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국 문 초 록

크리깅 기법에 의한 지하수 수위의 추론

정 나 영

지도교수 : 강 성 권

조선대학교 대학원
자연과학과(수학전공)

강 하구의 퇴적 대수층에서 수집된 지하수 수위에 대한 제한된 데이

터를 바탕으로, 대수층 구성 물질의 분포 상태가 연속이라는 가정하에

측정되지 않은 지점에서의 수위를 추론하고, 그 지역의 지하수 흐름의

방향을 추론하였다. 현장 데이터에 내재 되어 있는 불확실성을 연속적

평균 개념, 공간적 비율, 방향성 등을 응용하여 상관관계를 계산하고,

그 상관관계를 나타내는 수학적 모델(선형, 비선형)은 매개변수 추론

기법을 이용하여 찾았으며, 그 모델들을 크리깅 체계에 적용하여 샘플

지역의 지하수 흐름 방향 등을 추론하였다.

이 논문에서 고려된 개념들과 최적화 기법들은 측정되지 않은 지점

에서의 지하수 수위를 잘 추론하였다. 제안된 개념과 방법들은 연속성

을 갖는 퇴적 대수층에서의 지하수 흐름 방향 등을 추론하는데 활용될

수 있다.



1. Introduction

Kriging was introduced by a mining engineer Krige for estimating the distribu-

tion of mining materials [12]. Since then many geostatistical methods related to

Kriging have been developed and applied to various area such as mining materials,

groundwater contaminants, environmental protections, groundwaters, etc [21, 22].

The theories on Geostatistics related to hydrology and spatial data have been

studied for many years [2, 8, 9, 11, 15, 17]. The Macro Dipersion Experiments (MADE

2) were performed the experimental site , experiments, and related data are explained

in, for example, [1, 3, 4, 5, 6, 14, 19, 20].

Kriging process involves several optimization problems such as parameter esti-

mations for linear or nonlinear models representing the semivariograms showing the

correlation between sample distances and their values. Theory and practical tech-

niques for optimization, we refer [10, 13, 16, 18].

In this paper, Kriging techniques are applied to estimate groundwater levels at un-

measured locations. Based on the in-situ measured groundwater level samples, kriging

system together with the conceptions such as overlapping averaging process, spatial

ratio, direction are applied for finding appropriate experimental semivariograms. To

estimate the parameters appearing in mathematical semivariogram models such as

polynomials, exponentials, spherical [8], linear or nonlinear optimization techniques

are applied. In particular, for the nonlinear parameter estimations, a real version

of Complex Nonlinear Parameter Estimation (CNPE) together with a robust opti-

mization algorithm [13] can be used. The CNPE with its robust algorithm has been

developed for handling highly nonlinear and severely ill-posed problems. Two sample

data sets, water tables, adopted in this paper, were chosen from the MADE-2 exper-

iments [1, 3, 5, 6, 19, 20]. The region collected samples is an alluvial aquifer. One

set consisted of 26 water tables was used for analysis in [7]. In [7], the kriging with,
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for example, non-overlapping averaging and drift were applied to reform the opti-

mization procedures. Collected near the first sample site, the other samples were for

investigating hydraulic conductivities. The numerical estimation results with various

conceptions show improvement of experimental semivariograms representing the cor-

relation between lag h and groundwater levels compared with those by conventional

kriging methods. Those conception and optimization kriging system can be applied

for continuous alluvial aquifer.

In Section 2, semivariograms and mathematical models for regionalized variables

are explained. Kriging is introduced in Section 3. Section 4 considers a real version

of CNPE with a robust optimization algorithm. The implimentation of continued

averaging process, spatial ratio, anisotropies in kriging system are explained in Section

5. The estimation results including the groundwater flow direction in the test site are

shown in this section. Conclusions are in Section 6.
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2. Semivariogram and mathematical models

As one of the basic statistical measures of geostatistics, the semivariogram repre-

sents the varience of a regionalized variable with respect to a certain distance lag [17].

A regionalized variable such as ore material distributed under the ground or water

table is a realization of a randon variable [15].

Let Z(X) be a regionalized variable at a location X in a region Ω. Let

{Z(Xi)|Xi ∈ Ω, 1 ≤ i ≤ n} (2.1)

be a set of samples measured at location Xi, 1 ≤ i ≤ n. The semivariogram (or

experimental semivariogram) to a lag h is defined by

γ(h) =
1

2N(h)

N(h)∑
i=1

|Z(Xi)− Z(Xi + h)|2, (2.2)

where N(h) is the number of data pairs separated by the vector h [8]. In many

practical regionalized variables the semivariogram (2.2) shows irratic behaviors so that

a certain averaging process may be needed for producing an appropriate correlation

between the lag and the corresponding variance.

