
   

 

2 0 0 5 . 0 8
Master’s Thesis

 

 
Derivation of Modulation Equations for 
Resonant Interaction of the Waves in a 

Beach 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Graduate School of Chosun University 

 
Department of Naval Architecture & Ocean Engineering 

 

Venu Vasudevan 

[UCI]I804:24011-200000234724



   

 
 

Derivation of Modulation Equations for 
Resonant Interaction of the Waves in a 

Beach 
 

해변에서해변에서해변에서해변에서 발생하는발생하는발생하는발생하는 파도의파도의파도의파도의 공명공명공명공명 간섭에간섭에간섭에간섭에 대한대한대한대한 변조변조변조변조 식식식식 유도유도유도유도 
 
 
 
 
 
 
 
 
 
 
 
 
 

2005-08-20 
 
 

Graduate School of Chosun University 

 
Department of Naval Architecture & Ocean Engineering 

 

Venu Vasudevan 
 



   

 
 

Derivation of Modulation Equations for 
Resonant Interaction of the Waves in a 

Beach 
 
 
 

Advisor: Prof. Lee, Kwi Joo 

 
 
 

Thesis Submitted for the degree of Master of Engineering 

 
 

2005-08-20 
 
 

 
 
 
 
 

Graduate School of Chosun University 

 
Department of Naval Architecture & Ocean Engineering 

 

Venu Vasudevan 



   

 

 
 

Thesis submitted in partial fulfillment  
of the requirement for the Award of  

the degree of  
Master of Engineering  

 
 

 
Approved by the Guidance Committee: 
 
 
 

Dr. Igor Shugan, 
Chosun University                              

 
Professor Lee Kwi Joo, 
Chosun University 

 
Professor Yoon Duck Young, 
Chosun University 

 
 
 
 
 

2005-08-20 
 

Graduate School of Chosun University 



 i  

Contents 
 

List of Figures…………………………………………………………………….…iii 

Abstract……………………………………………………………………………...iv 

 

Chapter 1. Introduction & Background 

1.1 Introduction……………………………………………………………………….1 

1.2 Stokes Solution……………………………………………………………………2 

1.3 Other Major Developments In The Study of Edge Waves………………………...3 

1.4 Linear Incoming and Reflected Waves On sloping Beach………………………..3 

1.5 Equation of Edge Waves………………………………………………………….5 

 

Chapter 2. Procedure And Derivation 

2.1 Sub harmonic Resonance of Edge Waves…………………………………………7 

2.2 Derivation of Modulation Equation……………………………………………….7 

2.3 Group Velocity…………………………………………………………………..10 

 

Chapter 3. Analysis 

3.1 Checking for Group Velocity……………………………………………………12 

3.2 Condition of No Resonance……………………………………………………...13 

3.3 Applying Spatial Constraints…………………………………………………….17 

 

Chapter 4. Non-Linear Wave Interaction 

……………………………………………………………………………………….23 

 

Chapter 5. Conclusion 

………………………………………………………………………………………26 

 



 ii  

 

Appendix: A 

Mathematical Models of Waves 

……………………………………………………………………………………..27 

 

Appendix: B 

Detailed Analysis Using Mathematica 

……………………………………………………………………………………..31 

 

Reference 

……………………………………………………………………………………..44 

 

 

 

  



 iii  

 

Nomenclature 

 

Wave elevation        η  

Slope         s, θ (Degree) 

Angular frequency       ω 

Amplitude (Standing wave)      A0 

Amplitude (Edge wave)       Ae 

Wave Number        k 

Group Velocity        Cg 

Wave Length        λ 

Distance between Wave Breaker      D 

Resonance Coefficient        L 

Potential Function for Standing Wave     Ф0 

Potential Function for Standing Wave     Фe 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv  

List of Figures 

 

Fig: 1.1 Edge wave pattern………………………………………………………….1 

Fig: 1.2 Incoming Wave Angle to Shore……………………………………………2 

Fig: 1.3 Different Modes of Edge Waves…………………………………………...6 

Fig: 3.1 L Vs Wave Number(s=0.3) ……………………………………………….13 

Fig: 3.2 L Vs Wave Length (s=0.3)………………………………………………..14 

Fig: 3.3 L Vs Wave Length (s=0.2) ……………………………………………….14 

Fig: 3.4 L Vs Angular Frequency………………………………………………….15 

Fig: 3.5 L Vs Slope…………………………………………………………...........16 

Fig: 3.6 Wave Breaker Dist. Vs Wave Length (s=0.2) ……………………………19 

Fig: 3.7 Wave Breaker Dist. Vs Wave Length (s=0.3) ……………………............19 

Fig: 3.8 Wave Breaker Dist. Vs Amplitude (s=0.2) ……………………………..20 

Fig: 3.9 Wave Breaker Dist. Vs Amplitude (s=0.3)………..……..……………….20 

Fig: 3.10 Wave Breaker Dist. Vs Slope……………………………………………21 

Fig: 3.11 Wave Breaker Dist. Vs Angular Freq. (s=0.2) ………………………….22 

Fig: 3.12 Wave Breaker Dist. Vs Angular Freq. (s=0.3) ………………………….22 

Fig: A1 Mathematical Model Of Edge Wave ……………………………………..28 

Fig: A2 Mathematical Model Of Standing Wave………………………………….29 

Fig: A3 Mathematical Model Of Resonance………………………………………30 

 

