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1. Introduction

Kriging was introduced by a mining engineer Krige for estimating the distribu-
tion of mining materials [12]. Since then many geostatistical methods related to
Kriging have been developed and applied to various area such as mining materials,

groundwater contaminants, environmental protections, groundwaters, etc [21, 22].

The theories on Geostatistics related to hydrology and spatial data have been
studied for many years [2, 8,9, 11, 15, 17]. The Macro Dipersion Experiments (MADE
2) were performed the experimental site , experiments, and related data are explained

in, for example, [1, 3, 4, 5, 6, 14, 19, 20].

Kriging process involves several optimization problems such as parameter esti-
mations for linear or nonlinear models representing the semivariograms showing the
correlation between sample distances and their values. Theory and practical tech-

niques for optimization, we refer [10, 13, 16, 18].

In this paper, Kriging techniques are applied to estimate groundwater levels at un-
measured locations. Based on the in-situ measured groundwater level samples, kriging
system together with the conceptions such as overlapping averaging process, spatial
ratio, direction are applied for finding appropriate experimental semivariograms. To
estimate the parameters appearing in mathematical semivariogram models such as
polynomials, exponentials, spherical [8], linear or nonlinear optimization techniques
are applied. In particular, for the nonlinear parameter estimations, a real version
of Complex Nonlinear Parameter Estimation (CNPE) together with a robust opti-
mization algorithm [13] can be used. The CNPE with its robust algorithm has been
developed for handling highly nonlinear and severely ill-posed problems. Two sample
data sets, water tables, adopted in this paper, were chosen from the MADE-2 exper-
iments [1, 3, 5, 6, 19, 20]. The region collected samples is an alluvial aquifer. One

set consisted of 26 water tables was used for analysis in [7]. In [7], the kriging with,
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for example, non-overlapping averaging and drift were applied to reform the opti-
mization procedures. Collected near the first sample site, the other samples were for
investigating hydraulic conductivities. The numerical estimation results with various
conceptions show improvement of experimental semivariograms representing the cor-
relation between lag h and groundwater levels compared with those by conventional
kriging methods. Those conception and optimization kriging system can be applied

for continuous alluvial aquifer.

In Section 2, semivariograms and mathematical models for regionalized variables
are explained. Kriging is introduced in Section 3. Section 4 considers a real version
of CNPE with a robust optimization algorithm. The implimentation of continued
averaging process, spatial ratio, anisotropies in kriging system are explained in Section
5. The estimation results including the groundwater flow direction in the test site are

shown in this section. Conclusions are in Section 6.
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2. Semivariogram and mathematical models

As one of the basic statistical measures of geostatistics, the semivariogram repre-
sents the varience of a regionalized variable with respect to a certain distance lag [17].
A regionalized variable such as ore material distributed under the ground or water

table is a realization of a randon variable [15].

Let Z(X) be a regionalized variable at a location X in a region 2. Let

(Z(X)|X; € Q1 <i<n} (2.1)

be a set of samples measured at location X;, 1 < i < n. The semivariogram (or

experimental semivariogram) to a lag h is defined by

1 N(h)
v(h) = O] Z; 1Z(X;) — Z(Xi + h)?, (2.2)

where N(h) is the number of data pairs separated by the vector h [8]. In many
practical regionalized variables the semivariogram (2.2) shows irratic behaviors so that
a certain averaging process may be needed for producing an appropriate correlation

between the lag and the corresponding variance.

To obtain a continuous information from a discrete experimental semivariogram,

mathematical models can be considered. The spherical model

3
CO+B(%_%)a hSOé,
co+ B, h > a,

the exponential model

(h) = o+ e1 <1 ~ eap (-Z)) (2.4)

and the linear or cubic polynomial
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v(h) = co + ah (2.5)
v(h) = co + ah + bh?® + ch? (2.6)

may be considered depending on the distribution profile of semivariogram [8, 9]. Here,
h = ||h|| is the radius of the vector h, and the parameter ¢ is the nugget effect, co+

is the sill value.

Remark 2.1. (i) Mathematical models (2.3)-(2.6) are functions of the radius h, i.e.,
~v(h) depends on the distance between sample locations not on the individual location.
(ii) Since the mathematical models are continuous functions for any lag h, y(h) can
be calculated.

(iii) To obtain the parameters appeared in the mathematical models, a certain opti-

mization technique may be needed.
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3. Nonlinear parameter estimation

In this section, we consider a real version of the complex nonlinear parameter

estimation (CNPE) [13].

Let
F:RM 5 RV (3.1)

be the nonlinear operator from a parameter space to a sample space, where RM is the
M-dimmensional parameter space and RY is the N-dimensional sample space. More

precisely,

F(B) = [F1(B), F»(B), -+, Fn(B)", (3.2)
B =181, Bay -+, Bu)T €RM, (3.3)

where F' is the N-dimensional nonlinear operator and  is the M-dimensional param-

eter vector. F' can be a mathematical model or differential equation.

