kx A (ky=iwt) —KX i (ky+iwt)
D =AJ(BVx)e" + Ae e + A€ e +
* 2iwt * kX i (—ky+iwt) *_—kX i (—ky—iwt)
Aody,(BVXx)e™ + Aje e +A,e"e
We can avoid the non-linear terms on the right sidhe equation. We need to consider only
first 2 terms.
Here we make an assumption that the amplitudeslawdy varying functions of y and time.

Takinge as a small parameter we can writg88A . asAq (gy t) and A (gy &t)
In that case the above equation can be indicated as shown.

® = Ay, ], (B x)e ™ + A [gy, et]e e W) +
Aley, €t]e-lo<ei(ky+im) + A*o[éy, Et]JO,B(\/;)eZth +
Auley, et]e™e ™) + A [gy, et]e™ e

After substituting these amplitudes and evaluatihtp and RHS in the above equation we

have to integrate the whole equation with respecixtfrom 0 tol] to eliminate x terms. The
terms are integrated with weight. Both sides aretipligd with € for this purpose before
integration.Finally we equate the similar terms on both sidethe equation. We will get 3

sets of equations corresponding to
i (ky—iwt
e (ky—iwt)
I (ky+iwt
e (ky+iwt)
—2iwt
3 €
These terms were taken because of the possibilitgsmnance interaction exist only in these.
For example€ 2™ can interact withe'*¥*™

ei (ky—iwt)

and will result waves correspond to

. Similarly there are different ways of interactipossible by the combination of the
above three terms. Hence our idea is to separase teems after integrating and equate the
terms in RHS and LHS.

The analysis was carried out using the softWd@THEMATICA 4.1 and the details are as
shown inAPPENDIX: B.



While integrating derivative of Bessel function wéll have problems due to x in the
denominator. Hence for integrating such terms weehavuse the following transformation.
The problem can comes only from right side of eigmatvith terms of second x derivative for
Bessel function.

Let us rewrite x derivatives in quadratic terms of the rgigi¢ in the following manner:
(PP,), =D D +DD (2.2.2)

We have to integrate this term with exponentialghigi but this integral will be finite due to

following integration by parts:

[

« - kx
S+ k[e o @ dx

0

[e(®.@,),dx=® & ™
0

And both terms in the right side are constricted and eaditulated in Mathematica.
We can avoid the higher order terms on the rigi¢ sbo now we will have three parts on the
right side as

1) PP, +2(P, D )+DD

2) Two terms from the above transformation

Cubic terms are considered here, but terms involggdratic terms of slow amplitudes are
avoided.

After equating resonance terms as mentioned abeveilvget the final equations as shown

below.

%)(Aﬂ)t +%[(A&l)y] ={4ke_[% -4k + 025,32}(0))'%'%2

—%(A\ez)t +%[(Aez)y] = {4ke_%* -4k + 025ﬁ2}(w)('%)* Aq

(A ] =% (k) A (A,)



2.3GROUP VELOCITY

When Waves are generated by a local disturbande asiche dropping of large stone into a
lake or the motion of wave through water, the susigeswaves with different wavelength
propagates and hence they travel with differensphaelocities. So we might expect that the
wave trains would be sorted out as time goes andifferent groups of waves such that each
group would consist of waves of approximately the same eagti.

First let us consider a one dimensional progressive plawe of the form

n(x,t) = aexp[((kx - at)] (2.3.1)
Where a is the amplitude, and the frequencyand wave number k are related by dispersion
relation

@ = a(K)

We now suppose two such waves with the same amiplitbut the wave numbers and

frequencies are slightly different so that

n =acost —kx) + acos[ + Aa)t — (k + Ak)X]
= Acos {& +1/2a)t — (k +1/2Ak) X (2.3.2)
Where Aa and Ak are small and A = 2acos{(1£2« ) t — (1/2Ak) x} is a slowly varying

amplitude for the rapidly varying mean wave withahuarger frequencyw + }éAa) and

wave numberk + %Ak, so that the above equation can be interpretedsasies of wave

traveling with the velocity

Cg= A%k 2.3.3)

This is the final equitation for group velocity for any kirfdraves in general.

