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ABSTRACT

Re-examination of genome imputation analysis of whole genome

sequencing data

Yoonjong Seo

Advisor: Prof. Jungsoo Gim, Ph.D.
Department of Integrative Biological Sciences

Graduate School of Chosun University

Genome imputation analysis is the standard procedure in genetic analysis for exploring
associations between the genome and various phenotypes. However, despite the utility and
importance of genome imputation analysis, many genetically homogeneous minority
populations exist in small proportions in the reference panel, and only limited performance
evaluation studies have been conducted.

In this study, we analyzed how well the imputation results approximate whole-genome
sequence (WGS) using Koreans as an example of a genetically homogeneous minority
population, utilizing both a large dataset of 2,253 whole-genome sequencing and genotype
array data for more accurate and meaningful performance assessment.

For the imputation, we selected four reference genome panels, considering the characteristics
of each panel commonly used in the field: a Korean reference panel, Haplotype Reference
Consortium (HRC), 1000 Genome, and Trans-Omics for Precision Medicine (TOPMed).

As expected, the results using the Korean reference panel outperformed all other reference
panels in terms of all performance metrics. Particularly, it exhibited overwhelming accuracy,
especially for variants with a minor allele frequency (MAF) of less than 1%, when compared to

other reference panels. When using the pipeline from the Michigan Imputation Service, we

iv



observed cases where the called genotypes were corrected based on the imputed genotypes. In
these cases, the Korean reference panel showed the lowest errors in genotype correction
compared to the other panels. In the genome imputation results using the Korean reference
panel with the best performance, we identified variants that were not called in the WGS data.
Among these, 34.7% were determined to be filtered variants that did not meet quality threshold
criteria during the WGS variant calling process.

The outstanding performance of genome imputation using the Korean reference panel in the
genetically homogeneous minority population of Koreans highlights the importance of
developing ethnic-specific reference panels for the full utilization of genome imputation

analysis. This also suggests new applications of genome imputation in Deep WGS.



I. INTRODUCTION

I-1. Whole Genome Sequence and genotype array

To generate genotype data for the analysis of the association between diseases and the
genome, two methods are typically used: Whole Genome Sequencing (WGS) and Genotype
array. WGS captures most of Single Nucleotide Variants (SNVs) and short INDELSs, and it
provides good accessibility to rare variants [1]. However, it remains expensive and places a
significant burden on analysis resources [1, 2]. On the other hand, the genotype array detects
only the genetic variations of interest within the entire genome but has limited access to rare
variants. It is cost-effective and requires fewer analysis resources. In addition, ungenotyped
variants can be inferred via genome imputation. In many large-scale studies, genotype array is
still efficient. Consequently, genotype imputation has become a standard procedure for

genetic analysis of the association between the genome and various phenotypes [3].

I-2. Genome imputation

In order to understand genome imputation, it is necessary to know the background on
which the genotype array was created. First, when designing probes used for genotyping, not
all SNPs are considered, but haplotypes are classified by linkage disequilibrium (LD) block,
For each LD block, a representative SNPs called tag SNPs are selected and designed as a
probe. Considering this process in reverse, if there is reference data that can estimate the LD
structure, the genotype of the ungenotyped SNP can be inferred using the tag SNP information
and reference data. This process is called genome imputation [3]. Many researches have been
conducted on the methodology of genome imputation analysis based on various algorithms,
and many high-performance tools based on the hidden-Markov algorithm that are freely

available have been developed [4]. The typical construction of an efficient pipeline in current



practice involves two main steps: pre-phasing, which is the haplotype estimation process, and

imputation, which is the inference of genotypes based on the determined haplotypes [5].

The performance of genome imputation is influenced by various factors, with the sample
size of the reference genome panel and the ethnic similarity between the input data being
particularly crucial [6]. The advancement of sequencing technologies has led to the generation
of large-scale genomic data. As emphasis on genetic diversity has increased in reference
panels, Large-size multi-ethnic reference panels have been developed [7]. Most of these
panels are publicly available and can be easily downloaded and used for analysis, either

directly or through imputation web tools.