Optimization problem[OP] : For any sample data

Y = [y17 Y2, yN]T € RN? (34)

find a best parameter §* = [8}, 55, ---, B}‘W]T € RM minimizing the cost
N
=> lyi— FE(B). (3.5)
i=1

For a given parameter 3, to obtain an increment parameter § = [01, &, ---, dp7]7 €

RM | we linearize S(3 + J) at f3.

N : 2
S5 +4) = me Grof =Y lu- (FE)+ GE) . 6o
=1
where
OF; oF; oF; oF;
55 0= | G500 Gord) oo g 1)
)
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Remark 3.1. If F or F; is in the form of differential equation, it is not easy to find

OF; i
——. In such cases, we may replace ——

th itivity of F; with t to J,, i.e.
e sensitivity ot r; with respect to j71e7aé‘j 06;

Fi(6; +¢€) — Fi(3)

by . for a small positive € > 0.
Let
J(B) = [11(B), J2(6), -+, IN(OIT, JilB) = [T (B), Jia(B), -+, Jma(B)), (3.8)
where
OF; .
Jim(ﬁ)—aé (8), 1<i<N,1<m<M. (3.9)
In terms of matrix,
EB) G - )]
- | B 5H0) e (8)
B (8) G (8) - ()]
the normal equations become
w:(), 1<j< M. (3.10)

05,

After some manipulation, the equations (3.10) become

[TBLI(8)8 = [J(BI (Y — F(8B)). (3.11)

Remark 3.2.[13] (i) Equation (3.11) is the solution formula for the linearized version
of the optimization problem (OP).
(ii) The formula (3.11) is the necessary condition for the increment ¢ to be satisfied

for a local minimum of S(8 + §). Thus,

S(B+6) < S(B). (3.12)

(iipy 228 +9) (g 5; )

respect to the parameter §.

=0, 1 <j < M in (3.10) represent the sensitivities of the cost S with
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(iv) The Jacobian J(3) in (3.11) is N x M matrix so that [J(B)]T[J(B)] is M x M
matrix.

(v) Somtimes, the square matrix [J(3)]7[J(8)] may be singular so that the formula
(3.11) might not be solved for S. For such cases, we consider a regularization param-

eter p such that the regularized system
(TN I B +pI) 8 = [T (B (Y = F(B)) (3.13)
to be solved. In many cases, p = 0.001 can be used.

To solve the regularized system (3.13), we consider the following robust algorithm.

Algorithm 3.3.[13] Step 1. Choose initial guesses for the parameter vector 5 and
the regularization parameter p > 0.

Step 2. Compute the cost S(5) in (3.5).

Step 3. Compute J(3) in (3.8)-(3.9) and solve the linear system (3.13) for 6. Calculate
S(B+6).

Step 4. If S(8+0) < S(B), update 8 by 8+ 0 and p by, for example, 1—% Go to Step
2.

Step 5. If the criterion S(S + ) < S(B) is failed, update p by, for example, 10p and
repeat Step 3 until the criterion is satisfied.

Step 6. Continue Step2-Step5 until the cost S(3) in (3.5) reaches a minimum.

Remark 3.4. Algorithm 3.3 is a robust optimization algorithm. It is designed for
treating severely ill-posed problems. The algorthm moves from a Newton type to a

Steepest descent sheme and vice versa.
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4. Kriging

Kriging is an interpolation method to estimate values at unmeasured locations
for regionalized variables. Kriging uses information from the semivariogram to find

an optimal set of weights. For more imformation, see [12].

The kriging is based on the geostatistical assumption.
1) E[Z(X)] = E[Z(X + h)].
2) For any vector h the increment [Z(X) — Z(X + h)] has a finite variance which

does not depend on X.

Let Z*(Xp) be the value estimated at an unmeasured location Xy, and be consisted

of a linear combination of the selected sample values,
n
Z*(Xo) = Y _wiZ(Xy), (4.1)
i=1
where w;’s are weights to be determined. Consider the following two constraints
E[Z*(Xy) — Z(Xo)] =0,

E[{Z*(Xo) — Z(X)}?] is a minimum with respect to w;, (4.2)

where Z(Xj) is the value of the random function Z at Xy. These constraints mean
that the difference Z*(Xy) — Z(Xy) is unbiased and the variance of this difference is

a minimum. From (4.1) and (4.2) we have
FE inZ(XZ) - Z(X()) =0. (43)
i=1
Let m be the unknown constant mean of the expectation. Then,
i=1 =1

and, thus

Zn: w; = 1. (4.4)
=1
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Consider the following Lagrange function [18].

L(wluw%”' 7wn; sz z XO)

2 n
—2) (Z w; — 1) . (4.5)

=1

where wi,wo, - -+ ,w, are weights, \ is the Lagrange multiplier. The kriging problem

becomes the following.