To obtain a continuous information from a discrete experimental semivariogram,

mathematical models can be considered. The spherical model

γ(h) =


c0 + β( 3h2α − h3

2α3 ), h ≤ α,

c0 + β, h > α,

(2.3)

the exponential model

γ(h) = c0 + c1

(
1− exp

(
− h

c2

))
(2.4)

and the linear or cubic polynomial
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γ(h) = c0 + ah (2.5)

γ(h) = c0 + ah+ bh2 + ch3 (2.6)

may be considered depending on the distribution profile of semivariogram [8, 9]. Here,

h = ∥h∥ is the radius of the vector h, and the parameter c0 is the nugget effect, c0+β

is the sill value.

Remark 2.1. (i) Mathematical models (2.3)-(2.6) are functions of the radius h, i.e.,

γ(h) depends on the distance between sample locations not on the individual location.

(ii) Since the mathematical models are continuous functions for any lag h, γ(h) can

be calculated.

(iii) To obtain the parameters appeared in the mathematical models, a certain opti-

mization technique may be needed.
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3. Nonlinear parameter estimation

In this section, we consider a real version of the complex nonlinear parameter

estimation (CNPE) [13].

Let

F : RM → RN (3.1)

be the nonlinear operator from a parameter space to a sample space, where RM is the

M -dimmensional parameter space and RN is the N -dimensional sample space. More

precisely,

F (β) = [F1(β), F2(β), · · · , FN (β)]T , (3.2)

β = [β1, β2, · · · , βM ]T ∈ RM , (3.3)

where F is the N -dimensional nonlinear operator and β is the M -dimensional param-

eter vector. F can be a mathematical model or differential equation.

Optimization problem[OP] : For any sample data

Y = [y1, y2, · · · , yN ]T ∈ RN , (3.4)

find a best parameter β∗ = [β∗
1 , β∗

2 , · · · , β∗
M ]T ∈ RM minimizing the cost

S(β) =
N∑
i=1

|yi − Fi(β)|2 . (3.5)

For a given parameter β, to obtain an increment parameter δ = [δ1, δ2, · · · , δM ]T ∈

RM , we linearize S(β + δ) at β.

S(β + δ) =
N∑
i=1

|yi − Fi(β + δ)|2 ≈
N∑
i=1

∣∣∣∣yi − (Fi(β) +
∂Fi

∂δ
(β)δ

)∣∣∣∣2 , (3.6)

where
∂Fi

∂δ
(β) =

[
∂Fi

∂δ1
(β),

∂Fi

∂δ2
(β), · · · , ∂Fi

∂δM
(β)

]
. (3.7)
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Remark 3.1. If F or Fi is in the form of differential equation, it is not easy to find

the sensitivity of Fi with respect to δj , i.e., ∂Fi

∂δj
. In such cases, we may replace ∂Fi

∂δj

by Fi(δj + ϵ)− Fi(δj)

ϵ
for a small positive ϵ > 0.

Let

J(β) = [J1(β), J2(δ), · · · , JN (δ)]T , Ji(β) = [Ji1(β), Ji2(β), · · · , JiM (β)], (3.8)

where

Jim(β) =
∂Fi

∂δm
(β), 1 ≤ i ≤ N, 1 ≤ m ≤ M. (3.9)

In terms of matrix,

J(β) =



∂F1
∂δ1

(β) ∂F1
∂δ2

(β) · · · ∂F1
∂δM

(β)

∂F2
∂δ1

(β) ∂F2
∂δ2

(β) · · · ∂F2
∂δM

(β)
...

... . . . ...
∂FN
∂δ1

(β) ∂FN
∂δ2

(β) · · · ∂FN
∂δM

(β)

 ,

the normal equations become

∂S(β + δ)

∂δj
= 0, 1 ≤ j ≤ M. (3.10)

After some manipulation, the equations (3.10) become

[J(β)]T [J(β)]δ = [J(β)]T (Y − F (β)). (3.11)

Remark 3.2.[13] (i) Equation (3.11) is the solution formula for the linearized version

of the optimization problem (OP).

(ii) The formula (3.11) is the necessary condition for the increment δ to be satisfied

for a local minimum of S(β + δ). Thus,

S(β + δ) < S(β). (3.12)

(iii) ∂S(β + δ)

∂δj
= 0, 1 ≤ j ≤ M in (3.10) represent the sensitivities of the cost S with

respect to the parameter δ.
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(iv) The Jacobian J(β) in (3.11) is N ×M matrix so that [J(β)]T [J(β)] is M ×M

matrix.

(v) Somtimes, the square matrix [J(β)]T [J(β)] may be singular so that the formula

(3.11) might not be solved for S. For such cases, we consider a regularization param-

eter ρ such that the regularized system

(
[J(β)]T [J(β)] + ρI

)
δ = [J(β)]T (Y − F (β)) (3.13)

to be solved. In many cases, ρ = 0.001 can be used.

To solve the regularized system (3.13), we consider the following robust algorithm.

Algorithm 3.3.[13] Step 1. Choose initial guesses for the parameter vector β and

the regularization parameter ρ > 0.

Step 2. Compute the cost S(β) in (3.5).