I-3. Related studies

Sample size and ethnic similarity have been reported to play a crucial role in genome
imputation, and high-resolution large-scale reference panels with ensured ethnic similarity are
expected to be particularly important for the accurate inference of rare variants Although
genome imputation cannot fully approximate WGS, previous study has demonstrated genome
imputation performance approximating WGS with specific MAF thresholds (MAF > 0.14% in
African ancestry, MAF > 0.11% in Hispanic/Latinx ancestry, and MAF > 0.84% in Finnish
ancestry), depending on the selection of genotyping arrays, reference genome panels, and
sample ancestry [8].

A recent study showed the result of imputation of low coverage WGS with quality
equivalent to high coverage sequence using large-scale reference sequence data. So, as the
available sequence data are increased, the utility of genome imputation is on the rise [9].

However, most publicly available reference panels are European-centric, and
performance evaluations have also been studied using European data. So, genetically

homogeneous populations with less public data available such as East Asians have the



smallest proportion in the composition of large multi-ethnic reference panels. Only limited

performance evaluation studies have also been conducted.

I-4. Research purpose

In most multi-ethnic reference panels, the proportion of Asians is quite low, of which
very few East Asians exist. And other East Asian-specific reference panels also have very
small sample sizes [10]. So, performance evaluation study in genetically homogeneous
minority population has been limited. Fortunately, a publicly available Korean reference panel
has recently been released. In this study, I conducted a performance evaluation analysis using
the whole-genome sequencing (WGS) and genotype array data of 2,253 Korean individuals as
an example of a genetically homogeneous minority population. And confirmed the benefits of

high-performance genome imputation using large-size reference panels with ethnic similarity.



II. MATERIALS AND METHODS

II-1. Genotype array data

Genotype array data was called from KoreanChip [11] array platform with buccal and

blood samples collected from 8K Korean subjects.

Quality control of the 8K Korean genotype array was performed using PLINK 1.9 [12].
Samples with a missing SNP rate exceeding 5% and a heterozygosity rate deviating by 3
standard deviations from the mean were excluded from the analysis. To remove batch effects,
samples located outside the cluster were eliminated using both Multidimensional Scaling
(MDS) and Principal Component Analysis (PCA). Additionally, duplicate or closely related
samples, as well as those with gender mismatches, were removed. SNPs with low call rates

and and Hardy-Weinberg Equilibrium test p-values lower than 1e-6 were excluded.

Next, I extracted 2,253 individuals for whom WGS data were available. Ultimately,

samples from 2,253 people and approximately 600K SNPs were used for analysis.

II-2. WGS data

WGS data was sequenced at 30X depth on Illumina Novaseq6000 using whole blood from
2,253 Korean subjects. The Truseq PCR-Free Prep library kit was used for the sequencing
library, and VCF results were obtained using BWA-mem [13] for alignment and GATK4 [14]
for variant call.

gVCF files which contain reference information were used for the comparison analysis.
We combined the gVCF files present at the sample level into a single file. Then, we filtered
for variants with a “PASS” status in the “FILTER” column, indicating high-quality variants
and generated a single compressed gVCF file which has only genotype information for these

variants using Beftools 1.17 [15].



I1-3. Reference panels for genome imputation

Four reference panels were selected among the conventionally used reference panels
considering each ethnicity and genome size (Table 1). 1000 Genom [16] (East Asian) was
selected as the East Asian specific reference panel, Haplotype Reference Consortium (HRC)
[7] and Trams-Omics for Precision Medicine (TOPMed) R2 [17] which is a largest multi-
ethnic panel were selected as the large-size multi-ethnic reference panel. As a Korean
reference, I create a Korean reference panel using 3,330 Korean WGS data. After pre-phasing
the VCF file, I tried various processes such as VCF modification and missing genotype
processing. However, due to resource limitations such as file size and processing time,
The analysis progressed at an exceedingly slow pace. Fortunately, a Korean reference panel
consisting of data from approximately 4,700 Koreans was developed and released. So, Korean
Imputation Service (KIS) Phasel Panel was selected. This is a largest Korean reference with

sample size 4.7K [18].