 

 

     

 

 

 



 v  

Derivation of Modulation Equations for Resonant 

Interaction of the Waves in a Beach 

 

 

 

 

 

 

 

 

ABSTRACT 

 
Edge Wave는 연근해에서 주요한 역할을 하는 것으로 인식된다. 그리고 여러 학자들에 의해 

지난 30년 동안 광범위하게 연구되어왔다. Slow amplitude method를 이용한 다른 접근 

방식이 edge waves의 공진에 대한 modulation equations을 설명하는데 사용된다. Incoming 

swell에 의해 경사진 해변에서 edge wave의 발생은 shallow water model을 기초로 한다. 

공진현상은 multy – scaled expansion asymptotic techniques에 의해 분석된다. 그리고 파 

발생에 대한 유동 간의 경계가 제시된다. 이것은 wave breakers 사이의 edge wave 발생을 

분석하는데 적용된다. 경사진 해변, incoming waves의 진폭, 파장과 같은 다른 변수들의 

영향이 wave breakers 사이의 거리를 결정하는데 여러 그래프를 이용해 연구 삽입된다.Edge 

waves 상호작용의 nonlinear wave solutions은 잘 알려진 sine – Gordon model로 일반화된다. 
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CHAPTER1  

INTRODUCTION & BACKGROUND 

 
1.1 INTRODUCTION 

 

Edge waves are gravity waves that progress along the shoreline. These waves, often difficult to 

visualize are coastal trapped, i.e. their amplitude is maximal at the shoreline and decays rapidly 

offshore. They produce on the beach beautiful run-up patterns although propagation is along 

the straight shoreline and the waveform is sinusoidal in the long shore. Edge waves are 

produced by the variability of wave energy reaching shore. Waves tend to come in groups, 

especially when waves come from distant storms. For several minutes breakers may be smaller 

than average, then a few very large waves will break. The minute-to-minute variation in the 

height of breakers produces low-frequency variability in the along-shore current. This, in turn, 

drives a low-frequency edge wave attached to the beach. Study of edge waves is a rapidly 

growing area in near shore hydrodynamics. A sample picture of edge wave along the shore is 

shown below. 

 

      

Fig: 1.1 Edge Wave Pattern 
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Several mechanisms for generating edge waves are possible in nature. On a large scale edge 

waves can be excited by wind stress directly above the water. Munk, Snodgrass, Carrier and 

Green Span (1956) have studied the effect of pressure deviation in storm surges. Smaller scale 

edge waves can be excited by a nonlinear mechanism of sub harmonic resonance. Medium-

scale edge waves can also be excited by a long group of short swells through a nonlinear 

mechanism 

1.2 STOKES SOLUTION 

The first analytic evidence for the existence of waves, which propagate parallel to and are 

trapped against a shoaling beach, was provided by Stokes (1846). He found the following 

solutions to the inviscid linear equations of motion applied to a wedge-like fluid domain with a 

constant angle β. The Potential function and surface elevation of edge waves are derived as 

shown below respectively. 

 

Fig: 1.2 Incoming Wave angle to the Shore 
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Where the subscript “e” now refers to the properties of a wave traveling parallel to the 

shore.  For a confined beach, edge waves with an integral number of half wavelengths along 

the beach may form standing edge waves.  If the beach is infinite in extent, then edge waves 

will propagate in both directions along the shoreline at a range of frequencies.  

 

1.3. OTHER MAJOR DEVELOPMENTS IN THE STUDY OF EDGE WAVES 

 

Bowen and Inman (1969) found field evidence of standing edge waves of periods comparable 

in order of magnitude to the period of the incoming swell. The amplified edge waves cause 

long shore modulation of the incident swell, which may be sufficiently short to break near the 

shore.  The periodic cells of currents, which, in turn, lead to beach cusps. Motivated by these 

interests, Guza and Davis (1974) made a systematic examination of the non-linear mechanism 

of sub harmonic resonance in which a standing edge wave of frequency ω was resonated by a 

normally incoming and reflected wave of frequency 2ω. Guza and Bowen (1974) employed 

Airy’s shallow-water approximation as the basis of their theory. In addition to the initial 

instability of edge waves, the incident and reflected waves were found to leak energy by 

radiation due to quadratic nonlinearity. Considering the cubic nonlinearity and of radiation 

damping enabled them to predict both the initial resonant growth and the final equilibrium 

amplitude. Their own experiments strongly supported these findings. 