Step 3. Compute J(β) in (3.8)-(3.9) and solve the linear system (3.13) for δ. Calculate

S(β + δ).

Step 4. If S(β+ δ) < S(β), update β by β+ δ and ρ by, for example, ρ

10
. Go to Step

2.

Step 5. If the criterion S(β + δ) < S(β) is failed, update ρ by, for example, 10ρ�and

repeat Step 3 until the criterion is satisfied.

Step 6. Continue Step2-Step5 until the cost S(β) in (3.5) reaches a minimum.

Remark 3.4. Algorithm 3.3 is a robust optimization algorithm. It is designed for

treating severely ill-posed problems. The algorthm moves from a Newton type to a

Steepest descent sheme and vice versa.
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4. Kriging

Kriging is an interpolation method to estimate values at unmeasured locations

for regionalized variables. Kriging uses information from the semivariogram to find

an optimal set of weights. For more imformation, see [12].

The kriging is based on the geostatistical assumption.

1) E[Z(X)] = E[Z(X + h)].

2) For any vector h the increment [Z(X)−Z(X +h)] has a finite variance which

does not depend on X.

Let Z∗(X0) be the value estimated at an unmeasured location X0, and be consisted

of a linear combination of the selected sample values,

Z∗(X0) =
n∑

i=1

ωiZ(Xi), (4.1)

where ωi’s are weights to be determined. Consider the following two constraints

E[Z∗(X0)− Z(X0)] = 0,

E[{Z∗(X0)− Z(X0)}2] is a minimum with respect to ωi, (4.2)

where Z(X0) is the value of the random function Z at X0. These constraints mean

that the difference Z∗(X0)− Z(X0) is unbiased and the variance of this difference is

a minimum. From (4.1) and (4.2)�we have

E

[
n∑

i=1

ωiZ(Xi)− Z(X0)

]
= 0. (4.3)

Let m be the unknown constant mean of the expectation. Then,
n∑

i=1

ωiE[Z(Xi)]− E[Z(X0)] =
n∑

i=1

ωim−m = 0

and, thus
n∑

i=1

ωi = 1. (4.4)
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Consider the following Lagrange function [18].

L(ω1, ω2, · · · , ωn;λ) = E

[ n∑
i=1

ωiZ(Xi)− Z(X0)

]2− 2λ

(
n∑

i=1

wi − 1

)
, (4.5)

where ω1, ω2, · · · , ωn are weights, λ is the Lagrange multiplier. The kriging problem

becomes the following.

Kriging problem[KP] : Find ω1, ω2, · · · , ωn, and λ that minimize L(ω1, ω2, · · · , ωn;λ)

in (4.5).

We consider the kriging problem mentioned above and the semivariogram defined in

Section 2.

We derive a simplified form for Lagrange function (4.5) in the following. The

simplified form can be written in terms of a matrix-vector form[
n∑

i=1

ωiZ(Xi)− Z(X0)

]2
=

(
n∑

i=1

ωiZ(Xi)

)2

− 2
n∑

i=1

ωiZ(Xi)Z(X0) +Z(X0)
2. (4.6)

Since(
n∑

i=1

ωiZ(Xi)

)2

=
n∑

i=1

n∑
j=1

ωiωjZ(Xi)Z(Xj)

=
n∑

i=1

n∑
j=1

ωiωj
− (Z(Xi)− Z(Xj))

2 + Z(Xi)
2 + Z(Xj)

2

2

= −
n∑

i=1

n∑
j=1

ωiωj
(Z(Xi)− Z(Xj))

2

2
+

n∑
i=1

n∑
j=1

ωiωjZ(Xi)
2 + ωiωjZ(Xj)

2

2

= −
n∑

i=1

n∑
j=1

ωiωj
(Z(Xi)− Z(Xj))

2

2
+

n∑
i=1

ωi
Z(Xi)

2

2
+

n∑
j=1

ωj
Z(Xj)

2

2

= −
n∑

i=1

n∑
j=1

ωiωj
(Z(Xi)− Z(Xj))

2

2
+

n∑
i=1

ωiZ(Xi)
2.
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(4.6) becomes[
n∑

i=1

ωiZ(Xi)− Z(X0)

]2
= −

n∑
i=1

n∑
j=1

ωiωj
(Z(Xi)− Z(Xj))

2

2

+
n∑

i=1

ωiZ(Xi)
2 − 2

n∑
i=1

ωiZ(Xi)Z(X0) +
n∑

i=1

ωiZ(X0)
2

= −
n∑

i=1

n∑
j=1

ωiωj
(Z(Xi)− Z(Xj))

2

2
+ 2

n∑
i=1

ωi
(Z(Xi)− Z(Xj))

2

2
.