For an edge wave if the incident wave have theuiaqy & we have the dispersion relation
fro edge waves as shown below.

o’ = gks(2n+1) (2.3.4)
Since in our problem we are dealing with the loweside of edge wave we can take the

dispersion relation of edge wave as

-10 -



o’ = gks (2.3.5)
Where k is the wave number and s is the slop of the beach.
Substituting this in the above equation of group velociywill get

A%k =12 9% (2.3.6)

This is the equation of Group velocity for edge waves

In the set of equations we got from our analysigdiig by the coefficients dfderivative and
substituting the above formula for group velocityii we will get three final equations of
resonance as

(Au). +C,[(A4),] = k{4ke_ﬁ%* _dk + 02552}/\)&2 (2.3.7)
(Az) —C,l(AL), 1=k [4ke_% -4k + 025B2}(A))* Ay (2.3.8)
[(A).] =24 (k™)AL (A,) (2:3.9)

These are the Modulation equations for edge wauestal resonance of a standing wave in a
sloping beach.

-11 -



CHAPTER 3
ANALYSIS

3.1. CHECKING FOR GROUP VELOCITY
We will analyze first the simple case thag i& fixed. We can recheck our equation by the
following method.

(Aa): *CA(AL)y = XAA, (3.1.1)
(A2): ~Ca(A,), = XA oA, (3.1.2)

Here we have substituted for the term of k in the right side of the equation.

From the first equation we will get

Cg (Aw)e
A, = Lb)((%)} WA (3.1.3)

Substituting this in the second equation

Cg (Aﬂ)tt _ (Cg) (Aﬂ)ty — A*o
{M(M } AX {/v Aa) } TR

The equation of wave envelope is given by

—_ i -Qt
A, = ae'™ (3.1.4)

Since we are assuming there is no interaction letweaves by substituting and equating to
zero.

(Cg)Qk - Q% +(Cg)’k* -CgQk =0
And we will get,Cg = Q/« (3.1.5)

That means, that envelope of waves propagates tsigroup or energy velocity in the mean

order, it is the classical result of nonlinear waves propgag#ieory.

-12 -



3.2. CONDITION OF NO RESONANCE

Based on these analyses the influence of varidiBledeach slope, incoming wavelength and
Amplitude of incoming waves in the generation ofgedwaves along the beach can be
evaluated.

Coefficient in the Right side of the edge wave niation equation is plotted as a functionkof
as shown below. Here slop is assumed to be a ¢unbtd there exist different values of k for

different values of beach slope.

01¢

0.2 0.4 0.6 0.8 1
0.1}
0.2
0.3 |
0.4 |
-0.5 |
-0.6 |

Fig: 3.1L Vs Wave Number(s=0.3)

From the above graph we can see that a valleeaxist where there is no resonance of edge
waves and incoming waves. Here for k = 0.42, There will nohpeesonance.

By substituting for equation &fin terms of wave length as

k:2_n
A

We can draw the graph showing variation of the resonanta faith respect to wavelength.

-13 -



For slope of 0.3

L
.1 | 7 e
075 | / o
.05 /
025 [ /
L ‘ ‘ A
, 20 40 60 80
025 /

Fig: 3.2 L Vs Wave Length (s=0.3)
Here as discussed above for 14.5 we have no resonance of edge waves anddbming
and reflected waves. This is corresponding to the value 6f42=as we already mentioned.

By changing the value of slope to 0.2

). 25
0.2
). 15

0.1

). 05
20 40 60 80

J. 05
Fig: 3.3 L Vs Wave Length (s=0.2)
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It is evident that both the graph shows at a paleticvalue of wavelength for every slope a
point is reached where there is no resonant inierabetween the edge wave and incoming
and reflected wave.

Angular frequency variation also affects the resonantsoton between edge wave and
incoming and reflected waves. The variations with respemgalar frequency for a fixed

wavelength at two different slopes are shown below. (Dalsineéhdicates slope=0.3, and

continuous line indicates slope of 0.2)

0.5

0.4

0.3/ 7

0.2 7

0.1 -

0.5 1 1.5 2
Fig: 3.4 L Vs Angular Frequency

Here Wave Length of incoming wave is assumed to be 100 m amdnplitude of incoming
waves are assumed to be 1.As shown in the graphfifcecawavelengthy increases as

angular frequency increases and there exist a partiailae wf angular frequency at which
there will be no resonance interaction for every beach amglevavelength. This is higher

for higher beach angles.

-15 -



The Dependability of Resonant interactions on the bdapk sre evident from the above
graphs. For a variation in slope at a constant value of waytbl@+100) and angular
frequency we can draw the variation in Coefficienas shown below.

