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ABSTRACT

Study on Robustness of Deep Learning Against Physical Layer

Impairments in Wireless Communication Systems

Nazmul Islam
Adpvisor: Prof. Seokjoo Shin, Ph.D.
Department of Computer Engineering

Graduate School of Chosun University

The Internet of Things (IoT) ecosystem demands fast, reliable, and efficient image data
transmission to enable real-time Computer Vision (CV) applications. To fulfill these demands, the
Orthogonal Frequency Division Multiplexing (OFDM)-based communication system has been
widely utilized due to its parallel transmission scheme, higher spectral efficiency and data rate.
However, in OFDM-based image communication systems, various impairments occur due to
different physical layer (PHY) blocks such as source coding schemes, complex channel models, data
transformation methods, modulation techniques, and the number of antennas, as well as interferences
such as Inter-symbol Interferences (ISI) and Inter-carrier Interferences (ICI). These impairments can
heavily corrupt the recovered images, making them unsuitable for downstream applications.
Although OFDM communication systems have been thoroughly studied for several decades, and
each PHY block is approaching maximum statistical and mathematical optimization, impairments
still persist in the current digital communication systems. To address these challenges, researchers
are exploring the use of artificial intelligence (Al) and Deep Learning (DL) in communication

systems and downstream applications to improve overall system performance. DL is robust against

- viii -



certain image perturbations and can execute CV tasks even on heavily distorted images.

The impairments from the PHY corrupt pixel values independently, but certain intrinsic
properties of the image, such as spatial information, may remain intact. In DL, these properties can
be extracted as multidimensional features in the convolution layers and interpreted in the top layers,
enabling efficient DL-based CV applications like image classification. Therefore, in this study, we
first evaluate various OFDM-based image communication systems and the effects of various PHY
impairments on image quality. Subsequently, we analyze the robustness of DL models against these
impairments for downstream CV applications. For DL-based downstream applications, we consider
traffic sign recognition in Intelligent Transport System (ITS) environments in smart cities. Our
analysis shows that the EfficientNetV2-based model achieves an accuracy range of 70%—90% across
OFDM-based image communication systems with high impairments. Additionally, leveraging

different data augmentation techniques improves accuracy by up to 18%.
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I. INTRODUCTION

The rapid advancement of technology in recent years has led to the development of a vast
network of interconnected devices and systems known as the Internet of Things (IoT) ecosystem,
which has transformed the way we interact with the physical world. From smart homes to connected
vehicles, IoT technology has enabled smart devices to communicate with each other, share
information, and make decisions based on the shared data. These smart devices, sensors, and
actuators have enabled us to collect vast amounts of data from our surroundings to develop intelligent
systems. Image communication system is at the center of [oT ecosystem to enable Computer Vision
(CV) applications such as traffic sign recognition, event monitoring, medical image analysis, and
surveillance systems. Most of these systems heavily rely on the efficient and reliable transmission of
visual data between devices, which requires high data rate and link capacity to handle the large

amounts of image data generated by the IoT devices in real-time.

The emergence of Fifth Generation (5G) communication systems aims to cater to these
requirements, with potential advancements in network capacity, spectral efficiency and infrastructure
evolution compared to previous generations [1]. One such innovation is the Orthogonal Frequency
Division Multiplexing (OFDM) system, which is recognized to mitigate multipath fading, and
provide high data rate with high order modulation and parallel transmission schemes [2], [3]. The
OFDM communication system uses both frequency and time domain multiplexing to transmit data
over multiple sub-carriers. This division of the data stream into several subcarriers allows for parallel
transmission, leading to more efficient use of the available bandwidth, and enabling high-speed data
transmission with minimal interference and noise. Since its inception, it has become popular and has
been adapted to many practical wireless communication systems and standards such as WiMAX,

IEEE 802.11, Wi-Fi, and LTE.

Downstream IoT applications demand robust communication systems that offer high data
rates and bandwidth efficiency while ensuring image quality retention. While high data rate OFDM-

based image communication systems can facilitate the fast transmission of images, there are
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significant challenges in processing the vast amount of image data with added noise introduced by
the utilization of different OFDM systems and the environment itself. Various factors such as
complex channel models, data transformation methods, modulation techniques, the number of
antennas, as well as interferences such as Inter-symbol Interferences (ISI) and Inter-carrier
Interferences (ICI) can heavily corrupt the recovered images. To address these challenges,
researchers are exploring the use of artificial intelligence (AI) and deep learning (DL) to improve the
performance of CV applications in IoT ecosystem. Al and DL have emerged as powerful tools for
processing and analyzing large amounts of data in real-time for various CV applications, which can

extract meaningful information from image data to achieve state of the art performance [4].

1.1. Thesis Statement

Although different physical layer (PHY) blocks in high data-rate OFDM-based image
communication systems may introduce various impairments to the received image data, DL are
robust against certain impairments and can significantly enhance the reliability of downstream

applications that depend on such communication systems for image transmission.

1.2. Objectives and Contributions

OFDM-based wireless communication systems and DL-based CV applications (such as image
classification tasks) have been extensively studied in their respective areas; however, their
combination has not been thoroughly explored as per literature review, as they are two different areas
in the science field. Therefore, this research aims to bridge the gap between the two and conduct a
multi-tier analysis of OFDM-based image communication systems for DL applications while
availing third-party computational resources. The objectives and contributions of the thesis can be

further categorized as:

Research Objective 1: Implement OFDM-based image communication system incorporating
various techniques within the PHY blocks to improve overall communication system. Subsequently,

evaluate the quality of the output signal and received images, under the influence of impairments



from the PHY block.

Research Question 1: To what extent do various techniques applied in PHY blocks impact

the data rate, recovered image quality, and system complexity?

Research Contribution 1: Implemented OFDM-based image communication systems
utilizing various source coding/decoding, modulation/demodulation, transformation, channel
modelling, and channel estimation techniques in the PHY blocks. Evaluated the performance of the
systems in terms of data rate, efficiency, transmission environment and system complexity.
Additionally, analyzed the quality of the received images transmitted through these OFDM

communication systems.

Research Objective 2: Images received from the various communication systems mentioned
in objective 1 can be heavily distorted due to the PHY impairments during transmission. DL are
robust against certain distortions and can be utilized for downstream CV applications. Therefore, our
second objective is to analyze the robustness of DL on the received images from the OFDM

communication systems mentioned in objective 1 for the DL-based downstream task.

Research Question 2: Can heavily distorted image data, corrupted by PHY impairments

during transmission, be suitable for DL-based downstream applications?

Research Contribution 2: Conducted robustness analysis of DL-based downstream CV
applications in smart cities, specifically, traffic sign recognition in Intelligent Transport System (ITS)
environments. The performances of two distinct DL models are analyzed on recovered images from
various OFDM-based image communication systems implemented in contribution 1. Additionally,
we have utilized different augmentation techniques to improve the performance of the DL models

for the downstream tasks.

1.3. Publications and Thesis Outline

The main chapters of this thesis are derived from the research paper published in journals and

conferences during my Master’s program. The thesis chapters along with the respective publications
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are given below:

Chapter 1: This chapter includes the introduction, thesis statement, objectives, contributions and

thesis outline along with the publications.

Chapter 2: This chapter provides the preliminaries for the foundation of the research. This includes

PHY blocks in OFDM communication system and DL for CV applications.

Chapter 3: This chapter provides the existing related studies of OFDM-based communication system,

and robustness of DL on image perturbation.

Chapter 4: This chapter provides the results and discussion of the contributions. It presents the

performance analysis of various OFDM-based communication systems and the robustness of DL

against impairments from these systems. The analysis and results in this section have been published

in below papers (latest first):

PI1.

P2.

P3.

P4.

N. Islam and S. Shin, “Impact of Source Coding on Downstream Al Applications”, IEEE
International Conf. on Artificial Intelligence in Information and Communication (ICAIIC),

Osaka, Japan, Feb. 2024 (In progress)

N. Islam and S. Shin, “Robust Deep Learning Models for OFDM-Based Image
Communication Systems in Intelligent Transportation Systems (ITS) for Smart Cities”,

Electronics, vol. 12, no. 11, p. 2425, May 2023.

N. Islam, I. Ahmad and S. Shin, “Robustness of Deep Learning Enabled IoT Applications
Utilizing Higher Order QAM in OFDM Image Communication System”, IEEE International
Conf. on Artificial Intelligence in Information and Communication (ICAIIC), Bali,

Indonesia, Feb. 2023, pp. 630—635.

I. Ahmad, N. Islam and S. Shin,” Performance Analysis of Cloud-based Deep Learning
Models on Images Recovered without Channel Correction in OFDM System”, IEEE Asia

Pacific Conference on Communication (APCC), Jeju, Republic of Korea, Oct. 2022, pp.



Ps.

255-259.

I. Ahmad, N. Islam, E. Kim and S. Shin, “Performance Analysis of Cloud based Deep

Learning Models in OFDM based Image Communication system”, KICS Summer

Conference (Gt H & &t st =2 H 3l), Jeju, Republic of Korea, Jun. 2022, pp. 0500-0501.

Chapter 5: This chapter concludes the thesis with key findings and provides possible future directions.

1.4.

Pé6.

P7.

Pg.

Other Publications

Besides the mentioned papers, I have contributed to the following publications as first author:

N. Islam and S. Shin, “Deep Learning in Physical Layer: A Review on Data Driven End-to-

End Communication Systems and their Enabling Semantic Applications” (In progress)

N. Islam and S. Shin, “Evaluation of Neural Demappers for Trainable Constellation in an
End-to-End Communication System", IEEE International Conference on Ubiquitous and

Future Networks (ICUFN), Paris, France, Jul. 2023, pp. 39-42.