(4.7)

Therefore, the Lagrange function defined in (4.5) becomes

L(ω1, ω2, · · · , ωn;λ)

= −
n∑

i=1

n∑
j=1

ωiωjγ(Xi −Xj) + 2
n∑

i=1

ωiγ(X0 −Xi)− 2λ

(
n∑

i=1

ωi − 1

)
,

(4.8)

where γ is the semivariogram. By differentiating L(ω1, ω2, · · · , ωn;λ) in (4.8) with

respect to ω1, ω2, · · · , ωn, λ, we have the following two conditions

−2
n∑

j=1

ωjγ(Xi −Xj) + 2γ(X0 −Xi)− 2λ = 0, i = 1, 2, · · · , n (4.9)

n∑
i=1

ωi = 1. (4.10)

The system (4.9) with the constraint (4.10) becomes the following equation in

terms of matrix form

AW = B (4.11)

where

A =



γ(X1 −X1) γ(X1 −X2) · · · γ(X1 −Xn) 1

γ(X2 −X1) γ(X2 −X2) · · · γ(X2 −Xn) 1
...

... . . . ...
...

γ(Xn −X1) γ(Xn −X2) · · · γ(Xn −Xn) 1

1 1 · · · 1 0


,
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W = [ω1, ω2, · · · , ωn, λ]T ,

B = [γ(X0 −X1), γ(X0 −X2), · · · , γ(X0 −Xn), 1]T .

Remark 4.1. (i) A is a (n + 1) × (n + 1) symmetric matrix. The optimal weights

ω1, ω2, · · · , ωn and the Lagrange multiplier λ can be obtained from W = A−1B.

(ii) The resulting estimation variance of the kriging becomes

σ2 =

n∑
i=1

ωiγ(X0 −Xi) + λ− γ(X0 −X0). (4.12)
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5. Application

In this section, a continuous averaging process, spatial ratio and anisotropies

such as spatial directions are explained. Two in situ sample sets are adopted for

application. We apply the kriging techniques to a sample data set collected during

a field experiment [4, 6, 14, 20]. All computations were performed on a personal

computer, and the algorithms needed for our analyses were developed under the

MATLAB environment.

5.1. Spatial ratio and anisotropy

Spatial ratio and directions are to account for anisotropic effects due to different

range of influence on different directions in data distribution. Those are realization

of advection and dispersion or diffusion processes of groundwater in conjunction with

aquifer materials. The ratio may be obtained by comparing the data range in different

directions. The directional consideration may be needed for accounting apparent

directional tendencies.
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5.2. Averaging process

The aquifer of a given site may be consisted of various meterials so that the aquifer

shows heterogeneity [8, 11, 15]. In particular, the experimental semivariograms show

erratic behaviors in many cases. To obtain a continuous information of the semivari-

ogram, the averaging process can be considered. Two kinds of averaging process may

be considered, i.e., a certain size of spatial averaging and a fixed number of measured

samples. Many sampling networks are performed on irregularly spaced locations.

Moreover, the cost for sampling increased as the sample size becomes large so that

the number of samples can be small. Thus, for those cases, we prefer to consider the

regional averaging. More specifically, we consider the following strategy.

Let d be a lag average radius. Let M be the number of equal divisions for the

interval [hmin, hmax] and H,H ′, hmin, hmax, dh be

H = {||Xi −Xj || : i < j, 1 ≤ i, j ≤ N} ,

hmin = min {h ∈ H} , hmax = max {h ∈ H} , dh =
hmax − hmin

M
,

H ′ = {hmin, hmin + dh, hmin + 2dh, · · · , hmax}

=
{
h′1, h′2, h′3, · · · , h′M+1

}
Let I1, I2, · · · , IM+1 be

I1 =
{
hl ∈ H : |h′1 − hl| < d, 1 ≤ l ≤ N(N−1)

2

}
for h′1,

I2 =
{
hl ∈ H : |h′2 − hl| < d, 1 ≤ l ≤ N(N−1)

2

}
for h′2,

...

IM+1 =
{
hl ∈ H : |h′M+1 − hl| < d, 1 ≤ l ≤ N(N−1)

2

}
for h′M+1.

The semivariogram after averaging process becomes

[ mean{γ(I1)}, mean{γ(I2)}, · · · , mean{γ(IM+1)}] .
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5.3. Examples

5.3.1. Example 1

The data set selected for our analyses consists of 26 groundwater level elevations

measured in the deep level of the test site aquifer. The aquifer at the test site consists

of a shallow alluvial terrace deposit averaging approximately 11m in thickness. The

aquifer is composed of poorly-sorted to well-sorted sandy gravel and gravelly sand

with minor amounts of silt and clay. Sediments are generally unconsolidated, and

occur as irregular horizontal or nearly horizontal lenses and layers. Marine sediments

belong to the Eutaw Formation and consisting of clays, silts, and fine-grained sands

form an aquitard beneath this alluvial aquifer [7]. More details on the test site

and other related previous experiments, see [1, 3, 5, 6, 19, 20]. The estimations are

performed under the assumption that the test site can be extended continuously to

a lager region.