 

1.4 LINEAR INCOMING AND REFLECTING WAVES ON A SLOPING BEACH 

 
For finding the resonance first we need the equation of standing wave. Here we consider the 

special case of a standing wave in a sloped beach, which can be derives as shown below. 

In terms of horizontal velocity u = u (x, t) and free surface elevation η = η (x, t), equations for 

shallow water waves over a non uniform bottom y = -h (x) are 

         ut  +  uux   +  gηx   =  0        (1.4.1) 
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           Ht  +  (uH) x     =   0        (1.4.2) 

Where the total depth H (x, t) =  h (x)  +  η(x, t). 

In the linear theory, disturbances are assumed to be small. Hence we also assume that the 

derivatives are of same order. The equation (1.4.2) can be rewritten in terms of h and η as 

given below. 

ηt   + uh′(x) + hux  + ηux + uηx   =  0      (1.4.3) 

And assuming first order assumption to the equation (1.4.1), (1.4.2) we can write  

 ut  +  gηx   =  0 ,     ηt   + uh′(x) + hux   =  0., 

By eliminating the term “u” from these equation 

 ηtt   - gh′(x)ηx   - ghηxx   =  0       (1.4.4) 

We now consider the waves on sloping beach that is inclined at angle β with the horizontal. For 

using this theory we have to assume that the angle β  is small. 

For small β,      h = sx 

And the equation (5.4) becomes  

ηtt   - gs  (ηx   - xηxx) =  0       (1.4.5) 

The simplest solution of this equation is η = e (iwt) ƒ (x) 

Substituting in the above equation will reduce the equation to  

ƒ  ′ ′ (x) + (1/ x) ƒ  ′ (x) + (ω2 / gs )(1/x) ƒ (x)  =  0  , 

Where 0 < x < ∞. This equation has regular singular point at x = 0 and an irregular singular 

point at x = ∞. The transformation x = (gs / ω2 )(X/2)2 can be reduce the above equation to 

zero order Bessel equation.    

ƒ ′′(X) + (1/ X) ƒ ′(X) + ƒ(X)  =  0   

Where general solution of this equation is given by  

ƒ (X)  = AJ0 (β√X) −  iBY0 (β √X)        (1.4.6) 

Where A and B are constants and X and β are as given below. 

X = β √x   and β =  (4ω2 / gs )1/2
      

Thus the final solution is  

η(x, t)  =  e - iωt [AJ0 (β√x) −  iBY0 (β √x)].      (1.4.7) 
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Using the asymptotic representation of Bessel function for x → ∞ 

η   ∼   (4 / π2β2 x )1/4 (A+B)/2) exp {-i(β√x + ωt + π /4) } + 

  (A+B)/2) exp {-i (β√x - ωt - π /4)} 

The first term of this result represents an incoming wave and the second term corresponds to 

outgoing wave. The amplitude of the former wave depends on x. 

The wave number and the frequency of the outgoing waves given by 

K (x, t) = θx  = ω  ⁄  √ gsx   

We need only first term of the Bessel final solution to find resonance in our problem. So in 

general we can take the equation of standing waves as 
iwtexJA 2

000 )( −=Φ β          (1.4.8) 

1.5 EQUATION OF EDGE WAVES 

 
For getting simplified equation for edge wave for using in this problem, we consider a straight 

and long beach with constant slope. Let the mean shoreline coincide with the y-axis and the 

water be in the region x> 0. The bottom is described by  

Z = - h  =  - sx    x > 0, s = const. 

Because the coefficients are constant in y and t, we try the solution 

ζ = η (x) e i (ky –ωt) 

From the linearized long wave theory considering the mass and momentum conservation and 

using the above equation we will get 

0)( 2
2

=−+′+′′ ηωηη xk
sg

X         (1.5.1) 

By applying the following transformation  
 
ζ = 2kx  

η  = e -(ξ / 2) ƒ (ξ)  
We will get the following equation   

0]2/12[)1(
2

=−+′−+′′ fksgff ωξξ       (1.5.2) 
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This is similar to Kummer’s equation. In general there are 2 homogeneous solutions, one of 

which is singular at the shoreline ξ = 0 and it can be discarded.  

Non Trivial Solutions which render η finite at ξ = 0 and zero as ξ →  0 exist when ω 

corresponds to the following discrete values. 

ω2 /2β sg  = n  + ½, n = 0,1,2,3… 

The associated Eigen functions are proportional to Laguerre polynomials 
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The first few modes of edge waves can be plotted as shown below.  

 
Fig: 1.3 Different Modes of Edge Wave 

ecause these Eigen functions correspond to modes, which are applicable, only near the 

shore they are called edge waves. These Eigen functions are ortho normal in the 

following sense. 

