creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

20243 2¢
X AFetg]

ald
HJ

7}

1

K
T

A

4 2 dlo|g &

=0

A

Gl

H

XAI 7]



NAL 7]4F 449 2 o] B4 o 17}

Data Analysis and Evaluation of Generative Models Based on XAI

20244 29 239



XAL 75F A7 2= d|o] ]

20234 104



2023 12¢¥



<t 0 0 0 [ee) D — [a] (ap) Te} Ne)
— — — — —
N
-
.
— ~X
S SR . il
. N g
Jjo T . S JHI . ) W 70
— '~ —_ . .ok KF
~X N n_Alo juy ,OI . W.I ﬂm Jl
ol ! =
mo .Jmlm _ZTI 1' 17_AIO L_Ily N ‘uA_/IAO NE N
o X 7 B RO Jm 2 5 G AR
e M- o o U X =
__01_ ‘__lorﬂ iy n_AIL T o T O o JoR
¥ "o T -
~ < iy T O o O <
il Bl R N ) )
Woof o =
— o L — (@]
—
f—f

16
18
20
20
22
. 24

A
2) MSSIM Q@ ZFEZ] HIT . . . oo o oo

1) cye-MSSIM ZFEA] BIIL .o o

3. A1 &4



26

Tr
il

Gl

PSS

H

1.LRP 7]

26

1o

id

an

=N

A

27

o
0

lann

o

29

29

—

w
o
ze)

lann

o

29

30

BUERIR 74 -

. 34

V. 34 29 ol 24

34

T

]

A

LAlE#0]

34

HIOEIAL . Lo

35

2) ITmageNet HJOJEJAl . . . .. ...

38

Al 224 gloleAl

3

ml
ze]
__OH

15

38

38

. 42

. 44

ii



ABSTRACT

Data Analysis and Evaluation of Generative
Models Based on XAI

Sky Haneul Lee
Advisor : Prof. Henzeh Leeghim, Ph.D.
Department of Aerospace Engineering,

Graduate School of Chosun University

When performing guided pilot simulations or flight test simulations required for var-
ious purposes, the quality of dynamic and synthetic sensor images generated from the
sensor models in the given simulation environment is highly important for target recog-
nition, tracking, and behavior for various reconnaissance missions. So this thesis uses
artificial intelligence to generate realistic infra-red (IR) images used in flight simulations,
and analyzes and evaluates the data through explainable artificial intelligence (XAT).

We construct an IR dataset and a synthetic dataset to generate realistic IR images.
Among the Generative Adversarial Network (GAN) models, CycleGAN, which is trained
under unpaired dataset, is trained using the constructed dataset. CycleGAN produces
high-quality images even though it does not have a correct answer label. However, it
is not well-trained on the IR dataset. Therefore, we improved the model’s performance
based on the structural similarity index measure (SSIM). At this time, we compared the
weights of each loss function to find an appropriate value, and analyzed how window
sizes of SSIM would affect the synthetic IR image constructed by CycleGAN is analyzed.

Although techniques such as IS and FID have been introduced to evaluate the per-
formance of GAN, it is still difficult to distinguish between synthetic data. Additionally,
distinguishing synthetic data generated by artificial intelligence is a big topic because
the level of data generation using GAN is improving. Therefore, we introduce XAI
for synthetic IR image analysis. Out of various XAI techniques, LRP was used, which
detects the model in reverse order through decomposition and relevance propagation,

providing a basis for judgment on prediction. Thus, we build a classification network

iii



for IR images and synthetic IR images and then perform LRP analysis. When analyz-
ing LRP, we simulate various transformations of LRP and analyze how LRP draws a
heatmap when some transformation is applied to the data, allowing us to distinguish

between IR images and synthetic IR images.

iv



Aol A A4 Ao Bell FUetd GERIlole HoH G4 B F
Hed), old A% AES 9T HE 2F 7)Y ]
49 22, oo 3R QRS A8 FuZS W] S8 M BHIAY B F