Figure 1: Test site location, Columbus AFB, MS

Figure 1 shows the test site location, Columbus Air Force Base, Mississippi.
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Figure 2: Sample site for Example 1

Figure 2 shows the sample site for Example 1. The positive y axis points in a

direction 12 degrees West of true North. Thus the positive x axis points in a direction

12 degrees North of true East. The circles in Figure 2 show the well locations for

Example 1. This site was designed for experiment of transport and biodegradation

of some organic chemicals [6].

Table 1: Water levels for Example 1

Sample x(m) y(m) w(m) Sample x(m) y(m) w(m)

P-1 -86.1 2.56 64.89 P-14 43.33 94.53 64.74
P-2 -11.41 83.28 64.53 P-15 -59.8 67.92 64.75
P-3 1.62 56.17 64.68 P-16 52.2 47.77 64.87
P-4 -30.84 10.38 64.71 P-17 -4.92 -10.33 65.14
P-5 -85.85 190.51 64.13 P-18 -20.13 35.08 64.77
P-6 95.13 123.75 64.79 P-19 29.26 22.95 64.82
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Sample x(m) y(m) w(m) Sample x(m) y(m) w(m)

P-7 103.2 5.73 65.82 P-20 -32.26 113.18 64.58
P-8 -19.4 -50.16 65.29 P-21 29.24 127.12 64.67
P-9 22.61 6.42 64.92 P-22 -69.15 139.66 64.57
P-10 -23.3 66.57 64.28 P-23 -25.7 179.32 64.59
P-11 3.16 147.63 64.59 P-24 29.34 225.1 64.46
P-12 32.44 -25.81 65.1 P-25 -47.8 263.96 64.13
P-13 5.55 71.69 64.75 P-26 51.93 173.77 64.59

Figure 3: Water levels and Target A
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Table 1 shows the 26 samples with location and water level elevation in meter

scale. We selected six samples, Target A, arbitrarily from the inside of the convex

domain consisted of the given 26 samples. Estimating Target A is an interpolation

problem. Target A is shown in Figure 3.
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(b) Using averaging process

Figure 4: Semivariogram
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(b) Cubic polynomial

Figure 5: Mathematical model

Figure 4(a) shows the experimental semivariogram obtained from the basic 20

samples without Target A. From Figure 4(a), it is not clear to see the correlation

between lag h and semivariogram. Figure 4(b) is the semivariogram obtained after

applying the averaging processes mentioned in Section 5.2. The M = 28 equal divi-
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sions and the d = 10 meters averaging radius at each division node were used. It is

easy to see that Figure 4(b) shows clear correlation between lag h and semivarogram

compared with Figure 2(a).

Figure 5 shows fitted mathematical models. The fitted linear model in Figure

5(a) was γ(h) = 0.0026h − 0.1632. Figure 5(b) shows the cubic polynomial model

γ(h) = 3.83 × 10−8h3 − 6.005 × 10−6h2 + 0.0007h + 0.0364. The coefficients in the

two models were estimated by the Least Square Optimization.
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(b) Cubic polynomial

Figure 6: Estimation results for Target A

Table 2: Estimation results for each model

Linear model ∥ Cubic polynomial model

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

64.53 64.5290 0.0010 0.0533 64.53 64.5157 0.0143 0.0142
64.68 64.6367 0.0433 0.0530 64.68 64.6154 0.0646 0.0142
64.92 64.9409 0.0209 0.0540 64.92 64.9080 0.0120 0.0146
64.59 64.6131 0.0231 0.1026 64.59 64.6072 0.0172 0.0258
64.77 64.5918 0.1782 0.0692 64.77 64.5461 0.2239 0.0182
64.67 64.6560 0.0140 0.0976 64.67 64.6710 0.0010 0.0228
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Figure 6 and Table 2 show the estimation results for Target A. In Table 2, Rv is

the measured real value for Target A, Ev is the estimated value by kriging and σ2

is the kriging variance in (4.11). The averaged variances, the averaged |Rv − Ev|2,

for the linear and the cubic polynomial models were 0.0058 and 0.0092, respectively.

The linear model could be better than the cubic polynomial one.

Figure 7: Water levels and Target B

To consider an extrapolation problem, six samples, Target B, located outside but

near the boundary of the sampling network were selected. Target B is shown in Figure

7. Figure 8(a),(b) show experimental semivariogram and averaged semivariogram for
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Target B, repectively. For Figure 8(b), the number of equal divisions M = 15 and

the averaging radius d = 15 were selected.
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(b) Using averaging process

Figure 8: Semivariogram
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Figure 9: Mathematical model

Figure 9 shows a fitted mathematical models. In Figure 9, the linear mathematical

model γ(h) = 0.0018h − 0.097 and the cubic polynomial model γ(h) = 1.0082 ×

10−7h3 − 2.2757× 10−5h2 + 0.0016h+ 0.0008 were fitted.