                                    ∫
∞

− =
0

nmmn dLLe δξξ  

For our problem we use only the simplest mode of edge wave equation that is given as below 

                                 
)( wtkyikx

ee eeA ±−=Φ       (1.5.3) 

Considering the edge waves in both directions we can write the 2 equations as 

             
)(

11
wtkyikx

ee eeA −−=Φ                 
)(

22
wtkyikx

ee eeA +−=Φ  
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CHAPTER 2  

PROCEDURE AND DERIVATION 

 
2.1. SUBHARMONIC RESONANCE OF EDGE WAVES 
 
It is already mentioned that progressive waves may be generated by a storm traveling along the 

coast at a speed close to the phase velocity of an edge wave mode. The typical period of this 

kind of edge wave is related to the spatial extent of the storm area and is of the order of several 

hours. If the coastline has an indentation, a linear resonance is possible. Here we are trying to 

analyze the Resonance interactions between the amplitudes of edge waves with frequency ω 

and a standing wave of frequency 2ω also considering the spatial variations for a beach with 

small slope. 

Since the slopes are assumed to be small due to the small inclination in the beach we can use 

the equations [Guza and Bowen]  

 

0])[(])[( =Φ++Φ++ yyxxt sxsx ζζζ      (2.1.1) 

 0)(
2

1 22 =+Φ+Φ+Φ ζgyxt        (2.1.2)  

 

2.2. DERIVATION OF MODULATION EQUATION 

 

Eliminating ζ  from the above equation we can write the single non linear equation as shown 

below. 

xyyxyyyxxxyyxxyx

yyxxtytyxtxyyxxtt xxsg

ΦΦΦ+ΦΦ+ΦΦ+Φ+ΦΦ+Φ+

Φ+ΦΦ+ΦΦ+ΦΦ=Φ+Φ+Φ−≡Φℑ

2))((
2

1

)()(2])[(

2222  

Here we can substitute our equation for Φ as a sum of the above 3 equations we mentioned 

before. 

)( 210210 eeee Conjugate Φ+Φ+Φ+Φ+Φ+Φ=Φ      (2.2.1) 
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)(*
2

)(*
1

2
00

*

)(
2

)(
1

2
00

)(

)(
iwtkyikx

e
iwtkyikx

e
iwt

iwtkyikx
e

iwtkyikx
e

iwt

eeAeeAexJA

eeAeeAexJA
−−−+−−

+−−−−

++

+++=Φ

β

β
 

We can avoid the non-linear terms on the right side of the equation. We need to consider only 

first 2 terms. 

Here we make an assumption that the amplitudes are slowly varying functions of y and time. 

Taking ε as a small parameter we can write A0 & A e  as  A0 (εy εt) and Ae (εy εt)  

In that case the above equation can be indicated as shown. 

)(*
2

)(*
1

2
00

*)(
2

)(
1

2
00

],[],[

)(],[],[

],[)(],[

iwtkyikx
e

iwtkyikx
e

iwtiwtkyikx
e

iwtkyikx
e

iwt

eetyAeetyA

exJtyAeetyA

eetyAexJtyA

−−−+−−

+−

−−−

+

++

++=Φ

εεεε
βεεεε

εεβεε

 

After substituting these amplitudes and evaluating LHS and RHS in the above equation we 

have to integrate the whole equation with respect to dx from 0 to ∝  to eliminate x terms. The 

terms are integrated with weight. Both sides are multiplied with e-kx for this purpose before 

integration. Finally we equate the similar terms on both sides of the equation. We will get 3 

sets of equations corresponding to  

1) 
)( iwtkyie −

 

2) 
)( iwtkyie +

 

3) 
iwte 2−

 

These terms were taken because of the possibility of resonance interaction exist only in these. 

For example 
iwte 2−

can interact with 
)( iwtkyie +

 and will result waves correspond to 

)( iwtkyie −
. Similarly there are different ways of interaction possible by the combination of the 

above three terms. Hence our idea is to separate these terms after integrating and equate the 

terms in RHS and LHS. 

The analysis was carried out using the software MATHEMATICA 4.1 and the details are as 

shown in APPENDIX: B. 



 

 

 

- 9 - 

While integrating derivative of Bessel function we will have problems due to x in the 

denominator. Hence for integrating such terms we have to use the following transformation. 

The problem can comes only from right side of equation with terms of second x derivative for 

Bessel function. 

Let us rewrite x derivatives in quadratic terms of the right side in the following manner: 

( )t x xΦ Φ  = xxtxtx ΦΦ+ΦΦ         (2.2.2) 

We have to integrate this term with exponential weight, but this integral will be finite due to 

following integration by parts: 

0
0 0

( )k x k x k x
t x x t x t xe d x e k e d x

∞ ∞
∞− − −Φ Φ = Φ Φ + Φ Φ∫ ∫    

 And both terms in the right side are constricted and easily calculated in Mathematica. 