Kriging problem[KP] : Find wy,ws, - - - , wy, and A that minimize L(wy,wa, -+ ,wn; A)
n (4.5).

We consider the kriging problem mentioned above and the semivariogram defined in

Section 2.

We derive a simplified form for Lagrange function (4.5) in the following. The

simplified form can be written in terms of a matrix-vector form

n 2 n
[Zwiz X = (ZMZ( ) —QZw, Z(Xo) + Z(Xp)% (4.6)
i=1 =1

Since
(S0 =3 S22
i=1 =1 j=1
"< —(Z(X;3) — Z(X;)* + Z(X3)2 + Z(X;)?
_;;wzw] 5 J
"< ZXz) X;) wiw;Z +wzij(Xj)2
= — wiw —|—
- Z(X;) — Z2(X))? & Z(X; " Z(X;)?
:_22%% )2 (X)) +z; l ( ) Z;% (QJ)
=1 5= i= j=
L Z(X;) — Z2(X:))? &
:—;;wlw] ) 5 (X)) +ZZ;WZZ(XZ)2
9
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(4.6) becomes
2

Y NN, 23 - 2(X)))?
ZwiZ(XZ-) ~Z(Xo)| =-— Z Zwiwj 5
i=1 i=1 j=1
+Y wiZ(Xi)? -2 wiZ(X:)Z(Xo) + Y wiZ(Xo)?
=1 =1 =1
_ v (Z2(X:) — 2(X;))? N (Z(X) - Z(X))?
__ZZwaJ 2 —i—Qsz 2 .
i=1 j=1 =1
(4.7)
Therefore, the Lagrange function defined in (4.5) becomes
L((Ul, W2, Wn; )‘)
= — Zzwin’y(Xi — X]) + QZwm(Xo - Xz) — 2\ Zwi -1 y
i=1 j=1 i=1 i=1
where v is the semivariogram. By differentiating L(wi,ws, -+ ,wp; A) in (4.8) with

respect to wi,ws, -+ ,wn, A, we have the following two conditions

n
2> wiy(Xi — Xj) + 29(Xo — X;) =24 =0, i=1,2,--,n (4.9)
j=1

Zn:wi = 1. (4.10)
=1

The system (4.9) with the constraint (4.10) becomes the following equation in

terms of matrix form

AW =B (4.11)
where
V(X —X1) (X —Xa) - (X —Xp) 1
Y(Xg = X1) (X2 —Xa2) - y(X2—X,) 1
A . . |
’Y(Xn - Xl) ’V(Xn - XZ) e V(Xn - Xn) 1
R 1 1 0]
10
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W = [Wla w2, ", Wn, )‘]Tv
B = [1(Xo — X1), 7(Xo = X2), -+, 1(Xo—Xn), 1T
Remark 4.1. (i) Aisa (n+1) X (n+ 1) symmetric matrix. The optimal weights

Wi, wa, -+ ,wy and the Lagrange multiplier A can be obtained from W = A~ B.

(ii) The resulting estimation variance of the kriging becomes

o? :Zwi’y(Xo—Xi)—l-A—’y(Xo—Xo). (412)
=1

11
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5. Application

In this section, a continuous averaging process, spatial ratio and anisotropies
such as spatial directions are explained. Two in situ sample sets are adopted for
application. We apply the kriging techniques to a sample data set collected during
a field experiment [4, 6, 14, 20]. All computations were performed on a personal
computer, and the algorithms needed for our analyses were developed under the

MATLAB environment.
5.1. Spatial ratio and anisotropy

Spatial ratio and directions are to account for anisotropic effects due to different
range of influence on different directions in data distribution. Those are realization
of advection and dispersion or diffusion processes of groundwater in conjunction with
aquifer materials. The ratio may be obtained by comparing the data range in different
directions. The directional consideration may be needed for accounting apparent

directional tendencies.

12
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5.2. Averaging process

The aquifer of a given site may be consisted of various meterials so that the aquifer
shows heterogeneity [8, 11, 15]. In particular, the experimental semivariograms show
erratic behaviors in many cases. To obtain a continuous information of the semivari-
ogram, the averaging process can be considered. Two kinds of averaging process may
be considered, i.e., a certain size of spatial averaging and a fixed number of measured
samples. Many sampling networks are performed on irregularly spaced locations.
Moreover, the cost for sampling increased as the sample size becomes large so that
the number of samples can be small. Thus, for those cases, we prefer to consider the

regional averaging. More specifically, we consider the following strategy.

Let d be a lag average radius. Let M be the number of equal divisions for the

interval [hmin, Pmaz] and H, H', hyin, himaz, dh be
H={|[Xi—Xj[| - i<j, 1<i,j <N},

hmaz_hmin
hmin = min{h € H}, hpae = max{h € H}, dh = —

H/ - {hmzna hmzn+dha hmzn+2dha Ty hmam}
:{h/17 /27 g’ T /]\4+1}

Let I1, 12, -+, Ins41 be

L={meH: |hy—h|<d 1<1<YDL o0 pt

L={mer:m—ml<d 1< M0 for b,
{ |

In1 = {hl €H:|hy —hl<d 1<I< W} for Ry 4.