Figure 10 and Table 3 show the estimation results for Target B. The averaged

variance for the linear and the cubic polynomial models were 0.1279 and 0.1122,

respectively.
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Figure 10: Estimation results for Target B

Table 3: Estimation results for each model

Linear model ∥ Cubic polynomial model

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

64.79 64.7558 0.0342 0.1687 64.79 65.1077 0.3177 -0.1033

65.82 64.9836 0.8364 0.1750 65.82 65.2184 0.6016 -1.0450

65.29 65.1101 0.1799 0.1118 65.29 65.4257 0.1357 0.1273

64.46 64.5256 0.0656 0.2076 64.46 64.6624 0.2024 -2.2141

64.13 64.2973 0.1673 0.2367 64.13 63.9122 0.2187 -4.4524

64.59 64.6330 0.0430 0.1399 64.59 64.9117 0.3217 0.0986

In Table 3, we notice that some of the kriging variance σ2 for the cubic polynomial

model are negative. These phenomena are typical behaviors for extrapolation. In

general, the estimated values for interpolation lie between the minimum and the

maximum values of the sample values adopted for semivariogram. Therefore the

kriging variance at each location becomes positive. On the other hand, the kriging

variance for extrapolataion need not be positive due to the fact that the estimated
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value may be resided outside the selcected sample value range. Therefore, the kriging

variance σ2 for extrapolation do not show much statistical meaning.

Figures 11 and 12 show the 3 dimensionanl mesh and their contour, respectively,

for the surrounding domain including Table 1. We used all of 26 samples in Table 1.

M = 15, d = 15 were used for averaging process. The cubic polynomial model was

fitted due to better performance. From Figures 11 and 12, it is easy to see that water

flows from South-East to North-West. Recall that, as mentioned before, the positive

y axis points in a direction 12 degrees West of true North.

Figure 11: 3-D plot of the estimated water levels
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Figure 12: Contour of the estimated water levels
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5.3.2 Example 2

The test site for Example 2 is located nearby the site in Example 1, see Figures

1 and 13. These tests were performed for investigating the hydraulic conductivities

using the multi-level samples. The circles in Figure 13 are parts of well locations for

Example 2. The total location and water tables are in Table 4.

Figure 13: Sample site for Example 2

Water tables were measured at 66 locations. Among 66 samples, 16 locations,

Target C, were selected for interpolation and 8 samples, Target D, were chosen for

extrapolation. Figure 14 and Figure 21 show the interpolation and the extrapolation

sampling networks, respectively. The positive direction in y axis in Figure 14 was

adjusted so that it is parallel to true North.

For this example, conventional semivariogram, averaging process, spatial ratio,

anisotropic aspects and combination of several semivariograms, etc., are applied.
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Table 4: Water levels for Examle 2

Sample x(m) y(m) w(m) Sample x(m) y(m) w(m)

W-1 69.945 -48.290 61.69 W-34 -16.245 104.513 63.16
W-2 75.226 -45.750 61.88 W-35 0.170 122.781 62.91
W-3 66.625 -57.631 61.54 W-36 21.572 141.017 63.06
W-4 43.014 -61.372 61.75 W-37 1.698 142.334 62.85
W-5 41.659 -37.024 62.00 W-38 38.332 219.812 63.12
W-6 -12.642 -12.292 61.63 W-39 3.432 162.520 62.82
W-7 7.112 -2.583 61.51 W-40 34.660 180.143 63.09
W-8 35.320 8.950 62.55 W-41 4.955 182.614 63.06
W-9 7.002 20.998 62.58 W-42 -26.306 184.260 63.12
W-10 25.458 21.384 61.39 W-43 6.391 202.379 63.09
W-11 19.487 26.902 61.39 W-44 7.911 222.572 63.09
W-12 5.173 28.518 61.57 W-45 9.535 242.871 63.06
W-13 -6.525 24.647 61.45 W-46 -22.613 224.994 63.06
W-14 -11.370 17.346 61.45 W-47 7.000 186.782 63.09
W-15 0.972 3.286 61.24 W-48 19.899 187.303 63.06
W-16 5.967 15.397 61.17 W-49 12.827 186.111 63.06
W-17 8.644 38.676 61.14 W-50 11.168 185.269 63.09
W-18 10.993 58.413 61.11 W-51 20.204 189.969 63.03
W-19 -0.842 75.225 61.17 W-52 13.254 100.878 63.16
W-20 -4.298 78.490 63.46 W-53 22.186 49.926 61.57
W-21 -9.004 77.825 63.37 W-54 -17.172 49.675 61.91
W-22 -11.430 73.707 63.43 W-55 16.599 79.084 61.69
W-23 -9.724 69.190 63.34 W-56 -10.820 11.040 62.36
W-24 -5.183 67.823 63.03 W-57 -6.020 9.270 62.33
W-25 -1.242 70.473 62.27 W-58 -0.680 7.240 62.36
W-26 -38.573 93.189 63.25 W-59 2.570 6.110 62.58
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Sample x(m) y(m) w(m) Sample x(m) y(m) w(m)