We can avoid the higher order terms on the right side .So now we will have three parts on the 

right side as 

1) yytytyxtx ΦΦ+ΦΦ+ΦΦ )(2  

2) Two terms from the above transformation 

Cubic terms are considered here, but terms involving quadratic terms of slow amplitudes are 

avoided. 

After equating resonance terms as mentioned above we will get the final equations as shown 

below.        

 20
28

11 )(25.044])[(
2

)(
2

e
k

yete AAkkeA
k

gs
A

k
ωβεεω β








 +−=+
−

  

1
*

0
28

22 ))((25.044])[(
2

)(
2

e
k

yete AAkkeA
k

gs
A

k
ωβεωε β








 +−−=+−
−

  

 *
21

4
12

0 )()(3
2]))[(( ee

k
t AAekA −=ε   
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2.3 GROUP VELOCITY 

When Waves are generated by a local disturbance such as the dropping of large stone into a 

lake or the motion of wave through water, the successive waves with different wavelength 

propagates and hence they travel with different phase velocities. So we might expect that the 

wave trains would be sorted out as time goes on into different groups of waves such that each 

group would consist of waves of approximately the same wavelength. 

First let us consider a one dimensional progressive plane wave of the form 

)](exp[(),( tkxiatx ωη −=         (2.3.1) 

Where a is the amplitude, and the frequency ω  and wave number k are related by dispersion 

relation  

)(kωω =  

We now suppose two such waves with the same amplitude, but the wave numbers and 

frequencies are slightly different so that 

 

])()cos[()cos( xkktakxta ∆+−∆++−= ωωωη  

=  Acos { xkkt )2/1()2/1 ∆+−+ ωω        (2.3.2) 

Where ω∆  and k∆ are small and A = 2acos{(1/2ω∆ ) t – (1/2 k∆ ) x} is a slowly varying 

amplitude for the rapidly varying mean wave with much larger frequency, ωω ∆+ 2
1  and 

wave number, kk ∆+ 2
1 , so that the above equation can be interpreted as a series of wave 

traveling with the velocity 

Cg = k∆
∆ω           (2.3.3) 

This is the final equitation for group velocity for any kind of waves in general. 

For an edge wave if the incident wave have the frequency ω we have the dispersion relation 

fro edge waves as shown below. 

)12(2 += ngksω          (2.3.4) 

Since in our problem we are dealing with the lowest mode of edge wave we can take the 

dispersion relation of edge wave as 
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gks=2ω          (2.3.5) 

Where k is the wave number and s is the slop of the beach. 

Substituting this in the above equation of group velocity we will get  

k∆
∆ω  = 1/2 k

gs         (2.3.6) 

This is the equation of Group velocity for edge waves 

In the set of equations we got from our analysis, dividing by the coefficients of t derivative and 

substituting the above formula for group velocity in it we will get three final equations of 

resonance as  

20
28

11 25.044])[()(
2

e
k

yegte AAkkekACA 






 +−=+
−

β
β

     (2.3.7) 

1
*

0
28

22 )(25.044])[()(
2

e
k

yegte AAkkekACA 






 +−=−
−

β
β

   (2.3.8) 

 *
21

4
12

0 )()(3
2])[( ee

k
t AAekA −=         (2.3.9) 

These are the Modulation equations for edge waves due to resonance of a standing wave in a 

sloping beach. 
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CHAPTER 3 

ANALYSIS 

 

3.1. CHECKING FOR GROUP VELOCITY 

We will analyze first the simple case that A0 is fixed. We can recheck our equation by the 

following method. 

2011 )()( eyete AAACgA χ=+         (3.1.1) 

10
*

22 )()( eyete AAACgA χ=−         (3.1.2) 

Here we have substituted χ  for the term of k in the right side of the equation. 

From the first equation we will get 

0

1
1

0
2

)(
)(

A

A
A

A

Cg
A te

tee χχ
+








=         (3.1.3) 

Substituting this in the second equation 

           

  10
*

0

1
1

0

2

0

1
1

0

)(
)(

)()(
)( e

tye
yye

tte
yte AA

A

A
CgA

A

Cg

A

A
A

A

Cg χ
χχχχ

=+







−+








                                                                              

 

The equation of wave envelope is given by  

)(
1

tyi
e aeA Ω−= κ

         (3.1.4) 

Since we are assuming there is no interaction between waves by substituting and equating to 

zero. 

0)()( 222 =Ω−+Ω−Ω κκκ CgCgCg  

And we will get, κ/Ω=Cg         (3.1.5) 

That means, that envelope of waves propagates with its group or energy velocity in the mean 

order, it is the classical result of nonlinear waves propagation theory. 
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3.2. CONDITION OF NO RESONANCE 

Based on these analyses the influence of variables like beach slope, incoming wavelength and 

Amplitude of incoming waves in the generation of edge waves along the beach can be 

evaluated. 