Table 1. Reference panels for imputation

Reference panel Ancestry Sample size Genome size
Korean Reference Panel Korean 4,799 38M
1000 Genome-East Asian East Asian 525 49M
Haplotype Reference Consortium Multi-ethnic 32,470 39M
TOPMed R2 Multi-ethnic 97,256 308M




I1-4. Genome imputation

Genotype array QC was processed by Plink 1.9. QCed Plink BED format files were
converted to VCF and re-aligned swapped alleles. And then, I generated compressed VCF
separated by chromosome for the genome imputation using beftools (version 1.17).

I used the genome imputation pipeline from Michigan Imputation Service [19] consisting
of Eagle (version 2.4) [20] for the pre-phasing and Minimac4 [5] for the imputation.
Imputation was performed using three online tools: Korean Imputation Service (KIS),
Michigan Imputation Service (MIS), and TOPMed Imputation Service (TIS). After imputation,
imputed variants were lifted over to hg38 build for the comparison with WGS data using
Picard [21]. Only Imputed variants with R2 score of 0.8 or higher passed QC, and only bi-

allelic SNPs were considered in the analysis.

I1-5. Performance measure of imputation result

To measure the accuracy of imputation, whole-genome sequencing data were used as the
truth data set. Imputed SNPs were categorized into five groups: True Positive (TP), True
Negative (TN), False Positive (FP), False Negative (FN), and Misclassified (MC) (Table 2).

And then, the following performance metrics were calculated by MAF.
Recall = TP /(TP + FN)
Precision = TP /(TP + FP)

Concordance = TP /(TP + FP + MC)



Table 2. Classification for performance evaluation

Classification

Truth Sample (WGS)

Imputed Sample

True Positive (TP)
True Negative (TN)
False Positive (FP)

False Negative (FN)

Misclassified (MC)

ALT
REF
HOM_REF
ALT
HET REF_ALT

HOM_ALT

ALT
REF
HET REF_ALT or HOM_ALT
REF
HOM_ALT

HET_REF_ALT




III. RESULTS

III-1. Study overview

I imputed the genotype array data of 2,253 Koreans using four different reference
panels. Then, I assessed the imputation quality and the performance against WGS

genotypes as the true genotypes (Figure 1).



Whole genome sequence
2,253 individuals

K.chip genotype array
600k genome size

Genome imputation using 4 reference panels (Michigan Imputation Service pipeline)

| | | |
R

l Imputed genotypes

| Pipeline : Eagle 2.4 - Minimac4

J True genotypes

‘ Comparison analysis & Performance evaluation

Figure 1. Study overview
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ITI-2. Imputation result

The imputed genome size was similar to the size of each reference panel. When
using the largest reference panel, TOPMed R2, there were overwhelmingly more
variants present. However, after R2 score filtering, when using the Koren reference,
the loss rate of SNP and INDEL variants was approximately 50%, with a majority of
variants passing through the filtering. In the case of TOPMed R2, the loss rate for SNP
variants was 97%, indicating that most of the variants were imputed with low quality.
The results for the 1000 Genomes and HRC panels showed similar loss rates, with
approximately 12.8% and 15% respectively, and the number of variants was also
similar after filtering (Table 3).