11 = T 1 oL o2 u

A(sythetic) Ho}H 4ro] Wasich. oleleh 714 ARG FIMO R Sl HE 2T A2HL
HILS (hardware-in-the-loop simulation) 7|§F2] A|A®IH T} 22 H|- g0 g A|AH A A=
o] Hsa7] Tl olo] gt GFE0] A4 E T ALK, 2, 3], AT ofelet FH BAbL
AR G = Zpol7F EA5HAL, E5] vt A 9F Yoh= 2 FollA A9 A S
=5 A2 A 7] 2] & AJFA]5(Artificial Intelligence, AT) 7]
=°] 25| 2198 E 1 et oo uhgt AA e Hofof A= 20143 AAH GAN (Generative
ore 94 95 2ol el H3ith. ol
tlolHE Hig oz Adaret waxrt AdiAor Shasts AR Hole et FARRE HolHE
At Tt HlolE o] R E FU 7]

ot

Adversarial Network)[4] 7] &2 Hig o 2

cH

o]n] 22 W7}st= Zo]c}. NN (Convolution Nerual Network) S} th2 4] GAN-S AT}2o]
ek AA Aol §17] WEe] 2 GANS O] of7|d ALt T4L H]isk7] 7} o] Atk GANe] &

T 27] BANAE B ARRE $5H WS AHESIRET) ol Aol A% 2 Bty
BAE olnAE B WS AOR, WIS FEA Ashrt AL thze] Ao
ket )27 LA 4= Qlet. wrEbA o] 2 S Ast7] 9J8) IS (Inception Score)[5], FID (Frechet
Inception Distance) 6] 5] 7]'o] &8} 9ie. o= A4 dlo] & o] %2 (Fidelity) v} thob4

(Diversity)& 712 2 dlo] B4 Bo}ste], A4 oln|x|o] 3§ Hiet 4 oln|x|o] 3+5
Bx sfolo] Aels Este] AEE Fobe WAlow A5 dY 75 GANS| A%



H712 19 thepslA AT QAR Hlo el A Ao H-857] Hge] £ Aol ALgshe
2941 olu] Aol gt TR B} 7|02 HAHA] gk whebA B AR 4 o]n]X] o

Fatg AHE S BA5H= PSD (Power Spectral Density)[7, 8] 7]%-& &85 445 o]n]x]

B9l ojulx] Hrh AXE o8 AA| A4 olulAe} 54 el ofuA| o] FfolS

MY 5 QAT HEA o G4 ol ou] S AR A9l 4 o] A9t G A=
#¢jo] @ a sttt meta ofw Rio] AA] He|A o]u|x|ske] HHolE ofr|steR|o] g Hel}
0 @), A B7} A BEL Ho|EAl 7 RS At oln| A o] A A AHEHL
Ureh7] ghol olu A o A sots}7lolis HAsA ehet. wet ofulx] Hrte} o Hof
B FAA AHEE B

4o
ol
o)
i)
o&
N
)
or
Ol
rO
o
N
olr

(eXplainable Artificial Intelligence,

XAl 71¥& =Ydstath. GANS Ze ti729] 5452 SHe2(Blackbox) 742

_%_
AR B Hisll olsieE 'L & Uk 2 Aol XALY Azt 71 F shuel

_'if;‘l_
AA olm Aot g ow|AE ERFste Hloll MIEYAZL o]u]R] 9] o RE-S HFoHA=A]

H
AlZtetstaint. ojml LRP 7o) thefet ¥g< &l 7iAd sIEHS Ao o e

2 ge thea} o] TAHT A 240] 4 XALL] Aaet AvtA e A, A4 o=l
0] S HE qEH 7S] ta] 2718 3l ML dmalze] AHeE HoeAl
RPE 2835 Y EQ T 747} L2l Zo ta] 47

5gelMe dA A diolE et 5ot MEYAE &l AlEdolds =

>
=y

A
ol
rE
=
fu)
&lt
b
N
ol
o,
&
S
o
=
o)
rir
=

N

B

S

=
o} vhxeto g

o
ot

[\



ol
~



Jlo

Ho
o)
To-

A
—

CERE R

b RISA]