W-27 -41.984 96.453 63.28 W-60 5.500 5.040 62.48
W-28 -46.679 95.971 63.37 W-61 11.210 2.960 62.45
W-29 -49.259 91.990 63.43 W-62 -11.190 20.890 62.42
W-30 -47.639 87.421 63.43 W-63 -5.770 19.090 62.24
W-31 -43.033 85.874 63.49 W-64 -2.480 18.050 62.33
W-32 -39.086 88.349 63.49 W-65 2.060 16.290 62.42
W-33 -25.461 81.474 63.43 W-66 12.000 12.500 62.52

Figure 14: Well locations for Example 2 with Target C
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First, we consider the interpolation problems with Target C. Figure 15 shows the

experimental semivariogram and the improved semivariogram by applying averaging

process and the fitted model with the improved semivariogram. The equal divisions

M = 60 and the averaging radius d = 5 were chosen. The fitted exponential model is

γc(h) = c0 + c1

(
1− exp

(
− h

c2

))
, (5.1)

c0 = 0.2964, c1 = 0.5572 and c2 = 102.3438. The initial guess for the parameters

c0, c1 and c2 were chosen as 0.1, 0.1, 100, respectively. The parameters in (5.1) were

estimated by the nonlinear parameter estimation technique described in Section 3.

Three iterations were enough for obtaining the final estimation.
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(b) Exponential model(with averaging)

Figure 15: Semivariogram and exponential model

Figure 16 and Tabel 5 show the estimation results for Target C. The averaged

|Rv − Ev|2 was 0.0261.

Next, we consider the combination of the conventional semivariogram with av-

eraging process (Figures 15 and 16, Table 5) and the semivariogram obtained by

accounting for anisotropic aspects (Figures 18 and 19, Table 6). To account for the

directional aspects, we investigate the water table levels along each direction such as

x−axis or y−axis (Figure 17). From Figure 17, it is easy to find a trend in y−axis.
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Figure 16: Estimation results for Target C

Table 5: Estimation results for Target C

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

61.54 61.7390 0.1990 0.0813 63.16 63.3621 0.2021 0.1265

62.00 61.8626 0.1374 0.1456 62.91 63.1178 0.2078 0.1163

61.57 61.8400 0.2700 0.0443 63.06 62.9019 0.1581 0.1383

63.34 63.1851 0.1549 0.0275 63.06 63.0498 0.0102 0.0395

62.27 61.9648 0.3052 0.0270 63.12 63.0076 0.1124 0.1908

63.37 63.3492 0.0208 0.0279 63.06 63.0827 0.0227 0.0160

63.49 63.3884 0.1016 0.0276 61.69 61.8660 0.1760 0.1014

63.43 63.4617 0.0317 0.0826 62.33 62.2649 0.0651 0.0281

av = 0.0261
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Figure 17: Water levels for Target C
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(b) Exponential model(with averaging)

Figure 18: Semivariogram and exponential model (with y-direction)

Figure 18 shows the semivariogram accounted for the y− axis. For the averaging

process M = 43, d = 7 were chosen. The fitted exponential model becomes

γy(h) = c0 + c1

(
1− exp

(
− h

c2

))
, (5.2)

c0 = 0.4005, c1 = 0.5751 and c2 = 200.0107. The final semivariogram for Target C

was chosen as

γ = γc + γy, (5.3)

where γc and γy are in (5.1) and (5.2), respectively.
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Figure 19: Estimation results for Target C with y-direction

The estimation results are shown in Figure 19 and Table 6. The averaged |Rv −

Ev|2 was 0.0330.

Table 6: Estimation results for Target C with y-direction

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

61.54 61.7399 0.1999 0.1078 63.16 63.3985 0.2385 0.1578
62.00 61.8156 0.1844 0.2007 62.91 63.0986 0.1886 0.1761
61.57 61.7264 0.1564 0.0585 63.06 62.8659 0.1941 0.1608
63.34 63.2639 0.0761 0.0350 63.06 63.0628 0.0028 0.0546
62.27 62.0732 0.1968 0.0372 63.12 63.0481 0.0719 0.2309
63.37 63.3462 0.0238 0.0328 63.06 63.0830 0.0230 0.0190
63.49 63.4059 0.0841 0.0370 61.69 62.1513 0.4613 0.1243
63.43 63.5951 0.1651 0.0967 62.33 62.3640 0.0340 0.0337

av = 0.0330
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We now consider an extrapolation problem. Eight samples, Target D, were se-

lected for the test as in Figure 20.

Figure 20: Well locations for Example 2 with TargetD

Figure 21 shows the experimental semivariogram and the improved semivariogram

by applying averaging process and the fitted model with the improved semivariogram.

For the averaging process, the equal divisions M = 28 and averaging radius d = 10

were chosen. The parameters in the fitted exponential model in (5.1) were c0 =

0.3723, c1 = 0.5661, c2 = 199.1726.
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(b) Exponential model(with averaging)

Figure 21: Semivariogram and exponential model
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Figure 22: Estimation results for Target D

The estimation results are shown in Figure 22 and Tabel 7. The average variance

is av = 0.0402.