Using the R2 score as a correlation metric between the reference panel and imputed
variants, | analyze the median R2 score for each reference panel according to Minor
Allele Frequency (MAF) bins and the proportion of well-imputed SNPs (R2 = 0.8)
within each MAF bin. When using the Korean reference panel, the proportion of high-
quality SNPs among those with a frequency lower than 1% was the highest at 25%,
and the median R2 value was also the highest at 0.53. However, in the results from
other reference panels, most of the rare variants had low quality. For SNPs with a
frequency higher than 1%, the Korean reference panel also showed the best quality,

while the 1000 Genomes reference panel had the lowest quality (Figure 2).
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Table 3. Imputation result

Imputed R2>10.8
Reference panel
SNP INDEL SNP INDEL
Korean 31,363,307 5,615,139 15,816,953 2,793,667
IKG _EAS 43,280,933 3,233,367 5,575,408 638,433
HRC 38,568,539 None 5,995,467 None
TOPMed R2 256,013,554 19,750,125 7,916,785 588,975

12
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ITI-3. Imputation performance

I analyzed how well the imputed genome approximates WGS using Minor Allele
Frequency (MAF) (Figure 3) and three performance metrics: recall (Figure 4), precision
(Figure 5), and concordance (Figure 6).

In the case of MAF, the study examined the differences between the imputed SNP MAF
and the true WGS MAF for each SNP position. The x-axis shows the absolute difference in
MAF, and the y-axis shows the number of variants. Only well-imputed SNPs with an R2
score of 0.8 or higher were used in the analysis. When there is a high degree of ethnic
similarity between the reference panel and the input data, the differences in MAF are smaller.
As expected, the Korean reference panel showed the smallest differences in results, while the
other three panels were similar to each other but had larger differences compared to the results

from the Korean reference panel.

To make these differences more evident, I specifically evaluated performance for rare
variants with MAF lower than 1%. Similar to the imputation quality, when using the Korean
reference panel, [ observed significantly improved accessibility for rare variants. It
demonstrated the least variation across all performance metrics and, on average, outperformed
the results obtained using other reference panels. In the results obtained using TOPMed R2,
which was the second-best in terms of quality, it was observed that the proximity to WGS was

the lowest, in contrast to the imputation quality.

14
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II1-4. Correction of genotyped SNPs

When using the Michigan Imputation Service pipeline, genotype imputation occurs not
only for ungenotyped SNPs but also genotyped SNPs. During the imputation process,
genotyped SNPs are corrected to appropriate genotypes by reverse estimation based on nearby
imputed SNPs. This correction may involve changing correct genotypes into incorrect
genotypes, which is considered as an error. I assessed and counted the genotype correction
errors in the results from each panel, and found that the error count was lowest in the Korean

reference panel results and highest in the HRC reference panel results (Figure 7).
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III-5. Genome imputation with WGS

To determine the unique variants among the imputed variants, I overlapped SNP data from
five different reference panels. Results using the Korean reference panel revealed the highest
number of unique Imputed SNPs, approximately 770,000 SNPs, followed by the TOPMed R2
results with 500,000 SNPs, as the second-highest. Most of the SNPs from the Korean
reference panel, which showed the closest performance to WGS, overlapped with WGS data.
However, around 1.1 million SNPs were exclusively present in the Imputed SNP dataset. I
analyzed unfiltered VCF data from the WGS dataset and identified that some of the SNPs
unique to Korean reference panel were present in the unfiltered WGS data. Among these, 33.2%
failed to pass the threshold during the GATK4 variant calling's Variant Quality Score
Recalibration (VQSR) process, while 1.5% were identified as SNPs with excessive
heterozygosity rates (Figure 8). This demonstrates that genome imputation can be a method to
recover lost information from deep whole-genome sequencing when using an appropriate

reference panel, ensuring performance (Figure 9).
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IV. DISCUSSION

With the increase of large-scale sequencing data, the size of reference panels has
also increased. Consequently, the performance of genome imputation has improved,
and various applications are being explored. However, in populations with genetic
homogeneity, such as Koreans, who are almost absent in reference panels of other
ethnicities, it is expected that imputation performance may be lower compared to
Europeans. This study use a large-scale dataset of Korean genome data to evaluate
imputation performance and demonstrate the utility of high-performance genomic
imputation.