717} e skt o2

gtk 2

2 sol 7t 24

dAIste dgor ojof

floF &), ojwHet HoleE

A3

2 7

7 ImageNet

o
Eibs

A

ABRCEELS

3

T
=4

£ 9=

HEHA

=
T

il

ol

&

o] 7% 90%e]

I AbAlo] Zotjet

S

gER

T 999

St
=

A ol g Bk

=1
oh=

7} 27

output

+—
2
g

Explainable ~

Al

Figure 1 : Black box model of XAI



o, %3k

1] olel s

°

A=

=

o] Atz
o} gatA Q87

=]
=

=

H

Stal B
171 of

°

(<)

e

1

1—

Al

A0 g 752 rok

L = |
—

o
Nr

thel 2d 9] of

olck. T3k o2 XA} AFs] Fi Aol

ol
R

Tou

RS
ol
R
<+
(i)l
©
0
ol
!

ol

3}H(Visualization) 7|H 0 &2, o] Kol 272

Ae A7t

Al

™

2 Ao A

el AJZteh XAL

s}t AA| Occlusion Experiment ¢

<]

3

behe 2g

o7 =

A

)

T

o 47 7t

g7t

7Fs/dol B2 deld Bell Fo A= CNNE
=

o] CNN gl

T
jm}

L

st71 o

5

s At

S

b 52t

o
2. Bl Ajzts} A9 714

A2 ool A

=

j

[e)
29 A|ZFSH(model visualization) 7| ¥ EA] W A

2
O/q_
714

T

shkel CAM

AW A2stF

wjr

—_

0
"
H

o

N
N

Fpol whebd hepa 2ol

A5

o

A

4

ol

uze)

7A
o

A9

A

il

CNN yjo] E4 #(Feature map)-2 Hil o]

[e]
—

(Class Activation Map)[10]

KH
v
)

5
<«

ol
0

o
ol

Z o
S|

7] dizell, A

—

¢
__OE

oo

T

At

9|

=4 9o of

e}
hod

T Grad-CAM

o

7} Grad-CAM++¢} -8 7}



—_

LIME (Local Interpretable Model-agnostic Explanations)[13]2 tf3Z2Ql XAI 7|Ho 2,
2] 24 (swrogate analysis) 7|§& o]-8<th. 22 ZA46loF st o] fd o o]& Wi
Hi 29 g2 BEE Zo] te) 4] BHolv] LIMES o]aiat te] 48 S4doln

FAH R AT WHOR, e wilo] Bt U] 622 2ASHES s Hh LIME

e
!
e
o
4
o
M
du
9
N
N
o2l
2
b
el
Ko
ol
2
N,
l
4
E
A
il
-
o
rok
)
=
oo
©
rlo
4
H
iz
1

B2 Fof 24T oln Ko thef Bo] Feh2E ol 5T Afolck. ShAH LIMEL 2]

27 AAE SR 3 = o] niEdAg Ao, tlolH shitol tisiAvt dygstag o ot
A o] BEoltt. TRt @hees] 54 W AlZEeE WRol 7] wiEeo] 4 ghe] Z]ofof oigh 7t
HAR s B 24T DANA L Z]ofof HishiA= mhete 4 itk= @30l nt. o] el
Aol A] Ltolrt A o] 2S Hieto 2 k= AZa] ZH(Shapley Value)¥ LIMES At Hf

HE29] SHAP(SHapley Additive exPlanation)[14]0] A= it AHE2] #H-2 stute] EA9
et S8EE <71 sl A 5SS 22 45k, sl 549 7ol e B2
il o ARt & B4 Wt AAEAS o 5] duhy e nAeA
AR o) tigt g2 AHEY ger FASh= Zlojth. SHAP2 LIMERtH= Hdof tigh