Coefficient in the Right side of the edge wave modulation equation is plotted as a function of k 

as shown below. Here slop is assumed to be a constant, 0.3 there exist different values of k for 

different values of beach slope. 

 

0.2 0.4 0.6 0.8 1
k

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

L

 
 

Fig: 3.1 L Vs Wave Number(s=0.3)   

 

From the above graph we can see that a value of k exist where there is no resonance of edge 

waves and incoming waves. Here for k = 0.42, There will not be any resonance. 

By substituting for equation of k in terms of wave length as 

 k = 
λ
π2

 

We can draw the graph showing variation of the resonance factor with respect to wavelength. 
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For slope of 0.3 

 

20 40 60 80 
λ 

0.025 

0.025 

0.05 

0.075 

0.1 

L 

 

Fig: 3.2 L Vs Wave Length (s=0.3) 

Here as discussed above for λ = 14.5 we have no resonance of edge waves and the incoming 

and reflected waves. This is corresponding to the value of k =0.42 as we already mentioned.  

By changing the value of slope to 0.2   
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λ 

 
Fig: 3.3 L Vs Wave Length (s=0.2) 
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It is evident that both the graph shows at a particular value of wavelength for every slope a 

point is reached where there is no resonant interaction between the edge wave and incoming 

and reflected wave.  

 

Angular frequency variation also affects the resonant interaction between edge wave and 

incoming and reflected waves. The variations with respect to angular frequency for a fixed 

wavelength at two different slopes are shown below. (Dashed line indicates slope=0.3, and 

continuous line indicates slope of 0.2) 
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Fig: 3.4 L Vs Angular Frequency 

 

Here Wave Length of incoming wave is assumed to be 100 m and the amplitude of incoming 

waves are assumed to be 1.As shown in the graph for a fixed wavelength χ increases as 

angular frequency increases and there exist a particular value of angular frequency at which 

there will be no resonance interaction for every beach angle and wavelength. This is higher 

for higher beach angles. 
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The Dependability of Resonant interactions on the beach slope are evident from the above 

graphs.  For a variation in slope at a constant value of wavelength (λ=100) and angular 

frequency we can draw the variation in Coefficient L as shown below.  
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Fig: 3.5 L Vs Slope 

 
It is evident from the graph that in a beach when slope is increased the resonant interaction 

reduces.  
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3.3. APPLYING SPATIAL CONSTRICTION 

From the derived equations of modulation it’s possible to analyze the generation of edge waves 

with in a constrained space (in y direction). 

This is important to study various coastal mechanisms occurred due to edge waves, like sand 

transportation in long shore direction. 

The first 2 modulation equations are given by 

2011 ])[()( eyegte ALAACA =+         (3.3.1) 

1
*

022 )(])[()( eyegte AALACA =−         (3.3.2) 

Where L = 






 +−
−

28 25.044
2

β
β

kkek k      (3.3.3) 

Considering only the variation in y direction we can write rewrite the above equations as 

 

201)( eyeg ALAAC =         (3.3.4) 

From the above equation Ae2   = 
0

1)(
LA

A
Cg ye  

The Second Equation is given by 

10
*

2 )( eyeg ALAAC =−        (3.3.5) 

(Ae2)y   = - )( 10
*

eAA
Cg

L
 

Substituting the value of Ae2 in the above equation 

( ) 10
*

0

2

1 eyye AAA
Cg

L
A 








−=         (3.3.6) 

We will substitute 2
0

*
0

2

χ=







AA

Cg

L
  

2

00
*

0 AAA =  

Substituting for 2χ  we will get 

( ) 01
2

1 =+ eyye AA χ          (3.3.7) 
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This equation is similar to the equation of simple harmonic motion. We can solve this 

differential equation in standard format given as 

121 e
ixyixy AeCeC =+ −  

And  )( 01 CycCosAe += χ         (3.3.8) 

This result can be used for predicting the possibility of edge waves in a beach with in a wave 

breaker in y direction. From the property of the constantχ , which depends on the wave 

number and slop we can predict approximately how far wave breakers should be placed for not 

generating the edge waves. Edge wave cannot be generated between wave breakers spaced at a 

distance of D, if the following zero boundary conditions are satisfied:  

0)()0( 11 ==== DyAyA ee  

That means, that exists threshold or minimum distance for the possibility of edge waves 

generation by incoming swell: 

                                                      χπ /=D  

Its obvious that for different values of χ , which is defined by the beach slope, wave Length 

and Amplitude of incoming waves there exist an appropriate D, placed at which there will be 

minimum possibility of edge waves between wave breaker. As we already discussed edge 

waves are the key factor for different beach phenomenon like sedimentation and sand 

transportation it is important to know the dependability of edge eave envelope on the distance 

between wave breakers. We can check the generation of edge waves by varying these 

parameters. Two slopes for beach is considered in general. As s=0.3(dashed line) and s = 0.2 