0.2

). 15

J. 05

0.2 0.4 0.6 0.8

Fig: 3.5 L Vs Slope

It is evident from the graph that in a beach when slope isased the resonant interaction
reduces.
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3.3. APPLYING SPATIAL CONSTRICTION

From the derived equations of modulation it's polesto analyze the generation of edge waves
with in a constrained space (in y direction).

This is important to study various coastal mechagisccurred due to edge waves, like sand
transportation in long shore direction.

The first 2 modulation equations are given by

(Ag): +C,l(A),] = LAA, (3.3.1)

(A): —C,l(AL),1 = L(A) Ay (3.3.2)
" ]

Where L= k | 4ke 78 -4k + 0258 (3.3.3)

Considering only the variation in y direction we can wréerite the above equations as

C,(As), =LA 0A, (3.3.4)

From the above equationnA= Cg (Aﬂ)%AO

The Second Equation is given by

-C,(Ay), =LA0A, (3.3.5)

L .
(Aedy = -C_g(A 0A,)

Substituting the value of Ain the above equation

(AL),, = —(C—Lg] A A oA, (3.3.6)

2
) , L . )
We will substitute] — Ao =
(Cg] AAo=x

* 2
AA 0 =|A)|
Substituting for > we will get
(Au), +X*A, =0 (3.3.7)

=17 -



This equation is similar to the equation of simplarmonic motion. We can solve this

differential equation in standard format given as

Ce¥+C,e™=A,

And A, =cCos(yy+C,) (3.3.8)

This result can be used for predicting the possibiif edge waves in a beach with in a wave
breaker in y direction. From the property of the stanty , which depends on the wave
number and slop we can predict approximately hawvkave breakers should be placed for not
generating the edge waves. Edge wave cannot beagetdretween wave breakers spaced at a
distance of D, if the following zero boundary conditions atéesBed:
Aqu(y=0)=A,(y=D)=0

That means, that exists threshold or minimum digtaioe the possibility of edge waves
generation by incoming swell:

D=nly
Its obvious that for different values ¢f , which is defined by the beach slope, wave Length

and Amplitude of incoming waves there exist an appate D, placed at which there will be
minimum possibility of edge waves between wave keeaAs we already discussed edge
waves are the key factor for different beach phesram like sedimentation and sand
transportation it is important to know the deperilitsitof edge eave envelope on the distance
between wave breakers. We can check the generafiomdge waves by varying these
parameters. Two slopes for beach is consideredriarge As s=0.3(dashed line) and s = 0.2

(continuous line)
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1) Change of wave breaker distance for different wawgth

(Continuous line indicates slope of 0.2 and dashed linesklope of 0.3)

Wave breaker Di st (D)

120
100
80

60
A

80 100 120 140

Fig: 3.6 Wave Breaker Dist. Vs Wave Length (s=0.2)

Wave breaker Di st (D)

250 e
e
e
e

200 s
150 7
100 | | | | z

80 100 120 140

Fig: 3.7 Wave Breaker Dist. Vs Wave Length (s=0.3)
These Graphs can be used for finding the exacewaflWater breaker distance for a particular

value of slope, amplitude of incoming wave and weangth, such a way that the edge wave

envelope generated in between them is minimal. kamele for an incoming wave length of
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100 m at a beach with a slope of 0.3 for an ampitoflincoming wave of 1m the wave
breakers have to be placed at around 150 m (frengitiiph) to reduce the edge wave envelope
generated in between them. Less generation of edge wavissaad due to the threat of sand
transportation and other phenomenon corresponds to long stirrents.

2) Change of wave breaker distance for differenppfimde of incoming waves

(Continuous line indicates slope of 0.2 and dashed linesklmpe of 0.3)

Wave breaker Dist(D)
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Fig: 3.8 Wave Breaker Dist. Vs Amplitude (s=0.2)
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Fig: 3.9 Wave Breaker Dist. Vs Amplitude (s=0.3)
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As the Graphs indicates the Distance of Water breakergases as Amplitude of incoming

waves increases.

3) Change of wave breaker distance for differerddBeslope

For different beach slope for a constant wave leagid constant amplitude of incoming waves
we will get the variations of distance between break wagesti@awvn below

Wave breaker Di st (D)
100
0
800 |
600 |
400 ¢

200

0.2 0.4 0.6 0.8

Fig: 3.10 Wave Breaker Dist. Vs Slope

This graph shows the constant increase in the Wwesaker distance for constant increase of
slope. Which means for a same incoming wave lengihaaplitude of wave at a fixed angular
frequency we need water breakers placed at a hidistances for lesser edge waves and

corresponding coastal processes at higher angles of slope
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1) Change of wave breaker distance for different Aagtrequency

(Continuous line indicates slope of 0.2 and dashed lineshklope of 0.3)

For constant amplitude of incoming wave and corist@velength we can draw the graph

of angular frequency at 2 different slops as shown below.