A& B oz AlFs] FAT AxtEol A7) Wil w2 AdE 7HAlE vl A HlolH e

CAM, LIMEZ} 22 57§ A|Zpe} W2 Kdlo] J ofmx[of oA ¥h-g-5l=7] 2

¥

v

(a) Original Image (b) Explaining FElectric guitar (c) Explaining Acoustic guitar ~ (d) Explaining Labrador
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1. 8 o] Al 4 CHAPTER I gjo]E/41 75

M}

FLIR 98t dlo]E| & ol g5to] 371212l S48 Agsteiet.

field (time — 12:00)

Figure 4 : Real IR images : the left two images were taken in the field at 12:00, the right two images
were taken around a small stream at 19:00 and below two images are FLIR images
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ot oA +4 CHAPTER III. go]E] 4l 4=

Domain (1) IR images

RGB covert to Grayscale

—_—
RenderedHSD mode_l )
[ BN B,
. % o
— O bealityCaptre ——
Real IR images 3D \-
Photogrammetry modeling
program ‘ Extract images from the model
SN B
BN Domie
4! 3 : S Nincreased .yn etie
f “5 ‘;;r X commlsi" lmages
| “RE G .
Figure 5 : Flowchart of image domain construction process
Table 1 : UAV specification
Attribute Value
Description DJI MATRICE 300 RTK
Weight 6.3 kg (Including two TB60 batteries)
Diagonal length 895 mm
Table 2 : Camera specification
Attribute Camera Specification
Description DJI ZENMUSE H20T
Sensor Vanadium Oxide (VOx) microwave bolometer
DFOV: 40.6°

Focal length: 13.5 mm
Lens

Aperture: £/1.0

Focus: 5 m ~ oo

10
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HE oln|x] Feg ojFet @A glo] WEAE £o)7] 919t dioly A< s HE2=, Ay}
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X l X

weight layer weight layer
anytwo
y X relu
stacked layers relu F(x) | l | g
weight layer . .
weight layer identity
yrelu F(x) +x
H(x) |
CNN Residual learning

Figure 8 : Concept of residual connection

olul Aol Bej7t 717t kA b At EEE 97t 2t wetd A4 ojm o] o
3 AZTHLow frequency) 4E-S L1 781 Eo wold ¢
whoto] 7 PatchGANT} Aol 402 WS TG CycleGANS] TR o] 25
PatchGAN 725 7h1d], 24 Qo] okt 54 279 ] (patch) T4 A4}
[me] 2¢) ofRE Prgth WA o] A7) QA ol 27)e)4 =4 WA} of

, A5 1}(High frequency) A&

A

%
.
)
(o]

CycleGAN®] 2% &4 g4t g4 AFe Aujd 243 8 99 49 go of

Shot 2ol T4t

L(GaFaDX)DY> = LGAN(G7DY7X5Y) +LGAN<F7DX7Y7X) +LcyC(G7F) (4>

ol =2t ¥ £ (Leye )2 oFefiet -2 ot AlF 22H( Mean Square Error, MSE) o] ot}
Al
1 m—1n—1
vse = L K9P ®)

=1 1

<.
I
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ol A @t & zho] WA gk Aolof olEstn] WAL kel @ A}7} oI AntE] wjE] Y
E913 49 AlZro] UL, Wit A% 0Ao] SAo] whe} o]n] 2|7k A7) B shel 7] we]
THAE B2 o] HH QS Fohla] 28] olulx] o] oA Hrh. Fig.(9)ol4 & 4

o] AA) st At YA ofn] ) M=o A ZHE5HE CycleGANS £& 457} A7HE
Ho] A5k, AelA 4 olulA] TAE shyo] 4B olFolA | oHe He maAstTt
ol ARl CycleGAN®] Sy WAoo g 1Ed A2d ojn)x] A4o] oldrhs Fe

ARttt mEbd 2 Aol e CycleGANS] £4 o5 L 4sto] ojn|x] A4 &4

M

>

ftjo

Sy n[hetlc Infra-red dataset
P g

Figure 9 : A single example of learning general dataset (Monet2Photo) and synthetic infra-red dataset
Compared to the VIS data, synthetic IR data were not learned well