N. Islam and S. Shin, “Review of Deep Learning-based Malware Detection for Android and
Windows System”, The 33rd Joint Conference on Communications and Information (JCCI

2023), Yeosu, Republic of Korea, Apr. 2023.



II. BACKGROUND
2.1. OFDM Communication System

2.1.1. Fundamentals of OFDM System

Orthogonal Frequency-Division Multiplexing (OFDM) is an advanced modulation technique
that operates on multicarrier principles. This allows a single, high-rate data stream to be conveyed
across multiple lower rate subcarriers. This is done by subdividing a high-rate bit-stream into
numerous parallel bitstreams, each at a lower rate, and modulating each using orthogonal sub-carriers.
Frequency-Division Multiplexing (FDM) employs a systematic approach in the utilization of the
frequency band. It segments the band into multiple non-overlapping frequency sub-channels,
ensuring that there is no inter-channel interference due to spectral overlap. This approach, although
efficient in minimizing interference, doesn’t optimize the spectrum’s usage. A novel idea emerged
in the mid-1960s, proposing the use of parallel data transmission combined with FDM using

overlapping sub-channels, known as OFDM [5].

FDM is a fundamental technique used in telecommunications, where multiple signals are
transmitted simultaneously over a single communication channel or line. In FDM, each signal is
assigned a unique frequency range or sub-channel, ensuring that each signal can be transmitted
without interfering with the others. This allows for the simultaneous transmission of various data

streams over a common pathway. The mathematical representation of an FDM signal is as follows:

N

SO = ) sa(O)cos @fut + ), (M

n=1
where S(t) is the composite signal, s, (t) represents each individual signal, f,, is the carrier

frequency of each signal, ¢, is the phase offset of each signal.

OFDM evolved from the basic concept of FDM. OFDM is a special case of FDM, where the
sub-carriers are carefully chosen to be orthogonal to each other. The term ‘orthogonal’ refers to a

precise mathematical relation between the carrier frequencies in the system. In OFDM, the sub-
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carriers are sine waves, which are mathematically orthogonal. This orthogonality is key in preventing
interference between the sub-carriers, allowing them to be closely spaced, and hence, making the
transmission more spectrum efficient. Orthogonality is maintained in OFDM by ensuring that the

cross-correlation between any two sub-carriers is zero, as represented by the equation:

T
f cos (2rfit) cos(2nfyt) = 0; for fi # f> 2
0

This orthogonal nature of the sub-carriers in OFDM allows for the precise demodulation of
signals at the receiver end, as long as synchronization is meticulously maintained. The OFDM signal

is represented as:

N-1

S(t) = Z 5, - eJCTfat+on), 3)

n=1
where S(t) is the composite signal, s,(t) represents each individual signal, f, is the carrier

frequency of each signal, ¢, is the phase offset of each signal.

2.1.2. Advantages of OFDM communication System

OFDM is an advanced modulation scheme used primarily in high-speed digital
communication systems, enhancing the overall performance and efficiency of wireless networks. It
has various advantages that make it popular for implementation in practical digital communication
systems and standards. One of the main advantages of OFDM is its ability to handle high-speed data
streams efficiently. It transforms the data from a serial stream to parallel streams, increasing the
duration of data symbols on each sub-carrier. This approach mitigates Inter-Symbol Interference (ISI)
caused by the dispersive nature of radio channels. Furthermore, to combat ISI, OFDM integrates
guard interval, which reduces ISI and negates the necessity for a complex equalizer at the receiver.
OFDM is also resistant against multi-path delay spread, a significant cause of ISI. It minimizes delay

spread by the conversion of high data-rate symbols into low data-rate, increasing the symbol duration.

OFDM ensures more effective utilization of spectral resources compared to traditional FDM.



Unlike FDM, where the frequency band is divided into multiple individual sub-carriers for
transmitting parallel data streams, OFDM allows these sub-carriers to overlap spectrally while

maintaining their orthogonality, ensuring optimized spectrum usage without causing interference.

The robustness of OFDM against frequency selective fading or narrowband interference is a
significant attribute of OFDM. Unlike single-carrier systems where a single fade could compromise
the entire link, OFDM’s multicarrier nature ensures that only a handful of subcarriers are affected,

allowing for the utilization of error correction coding to amend these minor interferences.

Another advantage of OFDM is its adaptability to asymmetric data services, commonly seen
in wireless networks. By altering the number of sub-channels, OFDM can support different
transmission rates for uplink and downlink, aligning with the dynamic needs and considerations of
mobile communication systems. Such flexibility fosters its compatibility with various access
methods, allowing for the development of multi-carrier platforms such as Multi-Carrier Code
Division Multiple Access (MC-CDMA) and frequency-hopping OFDM. This adaptability enables
simultaneous data transmission from multiple users, enhancing the system's resistance to narrow-
band interference by restricting its impact to limited sub-carriers. The interoperability and seamless
integrability of OFDM systems with various modulation techniques makes it the ideal choice for

hybrid systems as well, such as massive Multiple Input Multiple Output (MIMO) system [6].

2.2. PHY blocks in OFDM Communication System

OFDM is a parallel transmission system that allows spectra of subchannel to overlap with
subcarrier tones and coherent detection maximizing the available bandwidth. The PHY of the OFDM

communication system is shown in Figure 1.

In the OFDM system, serial high data-rate sub-streams are divided into low data-rate sub-
streams and encoded onto orthogonal subcarriers. The spectral shape of the subcarriers is such that
the discrete subchannels at the orthogonal subcarrier frequencies have a spectrum of 0 and there are

no Inter Carrier Interference (ICI) among the subchannels. As seen in Figure 1, the encoded bit stream



is mapped onto a complex-valued in-phase and quadrature (IQ) constellation plane and converted to
IQ data according to the chosen modulation techniques in the modulation block. Deployed
modulation techniques will be further discussed in Section 2.2.2. The serial data stream is then
converted into parallel data stream and a frequency domain OFDM symbol, X (k), is generated by
inserting training data and guard bands into the 1Q data. The training data are the pilot symbols
(known data-sequence) that are inserted in the data stream to carry out channel estimation [7]. For
pilot insertion, there are multiple techniques based on the location and order of pilots in the
transmission. We have used comb-type pilot insertion with linear interpolation as it provides
improved results [7]. In comb-type pilot insertion, pilots are inserted into specific OFDM subcarriers

that are continuously transmitted throughout the communication.

The frequency domain OFDM symbol, X(k), is then transformed into the time-domain

OFDM symbol, x,(n), using inverse transformation followed by parallel-to-serial (P/S) transmission.
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Figure 1. Basic block diagram of OFDM PHY. The frequency—domain and time domain symbol
representation is also illustrated.



The transformation techniques will be further discussed in Section 2.2.3. In the next step, a guard
interval known as a cyclic prefix (CP), is sliced from the end of x;(n) symbol and prepended to
x¢(n) to form the full time-domain OFDM symbol, x, (n), which extends the portion of the OFDM
symbol in a cyclic manner. The CP mitigates the Inter-Symbol Interference (ISI) and ICI from
multipath radio channels and neighboring OFDM symbols, and it is selected to be larger than the
anticipated delay spread. OFDM symbol with CP length Ny is given as:

x(N+n), —N;<n<--N—-1
x.(n), otherwise '

Xep () = | @)

The signal, x,(n), is then elevated to the radio frequency (RF) by the RF front end and
transmitted through the air via wireless channel. During the transmission over the air, the signal
experiences the effect of multiple paths and fading effect that creates duplicate signals with different
time lags, phases, and amplitudes at the receiver. Applied wireless channel models will be further
discussed in Section 2.2.4. The radio signal is then captured and re-converted to IQ samples by the
receiver front end. The carrier synchronizer recovers the time-domain OFDM symbols at the receiver.
The CP is then removed from y,,(n) to yield the remaining IQ samples, y(n), which is given by:

Vep(M), -Ny<n<--,N—-1

5
Vep (n + Ng). otherwise Q)

y(n) = {

The symbols are then converted to parallel stream and is transformed into the frequency—
domain OFDM symbol, Y (k), using transformation. The symbol Y (k) undergoes channel estimation
and channel equalization to produce an estimate of the transmit frequency—domain IQ data, X (k).
The channel estimation compares the received data sequence and pilot symbols with the previously
known ones to obtain an estimate of the Channel Impulse Response (CIR) and perform channel
correction. Channel estimation techniques used in the experiment will be further discussed in Section
2.2.5. This estimate is then demodulated into soft bits (log-likelihood), b, which are further converted

into binary output bits, b, by the channel decoder before passing it to the next communication layer.
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2.2.1. Source Coding

Source coding is the process of assigning binary sequences to elements of a specific alphabet.
In this context, the term "alphabet" refers to a collection of symbols, known as ‘letters’. The set of
these binary sequences is termed a ‘code’, while the individual sequences within the set are known
as ‘codewords’ [9]. Fixed-length coding (FLC) is a type of source coding scheme where every
symbol from the source alphabet is represented by an equal number of bits. For instance, an image
with color channel Red, Green, and Blue (RGB) will have pixel value ranging from 0 to 255. When
using fixed-length coding where each codeword has n bits, the total codewords or reconstruction
levels M equals 2™, where 7 is the length of bits, therefore each pixel value (as 28 = 256 possible
values) is assigned a fixed length of 8 bits. While fixed-length coding is simple and straightforward,
it is not efficient. Lower pixel values are assigned with fixed 8-bit even when they have shorter
codeword compared to higher pixel values [1], [9]. Additionally, redundant bits are added to the
codewords with smaller code lengths to make them fixed length. Errors in these redundant bits,
especially in the most significant ones, from the communication channel can drastically alter pixel

values and heavily distort the recovered images.