Wave Breaker
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Fig: 3.11 Wave Breaker Dist. Vs Angular Freq. (s=0.2)

Wave Breaker
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\
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Fig: 3.12 Wave Breaker Dist. Vs Angular Freq. (s=0.3)

As angular frequency increased distance between waveesaiecrease.
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CHAPTER 4
NONLINEAR WAVE INTERACTION

Let us rewrite the general system of resonanceaictiens between edge waves and incoming

swell (1,2) by following way:

Ay +CyAy, = LAA, (4.1)
Ay —C A, =LA A, (4.2)
Ay = =SALA, (4.3)

_52
WhereL = k {4ke g -4k + 025,82] S:%(kze%‘k).

Introducing new moving variables:

$=Ct+y,n=Cst-y,
0 _ 0 0 0 _o0 0

=G 7tC o5
ot 0 Con'dy 0F an

We can rewrite system of equations (4.1)-(4.3) :

oA, _ L :

5~ WA
oA, _ L .

o =20, AT
0 0 S .

8, %o S pa,

oé dn 2C,
Renormalization of unknown functions:

L LS LS
= ; = ja, = — A

% = oo Al =\ o Aa = [ A
Gives the final system of modulation equations:
Ao = Apye,
B = 8y Ay (4.4)
B¢ *+ 8, =~ -
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Third equation for interacting modes (4.3) includedy time derivative of the amplitude of
incoming wave, so further we’ll assume th is slow function of time onlyA, = A (&t),
or 8, =ay(¢ +17) and gy, = a, .

System of equations (4.4) has two first integrals of moticthis case:

la.  +2la, f=9 )
|8, +2]a, f= 1 €)

Phase synchronism of waves is a typical regime for wave@toreproblems due to resonance

(4.5)

interactions, so we’ll assume it here to be also, endespondingly consider all wave
amplitudes as real functions of space and time.

Following substitution of variables and unknown functions

2, = JISN@), 3, = T@SNW).E = £ (E)dE.7= 2 [atn)n,

Whereg andf are arbitrary functions of it's arguments, gives thllowing system of equations

for new{/, ¢ functions:
4, =Snw);
W; = 3Sn(9).

System of equations (4.6) has a very beautiful ptgpsum and difference of unknown

(4.6)

functions are satisfied to well-known nonlinear Sin-Gordquation:

(Pxy);, =Sn(g=y) (4.7)

So, it is possible construct a large (infinite) sésolutions for our model by using different
known solutions of Sin — Gordon equation:SIfandS2 are two of them, then equations (4.6)

due to (4.7) will be evidently satisfied by the following ftions:

S1+S2
¢ = >
(4.8)
w=51_52
=

-24 -



And even more: if we'll take two different solutewf (4.6): (¢,,¢,), (¢,.¢/,)than sum and
difference of them will satisfy to (4.7):

(¢1+¢/1)’(¢2+w2)’(¢1_¢/1)’(¢2_¢/2) (4.9)

And using (4.8) we can construct subset of new solutiotiseasystem (4.6):
¢ = (¢1 +w1+¢2 +¢/2)/27w = (¢1+w1_¢2_w2)/2;
¢ = (¢1 +w1+¢2 ‘1/12)/2#/ = (¢1+¢’1—¢2+¢’Z)/2-

By repeating this many times we can construct infinite rermsblutions of equations (4.6).
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CHAPTER S
CONCLUSION