2) £4 5 A7H
(1) F24 FAE A5 24

F2A QA% 2|4 Z A (Structural Similarity Index Measure, SSIM)[21]2 Z20]7] X o] ]
2]0] GAVE (similarity) £ 2ol 25 2 22 AL o] thégt 244 077} op]a} ol
7ro] Azt A A”S F19tsto] A A E =1, 917 (luminance), tH](contrast), 73 (structure)
2 o]Foj3l 3845 o] 2F ghol bt SSIMe| 2| A¥} gh2 0914 1 Abelo]H 0
ol 7171845 % olul ) Zbe] A=k W, 5 Aol olulA|R BLHET 10] AhesS Ak
oln]z]2 FerElth SSIMLE ¥ o @ 11x110]u} 8x89] Zeto]d 7L A9 A9 (sliding
Gaussian window)& ©]-§-5to] Al 917} obd F el = o|n|A] BlE +3PsHA Hrt

971 g2 olnx]e] R gro] 245 oul A7} ot S ou|ttt. o] 9] Bt ol&
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A = olulx|o] ¥171S ek AL theat o] ZEHt.

(7)

Eq.(6)& o859 o, y 7+ olul7|e] W gLe Fo11 o2 Eq. (7)ol dhadstel & ofu] A7}
Zom U(z,y) gL 10] Ak 01:& 217} 00] HE AL WAHE 442 O = (K L)%0]d]

K; = 0.01, LE& 8u|E o] TAl Z+S AFgSIER 2255 ARRS|| C) = (0.01 x 255)% = 6.50259]

R -
7 = o 2 ) (8)
_ 2000y + 02
(o) = 5 +;’5 e 9)
9719 FLEHA Eq.(8)& ol-g3te] Eq.(9)o] thidte] & ojm]x] 7F thu] 4R wlmgict.

BEO] BF HAE Al4be] w2l REE WAL E 4 e F 1o N - 15 AR85HH, C
o] AL Oy = (KoL)?0|H Ky = 0.030]|2& Cs = (0.03 x 255)% = 58.52250] It}
TEe A gr o] FE2AQ1 ol B BAA BEE Edetth. F ooln]|A]o]

%74 §AP3L BRIl AL E ofu]7| o] A 7 (correlation)& o]- &3l A0 2, Fa.(6)7

Eq.(8)2 o]gate] WA 2hS (X — pu,/o,) 2 AR I FTHA A 3| ohgat Zro] Alxtet 4
et
COI‘I‘(X,Y) _ Oxy _ LC[(-r - Mz)(y _ My)] - E (x — Mm) (y — /j,y) (10)
Ox0y OO0y Oz oy
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wEfa] T ofu| 2] 9] A WAIE Fob= A2 Aol H Ol 7ho] 5o Hit2 Hohes A Z
f2ofl, +X5 Hlush= Al o33 Zo] TEHT
1 N
Oy = N1 D (@i = pa) (yi — ) (11)
i=1
Oxy + CS
= 12
S(x7 y) O_xa_y + 03 ( )
03 2% 44 520 WOlS g5 (h/22 ASATh HEAOR W], T2, dH] G B
whed g SSIMS ok} Zo] el ry
SSIM(z,y) = l(z, )" - c(x,y)” - s(x, y)" (13)
ot o= f =~ = To]ekel A& Tk} Zo] Aelat 4 r

(12 + p2 + Cr)(02 + o2 + Co)

(2) ATHR &2 4

25 AP TEE FHAE CycleGANS| £41 o] 8ol 7Hsalt. s1AT SSIME 1]
ANe4E 5 ofulA o AR} A7) tRo] £4 §42 AFea}r] gle) SSIM ZhS TheT}

L/SSIM(GvF) =1- LSSIM(GvF) (15)
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s

2 Y B o

=o] £do] 7hsdtdl, A= A7)l wret olm|A|

=

%)

ojf SSIMS] A= A7= YA AF
3 e 9% (Multi-window) 7]9-& &

1

=)
i

FHof 2pol7t & Aol ¥
Larssiv = Y _willsspa,
7

ol pxp Y0t g A= 7 wiE FHA AtEH, & Aol EE SSIMS
s

11117} 22x22 9w 9 o] 85}] 7154 8 o]m| 7] ]