(continuous line) 
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1.) Change of wave breaker distance for different wave length 

(Continuous line indicates slope of 0.2 and dashed line shows slope of 0.3)  
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Fig: 3.6 Wave Breaker Dist. Vs Wave Length (s=0.2) 
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Fig: 3.7 Wave Breaker Dist. Vs Wave Length  (s=0.3) 

 

These Graphs can be used for finding the exact value of Water breaker distance for a particular 

value of slope, amplitude of incoming wave and wavelength, such a way that the edge wave 

envelope generated in between them is minimal. For example for an incoming wave length of 
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100 m at a beach with a slope of 0.3 for an amplitude of incoming wave of 1m the wave 

breakers have to be placed at around 150 m (from the graph) to reduce the edge wave envelope 

generated in between them. Less generation of edge waves are desired due to  the threat of sand 

transportation and other phenomenon corresponds to long shore currents. 

 

2) Change of wave breaker distance for different Amplitude of incoming waves 
(Continuous line indicates slope of 0.2 and dashed line shows slope of 0.3) 
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Fig: 3.8 Wave Breaker Dist. Vs Amplitude (s=0.2) 
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Fig: 3.9 Wave Breaker Dist. Vs Amplitude (s=0.3) 
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As the Graphs indicates the Distance of Water breakers decreases as Amplitude of incoming 

waves increases. 

3) Change of wave breaker distance for different Beach slope 

For different beach slope for a constant wave length and constant amplitude of incoming waves 

we will get the variations of distance between break waters as shown below 
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Fig: 3.10 Wave Breaker Dist. Vs Slope 

 

This graph shows the constant increase in the wave breaker distance for constant increase of 

slope. Which means for a same incoming wave length and amplitude of wave at a fixed angular 

frequency we need water breakers placed at a higher distances for lesser edge waves and 

corresponding coastal processes at higher angles of slope. 
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1) Change of wave breaker distance for different Angular frequency 

(Continuous line indicates slope of 0.2 and dashed line shows slope of 0.3) 

For constant amplitude of incoming wave and constant wavelength we can draw the graph 

of angular frequency at 2 different slops as shown below. 
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Fig: 3.11 Wave Breaker Dist. Vs Angular Freq. (s=0.2) 
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Fig: 3.12 Wave Breaker Dist. Vs Angular Freq. (s=0.3) 

 

As angular frequency increased distance between wave breakers decrease. 
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CHAPTER 4 

NONLINEAR WAVE INTERACTION 

  

Let us rewrite the general system of resonance interactions between edge waves and incoming 

swell (1,2) by following way: 

1 1 0 2e g e et yA C A LA A+ =     (4.1)   

*
2 2 0 1e g e et yA C A LA A− =           (4.2)   

*
0 1 2e etA SA A= −            (4.3)   

 Where  L = 






 +−
−

28 25.044
2

β
β

kkek k , 
12 42 ( )3

kS k e= . 

Introducing new moving variables: 

, ,

;

G G

G G

C t y C t y

C C
t y

ξ η

ξ η ξ η

= + = −
∂ ∂ ∂ ∂ ∂ ∂= + = −
∂ ∂ ∂ ∂ ∂ ∂

 

We can rewrite system of equations (4.1)-(4.3) : 

1
0 2

*2
0 1

*0 0
1 2

;
2

;
2

2

e
e

G

e
e

G

e e
G

A L
A A

C

A L
A A

C

A A S
A A

C

ξ

η

ξ η

∂ =
∂

∂ =
∂

∂ ∂+ = −
∂ ∂

 

Renormalization of unknown functions: 

0 0 1 1 2 2; ;
2 2 2e e e e

G G G

L LS LS
a A a A a A

C C C
= = =  

Gives the final system of modulation equations: 

1 0 2

*
2 0 1

*
0 0 1 2

;

;

.

e e

e e

e e

a a a

a a a

a a a a

ξ

ξ

ξ η

=

=

+ = −

        (4.4) 



 

 

 

- 24 - 

Third equation for interacting modes (4.3) includes only time derivative of the amplitude of 

incoming wave, so further we’ll assume that 0A  is slow function of time only: 0 0( )A A tε= , 

or 0 0( )a a ξ η= + and 0 0a aξ η= . 

System of equations (4.4) has two first integrals of motion in this case: 

2 2
1 0

2 2
2 0

| | 2 | | ( );

| | 2 | | ( )
e

e

a a g

a a f

η
ξ

+ =

+ =
                                                   (4.5) 

Phase synchronism of waves is a typical regime for wave generation problems due to resonance 

interactions, so we’ll assume it here to be also, and correspondingly consider all wave 

amplitudes as real functions of space and time.     