In practical scenarios, image formats usually incorporate advanced techniques, such as
compression and variable-length coding (VLC), to minimize the data size, especially for intricate or
large images. Standards like JPEG combine transformations, quantization, and variable-length
coding techniques like Huffman coding to attain notable compression ratios. For many applications,
variable-length coding methods like Huffman coding are favored over fixed-length coding,
especially for data compression. The advantage is that variable-length coding can utilize the varying
probabilities of symbols in data, enabling more compressed data representations. Huffman coding is
a popular method for lossless data compression. This method involves the use of variable-length
prefix coding to represent data in such a way that frequently occurring symbols are assigned shorter
codes, while less common symbols are assigned longer codes. This algorithm is efficient in reducing

data redundancy, thereby optimizing the data for storage or transmission.
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To implement Huffman coding, first the frequency or probability of each symbol in the
message or dataset is calculated. Symbols are then sorted based on their calculated frequencies,
forming the basis for the construction of the Huffman tree, a binary tree where each leaf node
represents a symbol. The tree is constructed by repetitively selecting two symbols (or trees) with the
lowest frequencies and combining them to form a new binary tree, the frequency of which is the sum
of the two selected symbols (or trees). This procedure continues iteratively until a single tree
containing all symbols is formed. Next, the binary code for each symbol is generated. where moving
left assigns a ‘0’ and moving right assigns a ‘1’ to a symbol’s code. Consequently, this leads to the
creation of a unique binary code for each symbol, ensuring that no code acts as a prefix to another,
ensuring that the encoded data can be uniquely decoded. For instance, a data source that produces
symbols A, B, C, and D with probabilities 0.4, 0.3, 0.2, and 0.1, respectively. After performing

Huffman coding, symbol A is represented by the code '0', B by '10', C by '110', and D by '111".

The average length L of the Huffman code can be expressed as:

M
L= pie) (©6)
i=1

where, p(x;) is the probability of source symbol x;, [(x;) is the length of the Huffman codeword for
symbol x;, M is the total number of unique source symbols. In contrast to fixed-length coding,
Huffman coding minimizes the average codeword length, hence reducing the redundancy in the
encoded data, which results in data compression. The efficiency of Huffman coding is often measured
in terms of entropy H(X), which represents the lower bound on the average length of encoding

symbols from a source X. The entropy of a source is given by:

M
HOO = = ) pGlogap (i ™
i=1

In an ideal scenario where the probability distribution of the source symbols is known and

matches the assumptions made during the Huffman coding process, the efficiency of the code can be
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close to the entropy of the source. However, the performance of Huffman coding decreases when
there is a mismatch between the actual and assumed probability distributions [1], [9]. Moreover,
adaptive Huffman coding can be utilized when the source statistics are unknown or non-stationary.
In adaptive Huffman coding, the Huffman tree is updated dynamically as symbols are being encoded
or decoded, allowing the code to adapt to the varying symbol probabilities. This makes it more robust
in practical scenarios where the statistics of the source output are not known in advance, but it adds

complexity to the encoding and decoding process.

Error resilience is another consideration in source coding. In Huffman coding, an error in a
single bit can lead to the misinterpretation of multiple symbols, making the error propagate through
the decoded output. Error-correcting codes such as Hamming codes can be incorporated into the
Huffman coding scheme to improve error resilience. A Hamming code can correct single-bit errors
by adding redundant parity bits to the data. For a k-bit data word, the number of parity bits required,

r, is determined by the equation:

2"z2k+r+1 ®
Though, the trade-offs between compression efficiency, complexity, and error resilience must
be considered when utilizing VLC, in real-world applications, Huffman coding plays a significant
role in file compression techniques such as ZIP files and multimedia compression formats like JPEG
and MP3 [9]. It is effective in reducing data size without loss of information, which makes it crucial

for data compression.

2.2.2. Digital Modulation

Digital modulation is a technique used in communication systems to transmit information,
encoded as digital data, using an analog signal. Different modulation schemes, such as amplitude,
frequency, and phase modulation, are applied to alter the carrier wave, propagating the information
within it for transmission. These modulated signals can traverse through the communication channel,

encountering various impairments such as noise, attenuation, and interference. Despite these
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challenges, the receiver's demodulation process aims to accurately recover the original information

from the modulated signals.

Most practical OFDM communication systems exhibit passband frequency responses, and to
achieve high throughput with bandwidth and power efficiency, digital passband modulation is
frequently employed in these systems. Digital passband modulation schemes can be categorized
according to the variation in amplitude, phase, or frequency of the transmitted signal with respect to
the message signal, such as ASK, PSK, FSK, and QAM. Binary digital modulation is one of the
simplest forms of digital modulation, where the modulating data signal consists of two distinct levels,
representing binary '0' or '1'. A widely recognized binary modulation technique is Binary Phase Shift
Keying (BPSK), which conveys data by altering the phase of the carrier wave. On the other hand,
M-ary digital modulation is a more sophisticated technique that allows the transmission of more than
one bit of information in each symbol. In M-ary modulation, "M" symbolizes the number of unique
states or levels the modulated signal can have. For example, Quadrature Amplitude Modulation
(QAM) and Phase Shift Keying (PSK) are common M-ary modulation techniques [1]. With a higher
number of states, M-ary modulation can transmit more bits per symbol, enabling the transfer of data
at a much higher rate compared to binary modulation, making it suitable for high-speed data

transmission applications.

Various M-ary modulation techniques are commonly used in digital communications. QPSK
utilizes a four-point constellation diagram, uniformly distributed around a circular path. Due to its
four phases, QPSK has the ability to transmit two bits per symbol, using gray coding to optimize the
bit error rate (BER). The symbols of the constellation design using sine and cosine is essential for

the transmission. The representation of QPSK signal for the nth phase is given by:

s(t) = \/%cos (2nfet + (2n - 1)%), n=1234, ©)

where E is the energy per symbol, T is the period of the signal, f_ is the carrier frequency, and n is

the index variable that takes values 1, 2, 3, or 4, representing each of the four possible phase shifts

-14 -



corresponding to phase shifts of m/4, 3m/4,5n/4 and 7m/4, respectively in QPSK. This can be

represented in 1Q plane. The in-phase (I) function of the signal is:

2
@ = j;cos(anct), (10)
and the quadrature-phase (Q) function is:
24 11
@Yo = ?sm(anCt). (1)

The signal constellation design of QPSK consist of 4 points in the IQ with coordinates

+E/2,++/E/2, and the total power is split between the two carriers equally.

M-QAM is an advanced modulation technique that varies both amplitude and phase of the
transmitted signal simultaneously, resulting in greater bandwidth and power efficiency which can be
extended to advanced systems, such as MIMO [2], [3], [11]. Additionally, high data rate can be
achieved when utilizing higher order M-QAM; however, using higher order M-QAM for higher data
rates comes with a cost of higher BER, cell-to-cell interference, smaller coverage area, and hardware
complexity [2], [3], [11]. Despite these challenges, M-QAM is extensively used in various IEEE
standards and wireless communication systems, such as 5G digital video broadcast communications,
satellite communications, Wi-Fi, WiMAX, VDSL, and more. A few applications with different order

of M-QAM for modern communication standards are given in Table 1 [12].

Table 1. Applications utilizing M-QAM Modulation for modern communication standards.

Communication Systems M-QAM Utilized
IEEE 802.11n/g/ad/ay 16, 64
IEEE 802.16m (WiMAX 2) 16, 64
IEEE 802.11ac/af/ah 16, 64,256
DVB-T2 (Digital Video Broadcasting-Terrestrial) 16, 64,256
IEEE 802.22b 16, 64,256
TS 36.331 (Release 14-LTE Advanced Pro) 16, 64,256
TS 36.331 (Release 15-5G support) 16, 64,256, 1024
IEEE 802.11ax (Wi-fi 6) 16, 64,256, 1024
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The M-QAM signal waveforms are composed of two independently amplitude-modulated

carriers that are in quadrature to each other as shown below [13]:

s(t) = I(t) cos(2nf.t) — Q(t) sin(2nf,t),0 <t <T, (12)
where T time duration of symbol, f; is the carrier frequency, and I(t) and Q(t) are the respective IQ

components of the signal.

Wireless communication systems aim to achieve high data-rate transmission with efficient
utilization of limited bandwidth for the best quality of service (QoS), and high spectral and power
efficiency. This can be achieved by reducing the average transmit power of the constellation design
in the modulation schemes [2], [3], [11]. Most of the M-QAM constellation designs proposed decades
ago (from early 1960s) are still being used in commercial communication systems. M-QAM has the
unique capability to encode information in both amplitude and phase of the transmitted signal,
allowing higher spectral efficiency. This enables more bits to be encoded per symbol for a given
average energy in the constellation design [2], [3]. Rectangular M-QAM (RQAM) constellation
design is widely used due to its improved error performance and use of a simple maximum likelihood
detection method, which reduces system complexity [12], [14]. Square M-QAM (SQAM) is a type
of RQAM constellation that is optimized for even-length symbols (16-QAM, 64-QAM, 256-QAM,
and 1024-QAM) [15]. The distribution of constellation points (symbols) in SQAM forms a perfect
square lattice with equal rows and columns and maximizes the minimum Euclidean distance between
points for a given average symbol power. In SQAM, each constellation points shares boundaries with
a maximum of four neighboring points and differs by only one bit, therefore it has perfect gray coding,
with a Gray Code penalty (GP) value 1 [14]. The GP was introduced in [14] as the average difference

in bits between adjacent symbols in a constellation:

1 M
: S:
= — t 13
i=

where M = 2k is the length of symbol and G}f"is the GP for the i*"* data symbol, S;. In SQAM,
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the k bits of the serial data stream are represented on a two-dimensional constellation design using
gray coding. The I(t) and Q(t) distributed over the set {+d, +3d, ..., £(M — 1)d} independently,

where 2d is the adjacent Euclidean distance between the two constellation points given by [13]:

3log,M - E},
= [2==d27 ~b 14
d / 0z =1) (14)

where Ej, is the bit energy and M is the order of QAM. Bit Error Rate (BER) is a vital factor
in evaluating the effectiveness of constellation designs in modulation schemes. Later sections will
cover the analysis of the experimental results, but the theoretical bit error calculation of SQAM is

given by [13]:
log,vM

1
: 15
log,vM ; B.(®, (1

where B, (i) is the bit error probability of the i*" bit.