From the discussions in this thesis it is evidéat the resonant interactions between
incoming waves and edge waves significantly depenthctors like wave Length of incoming
wave, angular frequency of incoming waves, Amplitofiéhe incoming wave, slope of beach.
From the graphs discussed above chapter we hawetlsatefor every angular frequency and
every value of slope there exist a particular wangth for which there is no resonant
interaction between the edge waves and incomingeffetted waves. These wavelengths for
no resonant interaction or angular frequency ofgsmnant interaction can be find out as from
the respective graphs. Applying spatial constrictienables us to study the generation of edge
wave in between a wave breaker. Less edge waveogmvdrmed between the wave breakers
is considered as a favorable condition. Exists ttolelsor minimum distance for the possibility
of edge waves generation by incoming swell. Theadist between wave breakers can be
adjusted for less generation of edge waves. As Wavgth increases the distance between
wave breakers is increased As the Amplitude of nimog wave increases the wave breaker
distance decreases As Angular frequency of incomiage increases the distance between
wave breaker decrease. As Beach slope increasestapradi of wave breaker increases. These
are the results of this analysis. The exact prexdiotf generation of edge waves in a beach is
very important due to the increasing concerns oseastal processes including sand
transportation and beach erosion. More researchas kst conducted considering complex

phenomenon including wave breaking and interaction af &argetting more accurate results.
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APPENDIX: A

(Mathematical Models of Waves)
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1.) 3-D model of Edge waves created using the equatsmd in this discussion. This

Model shows the exponential Decay of edge waves along tteooéf direction.
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2) Mathematical Model Of Standing Waves near aistp@Bottom Made using the Bessel

function
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3) Resonance of edge wave of frequeayith Standing waves of frequencg?2
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APPENDIX: B

(Detailed Analysis Using Mathematica 4.1)
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THE DETAILED ANALYSISUSING MATHEMATICA 4.1

THE INPUT FUNCTION IS

T =Rley, et] (BesselJ[0, ﬁﬁ,l";]] Exp[-2 0 w0t]+h [ey, et] Exp[-kx] Exp[iky - at] +
No:[ey, et]Exp[-kx] Exp[iky + ot]+ [{n}*[Er, et] Bessel.][ll, _E’\I";]]Exp[ﬂiut] +
(A1) [ey, et]1 Exp[-kx]1 Exp[-iiky + Lot] + (A)"[ey, et] Exp[-kx] Exp[-0ky - fiot];

THE LEFT SIDE EQUATION
“Occ Trsg (0, (x{0,T)) + {x {0 ; T)))
WE ARE HOT CONSIDERING THE HIGHER. ORDER. TERMS OF € HERE SINCE IT IS TOO SMALL.

IHTEGREATTHG WITH WEIGHT AFTER AVOTDIHG HIGHER & TERMS WILL BESULTIH THE BELOW GIVE EQUATIOH

Integrate[(e'k“] -0, Trsg (0, (X (D T)) + (X (D, ¥}, {xX, 0, o}, Assuptions -k » l]]
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- " " -
1k k k

-]
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e ik e [y e, te] e ik gs e A% Y [y e, te] e ik g et 2y e, te]
- -
k k2 LS

& & i
2dtw e ik gs A [ye, te] de R o A [ye, te] dde ik ea () V[ye, te]
& - + - -
1k k k

L

s &
e ik e (A" ye, te]l e irgse (ANFV[ye, te]l e iE gsF e AV [ye, te]
. _
K K 1K

e Y of Ao [¥ e, te]
2k

1+ il
|

1, 1
—;enqusmz[rf;tfh -5 e Y ys (Ao [¥e, tel+

ei*Y o (Aq)7[¥e, te]l mett¥eoRls Ulye, tel det*Yeo (R V[ye, te]

2k k k
Lk 200,22 Ak 2 +4 (0,23 . TNk (1.0
@ Y e, [ve, bel e e ((R)™) [v e, t el +nur“ gsehy ‘[ye, te]l
2k 2k 2k
Be Y gse (RN VIve, tel  @FVgseal VIve, tel e ¥gs € (AP [ve, tel
+ +
2k 1 k2 1 k2
- 1 ek Y g? €, te 1
et |- e Yy halye, tel+ 11;1:1' r tel -5 e Y ys (Ao [¥e, tel+

ei*Y o? (Ao) [¥e, te]l metF¥eoRy Ulve, tel det*Yeo () V[ye, te]
+ + -

2k K K

i 0,2 . . i 1.0

Y 23V [y e, tel e e ((R2)) Y e, ted . el Y gsenl [¥e, te] )
2k 2k 2k

» 0 = 2|'I:| .
fet Y gs e ((A:) )" [¥ e, te] . @Y gs 2 nli " [y e, te] . e gz e ((R)") [y e, te]
2k 1k 1k
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ELTMTHATTHG ZER0 TERMS WILL FESULT THE BELOW GI'VEH THREE EQUATIOHS