In the imputation results, the Korean reference panel, which satisfies both the
sample size of the reference panel and the overlap between the input genotype array
and the reference panel, has the highest number of high-quality imputed variants,
especially rare variants that are rarely found in other reference panels. there was. The
results using 1000 Genome have the second highest ethnic similarity, but are
considered to be of slightly lower quality than the results of the HRC reference panel
due to the small sample size. The TOPMed reference panel has a sample size three
times larger than the HRC panel, and because it includes South Asians, it appears that
it was possible to impute more common variants than the HRC panel.

Comparison with whole-genome sequencing revealed significantly different results
for genome imputation with the Korean dataset, emphasizing high racial similarity.
Particularly, results using the TOPMed reference panel contradicted imputation quality
assessed by R2 score. Although the correlation with the reference panel was better for
the Korean panel than for the other two panels, it showed the lowest performance when

compared to actual WGS data.
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In the correction of genotyped SNP errors, the Korean reference panel had the least
errors, similar to the 1000 Genomes and TOPMed panels, while the HRC panel had the
most errors. This discrepancy is interpreted as a result of the impact of sample size
since the probe design process of genotyping arrays considers variants with certain
frequencies. However, beyond error count, the Korean panel demonstrated a higher
rate of accurately correcting genotypes, offering a means to stabilize genotype calling

C€1ror.

After the advent of WGS, the performance study of genome imputation became
possible to conduct a clearer analysis by comparing WGS genotypes with the correct
answer rather than evaluating performance through array masking. Previous large-scale
studies have shown that genome imputation using race-specific array platforms and
reference panels improved imputation quality for rare variants, showing that high-
quality genomic imputation can partially replace WGS. We confirmed the possibility
that high-performance genome imputation can be used in deep WGS in addition to
low-depth WGS, which has low coverage. Using the Korean reference panel, we
confirmed that some of the variants imputed with high accuracy were variants that did
not exceed the quality threshold in WGS variant calling process. This suggests that
genome imputation can be used as a method to increase WGS coverage.

So, the overwhelming performance of genome imputation analysis using the
Korean reference panel in Koreans, a genetically homogeneous minority population,
suggests the importance of developing a ethnic-specific reference panel for full

utilization of genome imputation analysis.
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VII. APPENDIX

<Genotype array QC protocol>

R version =4.1.1

- # require packages: library(foreach) library(doParallel)
- # IBD cutoff: pi_hat 0.2

- ## argument info

- # bfile: genome file

- # subjects_remove_list: error sample FID IID file
- # outname: output genome file prefix

- # dupliceted_ID_list: duplicated ObjectlD's FID IID file, If you have

duplicate subjects, you should remove them all.

- install.packages("foreach")

- install.packages("doParallel")
- library(foreach)

- library(doParallel)

- genomeQC_protocol <- function(bfile,subjects_remove_list, outname,
dupliceted_ID_list=NULL){

- if(length(dupliceted_ID_list)==0){

- ## 1st QC

- # remove error sample
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system(paste("plink --bfile "bfile," --remove ",subjects_remove_list," --

allow-no-sex --make-just-fam --out QC0",sep=""))

# remove low quality subject
print("remove low quality subject")

system(paste("plink --bfile "bfile," --keep QCO.fam --missing --allow-

no-sex --out Total_CR",sep=""))

system(paste("plink --bfile ",bfile," --keep QCO.fam --het --allow-no-sex
--out Total_HET",sep=""))

callData <- read.table("Total_CR.imiss",header=T)

hetData <- read.table("Total_HET.het",header=T)

hetData <- cbind(hetData,het=((hetData[,5]-
hetDatal,3])/hetData[,5])*100)

data <- merge(callData,hetData,by="FID")

colnames(data)[2] <- "IlID"

png("low_quality_sample_before_plot.png")

plot(data$het, data$F_MISS xlab="Heterogyzosity"ylab="Proportion of
missing SNPs")

abline(v=c(mean(data$het)-

3*sd(data$het), mean(data$het)+3*sd(data$het)),col=2,Ity=2)
abline(h=0.05)

dev.off()

remove <- which(data$F_MISS>0.05)

remove <- c(remove which(data$het>mean(data$het)+3*sd(data$het) |
data$het<mean(data$het)-3*sd(data$het)))

remove <- unique(remove)
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data2 <- data[-remove,]

png("low_quality_sample_after_plot.png")
plot(data2$het, data2$F_MISS,xlab="Heterogyzosity" ylab="Proportion
of missing SNPs")

dev.off()

write.table(data[remove,c(1:2)],"low_quality_samplelD.txt",quote=F,row=F

,col=F)

system(paste("plink  --bfile  "bfile," --keep QCO.fam --remove
low_quality_samplelD.txt --allow-no-sex --make-just-fam --out
QC1"sep=""))