When designing constellation points with odd length of symbols (32-QAM, 128-QAM, 512-
QAM) in RQAM, the constellation points are usually distributed to form a perfect rectangle, either
with a horizontal shape parallel to the in-phase axis or with a vertical shape parallel to the imaginary
axis, both having the same average energy; however, this is not desirable as it increases the peak and
average powers. To overcome this, [14] proposes SQAM with the outer corner constellation points
relocated for odd length of symbols forming a cross shape constellation design referred to as cross-
constellation M-QAM (XQAM). XQAM reduces the peak and average energy and provides at least

1 dB gain over prefect rectangular shape constellation design [14], [16]. The generalized GP for

higher order XQAM constellation design can be given as (1 + [16]. For the BER

1 1
7+ am)
calculations, authors in [14] proposed an approximate expression which was reproduced by authors

in [16] for XQAM as:
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Figure 2. Constellation design for M-QAM modulation. (a) XQAM for odd length of symbol (32-
QAM). (b) SQAM for even length of symbol (64-QAM).

4, 1 d
B.(M) = G, —Eerfc <—>, (16)

log,M VN,
where G, is the GP, A,, is the average number of nearest neighbors of a constellation point

[given by(4 - (\/%)) for XQAM of M= 32], N, is the noise density, 2d is the adjacent Euclidean

distance between the two constellation points and erfc(+) is the error function defined as:

erfc(x) = \/%fooe‘tzdt. (17)

The decision region for SQAM is simple because the IQ component has distinct vertical and
horizontal decision regions. However, for XQAM constellations, only horizontal and vertical
decision regions are not sufficient as their corner constellation points are not available. In XQAM,
the end columns symbols are relocated to new cross-type positions in the constellation, forming three
types of symbols, edge symbols, corner symbols, and interior symbols [14], [16], as shown in Figure
2. The inner symbols form a closed square decision region, while the edge symbols form semi-infinite
rectangles. The decision region for the corner symbols forms a 45-degree angle along the horizontal
and vertical axes. Due to this irregular pattern, some of the noisy symbols are not transformed into

the mapped decision region, resulting in higher bits in error for XQAM constellation design [2], [12].

Higher order M-QAM utilizes a greater number of bits per symbol and can significantly
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Table 2. Parameters and bandwidth efficiency of XQAM and SQAM constellation designs.

M-QAM Bits per Symbol (k) PAPR GP Bandwidth Efficiency "
16+ 4 1.80 1 640 Mbps
32% 5 1.70 1.166 800 Mbps
64+ 6 2.333 1 960 Mbps
128 * 7 2.073 1.065 1.12 Gbps
256 * 8 2.647 1 1.28 Gbps
512 # 9 2.28 1.039 1.44 Gbps
1024 * 10 2.81 1 1.6 Gbps

* XQAM constellation; * SQAM constellation; T Per 160 MHz Channel.
increase the data rate. The potential capacity of a system utilizing higher order M-QAM can be

calculated by using Shannon’s channel capacity formula [17] as:

S
C = Blog, (1 + N) bits/s, (18)

where C is the channel capacity in bits per second, B is the bandwidth of the channel in Hertz,

S is the signal power, and N is the noise power. Using Equation (18) to express Shannon bound as

bandwidth efficiency, n = %, it can be expressed as:

S
n = log, (1 +N) bits/s/Hz. (19)

In IEEE 802.11ax (Wi-Fi 6) standard, 160 MHz is the maximum allocated channel width [18].
Considering that, we can calculate the bandwidth efficiency using Equation (19) for higher order M-
QAM, as given in Table 2. It shows that with higher order M-QAM, the data rate increases
significantly. Additionally, the table also shows PAPR and GP values for higher order M-QAM
calculated in [12]. From the table, we can observe that XQAM exhibits higher GP compared to
SQAM due to its irregular pattern; however, SQAM has higher PAPR compared to XQAM, due to
its full lattice structure [12]. For the experiment we have considered higher order M-QAM (16-QAM
to 1024-QAM) modulation with both SQAM and XQAM constellation design for the OFDM-based

image communication system.
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2.2.3. Transformation

Transformation techniques are used in OFDM to modulate and demodulate the data on the
subcarriers. In the transmitter, after the data symbols are mapped onto the subcarriers in the frequency
domain, an inverse transformation is applied that converts the frequency-domain symbols into a time-
domain signal which can be transmitted over the communication channel. At the receiver, the
received time-domain signal is converted back to the frequency domain to demodulate the data
symbols from the subcarriers using forward transformation which facilitates the extraction of the data
symbols from the received signal. There are various Transformation techniques such as, Discrete
Fourier Transform (DFT) [19], Fast Fourier Transform (FFT) [20] and Discrete Cosine Transform

(DCT) [21].

In DFT-OFDM systems, the frequency domain OFDM symbol, X (k), is first transformed into
the time-domain OFDM symbol, x;(n), using an N-point inverse discrete Fourier transform (IDFT).
IDFT transformation reduces the system complexity of parallel symbols and removes any pulse shift

that occurred in the modulation process [22]. The IDFT equation is given below:

2|

xe(n) =

N-1

j2mkn
ZX(k)e N (20)
k=0

where j = vV—1,N is the DFT length, X(k) is the frequency—domain OFDM symbol for k =
0,1,--- ,N — 1, and x,(n) is the resultant time-domain OFDM symbol. At the receiver, discrete
Fourier transform (DFT) is used to convert the time-domain signal back to the frequency domain

signal, Y (k). The DFT transformation is given by:

—j2mkn

N-1
1
Vi) =5 Y yme N 1)
n=0

where y(n) is the received signal after removing the CP. The FFT is an algorithm to compute the
DFT efficiently, and it does not have a distinct equation of its own. The FFT algorithm computes the

same result as the DFT but in a more efficient manner. The equation remains the same, but it reduces
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the number of computations required from O(N?) to O(NlogN), where N is the number of data

points.

DCT-OFDM is similar to DFT, and the operation takes place in a similar manner with
inverse operation at the transmitter end and forward operation at the receiver end. One fundamental
difference lies in their basis functions. DFT employs a mix of sine and cosine functions as its basis,
allowing it to handle both amplitude and phase information, resulting in a complex output. On the
other hand, DCT exclusively uses cosine functions, resulting in a purely real output, thus lacking
phase information, which inherently offers symmetry in its output. This could reduce complexity in
signal processing and imbalance in the in-phase/quadrature imbalance. Additionally, DCT
concentrates the signal energy into lower frequency components, which can be advantageous in

certain scenarios, such as image and audio transmissions over OFDM systems. At the transmitter,

the IDCT is given by:
1= k(2n + 1)
nk(2n
x;(n) = N Z a(k)X (k)cos (T)' (22)
k=0
where:
! k=0
VN’
a(k) = 5 . (23)
N: k=1,2,..,N_1
the forward DCT at the receiver is given by:
N-1
k(2n+1
Y = Y yonyeos ("5 E0) ()
n=0

DFT is more commonly used in OFDM compared to DCT due to its capacity to handle both the

magnitude and phase information of signals.
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2.2.4. Wireless Channel

A simplified wireless channel is well specified in [7], [23]. The time-domain received signal

over a wireless channel can be defined as:

Vep(M) = xcp (M) @ h(n) + w(n), (25)
where y.,, (1), x¢p (n), h(n), w(n), and & are the received signal, transmitted signal, channel
impulse response, AWGN, and convolution operator, respectively, in the time domain. The

frequency—domain received signal is obtained by DFT transformation of (5) as:

Y(k) = X(k) - H(k) + W(k), (26)
where Y (k), X (k),H(k),W(k), and - are the received signal, transmitted single, channel
impulse response, AWGN, and element-wise product, respectively, in the frequency domain. AWGN
with zero mean Gaussian distribution and uniform spectral density is often used to model the additive
noise (for example, electric noise, thermal noise, interference) in the OFDM system. Therefore, the

AWGN, w(n), from Gaussian distribution with zero mean and standard deviation, is given by:

o - Ny(0,0),For real

w(n) = {0 - [Ny (0,1) + jNy (0, 0)], For complex’

(27)
where Ny (0, o) is the Gaussian noise vector with 0 mean and standard deviation o = %, and N, is
the power spectral density.

Signal transmitted over wireless channel experience reflection, diffraction, and scattering,
leading to multiple versions of the same signal arriving at the receiver with different amplitude, phase,
and delay. This phenomenon is known as the multipath fading effect and can be modelled as linear

finite impulse-response (FIR) filter give as [24]:

-1 K
T
Ve = Z hy - x—p, where, h; = Z ALz, sinc (Fk — l), (28)
1=0 k=1 $

vector 2 and t are the power-delay profile (PDP) of fading process, and z;, and T are the complex-

valued variable and sampling period of the discrete signal, respectively. L are the filter length chosen,
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such that |h;| is small for I > L or [ < 0. The effect of different channels on frequency—domain

symbols of the proposed 16-QAM OFDM system is shown in Figure 3.