A =10, a = 0.1 AHH[18], YEYA] & &4 st4l of&at Aot T35t g4 ojulx
AL 97 AA dE]EE Fig.(10)o] EA5HAT
L(GyF’ DX,DY) = LGAN(G,Dy,X,Y) +LGAN(F, DX,KX) (17)

+>\Lcyc(G7 F) + aLidentity(G7 F) + BLMSSIM (G; F)

*CycleGAN Network Architecture

E E § 256 filters é g E Convolutional layer
E g “: o "; ‘;" E Residual block (x12)
e N
= B e W4 K4 o = © Transpose convolutional layer
k/4
vy A W2
k k
-Loss functions multi-scale Result image:
CycleGAN || GAN loss ) |  window size —> | Synthetic IR
training Ejyclstcoln51stency loss (MSSIM) image dataset
entity loss

1 +SSIM loss

Structural
Similarity Index
Measure
(SSIM)

Figure 10 : Flowchart to illustrate the methodological steps of the study
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3. Alg#olAd 4%

1) cyc-MSSIM 7} vl

A AR AL olmlx|et P4 o|u|AE HlolE AR st A &4 g 7HA
£ CycleGANS & A4 Hdl sh&5 sttt oholl AR 5 oluA] = 24| 24

olu]z] 1,908% 3} A olu]z] 9317 2 Shy gh-2 NVIDIA GeForce RTX 3090 2702 -

A514 . Epochs= 200, Batch Size= o]u]Z] &&-2 1183 12 AA5ISth 200 Epochs7}A]

514 AIZe oF 9AI7ke] 2aElglch
LMSSIMPJ ?_E-'_(l)_ 3-7]7]' FEFSSIMOl 11x118 Eq'—E— Hﬂ Lcyc-"]’ Lyrssim ZJ'Q/] Zﬂ,ﬂj,‘_ O]U]Z]
Ao A ST AEAE 2] SAskel A — 102 1] 5 e T2 o] Shae skt

o
=)
>
)
m
=2,
u)
rol
T
)
)
N
N,
ol
E
e
(o]
g'ﬂ
®,
&
H
2‘
(o]
ol
Q,
o
2
0|
ol
>
o
~
il
i
i
&)
o
-
=

A7 # el dlo| e Aol FID A4

i

Altskgieh. FID 4t ohgat o] ejdr.
FID score = [[m — my |3 + To(C + Cyy — 2(CC,)?) (18)

2t Z-¢oll et FID <= Table.(4)°] =EAISFAT. FID = AA| o] x|t A/ H o]u]#]

ol sl 5 A 7k HE] Apolo] AelS A4tsle] gho] R4E E ofn|A] AE FABITHS
A

A HEE, AT FESF Aol £ B BohHch AL Fat 47)o] Aol x F Ay
W H4E ZHe CaseB| 757 (10)E Aeiste] We] A=9 Hg A vlmE Adstect

Table 3 : Weight parameters in different cases of L¢yc between Larssiam

Weight paramater CaseA CaseB CaseC CaseD
Leye (M) 10 10 10 10
Lyssiv (B) 0.1 1.0 10 100
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Table 4 : FID socre in different cases of Ley. between Larssram

Weight paramater FID score

CaseA 242.863
CaseB 201.806
CaseC 202.380
CaseD 221.065

Figure 11 : Constructed image comparison due to the L1 loss(\) between SSIM loss(3)
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2) MSSIM Q%$ 7}E3] v

ol T = A - 6 T 7HEA] Lol BSA U= Wl Lussiv @l =S 7] w2 715
2 & thA] Hojstd] A+ v wgict 919 FUg CycleGANO 2 8h5-2 Zgistel o,

11x11 2715 7= =99 7152 gk wi, 22x22 2718 7= 9=59 7141 e

1
i)