The semivariogram after averaging process becomes

[ mean{y(11)}, mean{y(I2)}, -~ , mean{y(Iy+1)}].
13

Collection @ chosun



5.3. Examples
5.3.1. Example 1

The data set selected for our analyses consists of 26 groundwater level elevations
measured in the deep level of the test site aquifer. The aquifer at the test site consists
of a shallow alluvial terrace deposit averaging approximately 11m in thickness. The
aquifer is composed of poorly-sorted to well-sorted sandy gravel and gravelly sand
with minor amounts of silt and clay. Sediments are generally unconsolidated, and
occur as irregular horizontal or nearly horizontal lenses and layers. Marine sediments
belong to the Eutaw Formation and consisting of clays, silts, and fine-grained sands
form an aquitard beneath this alluvial aquifer [7]. More details on the test site
and other related previous experiments, see [1, 3, 5, 6, 19, 20]. The estimations are
performed under the assumption that the test site can be extended continuously to

a lager region.

Figure 1: Test site location, Columbus AFB, MS

Figure 1 shows the test site location, Columbus Air Force Base, Mississippi.

14
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Figure 2 shows the sample site for Example 1. The positive y axis points in a
direction 12 degrees West of true North. Thus the positive x axis points in a direction
12 degrees North of true East. The circles in Figure 2 show the well locations for

Example 1. This site was designed for experiment of transport and biodegradation

of some organic chemicals [6].

Table 1: Water levels for Example 1

Figure 2: Sample site for Example 1

{“ICollection @ chosun

Sample || z(m) | y(m) | w(m) || Sample | z(m) | y(m) | w(m)
P-1 -86.1 2.56 64.89 P-14 43.33 | 94.53 | 64.74
P-2 -11.41 | 83.28 | 64.53 P-15 -59.8 | 67.92 | 64.75
P-3 1.62 56.17 | 64.68 P-16 52.2 47.77 | 64.87
P-4 -30.84 | 10.38 | 64.71 P-17 -4.92 | -10.33 | 65.14
P-5 -85.85 | 190.51 | 64.13 P-18 -20.13 | 35.08 | 64.77
P-6 95.13 | 123.75 | 64.79 P-19 29.26 | 22.95 | 64.82

15




Figure 3: Water levels and Target A
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16

Sample | x(m) | y(m) | w(m) || Sample || x(m) | y(m) | w(m)
p-7 103.2 5.73 65.82 P-20 -32.26 | 113.18 | 64.58
P-8 -19.4 | -50.16 | 65.29 P-21 29.24 | 127.12 | 64.67
P-9 22.61 6.42 64.92 P-22 -69.15 | 139.66 | 64.57
P-10 -23.3 | 66.57 | 64.28 P-23 -25.7 | 179.32 | 64.59
P-11 3.16 | 147.63 | 64.59 P-24 29.34 | 225.1 | 64.46
P-12 32.44 | -25.81 | 65.1 P-25 -47.8 | 263.96 | 64.13

P-13 5.55 | T1.69 | 64.75 P-26 51.93 | 173.77 | 64.59
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Table 1 shows the 26 samples with location and water level elevation in meter
scale. We selected six samples, Target A, arbitrarily from the inside of the convex
domain consisted of the given 26 samples. Estimating Target A is an interpolation

problem. Target A is shown in Figure 3.
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Figure 4: Semivariogram
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Figure 5: Mathematical model

Figure 4(a) shows the experimental semivariogram obtained from the basic 20
samples without Target A. From Figure 4(a), it is not clear to see the correlation
between lag h and semivariogram. Figure 4(b) is the semivariogram obtained after

applying the averaging processes mentioned in Section 5.2. The M = 28 equal divi-

17
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sions and the d = 10 meters averaging radius at each division node were used. It is
easy to see that Figure 4(b) shows clear correlation between lag h and semivarogram
compared with Figure 2(a).

Figure 5 shows fitted mathematical models. The fitted linear model in Figure
5(a) was v(h) = 0.0026h — 0.1632. Figure 5(b) shows the cubic polynomial model
v(h) = 3.83 x 1078h3 — 6.005 x 107®A% + 0.0007h + 0.0364. The coefficients in the

two models were estimated by the Least Square Optimization.