Following substitution of variables and unknown functions: 

1 2

1 1ˆ ˆ( ) ( ), ( ) ( ), ( ) , ( )
2 2e ea g Sin a f Sin f d g dη ϕ ξ ψ ξ ξ ξ η η η= = = =∫ ∫ , 

Where g and f are arbitrary functions of it’s arguments, gives the following system of equations 

for new ,ψ ϕ  functions: 

ˆ

ˆ

( );

( ).

Sin

Sin

ξ

η

ϕ ψ

ψ ϕ

=

=
               (4.6) 

 System of equations (4.6) has a very beautiful property: sum and difference of unknown 

functions are satisfied to well-known nonlinear Sin-Gordon equation:         

 

ˆ ˆ
( ) ( )Sinξηϕ ψ ϕ ψ± = ±           (4.7)     

So, it is possible construct a large (infinite) set of solutions for our model by using different 

known solutions of Sin – Gordon equation:  If S1 and S2 are two of them, then equations (4.6) 

due to (4.7) will be evidently satisfied by the following functions: 

 

1 2
;

2
1 2

.
2

S S

S S

ϕ

ψ

+=

−=
           (4.8) 
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And even more: if we’ll take two different solutions of (4.6): 1 1 2 2( , ), ( , )ϕ ψ ϕ ψ than sum and 

difference of them will satisfy to (4.7): 

1 1 2 2 1 1 2 2( ), ( ), ( ), ( )ϕ ψ ϕ ψ ϕ ψ ϕ ψ+ + − −        (4.9) 

And using (4.8) we can construct subset of new solutions of the system (4.6): 

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

( ) / 2, ( ) / 2;

( ) / 2, ( ) / 2.

ϕ ϕ ψ ϕ ψ ψ ϕ ψ ϕ ψ
ϕ ϕ ψ ϕ ψ ψ ϕ ψ ϕ ψ

= + + + = + − −
= + + − = + − +

 

By repeating this many times we can construct infinite number solutions of equations (4.6).  
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CHAPTER 5 

CONCLUSION 

 

From the discussions in this thesis it is evident that the resonant interactions between 

incoming waves and edge waves significantly depend on factors like wave Length of incoming 

wave, angular frequency of incoming waves, Amplitude of the incoming wave, slope of beach. 

From the graphs discussed above chapter we have seen that for every angular frequency and 

every value of slope there exist a particular wavelength for which there is no resonant 

interaction between the edge waves and incoming and reflected waves. These wavelengths for 

no resonant interaction or angular frequency of no resonant interaction can be find out as from 

the respective graphs. Applying spatial constrictions enables us to study the generation of edge 

wave in between a wave breaker. Less edge wave envelope formed between the wave breakers 

is considered as a favorable condition. Exists threshold or minimum distance for the possibility 

of edge waves generation by incoming swell. The distance between wave breakers can be 

adjusted for less generation of edge waves. As wave Length increases the distance between 

wave breakers is increased As the Amplitude of incoming wave increases the wave breaker 

distance decreases As Angular frequency of incoming wave increases the distance between 

wave breaker decrease. As Beach slope increases the distance of wave breaker increases. These 

are the results of this analysis. The exact prediction of generation of edge waves in a beach is 

very important due to the increasing concerns over coastal processes including sand 

transportation and beach erosion. More researches shall be conducted considering complex 

phenomenon including wave breaking and interaction of sand for getting more accurate results.  

 

 

 

 

 

 

 

 



 

 

 

- 27 - 

 

 

 

 

 

 

 

 

 

 

APPENDIX: A 

 

(Mathematical Models of Waves)      
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1.) 3-D model of Edge waves created using the equation used in this discussion. This 

Model shows the exponential Decay of edge waves along the offshore direction. 

 

 

 

 

 

 

 

 

Fig: A1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: A1 
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2) Mathematical Model Of Standing Waves near a sloping Bottom Made using the Bessel 

function         

 

                     

 

 

 

 

 

                                             

 

Fig: A2 
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3) Resonance of edge wave of frequency ω with Standing waves of frequency 2ω 
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Fig: A3 
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APPENDIX: B 

 

(Detailed Analysis Using Mathematica 4.1)      
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   THE DETAILED ANALYSIS USING MATHEMATICA 4.1  

 

 

THE INPUT FUNCTION IS  

 

 

 

THE LEFT SIDE EQUATION 
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****************************************************************************************** 

THE RIGHT SIDE EQUATIONS 

(β IS APPPLIED ONLY IN THE LAST) 
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SUBSTITUTE ONLY 0, AS AT INFINITY THIS EQUATION IS ZERO DUE TO THE NEGATIVE EXPONENTIAL TERM. 

 

 
 

 

 
INTEGRATING AND EXPANDING THE EQUATION, 
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