# SNP_pruning

print("mds & pca analysis")

system(paste("plink --bfile " bfile," --keep QC1.fam --maf 0.1 --geno
0.01 --hwe 0.001 --indep-pairwise 50 5 0.2 --allow-no-sex --out

snp_prune",;sep=""))

# calculate IBD

system(paste("plink  --bfile  "bfile," --keep QC1l.fam --extract

snp_prune.prune.in --genome --allow-no-sex --out prune_IBD",sep=""))

# MDS & PCA analysis
library(foreach)
library(doParallel)

core <- 2

cl = makeCluster(core)

registerDoParallel(cl)
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foreach(i=1:2) %dopar%({

ifi=="1){

system(paste("plink  --bfile  "bfile," --keep QC1l.fam --extract
snp_prune.prune.in --read-genome prune_|BD.genome --mds-plot 4 --

cluster --allow-no-sex --out 1st_mds",sep=""))

Jelse{system(paste("plink --bfile "bfile," --keep QC1.fam --extract

snp_prune.prune.in --pca --allow-no-sex --out 1st_pca",sep=""))

}
}

system(paste("plink  --bfile  "bfile," --keep QC1l.fam --extract
snp_prune.prune.in --read-genome prune_IBD.genome --mds-plot 4 --

cluster --allow-no-sex --out 1st_mds",sep=""))

system(paste("plink  --bfile  "bfile," --keep QC1l.fam --extract

snp_prune.prune.in --pca --allow-no-sex --out 1st_pca",sep=""))

# mds analysis

mds <- read.table("1st_mds.mds" header=T)
png("1st_mds_C1_C2_before_plot.png")
plot(mds$C1,mds$C2,xlab="C1"ylab="C2")
dev.off()

print("Please decide the C1,C2 threshold then close the plot.")
system("eog 1st_mds_C1_C2_before_plot.png")

answer=""

while (answer!="no" & answer!="n"){

C1 <- as.numeric(unlist(strsplit(readline("C1 threshold (write minimum

& maximum value of range ex;-0.5 0.05) : ")," ")))

C2 <- as.numeric(unlist(strsplit(readline("C2 threshold (write minimum

& maximum value of range ex;-0.015 -0.1) : ")," "))
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png("test.png")
plot(mds$C1,mds$C2,xlab="C1" ylab="C2")
abline(v=C1,col="red’ lty=2)
abline(h=C2,col="red’,Ity=2)

dev.off()

system("eog test.png")

answer=readline("Change threshold? please answer yes(y) or no(n) : ")
}

system("mv test.png 1st_mds_C1_C2_before_plot.png")
ix.C1 <- which(mds$C1<= min(C1)|mds$C1>= max(C1))
ix.C2 <- which(mds$C2<= min(C2)|mds$C2>= max(C2))
ix.C <- unique(c(ix.C1,ix.C2))

if(length(ix.C)!=0){
png("1st_mds_C1_C2_after_plot.png")
plot(mds$C1[-ix.C],mds$C2[-ix.C],xlab="C1",ylab="C2")
dev.off()

}

remove_mds <- mdsl[ix.C,1:2]

write.table(remove_mds,"mds_correction.txt",row.names=F,quote=F)