1
E Y 40 etk cad®[ye, te]
k

. g 0,1 . 1.0
Em[_ne”fwniz ‘Iye, tel Be*TgsedzVive, tel)
k 2k

¥

k 2k

e [ie‘“‘fwniifl:'[re, tel detrgseadive, tel)

¥

khkhkkkhhkkhhhkkhhhkkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhkhhkhkhhkhkkkkkk%x*x

THE RIGHT SIDE EQUATIONS
(BISAPPPLIED ONLY IN THE LAST)
FIRST PART OF THE EIGHT STDE EQUATION

0. @0, T+2(d, T d, . Ty+ 0 0D, T)

IHTEGRATTHG WITH WEIGHT

Integrate[u:‘k“ﬂx o, . T+2(0, T, . T+ 0 B, T}, {x, 0, o}, Assumptions -k » l]]
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COLLECTTHG STMTL AR TERMS THE FESUT IS

1 1

1 1 .1
T eR[ye, telnV[ye, te]- ;e 2% e BesselI[0, H] Arye, tel A% [ye, te]-

1 1
e 2k e BesselI[1,
2k

15 Ire, teln“[ye, tel+

W |

1. s 1 _L 2
—Enun[re,te] +Ene 2k whl[ye, te] BesselI[l],

i 1 1 L 1
40t - 2
& +—1e 2k wh[ye, t €] BesselI|1l +
[ Ek] 2 Lye, 1 [ ’ k]
— ER[ye, te]lnr [rE,tE]—EtH E]l[fE,tE]Bessell[l]_, ﬁ]n “I[ye, LtE]-

|

1
— e 7% eR[y €, t €] BesselI[1,

"

1 2 i
12V ye, t El] -3 @ T keRg v e, tel AU Ive, tels

=Y

2k
0,1 2 . 0,1
ke (Ra)'[ye, telai Vye, te]l- S YK e [ye, tel A VIve, tel+

0,1 1
Ke (Ro) [ve, telaa VIye, tel+ 5 EMye, tel A" ye, tel -

1 1
e 2% ehl[ye€, t €] BesselI[o, H] Ay Yy e, te] -

1 1
e 2k eh[ye, te] BesselI[l; H] {]l*}cuflj[}' e, Lte]+

W | e | | R | R
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]i*[ye,tE]z—E]'lu: 7k oBesselI[1, ]2 Lxe, tel

1
2k

1 1 _ L
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; 2
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(1,00

1.0 2 ;
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2
€0 (R2) [¥e, tel R [ye, tel- S eohalve, tel (R [ye, te]-

Wk W r oW M| MW
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. 3 _L1.;
e Tk eR[ve, te] A"y e, te] -5 T el [ye, t el R P ye, te] +
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. 1 -
3h et Y RaR [ye, te] (R} [Ye, te]l-2iie 3% YRR’ [ye, t €] (R} [ye, t €] +
0,1
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. 3 1
e T keR [ye, tel (AN Vye, te]- 5 & Y K e holye, tel YO VIye, tel
. 3 _ 1 4
e T ke (Ra) [ve, tel (AP ye, tel- i TRy e (Ra) [y e, el AV ye, te] s

YK eR [y e, tel (M) Ive, tel-e T T ke Ty e, tel () Plye, tel -
0 e T T contye, t el AE [y e, tel-3e  E T conLlye, te] Y [ye, te] +
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2 2 ;
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. . 1 .
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g2ite [% A e Y rohq[ye, te]’ - %ikmnﬂ[y €, t €] (R} [¥ e, t €] +§ fe? R (R [y e, tel’ -
; M keRalye, tel ROV ye, tels ; Ke (R [¥e, tel RS Vye, tel+
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gemnﬂ[re, tel (o)) Iye, tel -2 T eo () [y e, tel ((Ra)?VLye, tel)

THE SECOHD FART OF THE EQUATTON IS5 FROM THE TEAHSFORMATION TERM (D, ¥ 4, ¥) ek

- ;_ (e“k" € BesselJ[0, ’\,I";] BesselJ[1, ’\,I";] A ye, tel " Prye, tel)+
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SUBSTITUTE ONLY 0, ASAT INFINITY THISEQUATION ISZERO DUE TO THE NEGATIVE EXPONENTIAL TERM.

HOW THE FINAL INTEGRAL TERM OF THE TRANSFORMATION EQATION IS AS SHOWH BELOW
“kx -
Integrate[k (e~ ") (8. €8, ¥), {x, 0, o}, Assumptions — k- 0]

INTEGRATING AND EXPANDING THE EQUATION,
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