I

woB} A OJ5} 1 Table.(5)9} Zro] 7FE2]S Holstoirt Casel F¥ Case57HA] UL 71357
| A= Fig.(12)9F 2t} st 2t 7]& CycleGANKE U= Lysssiv
o] &4 grol F7HE UEQ AV, B SSIMETH= A5 E39toto] ARESE Case2, 3, 47}

u
N
=
=)
ru
gl
o>
o

ju}

P4 ojulx] B4 ATHE BG00 Case3] Bl Yoz AGH GA olnlx o] S4S

7o) selx) gk Aol ErQ) MEHe S 212 SHlstart. ojnf 9let FUsHA A 4

914 dlole Aeke] FID 4 2

o FID 3471 /M9 Re 2L sstglet 28 2129 4%
4%

disiA = FdstA A

EYL5H 71E CycleGANET Lyssiva A8 BHo] ¥ U2 452 Hol= A= gelst

S} 2} 9o W2 FID 4 Table.(6)°] ZAISHAL

Table 5 : Weight parameters in different cases of window size

Case Casel Case2 Case3 Cased Cased
wy (11 x 11) 1.0 0.6 0.5 0.4 0.0
we (22 X 22) 0.0 0.4 0.5 0.6 1.0

Table 6 : FID socre in different cases of window size

Case/dataset Custom dataset(real/sythetic IR) FLIR dataset

L1 loss 208,748 232.017
Casel(CaseB) 201.806 228.008
Case3 198.506 232.487
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’ Synthetic images L1 loss Case 1 Case 2

Figure 12 : Constructed IR images comparison due to multi-window weighting parameters

Synthetic images L1 loss Case 1 Case 3

Figure 13 : Constructed FLIR images comparison due to multi-window weighting parameters
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(a) (b)

Real IR image Virtual (mesh) image
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Figure 14 : Power spectrum analysis for the constructed image by CycleGAN proposed and a natural
IR image
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olm|Agt FAFSIAEA ] et Aors BEEsith teb B ApelAt ojnx] Futs
B AoA Uolrk XAL 71H& Bgste] A4 olmlxlet @4 o|mlE golmlshA Awstnz

Tt

O

38

ol

1. LRP 7|4t 2.4

1) 34 9 23

U2 FFOE BAY A4 (relevance score) & AXLS L}o] w5 Bejaict ¢Jo)o] d29]

q Tz = (21,22, 20)°) His) BHo| f(z)ehs = =2F2 W, 29 Z ALof it

A Wz Folol7t P oju|zjo| utAu} gololr} HRI|7t SHst & FA uf, AR
Fojol= » = ()Y e JiA= MHE mEEgg. LRPAE dlolo] [+ 104 2z}
2 20TV of gt v o] Baia H4 RUTVo] 9tk Huj, ZE oA Yto g #lo]o]

¥ gy A4S Ada

—

d
g)=--= Y R{T= ZR(” =Y "RY (20)

del+1 del d

Fig.(15)9 22 25717k ZATLD gt 249 dolelzt 7

=2
wd2 W, 2 7 ol disid BEhd A RiE AASHE A v BEd A vee

R®) — B®) 4 RO 4 RO
R + RS + RY) = RY + RYY + RYY

olu] 7t glolole] AAES wat Aupm 4 Q= ig} j Atole] WlAA REHo) ey g

g 4 At shARt Hedls Heo=w AT ¢ Fig.(15)9] -5l =A1E 2%

26
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RV = > R (22)

k : i is input for neuron k

R 7.2 SN WA 27} gl gL, BEAe R = f(2)2 A olgitt. o]u Eq.(22)0] ulat
1H
=

3 2,3 2,3 2,3
RO = REY + R+ REY

RY = R+ Ry

(2) (1,2) (1,2) - (1,2) (23)
Ry =Ry 5 + Ry g + Ry 5
2 1,2 1.2
R = 1+ R
wrebA Eq.(23)ef] whet Eq.(22)2 A7 olshd ohaat 2t
I+1 1i+1
I S 2

k : i is input for neuron k
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of of
891;1’ 81‘2

watd Zejzke Tlow e Rajolr] 9a) Hlde Q7N (Taylor series)S ol$3hch. glolo] ojm
de T4 f(z) D A% ao DE f(2)2] HlL2] AAE et 2t