Figure 23 is for considering the anisotropic aspects. Those show that there is a

clear tendency in y-direction.
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Table 7: Estimation results for Target D

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

61.69 62.0201 0.3301 0.1203 63.43 63.3937 0.0363 0.0149

61.88 62.0551 0.1751 0.1409 63.12 63.0362 0.0838 0.1134

61.54 61.9530 0.4130 0.1095 63.06 63.0525 0.0075 0.1066

61.63 61.5902 0.0398 0.0810 63.06 63.0935 0.0335 0.1166

av = 0.0402
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Figure 23: Water levels for Target D

Figure 24 shows the semivariogram for the y-directional water level distribution.

The equal divisions M = 26 and averaging radius d = 11 were chosen for the averaging

process. The parameters of the optimized exponential model in (5.2) were c0 =

0.4182, c1 = 0.5052 and c2 = 199.9545. The estimation results are shown in Figure

25 and Table 8. The average variance was av = 0.0270. From those, it is clear that

the estimation results with consideration of y-direction are improved compared with

the interpolation problem as shown in Figure 19 and Table 6. From this observation,

consideration of anisotropic behavior on the sample set in Example 2 affects more on

extrapolation than interpolation.
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(b) Exponential model(with averaging)

Figure 24: Semivariogram and exponential model (with y-direction)
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Figure 25: Estimation results for Target D with y-direction

In the following, the semivariogram with spatial ratio is considered for the extrap-

olation problem for Target D. Since the range of the sampling network is −47.639 ≤

x ≤ 43.014 and −61.372 ≤ y ≤ 222.572, the approximate spatial distribution ratio is

x : y ≈ 1 : 3.
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Table 8: Estimation results for Target D with y-direction

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

61.6900 61.9067 0.2167 0.1532 63.4300 63.3612 0.0688 0.0239

61.8800 61.9209 0.0409 0.1738 63.1200 63.0463 0.0737 0.1361

61.5400 61.8497 0.3097 0.1287 63.0600 63.0358 0.0242 0.2024

61.6300 61.3849 0.2451 0.1219 63.0600 63.0859 0.0259 0.1412

av = 0.0270

The estimation results obtained by considering the spatial ratio are shown in

Figures 26 and 27, Table 9. M = 29 and d = 11 were used for averaging process,

and the fitted linear model in Figure 26 was γ(h) = 0.002h + 0.3169. The average

variance was av = 0.0180.
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(b) Linear model(with averaging)

Figure 26: Semivariogram and Linear model (Target D ratio)

From Table 9 and Figure 27, we see that the extrapolation problem for Target

D with spatial ratio are significantly improved. Specifically, the estimation vari-

ances for Target D with the conventional, the y-direction, and the spatial ratio were

0.0402, 0.0270 and 0.0180, respectively.
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Figure 27: Estimation results for Target D with ratio

Table 9: Estimation results for Target D with ratio

Rv Ev |Rv − Ev| σ2 Rv Ev |Rv − Ev| σ2

61.6900 61.8126 0.1226 0.1186 63.4300 63.2719 0.1581 0.0309

61.8800 61.8389 0.0411 0.1108 63.1200 63.0898 0.0302 0.0432

61.5400 61.7674 0.2274 0.1345 63.0600 63.1227 0.0627 0.0902

61.6300 61.8368 0.2068 0.0564 63.0600 63.1127 0.0527 0.1111

av = 0.018

Figures 28 and 29 are the three dimensional mesh and the contour plot for the

sampling site for Example 2. For these plots, the semivariogram was obtained by

considering the averaging process, the spatial direction, and the exponential model.

The whole 66 measured samples(Table 4) were used for the construction of semi-
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Table 10: Averaged |Rv − Ev|2 values for each problem

Interpolation problem Extrapolation problem

Averaging 0.0261 0.0402

Averaging, y-direction 0.0330 0.0270

Averaging, ratio 0.0875 0.0180

Figure 28: 3-D plot of the estimated water levels

variogram. These eatimation process include interpolation as well as extrapolation

problems, since the estimating locations lie in and out of the convex domain consisted

of the given measured sampling network. From Figures 28 and 29, we can see that

the water flows from North to South of the site.
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Figure 29: Contour of the estimated water levels
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6. Conclusion

We considered interpolation and extrapolation problems for the in-situ groundwa-

ter tables. In general, extrapolations are known to be difficult to solve. The sample

site is an alluvial aquifer. The aquifer is poorly-sorted to well-sorted sandy gravel and

gravelly sand with minor amounts of silt and clay. Under the assumption that the

geological properties of the site can be extended continously to a larger region, the

kriging system involving continuous averaging process, spatial ratio, and anisotropies

produced accurate estimation results for extrapolation as well as interpolation prob-

lems. The kriging system considered in this paper can be applied for estimating

groundwater levels of a continuoously extendable alluvial aquifer.
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