464.94 ¢
64.92 4.
64.9 1 64.9 w8

@
®
@
5]
@
Y
@
&

@
&
@

64.77

64.77

water level
>
g
3
Bl
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3
{
~

64.68 ] [ (64.68
164.67 ©64.67
818 wesh

3
®
o
&

#64.64
#64.61 | casl #64.62 64,61
64.59 #64.59 64.59

L q 64.55 +64.55
#64.53 4%%

1 2 3 4 5 6 1 2 3 4 5 6
Target A Target A

(a) Linear (b) Cubic polynomial

Figure 6: Estimation results for Target A

Table 2: Estimation results for each model

Linear model I Cubic polynomial model
R, E, |R, — B, | o2 R, E, |R, — E,| | o2
64.53 | 64.5290 0.0010 0.0533 || 64.53 | 64.5157 0.0143 0.0142
64.68 | 64.6367 0.0433 0.0530 || 64.68 | 64.6154 0.0646 0.0142
64.92 | 64.9409 0.0209 0.0540 || 64.92 | 64.9080 0.0120 0.0146
64.59 | 64.6131 0.0231 0.1026 || 64.59 | 64.6072 0.0172 0.0258
64.77 | 64.5918 0.1782 0.0692 || 64.77 | 64.5461 0.2239 0.0182
64.67 | 64.6560 0.0140 0.0976 || 64.67 | 64.6710 0.0010 0.0228

18
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Figure 6 and Table 2 show the estimation results for Target A. In Table 2, R, is
the measured real value for Target A, E, is the estimated value by kriging and o?
is the kriging variance in (4.11). The averaged variances, the averaged |R, — E,|?,
for the linear and the cubic polynomial models were 0.0058 and 0.0092, respectively.

The linear model could be better than the cubic polynomial one.

300 T T ‘
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64.13 *  Target B
3
250 F Jr—
64.46 7’
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¢ 64.59
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£ 100+ 64.74 .
> 64.53 -
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O e488
s b O 64.87 i
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642
64.71 v
64.89 o] 64é92 65+82
U 65.14 7
- 65.10
65.29
-50 [ * 8
_100 Il 1 1 Il
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Figure 7: Water levels and Target B

To consider an extrapolation problem, six samples, Target B, located outside but
near the boundary of the sampling network were selected. Target B is shown in Figure

7. Figure 8(a),(b) show experimental semivariogram and averaged semivariogram for

19
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Target B, repectively. For Figure 8(b), the number of equal divisions M = 15 and

the averaging radius d = 15 were selected.
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Figure 9: Mathematical model

Figure 9 shows a fitted mathematical models. In Figure 9, the linear mathematical
model y(h) = 0.0018h — 0.097 and the cubic polynomial model v(h) = 1.0082 x
10~"h* — 2.2757 x 107°h? + 0.0016A + 0.0008 were fitted.

Figure 10 and Table 3 show the estimation results for Target B. The averaged
variance for the linear and the cubic polynomial models were 0.1279 and 0.1122,

respectively.
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Figure 10: Estimation results for Target B

Table 3: Estimation results for each model

Linear model I Cubic polynomial model
R, E, |R, — Ey| o? R, E, |R, — Ey| o?
64.79 | 64.7558 | 0.0342 | 0.1687 || 64.79 | 65.1077 | 0.3177 | -0.1033
65.82 | 64.9836 0.8364 0.1750 || 65.82 | 65.2184 0.6016 -1.0450
65.29 | 65.1101 0.1799 0.1118 || 65.29 | 65.4257 0.1357 0.1273
64.46 | 64.5256 0.0656 0.2076 || 64.46 | 64.6624 0.2024 -2.2141
64.13 | 64.2973 0.1673 0.2367 || 64.13 | 63.9122 0.2187 | -4.4524
64.59 | 64.6330 0.0430 0.1399 || 64.59 | 64.9117 0.3217 0.0986

In Table 3, we notice that some of the kriging variance o2 for the cubic polynomial
model are negative. These phenomena are typical behaviors for extrapolation. In
general, the estimated values for interpolation lie between the minimum and the
maximum values of the sample values adopted for semivariogram. Therefore the
kriging variance at each location becomes positive. On the other hand, the kriging

variance for extrapolataion need not be positive due to the fact that the estimated
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value may be resided outside the selcected sample value range. Therefore, the kriging

variance o2 for extrapolation do not show much statistical meaning.

Figures 11 and 12 show the 3 dimensionanl mesh and their contour, respectively,
for the surrounding domain including Table 1. We used all of 26 samples in Table 1.
M = 15,d = 15 were used for averaging process. The cubic polynomial model was
fitted due to better performance. From Figures 11 and 12, it is easy to see that water
flows from South-East to North-West. Recall that, as mentioned before, the positive

y axis points in a direction 12 degrees West of true North.
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Figure 11: 3-D plot of the estimated water levels
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Figure 12: Contour of the estimated water levels
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CHOSUM UNIVERSITY

5.3.2 Example 2

The test site for Example 2 is located nearby the site in Example 1, see Figures
1 and 13. These tests were performed for investigating the hydraulic conductivities
using the multi-level samples. The circles in Figure 13 are parts of well locations for

Example 2. The total location and water tables are in Table 4.