# pca analysis

pca <- read.table("1st_pca.eigenvec")
png("1st_pca_pc1_pc2_before_plot.png")
plot(pcal,3],pcal, 4] xlab="PC1" ylab="PC2")
dev.off()
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print("Please decide the pc1,pc2 threshold then close the plot.")
system("eog 1st_pca_pc1_pc2_before_plot.png")

answer=""

while (answer!="no" & answer!="n"){

pcl <- as.numeric(unlist(strsplit(readline("pc1 threshold (write to

minimum & maximum value of the range ex;-0.5 0.05) : ")," ")))

pc2 <- as.numeric(unlist(strsplit(readline("pc2 threshold (write to
minimum & maximum value of the range ex;-0.015 -0.1) : )," ")))
png("test.png")

plot(pcal,3],pcal,4]xlab="PC1" ylab="PC2")
abline(v=pc1,col="red',Ity=2)

abline(h=pc2,col="red’ Ity=2)

dev.off()

system("eog test.png")

answer=readline("Change threshold? please answer yes(y) or no(n) : ")
}

system("mv test.png 1st_pca_pc1_pc2_before_plot.png")

ix.pc1 <- which(pca[,3]> max(pc1) | pcal,3]1< min(pc1))

ix.pc2 <- which(pcal,4]> max(pc2) | pcal,4]< min(pc2))

ix.pc <- unique(c(ix.pct,ix.pc2))

if(length(ix.pc)!=0){
png("1st_pca_pcl1_pc2_after_plot.png")
plot(pca[-ix.pc,3],pcal-ix.pc,4] xlab="PC1" ylab="PC2")
dev.off()

}

remove_pca <- pcalix.pc,1:2]

colnames(remove_pca) <- c("FID","lID")
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write.table(remove_pca,"pca_correction.txt",row.names=F,quote=F)

write.table(unique(rbind(remove_mds,remove_pca)),"mds_pca_correction.

txt",row.names=F,quote=F)

system(paste("plink  --bfile  ",bfile," --keep QC1l.fam --remove
mds_pca_correction.txt --allow-no-sex --make-just-fam --out
QC2",sep="")

# remove related sample
print("remove related sample")
system("awk {if($10>0.2) print$1,$2}' prune_IBD.genome | uniq >

relatedness_correction.txt")

system(paste("plink  --bfile  "bfile," --keep QC2.fam --remove
relatedness_correction.txt ~ --allow-no-sex  --make-just-fam  --out
QC3"sep=""))
# SEX check

print("SEX check")
system(paste("plink --bfile ", bfile," --keep QC3.fam --check-sex --allow-

no-sex --out Check_sex",sep="")

system("grep PROBLEM Check_sex.sexcheck | awk '{if($4!=0) print$0}' >

sex_problem.txt")

system(paste("plink  --bfile  "bfile," --keep QC3.fam --remove

sex_problem.txt --allow-no-sex --make-just-fam --out QC4",sep=""))

## SNP QC
# low call rate SNP

system(paste("plink --bfile ",bfile," --keep QC4.fam --geno 0.05 --allow-

no-sex --write-snplist --out snp_QC1",sep=""))
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# HWE
system(paste("plink  --bfile  "bfile," --keep QC4.fam --extract

snp_QC1.snplist --hwe 1e-6 --allow-no-sex --write-snplist --out
Snp_QCZ“,Sep=""))

# make QC result bed file

system(paste("plink  --bfile  "bfile," --keep QC4.fam --extract

snp_QC2.snplist --allow-no-sex --make-bed --out ",outname,sep=""))

} else if(length(dupliceted_ID_list)==1){
# remove duplicated object ID

system(paste("plink  --bfile  "bfile," --keep QC4.fam --remove

", dupliceted_ID_list," --allow-no-sex --make-just-fam --out QC5",sep=""))

## SNP QC
# low call rate SNP

system(paste("plink --bfile ",bfile," --keep QC5.fam --geno 0.05 --allow-

no-sex --write-snplist --out snp_QC1",sep=""))

# HWE
system(paste("plink  --bfile  "bfile," --keep QC5.fam --extract

snp_QC1.snplist --hwe 1e-6 --allow-no-sex --write-snplist --out
Snp_QCZH,Sep=""))