(25)

?f

19%f
Lo°) 2
2 0z? (o + 0x10x2

2023

(a)viva+ (a)v2+--- (27)

utebaf dzkd o] ol tish 12 thA o= AR Hid 2] AVlE th=3 2ol Jod 5= 3ot

ol zp7t BAS o f(2)7F Eutv HA=A], & e At 22 7ido] Ft.
< of
f(x)=f(a) + Z %f(x)lx:a(x —a)te (28)
p=1"""P

9 A1 B A% [() Tk A3t AAATAE fla) = € = 02 BES o} Bk f(a)
e H2e] Aol E4E Fa f(a) = 091 o 21 1 APOIA T4 2AEE Fo 002 B

T AL, e AFTNA S8 5] dofl A7 &4 g8 AT 7P

2 0: when Y2 w;x; +b) <0
(@) = max(0,> " wz; +b) = 2im1 ) (29)
i=1 25:1 wix; +b) : when Z _wix; +b) >
9 Aol A R g0 EA A &5 A2 BT 00]7]0] th2t Zo] Fpdl Ao AnEEE
gt
2 d 8f
flz) = Zw;v +b=f(a) +287i|zi:ai(xi —a;) +e€ (30)
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Table 7 : Mean and standard deviation of each dataset

Dataset (mean, std)
Patterns-transition (0.512,), (0.390,)
ImageNet(public)  (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)

Real-synthetic (0.452,), (0.227,)

3. YEHI +4

& oA 3ol ARt g ofmlA| et LA olnA] Tk Apol & AEstalar gt o]
Asll LRP &il2)5< o853, HIEHNAS] &7 2iE Aldets) F+= LRP &g Fo]
utet by olm|A| et A A oA & AHH EFE + e R WEHZLE A HE

U= VGGNet[24] 7|Hre 2 AA = A=, VGGNet2 HH ASH 28 ASoz 744
Hed HEHAZR g d7olA 282 VGG-16 Ed2 16719 53 3

TF3=e] Atk ol 1671 A2 AW SH= =t 71E9 AEFA THE LHayer
7T e A 3-layer 3x3 BE| 2 R 5t utetu|e7t gdAagieie vldd gt Al § A
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224x224x3  224x224x64

112x{112x128

56%56x256
28x28%512 R
4x14%512
14x14x512 L 1x1%4096 1x1x1000
9

convolution + ReLU
max pooling
tﬁ fully connected + ReLU

softmax

Figure 16 : VGG16 network structure
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BYE PEE T 46580 A4 A9l o]n| e} 46140] g4 AelAl olul A
yeleGANS] 8h5 Ao 2562562 7HA BE olu] 2|k 85| BojE $19]

C
A3 T 224x2242 WFS}HA 2= (Crop)st2th. Epochs= 100, Batch Size: 16

225x225=
o7 AASAN, s T2 99 H U5 NVIDIA GeForce RTX 3090 272 A5ttt
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(A) LRP z+ rule

(C) Image dataset normalization+ LRP z+ rule + R normalization

Figure 20 : Confusion matrix for proposed network
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(d) Image dataset (e) Image dataset
. normalization normalization + LRP z+ rule
(a) Input image (b) LRP z+ rule (c) Relevance Filter +LRP z+ rule + R normalization

Figure 21 : Confusion matrix for proposed network
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LRP - z+ rule Relevence filter R-nomalization
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Figure 22 : Constructed image comparision due to LRP transforms
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Predicted: real IR image Predicted: Synthetic IR image

Figure 23 : Network classification results for generated images
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Fake IR images (Case3) (1) increased contrast (2) increased structure
(w,=w,=1) (w, =20) (w, =20)

Figure 24 : LRP comparison of constructed images according to changes in SSIM weight parameters
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