Figure 13: Sample site for Example 2

Water tables were measured at 66 locations. Among 66 samples, 16 locations,
Target C, were selected for interpolation and 8 samples, Target D, were chosen for
extrapolation. Figure 14 and Figure 21 show the interpolation and the extrapolation
sampling networks, respectively. The positive direction in y axis in Figure 14 was

adjusted so that it is parallel to true North.

For this example, conventional semivariogram, averaging process, spatial ratio,

anisotropic aspects and combination of several semivariograms, etc., are applied.
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Table 4: Water levels for Examle 2

Collection @ chosun

Sample || x(m) y(m) | w(m) || Sample || z(m) y(m) | w(m)
W-1 69.945 | -48.290 | 61.69 W-34 -16.245 | 104.513 | 63.16
W-2 75.226 | -45.750 | 61.88 W-35 0.170 | 122.781 | 62.91
W-3 66.625 | -57.631 | 61.54 W-36 21.572 | 141.017 | 63.06
W-4 43.014 | -61.372 | 61.75 || W-37 1.698 | 142.334 | 62.85
W-5 41.659 | -37.024 | 62.00 W-38 38.332 | 219.812 | 63.12
W-6 -12.642 | -12.292 | 61.63 W-39 3.432 | 162.520 | 62.82
W-7 7.112 -2.583 | 61.51 W-40 34.660 | 180.143 | 63.09
W-8 35.320 8.950 | 62.55 W-41 4.955 | 182.614 | 63.06
W-9 7.002 20.998 | 62.58 W-42 -26.306 | 184.260 | 63.12
W-10 || 25.458 | 21.384 | 61.39 || W-43 6.391 | 202.379 | 63.09
W-11 19.487 | 26.902 | 61.39 W-44 7.911 | 222.572 | 63.09
W-12 5.173 28.518 | 61.57 W-45 9.535 | 242.871 | 63.06
W-13 -6.525 | 24.647 | 61.45 || W-46 | -22.613 | 224.994 | 63.06
W-14 || -11.370 | 17.346 | 61.45 W-47 7.000 | 186.782 | 63.09
W-15 0.972 3.286 | 61.24 W-48 19.899 | 187.303 | 63.06
W-16 5.967 | 15.397 | 61.17 || W-49 12.827 | 186.111 | 63.06
W-17 8.644 38.676 | 61.14 W-50 11.168 | 185.269 | 63.09
W-18 10.993 | 58.413 | 61.11 W-51 20.204 | 189.969 | 63.03
W-19 -0.842 | 75.225 | 61.17 W-52 13.254 | 100.878 | 63.16
W-20 -4.298 | 78.490 | 63.46 W-53 22.186 | 49.926 | 61.57
W-21 -9.004 | 77.825 | 63.37 W-54 -17.172 | 49.675 | 61.91
W-22 | -11.430 | 73.707 | 63.43 || W-55 16.599 | 79.084 | 61.69
W-23 -9.724 | 69.190 | 63.34 W-56 -10.820 | 11.040 | 62.36
W-24 -5.183 | 67.823 | 63.03 W-57 -6.020 9.270 62.33
W-25 -1.242 | 70.473 | 62.27 || W-58 -0.680 | 7.240 | 62.36
W-26 -38.573 | 93.189 | 63.25 W-59 2.570 6.110 62.58

25




Sample | x(m) | y(m) | w(m) | Sample | z(m) | y(m) | w(m)
W-27 || -41.984 | 96.453 | 63.28 W-60 5.500 5.040 | 62.48
W-28 || -46.679 | 95.971 | 63.37 || W-61 11.210 | 2.960 | 62.45
W-29 | -49.259 | 91.990 | 63.43 W-62 || -11.190 | 20.890 | 62.42
W-30 | -47.639 | 87.421 | 63.43 | W-63 | -5.770 | 19.090 | 62.24
W-31 | -43.033 | 85.874 | 63.49 | W-64 | -2.480 | 18.050 | 62.33
W-32 || -39.086 | 88.349 | 63.49 W-65 2.060 | 16.290 | 62.42
W-33 | -25.461 | 81.474 | 63.43 W-66 12.000 | 12.500 | 62.52

o) N
200 - © i 8
63,12 b 00 $
5o 5 63,06 1
62+91
- 63,16
E 10T %o |
= oot 63+43 6169
sz "
50 € o 4
or i
62+UD
-50 - - 61,54 1
o w0 0 2 w0 @ e

Figure 14: Well locations for Example 2 with Target C
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First, we consider the interpolation problems with Target C. Figure 15 shows the
experimental semivariogram and the improved semivariogram by applying averaging
process and the fitted model with the improved semivariogram. The equal divisions

M = 60 and the averaging radius d = 5 were chosen. The fitted exponential model is

i =ara (i-ean(-2)). o

co = 0.2964,c1 = 0.5572 and co = 102.3438. The initial guess for the parameters
o, c1 and cg were chosen as 0.1,0.1, 100, respectively. The parameters in (5.1) were
estimated by the nonlinear parameter estimation technique described in Section 3.