For the multipath Rayleigh Fading channel, the real and imaginary part of z;, are independent
and identically distributed (IID) Gaussian random variables, therefore |z, |? follows the Rayleigh
Fading distribution. K is the number of paths in multipath fading channel and if K = 1 it is said to
be flat fading with only on path, whereas, if K > 1 it is frequency selective fading with multipath
interference. For the experiment, we have considered simple AWGN channel and Rayleigh Fading

channel for the OFDM-based image communication system.

2.2.5. Channel Estimation

Channel estimation is crucial to obtain information about the Channel Impulse Response
(CIR). Pilot-aided channel estimation is often used at the receiver by inserting known data sequences
(pilots) in the form of block, comb, or scatter patterns to sample the channel distortions [25], [26].
These pilots are recognizable at the receiver and are either constant or low auto-correlation sequences,
such as Zadoff—-Chu sequences. For channel correction, the received bit sequence is compared with
the known ones at the receiver to estimate the CIR, which is then equalized to mitigate the channel

distortions [25], [27].
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Figure 3. Effect of various channel models. System with 16-QAM Modulation using LS Channel
Estimation at Ev/No 15 dB over (a) AWGN and (b) Rayleigh Fading Channel
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The most common pilot-aided channel estimation method is the least square (LS) technique.
The LS method increases the sampling rate of the channel frequency responses at the pilot subcarriers,
and then uses interpolation, such as linear, spline, or cubic, to estimate the Channel Impulse Response

(CIR) at the data subcarriers [7], [23], [26]. The LS estimator of the channel is given by:

- Y (k)
X(k) = H—IL)S, (29)
LS — YP
where, Hy> = F (—) 30)
Xp

X(k)is the estimated channel, H5S contains the LS estimate, ¥, € C¥»* ! is the received pilots, X,, €
CNp*Np js a matrix with known transmitted pilot symbols on its diagonals, and F(-) is the
interpolation operation, such as linear, cubic, spline, etc. [25]. The LS algorithm is simple because it
disregards noise and ICI, therefore, it is calculated with minimal complexity without any channel

statistics knowledge; however, it results in high means square error (MSE).

Minimum Mean Square Error (MMSE) channel estimation technique utilizes the second-order
statistics of the channel conditions (prior channel knowledge) and performs channel estimation [28],

[29]. It uses channel auto convenience to reduce the MSE, as shown below:

AYMSE = Ry[Ry + (X, XE) "1 71HLS, (31)

where Ry is the frequency—domain correlation matrix at the pilot-symbols with Ry =
E [HpHer] and the channel coefficient matrix can be obtained via interpolation [28]. In our
experiment we have considered both LS and MMSE channel estimation with linear interpolation.
Linear interpolation utilizes the frequency response of two neighboring pilots to estimate the
frequency response of the data subcarriers in between them, therefore, it has simple computational
complexity [28]. Overall, MMSE channel estimation outperforms LS estimator, especially in lower
Ew/No regions. However, as the number of subcarriers in an OFDM system increases, the
computational complexity of the MMSE estimator also increases due to the computations required

for matrix inversions [30].
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2.3. DL for Image Classification Task

2.3.1. DL Basics

The Artificial Neural Network (ANN) can learn from examples and use that knowledge to
classify new, unseen data. This is referred to as a classification task and ANNs are particularly well-
suited to this task [31], [32]. The capability to classify new unseen data (known as generalization)
make ANNSs highly effective in solving classification problems where the desired outcome cannot be

pre-determined [32].

ANNSs consist of input and output layers, with one or more hidden layers made up of
interconnected nodes called neurons. The most common type of layer is the fully connected layer,
where every neuron is connected to every other neuron in the previous and next layer. The activation
function determines the transmission of information between these neurons in the layers. To
effectively train an ANN, a loss is calculated between the predicted outputs and the actual outputs.
The training algorithms tracks and updates the weights of the neurons to minimize the loss over time,
using optimization techniques. Moreover, backpropagation algorithm is used to propagate error
information from the last layer to the first layer for weight modification and train the model in
iteration or epoch. During training, the model assesses its performance on validation data (which is
distinct from the training data) to fine-tune the hyperparameters and improve the model architecture.
If the model is not trained enough, it is referred to as underfitting, meaning that it did not learn the
training set well enough. On the other hand, overfitting occurs when the network has learned the
training set too well, causing it to struggle with new data [33]. Different regularization techniques
are adapted to mitigate the underfitting and overfitting problem. The final evaluation of the model’s

generalization is performed on unseen data, known as testing or inferencing.

A Deep Neural Network (DNN) is a type of ANN with multiple hidden layers. The term “deep”
refers to the number of sequential layers within the network, indicating the number of times the input

data passes through the transfer functions of sequential layers. This results in a more complex model
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capable of capturing and representing high-level abstractions and patterns in the data. DNNs are
designed to learn and make predictions based on large amounts of complex data, by processing and

transforming the data iteratively through multiple hidden layers [4].

2.3.2. Convolutional Neural Network

Convolutional neural network (CNN) is a type of DNN that was introduced in [34] to provide
an efficient learning method for images. The CNN architecture mostly consists of a convolutional
layer, pooling layer, activation function, fully connected layer, and output layer. The convolutional
layer is used for extracting features from input data. It utilizes a filter (represented by a small weight
matrix) that slides over the input data, performing element-wise multiplication and addition to
produce a set of feature maps. These filters have adjustable weights, learned through
backpropagation, and are used to recognize local patterns in the input data. The convolutional layer
is effective in learning features that are invariant to shifts in the input, reducing model complexity
and improving model generalization. The size, stride, and padding of the filters can be adjusted to
control the spatial dimensions of the output feature maps. By using multiple convolutional layers,
the model can learn hierarchical representations of the input data, making it effective for tasks such

as image classification and object detection.

A convolution layer consists of a set of F filters known as depth. The weights of the filters are

Wr e R¥P, f =1,...,F. These weights generate feature map, Y/ € R™*™ from an input matrix

X € R™™ as per the given convolution:
a-1b-1

Ylf] = Z Z Waf—k,b—l " Xi4s(i-1)-k,1+s(-1)-1 32)
k=0 1=0

where s is called stride with value > 1, n'=1+|(n+a—2)/s] and m' =1+

[(m + b — 2)/s]. It is assumed X is zero-padded which denotes, X; ; = 0 for all i & [1,n] and j &

[1,m]. Furthermore, in image processing, X is usually a three-dimensional tensor; therefore, the

weights are three-dimensional as well and applies on all input channels simultaneously. After
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obtaining the feature maps from a convolution layer, a pooling layer performs down-sampling on the
feature maps obtained from the previous convolution layer. The purpose of pooling is to reduce the
spatial dimensions of the feature maps, making the network more computationally efficient, and
invariant to translations in the input image. Therefore, the pooling layers partitions Y into p X p
regions with values representing the most important information from the set and computes a single
output value using pooling techniques such as max-pooling and average-pooling, which, respectively,
take the maximum or average value from the features in the pooling window as the output before

passing it to the next layer.

The activation function (non-linearity layer) in CNN introduces non-linearity into the network,
which benefits the stacking of multiple layers in a network. The activation function is typically
applied to each element of the input vector and is used to determine the output of the network, often
in a binary format, such as 0 or 1. The resulting non-linearity enables deep neural networks to model
complex, non-linear systems and provides a powerful tool for pattern recognition tasks. Previously,
tanh and sigmoid activation functions were popular; however, with the understanding that most data
are centered around zero, newer techniques, such as rectified linear units (ReLU) and exponential
linear units (ELU), have become prevalent because they offer non-linear behavior near zero [35],

[36].

A fully connected layer (also known as a dense layer) in CNN is connected to all neurons in
the previous layer and next layer. It takes the output from the convolutional layers and applies a
matrix multiplication operation, followed by a bias offset, to produce a final prediction for the image
classification. The final layer in CNN is usually a fully connected layer, which produces a vector of
values, each representing a probability for a given class (category that data sample belongs to). More

details on CNN can be referred to in [4].

Augmentation Techniques: Improving the generalization of the model and mitigating the
overfitting problem is a major challenge in the deep learning field, including in CNN models. Data

augmentation is a method that addresses this challenge by improving the sufficiency and diversity of
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the training data. It is used to artificially expand the size of the training dataset by generating modified
versions of images in the dataset, creating a more diverse and comprehensive representation of the
real-world data. The goal is to make the model more robust to variations in the data and reduce
overfitting by increasing the diversity of the training set. Common techniques include random
rotation, scaling, flipping, cropping, and adding noise to the images. Additionally, data augmentation
helps to reduce bias in the model by creating new data that helps the model better capture the nuances
and variations in the real-world data. LeNet-5 [37] was one of the first CNN applications that utilized
image data augmentations for handwritten digit classification. The authors in [38] presents various

existing methods and promising developments of data augmentation in DL.
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III. RELATED WORK