# make QC result bed file

system(paste("plink  --bfile  "bfile," --keep QC5.fam  --extract

snp_QC2.snplist --allow-no-sex --make-bed --out ",outname,sep=""))
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<Genotype matching between imputed SNPs and WGS SNPs>

R version =4.1.1

- args <- commandArgs(trailingOnly = TRUE)
- IMP = args[1]

- WGS = args|2]

- GARDWGSN = args[3]

- TEMP = args[4]

- res_DIR = argsl[5]

- library(data.table)

- library(parallel)

- library(tictoc)

- tic("Calculating_Concordance")

- print("Calculate_Start.....")

- setwd(paste(TEMP))

- ID <- read.table("/lustre/external/YJ/Imputation/IMP2
/WGS_CHIP_2253.txt",sep = "Wt")

- chip <- as.character(unlist(read.table("/lustre/external/Y)

/Imputation/IMP2/Imputed_sample_list.txt",sep = "Wt")))

- wgs <- as.character(unlist(read.table("/lustre/external

/YJ/Imputation/Sequence_based_array/BU_VCF/WGS_samples.txt",sep =
lthll)))

_ SyStem(paSteO("Cat ",IMP," | aWk v{prlnt $1",I”Wt”‘,“$2",l"Wt"',”$",

38



grep(ID$V2[which(ID$V1 == GARDWGSN)],
chip)+2,"}' > /IMP_",GARDWGSN))

system(pasteO("cat ",WGS," | awk {print $1","#H""$",
grep(GARDWGSN,wgs)+1,"} > ./ WGS_",GARDWGSN))

IMP_GT <- fread(pasteO("./IMP_",GARDWGSN),sep="H#t",header = F)

WGS_GT <- fread(paste0("./WGS_",GARDWGSN),sep="Wt" header = F)

WGS_GT$V2 <- gsub("/","|", WGS_GT$V2)

classification <- merge(IMP_GT,WGS_GT,by="V1" all.x=T)

names(classification) <- c("POS","MAF","IMPUTED","WGS")

classification$res <- rep(NA,nrow(classification))

tmp_clss <- paste(classification$IMPUTED,classification$WGS,sep = "")

GT_classification <- strsplit(tmp_clss,":")

numCores <- parallel:detectCores()-157

myCluster <- parallel::makeCluster(numCores)

res <- unlist(parallel:parLapply(cl = myCluster,

X=GT_classification,function(x){
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if(x[2] == "NA" | x[2] == "."{{
print("0")

Jelse if(x[2] = "NA" | x[2] = "."){
if(x[1] == x[2]){

HHHTPHH##

if(x[2] %in% c("1]0","0]1")){
print("HET_TP")

Jelse if(x[2] == "1|1")}
print("HOM_TP")

HH#HHATNH#HH#HH#H#

Jelse if(x[2] == "0]0")
print("HOM_TN")

}

HHHHFPHH#HH#

Jelse if(x[2] == "0]0" & x[1] != x[2]){
if(x[1] %in% c("0[1","1]0")){
print("HET_FP")

Jelse if(x[1] == "1]1")J
print("HOM_FP")

}
HHHEN###

Jelse if(x[1] == "0]0" & x[1] != x[2]){
if(x[2] == "1]1"}

print("HOM_FN")

Jelse if(x[2] %in% c("0|1","1|0"){
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print("HET_FN")

}

Jelse if(x[1] == "1|1" & x[2] %in% c("1]0","0]1")){
print("MC")

Jelse if(x[2] == "1|1" & x[1] %in% c("1|0","0|1")){
print("MC")

Jelse if(x[2] == "1]0" & x[1] == "0|1"){
print("HET_TP")

Jelse if(x[2] == "0|1" & x[1] == "1]0"){
print("HET_TP")

)

classification$res <- res
toc()
print("Finished....")

system(pasteO("rm ","./IMP_",GARDWGSN," ./WGS_",GARDWGSN))
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