Three iterations were enough for obtaining the final estimation.
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(a) Experimental (b) Exponential model(with averaging)

Figure 15: Semivariogram and exponential model

Figure 16 and Tabel 5 show the estimation results for Target C. The averaged
|R, — Ey|? was 0.0261.

Next, we consider the combination of the conventional semivariogram with av-
eraging process (Figures 15 and 16, Table 5) and the semivariogram obtained by
accounting for anisotropic aspects (Figures 18 and 19, Table 6). To account for the
directional aspects, we investigate the water table levels along each direction such as

x —axis or y—axis (Figure 17). From Figure 17, it is easy to find a trend in y — axis.
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Figure 16: Estimation results for Target C
Table 5: Estimation results for Target C
R, E, |R, — B, | o2 R, E, |R, — Ey| | o2
61.54 | 61.7390 0.1990 0.0813 || 63.16 | 63.3621 0.2021 0.1265
62.00 | 61.8626 0.1374 0.1456 || 62.91 | 63.1178 0.2078 0.1163
61.57 | 61.8400 0.2700 0.0443 || 63.06 | 62.9019 0.1581 0.1383
63.34 | 63.1851 0.1549 0.0275 || 63.06 | 63.0498 0.0102 0.0395
62.27 | 61.9648 0.3052 0.0270 || 63.12 | 63.0076 0.1124 0.1908
63.37 | 63.3492 0.0208 0.0279 || 63.06 | 63.0827 0.0227 0.0160
63.49 | 63.3884 0.1016 0.0276 || 61.69 | 61.8660 0.1760 0.1014
63.43 | 63.4617 0.0317 0.0826 || 62.33 | 62.2649 0.0651 0.0281
av = 0.0261
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Figure 17: Water levels for Target C
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Figure 18: Semivariogram and exponential model (with y-direction)

Figure 18 shows the semivariogram accounted for the y — axis. For the averaging

process M = 43,d = 7 were chosen. The fitted exponential model becomes

Yy(h) =co+c1 (1 — exp <—C};>> , (5.2)

co = 0.4005,c¢; = 0.5751 and co = 200.0107. The final semivariogram for Target C

was chosen as
Y=Y+ Yy (5'3)

where 7, and 7, are in (5.1) and (5.2), respectively.
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Figure 19: Estimation results for Target C with y-direction

The estimation results are shown in Figure 19 and Table 6. The averaged |R, —

E,|? was 0.0330.

Table 6: Estimation results for Target C with y-direction

R, E, |R, — Ey| o? R, E, |R, — Ey| o?
61.54 | 61.7399 0.1999 0.1078 || 63.16 | 63.3985 0.2385 0.1578
62.00 | 61.8156 0.1844 0.2007 || 62.91 | 63.0986 0.1886 0.1761
61.57 | 61.7264 0.1564 0.0585 || 63.06 | 62.8659 0.1941 0.1608
63.34 | 63.2639 0.0761 0.0350 || 63.06 | 63.0628 0.0028 0.0546
62.27 | 62.0732 0.1968 0.0372 || 63.12 | 63.0481 0.0719 0.2309
63.37 | 63.3462 0.0238 0.0328 || 63.06 | 63.0830 0.0230 0.0190
63.49 | 63.4059 0.0841 0.0370 || 61.69 | 62.1513 0.4613 0.1243
63.43 | 63.5951 0.1651 0.0967 || 62.33 | 62.3640 0.0340 0.0337

av = 0.0330
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We now consider an extrapolation problem. Eight samples, Target D, were se-

lected for the test as in Figure 20.

O Measured well

280r 53+06 +  Target D T
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Figure 20: Well locations for Example 2 with TargetD

Figure 21 shows the experimental semivariogram and the improved semivariogram
by applying averaging process and the fitted model with the improved semivariogram.
For the averaging process, the equal divisions M = 28 and averaging radius d = 10
were chosen. The parameters in the fitted exponential model in (5.1) were ¢y =

0.3723, c¢; = 0.5661, co = 199.1726.
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Figure 21: Semivariogram and exponential model
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Figure 22: Estimation results for Target D

The estimation results are shown in Figure 22 and Tabel 7. The average variance

is av = 0.0402.

Figure 23 is for considering the anisotropic aspects. Those show that there is a

clear tendency in y-direction.
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Table 7: Estimation results for Target D

R, E, |R, — B, | o2 R, E, |R, — Ey| | o2

61.69 | 62.0201 | 0.3301 | 0.1203 || 63.43 | 63.3937 | 0.0363 | 0.0149

61.88 | 62.0551 | 0.1751 | 0.1409 || 63.12 | 63.0362 | 0.0838 | 0.1134

61.54 | 61.9530 | 0.4130 | 0.1095 || 63.06 | 63.0525 | 0.0075 | 0.1066

61.63 | 61.5902 | 0.0398 | 0.0810 || 63.06 | 63.0935 | 0.0335 | 0.1166
av = 0.0402

water levels

-60

Figure 24 shows the semivariogram for the y-directional water level distribution.