3.1. OFDM-Based Image Communication System

Orthogonal Frequency Division Multiplexing (OFDM) is a standard communication system
that has been adapted across various technologies and standards. In this section, we will discuss a
few of the related works that utilize OFDM communication system for image transmission. The
authors in [39] investigated the transmission of gray scale images using an OFDM system with
various even-ordered M-QAM modulations (from 4-QAM to 256-QAM) and channels with different
fading and shadowing parameters. The results demonstrate that lower order M-QAM modulation
provides a higher quality of recovered image due to a lower Bit Error Rate (BER). Authors in [40]
evaluated the performance of Quadrature Phase Shift Keying (QPSK), 4-QAM, 16-PSK, 16-QAM
modulation for an OFDM-based image transmission system over an Additive White Gaussian Noise
(AWGN) channel. Their results showed that 16-QAM provided the best performance in terms of
image quality and BER. Authors in [41] investigates the integration of Discrete Wavelet Transform
(DWT) and Fast Fourier Transform (FFT)-based OFDM with QPSK modulation for the transmission
of grayscale images in AWGN and Rayleigh channels. They propose the integration of two adaptive
filtering techniques, least mean squares (LMS) and recursive least squares (RLS), to reduce BER and
concludes LMS outperforms RLS in terms of noise pattern detection and efficient recovery of the
modulating signal. Authors in [42] proposed a new technique for transmitting images over
underwater time-dispersive fading channels, called Progressive Zero-Padding (PZP)-OFDM using
QPSK modulation, which improves the BER in underwater environments. Authors in [43] analyzed
the BER performance of image transmission in non-OFDM and OFDM communication systems
under various channel conditions (AWGN, Rician and Rayleigh Fading channels) and modulation
techniques (Binary-PSK, QPSK, 16-QAM). Their results show that OFDM has better performance
compared to non-OFDM, and overall BPSK in AWGN had the lowest BER. Authors in [44] have
implemented a real-time practical OFDM system for image transmission using Raspberry Pi (RPi)

and Pluto software-defined radios (PlutoSDR). The performance of the system was evaluated by
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comparing the BER for different modulation schemes, including BPSK, QPSK, 16-PSK, and 256-
PSK, where BPSK had the best performance. Authors in [45] investigated the impact of channel
estimation for OFDM based image transmission through AWGN channel with various modulation
schemes (BPSK, QPSK, 8-PSK, and 16-QAM), and concluded that Least Square (LS) method
significantly improved the quality of the restored images. Authors in [46] employed two types of
OFDM systems, FFT-OFDM and DWT-OFDM, to transmit compressed images using Discrete
Cosine Transform (DCT), Wavelet (WAV) transform, and compressive sensing methods using
different modulation techniques (BPSK, QPSK, 16-QAM, and 64-QAM) over AWGN channel.
Their results showed that 16-QAM DWT-OFDM outperformed FFT-OFDM with lower Mean
Square Error (MSE) while avoiding the use of a cyclic prefix. Authors in [47] compared different
modulation techniques (QPSK, 16-QAM, and 64-QAM) for transmitting grayscale and Red Green
Blue (RGB) images over OFDM image communication system under varying channel conditions
(AWGN and Rayleigh Fading), and filters (Wiener, Median, and No Filter). Their results show QPSK
in AWGN channel had better recovered images using a median filterer for a lower Signal-to-Noise
Ratio (SNR) value. Authors in [48] investigated the effect of improved tone reservation (ITR) on the
peak-to-average power ratio (PAPR) of a 16-QAM-OFDM system for transmitting images over
AWGN channel. Their results show that ITR can effectively reduce PAPR, leading to improved
image quality and fewer transmission errors. The authors in [49] and [50] performed a comprehensive
analysis of image communication under various conditions in Single User Multiple Input Multiple
Output (SU-MIMO) and Massive MIMO OFDM systems, respectively. They evaluated the effect of
various channel conditions (AWGN, Rayleigh), modulation techniques (BPSK, QPSK, 8-PSK, 16-
PSK, 32-PSK, 64-PSK), antenna configurations, number of users, and transformation techniques
(FFT, Fractional Fourier Transform, DWT, DCT) on image communication in 5G networks. The
results from the former study indicated that using the DCT transformation technique improved the
BER compared to FFT and increasing the number of received antennas led to higher quality
recovered images. The later study indicated that DWT outperformed FRFT and FFT in terms of BER;

however, as the number of users continued to increase in the Massive MIMO system, the quality of
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the recovered image decreased irrespective of the transformation technique used. Additionally, both

studies showed that lower-order PSK modulation produced better results overall.

There have been several studies of image transmission across OFDM communication system
with DL based channel coding and decoding techniques for CV applications. For instance, [51] first
proposed deep joint source-channel coding (JSCC) for wireless image transmission by combining
the source and channel coding into a single auto-encoder structure. It optimized source compression
and error correction coding through back-propagation, which outperformed conventional schemes
(separate source and channel coding) under AWGN and Rayleigh flat fading channels. This scheme
was further extended to larger neural networks [52], feedback network [53], progressive transmission
[54], and additional attention modules [25,26]. Motivated by model-based deep learning, DL-based
JSCC were also extended to OFDM image communication system with fading channels in [27,28].
The former study fed the neural network-encoded image as frequency domain OFDM baseband
symbols and used adversarial measures to further improve the quality of reconstructed images. The
latter utilized double attention mechanism to better map image features to subchannels and ensure
important features were transmitted over the high-quality subchannels. Both [27,28] outperformed

conventional separate coding schemes.

The aforementioned research works focused on OFDM-based image communication systems;
however, they have not considered, multi-tier analysis of the blocks in the OFDM PHY that
encompasses higher-order modulation schemes, various channel models and channel estimation.
Additionally, it is not yet practical to adapt PHY as a DL architecture. Furthermore, DL application
of the received images for a specific task has not been considered, only system performance and
image quality has been studied. The authors in [59]-[61] attempted to mitigate this gap and
considered DL-based applications, and analyzed the performance of DL models on received images
from various OFDM communication systems. Authors in [59] determined that images from FFT-
based OFDM were better for image transmission for cloud-based DL applications, as opposed to

DCT-based systems. Authors [60] investigated the impact of channel correction on DL models in the

-31-



OFDM-based image communication system and showed that channel correction had a major impact
on the quality of recovered images, although DL models still produced acceptable results without it
(with a lesser degree of improvement). Authors in [61] evaluated the impact of higher order M-QAM
on the performance of the DL model. Their results showed that the DL model accuracy was lower
on images from higher order M-QAM compared to lower order M-QAM, but the overall accuracy
was still relatively high and suitable for applications that are unaffected by small fluctuations in DL
accuracy. The studies have investigated the DL-based applications for image communication systems;
however, they have not considered multi-tier analysis of the OFDM communication system,
including fading channels, modulation techniques, and channel estimation methods. Additionally,
they have not evaluated different DL models, nor have they exploited any model training techniques,
such as data augmentation, to improve the DL model accuracy. Therefore, for this study we consider
multi-tier analysis of various OFDM-based image communication systems and robustness analysis
of multiple DL models on images recovered from these systems to enable CV applications in ITS.
Therefore, the focus of this thesis is on the PHY of OFDM communication systems, and the MIMO

systems are left for future work.

3.2. Robustness of DL Models on Image Perturbation

Robustness analysis of DL models on noisy images from different communication systems
for CV applications are also considered in this study. In this section, we will discuss the related work
based on robustness of DL models on images with different types of noise perturbation. Despite the
success of Deep Neural Network (DNN) with complex and high-dimensional image data, they are
still not robust against image perturbations. Authors in [62] were the first to discover the vulnerability
of DNNss to certain input perturbations, which result in significant discontinuities in their outputs.
These perturbations were named adversarial examples and were found to cause a wide range of DL
models to misclassify, regardless of the different model architecture or training data. The authors
also examined several interesting properties of neural networks, including their capacity for learning

intricate functions, the existence of adversarial examples that can confuse the network, and their
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ability to generalize and extrapolate. Authors in [63] carry out further studies on adversarial models
and present defense systems, such as adversarial training, input transformations, and robust

optimization to minimize the effect of adversarial examples.

Among various image perturbation, visible noise on digital images is a type of perturbation
resulting from perceptible alterations made to the image pixels, and it can have an impact on DL-
based image classification tasks. The introduction of visible noise in digital images during the
processes of its acquisition, encoding, transmission, and processing is an inherent consequence of
the utilization of electronic components, particularly sensors and actuators [64], [65]. A
comprehensive overview of digital image noise models can be found in [65], which highlights
various types of noise that can impact digital images, such as additive Gaussian noise, quantization
noise, color quantization with dither, salt—-pepper noise, Rayleigh noise, gamma noise, uniform noise
(white noise), and Poisson noise. The paper also discusses methods for modeling and analyzing these
noises using probability density functions and statistical models, and common techniques for

removing them, such as spatial filtering, frequency filtering, and wavelet denoising.

DL has made remarkable advancements in various domains, particularly in image
classification. However, the accuracy of these models degrades when images are subjected to such
distortions and noise [66]. Authors in [66] evaluated various factors that contribute to image quality,
including resolution, noise, and blur, and evaluated their individual impacts on DNNs. The outcomes
indicated that noise and blur have a stronger impact on DNNs than other factors. The authors also
presented strategies, such as pre-processing and data augmentation, for improving DNN performance
on low-quality images. Authors in [67] evaluated the robustness of Convolutional Neural Networks
(CNN) to various types of image degradations, such as Gaussian noise, salt and pepper noise, Joint
Photographic Experts Group (JPEG) compression, and motion-blur. The results showed that CNNs
are generally more robust to image degradation compared to traditional methods, but they still have
limitations. To address these limitations, the authors proposed a CNN architecture called a capsule

network, which was shown to be more robust to degradation. Authors in [68] investigate the effect
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of color information on the robustness of CNNs for image classification tasks. They have compared
the performance of CNNs trained on color images and grayscale images when subjected to
degradation, such as Gaussian noise and JPEG compression. The results show that CNNs trained on
color images are more robust to degradation compared to those trained on grayscale images, due to
the additional cues provided by the color information. In CV tasks, CNNs have shown outstanding
performance when applied to identically and independently distributed data. However, they are
vulnerable to changes in data distribution [62] and color corruption [69] as they only use local
features [70], [71]. Authors in [72] proposed Vision Transformers (ViT) to mitigate this challenge
by considering global image context and reduced bias towards local textures, resulting in robustness
towards occlusions. Although the aforementioned studies have shown promising results in improving
the accuracy and robustness of CNN models against various noise perturbation on the images, they
have not considered various communications systems and the performance of DL models on images
with heavy noise perturbations introduced by these communication systems. Therefore, in current
study we focus on the performance of CNN models against noise from various OFDM-based image

communication systems for CV applications in ITS.
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IV. RESULTS AND DISCUSSION

4.1. Evaluation Matrices

4.1.1. Image Communication System Analysis Matrices

BER: The Bit Error Rate (BER) is a standard performance metric in digital wireless
communication systems to measure the quality of the reconstructed signal at the receiver. It calculates
the ratio of incorrect bits to the total number of bits transmitted, typically expressed as a ratio. The
BER is a crucial measure in determining the maximum achievable data rate for a given system design,

considering the presence of noise and other sources of interference in the channel.