The equal divisions M = 26 and averaging radius d = 11 were chosen for the averaging

process.

0.4182,¢c; = 0.5052 and co2 = 199.9545. The estimation results are shown in Figure
25 and Table 8. The average variance was av = 0.0270. From those, it is clear that
the estimation results with consideration of y-direction are improved compared with
the interpolation problem as shown in Figure 19 and Table 6. From this observation,

consideration of anisotropic behavior on the sample set in Example 2 affects more on
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Figure 23: Water levels for Target D

extrapolation than interpolation.
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The parameters of the optimized exponential model in (5.2) were ¢y =
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Figure 24: Semivariogram and exponential model (with y-direction)
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Figure 25: Estimation results for Target D with y-direction

In the following, the semivariogram with spatial ratio is considered for the extrap-
olation problem for Target D. Since the range of the sampling network is —47.639 <
r <43.014 and —61.372 < y < 222.572, the approximate spatial distribution ratio is
ry~1:3.
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Table 8: Estimation results for Target D with y-direction

R, E, |R, — B, | o2 R, E, |R, — Ey| | o2

61.6900 | 61.9067 | 0.2167 | 0.1532 || 63.4300 | 63.3612 0.0688 0.0239

61.8800 | 61.9209 | 0.0409 | 0.1738 || 63.1200 | 63.0463 | 0.0737 | 0.1361

61.5400 | 61.8497 | 0.3097 | 0.1287 || 63.0600 | 63.0358 0.0242 0.2024

61.6300 | 61.3849 0.2451 0.1219 || 63.0600 | 63.0859 0.0259 0.1412

av = 0.0270

The estimation results obtained by considering the spatial ratio are shown in
Figures 26 and 27, Table 9. M = 29 and d = 11 were used for averaging process,
and the fitted linear model in Figure 26 was v(h) = 0.002h + 0.3169. The average

variance was av = 0.0180.

semivariogram
Il ~
2 [N 2

-

0 50 100 150 200 250 300 350
lag h(m)

(a) Experimental (b) Linear model(with averaging)

Figure 26: Semivariogram and Linear model (Target D ratio)

From Table 9 and Figure 27, we see that the extrapolation problem for Target
D with spatial ratio are significantly improved. Specifically, the estimation vari-
ances for Target D with the conventional, the y-direction, and the spatial ratio were

0.0402,0.0270 and 0.0180, respectively.
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Figure 27: Estimation results for Target D with ratio
Table 9: Estimation results for Target D with ratio
R, E, |R, — E,| | o2 R, E, |R, — E,| | o2
61.6900 | 61.8126 0.1226 0.1186 || 63.4300 | 63.2719 0.1581 0.0309
61.8800 | 61.8389 0.0411 0.1108 || 63.1200 | 63.0898 0.0302 0.0432
61.5400 | 61.7674 | 0.2274 | 0.1345 || 63.0600 | 63.1227 | 0.0627 | 0.0902
61.6300 | 61.8368 0.2068 0.0564 || 63.0600 | 63.1127 | 0.0527 | 0.1111
av = 0.018

Figures 28 and 29 are the three dimensional mesh and the contour plot for the

sampling site for Example 2. For these plots, the semivariogram was obtained by

considering the averaging process, the spatial direction, and the exponential model.

The whole 66 measured samples(Table 4) were used for the construction of semi-
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Table 10: Averaged |R, — E,|? values for each problem

Interpolation problem | Extrapolation problem
Averaging 0.0261 0.0402
Averaging, y-direction 0.0330 0.0270
Averaging, ratio 0.0875 0.0180

64

63.5

water levels

100

Figure 28: 3-D plot of the estimated water levels

variogram. These eatimation process include interpolation as well as extrapolation
problems, since the estimating locations lie in and out of the convex domain consisted

of the given measured sampling network. From Figures 28 and 29, we can see that

the water flows from North to South of the site.
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Figure 29: Contour of the estimated water levels
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6. Conclusion

We considered interpolation and extrapolation problems for the in-situ groundwa-
ter tables. In general, extrapolations are known to be difficult to solve. The sample
site is an alluvial aquifer. The aquifer is poorly-sorted to well-sorted sandy gravel and
gravelly sand with minor amounts of silt and clay. Under the assumption that the
geological properties of the site can be extended continously to a larger region, the
kriging system involving continuous averaging process, spatial ratio, and anisotropies
produced accurate estimation results for extrapolation as well as interpolation prob-
lems. The kriging system considered in this paper can be applied for estimating

groundwater levels of a continuoously extendable alluvial aquifer.
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