PSNR: Peak Signal-to-Noise Ratio (PSNR) is an important metric to evaluate the quality of
recovered images in image communication systems. Unlike BER, which indicates the performance
of the communication system in bit level, PSNR provides a measure of the perceptual quality of the
images by comparing the received image with the original transmitted image. PSNR is a full-
reference image quality measure that uses an objective approach based on explicit numerical criteria,
such as comparisons with ground truth or prior knowledge expressed in terms of statistical parameters
and tests. The PSNR value is measured in Decibels (dB) and approaches infinity as the mean square
error (MSE) approaches zero, implying that a higher PSNR value indicates a higher-quality image.
A low PSNR value, on the other hand, signifies significant numerical differences between the original

and recovered images [73].

MS-SSIM: The MS-SSIM (multi-scale structural similarity index) is another full-reference
image metric developed to compare the quality of an input image to that of a reference image with
no distortion. Developed by Wang et al. [73], the MS-SSIM is correlated with the quality perception
of the human visual system (HVS). It works by aggregating the inner similarity indexes obtained
from multiple spatial scales (resolutions) to estimate the overall similarity between the input and
reference images. MS-SSIM is an improved metric of single-scale SSIM (SS-SSIM), resolving the

limitations of being only suitable for limited visual contexts and unable to account for the vast visual
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diversity [74]. MS-SSIM is also measured in dB and the values are usually represented in log scale

to observe high quality results, —10log,,(1 — M), where M is the MS-SSIM score.

The full-reference image quality measures such as PSNR, MS-SSIM, require a reference
image with no distortion to calculate an objective quality score. However, in cases where images are
generated, or no reference image is available, non-reference image quality can be used. Perception-
based Image QUality Evaluator (PIQUE) is a non-reference perception-based evaluation matric that
uses arbitrary distortion for image quality measurement in natural images [75]. PIQUE value is in
the range of [0 to 100], and the score is interpreted in steps of twenties, for example, 0 to 20 means

excellent and 81 to 100 means bad quality of the image.

4.1.2. DL Performance Analysis Matrices

In DL, performance analysis is critical to understand the performance of the DL model, in
tasks such as classification or regression. Various metrics help in evaluating the performance of these

models.

Accuracy is a fundamental DL performance metric. It quantifies the overall correctness of the

model by calculating the proportion of true predictions among the total number of instances.

TP+TN
TP+TN+FP+FN -

Accuracy = (33)

A true positive (TP) is an outcome where the model correctly predicts the positive class, while a true
negative (TN) is an outcome where the model correctly predicts the negative class. False positives
(FP) are instances where the model incorrectly predicts the positive class, and false negatives (FN)

are instances where the model incorrectly predicts the negative class.

Precision and recall (sensitivity) are particularly crucial in imbalanced datasets. Precision
refers to the proportion of true positive predictions among all instances that the model predicted as
positive. It represents the reliability of the model in predicting positive instances. Recall, or

sensitivity, indicates the ability of the model to correctly identify positive instances from actual
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positives, helping understand the model's coverage of the positive class in the dataset.

TP
ision = ————— 34
Precision TP+ FP’ 34)
TP
= — 35
Recall TP T FN (35)

F1-score uses precision and recall evaluating the performance of the model. It is particularly
useful when the class distribution is imbalanced, ensuring that both false positives and false negatives
are considered in the evaluation. The F1 score ranges from 0 to 1, where a score of 1 indicates a
perfect model and a score of 0 indicates a poor model. It gives more weight to lower numbers; thus,

a model can only achieve a high F1 score if both precision and recall are high.

F1s _ox Precision X Recall (36)
core = Precision + Recall ’

There are various visual representations to evaluate the Models’ performance. A confusion
matrix is a comprehensive table used for performance evaluation. It comprises of all four elements:
TP, TN, FP, and FN. This matrix provides a more detailed view of the model's performance, helping

identify the types and sources of errors made.

The generalizability of the DL model can also be observed using the t-distributed stochastic
neighbor embedding (t-SNE) [76] visualization algorithm. It is a probabilistic dimensionality
reduction algorithm which maps high-dimensional feature points into low-dimensional feature space
(typically 2D or 3D) while preserving the similarities. Features close to each other in the high-
dimensional space are mapped closer to each other in the lower-dimensional space with high
probability. Points that are close together in the t-SNE plot are likely to have similar features or
attributes (in terms of color, texture, or shape), whereas points that are far apart are likely to be

dissimilar.

Gradient-weighted Class Activation Mapping (Grad-CAM) heat map is another visualization

algorithm that is used to visualize the attention region for a CNN based DL models while making
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predictions [77], [78]. It uses the gradient of the final convolutional layer with respect to the predicted
class to weigh the layer activations, and then averages these weighted values over the spatial
dimensions to obtain a class activation map. The map shows the crucial region of the image that is

used to make the prediction by the CNN model.

In the following section, we present the performance analysis of the study. First, we discuss
the performance of various OFDM image communication systems and the effect of PHY
impairments on image quality. Then, we discuss the environment considered for the downstream DL
application, and finally the robustness of DL against these impairments for downstream CV

applications.

4.2. Performance Analysis of OFDM Image Communication System

In this section, we discuss the performance of various OFDM image communication systems

and the effect of PHY impairments on image quality.

4.2.1. Transformation and QPSK Modulation

For one of the simulation analyses, we have considered FFT and DCT based OFDM
implementation for their low computational complexity. Figure 4. illustrates quality of the recovered

images in terms of PSNR (dB). The image communication system based on DCT-OFDM has
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Figure 4. PSNR of recovered images using different transformation techniques. Communication
system is OFDM using QPSK modulation over AWGN channel.
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preserved higher quality of the recovered images than FFT-OFDM. At Ey/No 8dB, around 24%

improvement in image quality was observed by using DCT Transformation.

Though DCT transformation retains better image quality as per analysis, it is not a standard
technique used in OFDM. DFT/IDFT or FFT/ IFFT are standard transformation techniques for
frequency-time domain conversion in OFDM communication system. These methods are well-
established and often used in practice due to their effectiveness in managing multi-carrier modulation.
They aid in creating orthogonal subcarriers in the OFDM for efficient use of the available spectrum,
which is essential for reducing Inter-Carrier Interference (ICI). They also facilitate the system's
robustness against multi-path propagation effects and aid in coping with frequency-selective fading.
For the rest of the simulation IDFT/DFT will be utilized as transformation techniques due to the

aforementioned benefits.

For modulation techniques, QPSK has been initially utilized in the simulation. In QPSK, the
phase of the carrier signal is varied to transmit data, with each symbol carrying 2 bits of information.
This is a low data-rate transmission and may not be suitable for downstream IoT applications that
demand high data-rate for real time communication. Therefore, for the rest of the experiment we will

be utilized higher order QAM for high data-rate and advantages mentioned in Section 2.2.2.

4.2.2. Source Coding and Channel Model

Images can be compressed using either lossless or lossy methods. While lossless compression
aims to preserve image quality, lossy compression ensures higher compression savings [10].
However, increased compression savings have adverse effects on DL performance [8]. Therefore,
instead of compression savings, this study mainly focuses on evaluating the image quality recovered
from OFDM systems using FLC and VLC. In the experiment, for FLC, the corresponding decimal
values of each pixel are coded to a fixed 8-bit length codeword. On the other hand, for VLC, the

decimal values are coded as variable length codes according to the length of their respective
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Figure 5. Performance analysis using different source coding schemes. (a) is BER, and (b) is
PSNR of 16-QAM OFDM.

codewords. The information about the length of each codeword for every pixel is transmitted as side
information to the receiver for successful decoding. Although transmitting side information may
increase the overall system overhead, it avoids the synchronization problems commonly experienced

in standard VLC coding, such as Huffman coding.

The BER analysis (on a logarithmic scale) for the proposed OFDM-based image
communication system over both AWGN and Rayleigh fading channels is illustrated in Figure 5(a).
Over the AWGN channel, there is a significant drop in BER as Eu/Nj increases. At an Ey/Ny of 10dB,
the system achieved the lowest BER of 0.03. Throughout the experiment, FCL and VLC achieved
identical BER. In contrast, for the system over the Rayleigh fading channel, the BER does not
decrease significantly at higher Ew/Ny values compared to the AWGN channel. The lowest BER
recorded was 0.32 at an Ey/No of 10dB. Similar to AWGN channel, both FLC and VLC yield identical
BER values throughout the experiment. The reason for that could be multifold. Firstly, BER is the
rate of number of bits in error, which remain consistent regardless of the number of bits transmitted
using the different source coding scheme. Secondly, although FLC and VLC inherently differ in

terms of average code length, their efficiencies are comparable over the given channel conditions,
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which did not particularly favor one coding scheme over the other. Lastly, the inherent characteristics
of the AWGN and Rayleigh fading channels did not differentiate between the two different coding

techniques, resulting in identical values.

The quality of the recovered images in terms of PSNR from the proposed systems over AWGN
and Rayleigh fading channels is presented in Figure 5(b). Images recovered from the AWGN channel
exhibit high quality, which further improves with an increase in Ev/No. Using VLC, as the Ey/No
increased, the PSNR improved by 41%, reaching a peak of 28.78dB at an Ey/No of 10dB. A similar
trend is observed with system using FLC, where the PSNR improved by 67%, attaining a maximum
0f 24.62dB at the same Ey/No. However, there is a significant difference between the image qualities
from systems using FLC and VLC. Though the BER remain consistent between the two source
coding schemes as observed previously, the error in the bits can drastically change a pixel value
depending on its codeword position as discussed in Section 2.2.1., resulting in difference in image
quality. Throughout the experiment, VLC consistently achieved better image quality compared to
FLC, with improvement of highest 39% and lowest 17% observed at 0 dB and 10dB, respectively.
Images from the communications system over a Rayleigh fading channel were heavily distorted with
noise, which was observed in the PSNR analysis as well. At Ey/No 10dB, the highest PSNR of 18dB
and 11dB was observed by the system using VLC and FLC, respectively. There was no significant
improvement in image quality even with the increase in Ev/Ny. Throughout the experiment, the PSNR
value improved only by 1dB and 2dB for VLC and FLC, respectively. Similar to the AWGN channel,
there was a significant difference in image quality between FLC and VLC schemes. VLC achieved

the highest improvement of 98% at E,/No 0dB and lowest 64% at Ew/No 10dB, compared to FLC.

Figure 6. presents sample images recovered from various systems for visual analysis. Based
on visual inspection, VLC retains better image quality compared to FLC, especially over the Rayleigh
fading channel. Using FLC over Rayleigh fading channel, the information in the Region of Interest

(ROI) is invisible at lower Eu/Ny regions.
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Figure 6. Sample images from communication systems. Images at various E,/No using FLC (top)
and VLC (bottom) over the two channels is shown.

To summarize the parameters in the experiment, FLC and VLC are utilized for source coding.
The modulation technique used is 16-QAM (rectangular constellation) with a symbol length of 4.
The data stream for the system comprises 64 subcarriers, 16 CP, and 4 pilots (using comb-type pilot
insertion). IDFT and DFT are used for the transformation techniques. LS with linear interpolation is
employed for channel estimation, and zero-forcing is applied for channel equalization. For the

channel model, AWGN and a Rayleigh fading channel are considered for wireless transmission.

4.2.3. Channel Correction

Another experiment was carried out to analyze the effect of channel correction on the OFDM
communication system and recovered image quality. For this purpose, two OFDM systems were
implemented for image communication. The first OFDM system was implemented with channel
correction (withCC) using Least Square channel estimation technique. and second without channel
correction (withoutCC). For the pilot insertion, comb-type pilot based estimation was used. As for
the rest simulation parameters, 16-QAM for modulation, DFT/IDFT for transformation and simple
AWGN channel for the channel model were utilized. The system’s efficiency is being considered in

terms of bit error rate (BER) and image quality metrics, such as PSNR and PIQUE.

For proposed OFDM based image communication systems, namely withCC and withoutCC,

BER analysis is shown in Figure 7. The BER value for an image is obtained by taking the average of
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Figure 7. Performance analysis of system with and without channel correction. Analysis in
terms of (a) BER, (b) PSNR, and (c¢) PIQUE in 16-QAM OFDM over AWGN channel.

OFDM data sub-carriers. The BER presented in Figure 7 (a). is the mean across all the images in test
dataset. The BER of both systems improves with higher Ev/No. For E3/Np=10, there is up to 17% and
9% BER reduction compared to E,/Ny=0 for withCC and withoutCC systems, respectively. However,
such higher Eu/Ny is not feasible in practice. When comparing the BER of the two systems, withCC

has better signal quality than withoutCC system, due to the channel correction.

The BER measure does not provide any information about perceptual quality of recovered
images. Therefore, in analysis we have considered PSNR and PIQUE to quantify quality of the
images. Figure 7(b). shows the PSNR value, taken as the mean across all the images in test dataset.
Similar to BER, the PSNR value also improves with higher Ey/Ny. In withCC system, there is a
significant difference between the PSNR values for each Ei/Ny as compared to withoutCC. The
PSNR value increases up to 11 dB and 3 dB for withCC and withoutCC systems, respectively.
Overall, withCC system is able to retain higher quality images than its counterpart. The measure of
statistical features in terms of PIQUE of the proposed systems is shown in Fig.5 (b). The values are
the mean across all the images in the test dataset. In general, when natural images datasets are
constructed, conditions under which the images are acquired may differ, which sometimes result in

image distortions. Therefore, Figure 7(c). also shows quality of the original images, which is used as
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a baseline to compare other methods with it. Following the same trend as PSNR, PIQUE score
improves with higher Ei/Ny for both systems. For the given range of Ey/No, PIQUE is improved up
to 15 and 6 for withCC and withoutCC systems, respectively. The withCC system achieves PIQUE
same as original image after 7 dB whereas, withoutCC system does not reach closer to the original
images throughout the experiments. In addition, for excellent quality of images, E,/N, = 3 should
be used when OFDM system has channel correction and Ej, /N, = 5 should be used when there is
no channel correction. For withCC systems’ E, /N, = 8 the recovered images have surpassed
quality of the original pristine images. The reason is that PIQUE measure is designed for simple
distortions resulting from image compression and additive noises, and not for the case when images

have complex distortions occurred during communication.

Channel correction has a major impact on the quality of signal and recovered images even on
simple AWGN channel. Furthermore, in OFDM communication system, channel correction is
essential for mitigating the effects of multipath and frequency-selective fading, ensuring that the
transmitted signals are accurately received by correcting distortions and interferences. It improves
the system’s adaptability, synchronization, and overall signal-to-noise ratio, resulting in more robust
and reliable wireless communications. For the rest of the experiment, we utilized channel correction

block, considering LS and MMSE channel estimation techniques.

4.2.4. Channel Estimation, M-QAM and Channel Models

For the next experiments we have considered various OFDM communication systems for
image transmission. Within the system, we have considered higher order M-QAM modulation to
attain a high data rate, at the cost of added noise in the images. Additionally, we have considered
various channel models and channel estimation techniques to evaluate the noise and image quality
under different system conditions. Multipath AWGN channel and Rayleigh Fading channel with
AWGN were used as channel models to simulate real-world environmental conditions. Simple LS
and more complex MMSE channel estimation were used to evaluate the trade-off between image

quality and system complexity. The simulation parameters for the OFDM-based image
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Table 3. Simulation parameters of the OFDM-based image communication system.

Parameters Values
Source Coding Variable Length Coding
Modulation Technique M-QAM
Modulation Order M € {16,32,64,128,256,512,1024}
Transformation IDFT/DFT
Length of Symbol (k) log, (M)
Subcarriers (S) nx2m
Cyclic Prefix (CP) S/4
Pilots (P) CP/4
Pilot Insertion Comb-type
Channel Model AWGN, Rayleigh Fading
Channel Estimation LS, MMSE
Channel Equalization Zero-Forcing

communication system considering, higher order M-QAM, different channel estimation and different

channel model is given in Table 3.

To evaluate the performance of the OFDM-based image communication system, and output
image quality, we will categorize the next discussion based on different channel models. This
approach aims for clarity in presenting the performance outcomes in various environments.
Specifically, the evaluation will be divided into two main sections: Evaluation over AWGN Channel

and Evaluation over Rayleigh Fading Channel.

4.2.4.1. Over AWGN Channel

Figure 8 (a). illustrates the BER in logarithmic scale versus Ev/No for the proposed OFDM-
based image communication system over AWGN channel, using higher order M-QAM and different
channel estimation techniques. The graph indicates that lower order M-QAM experiences a sharp
drop in BER with higher Ey/No, characterized by the waterfall trend, whereas the drop in the higher
order M-QAM is insignificant across all Ey/Ny values due to the increased number of error bits. At
Ev/Np 20 dB, 16-QAM and 1024-QAM have reached their lowest mean BER of 2.25 x 10~ and 0.05
using MMSE channel estimation, respectively. For channel estimation analysis, MMSE outperforms
LS channel estimation across all M-QAM, and for 16-QAM at E,/No 20 dB, the use of MMSE

resulted in the highest improvement (approximately 40 times lower BER) compared to LS channel
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Figure 8. Performance analysis of various OFDM systems over AWGN channel. Analysis in
terms of (a) BER, (b) PSNR, and (c) MS-SSIM with respect to various Ep/No.

estimation. Overall, the 16-QAM system using MMSE channel estimation has the lowest average

BER and 1024-QAM system using LS estimation has the highest average BER.

The image— quality measure in terms of PSNR of the recovered images for the proposed
systems is shown in Figure 8 (b). The PSNR values follow a similar pattern to the BER and improve
with higher E,/No; however, when using higher order M-QAM, the PSNR values decrease indicating
the decline in image quality across all E,/No. Additionally in high Ew/No regions, the quality of the
image improves significantly for lower order M-QAM with a steep upward incline compared to
higher order M-QAM, which has a more flattened incline. At Ev/No 20 dB, 16-QAM and 1024-QAM
have obtained their highest quality images with mean PSNR value of 66 dB and 26 dB using MMSE
channel estimation, respectively. With respect to channel estimation, MMSE outperformed LS across
all M-QAM, and 16-QAM at Ep/No 20 dB achieved highest improvement of 26 dB when utilizing
MMSE channel estimation; however, with the higher order M-QAM, the improvement due to
different channel estimation is less significant. MS-SSIM evaluation metrics (in logarithmic scale)
have almost identical trends with PSNR, as illustrated in Figure 8(c). For higher E,/Ny the MS-SSIM
improves significantly for lower order M-QAM, however, the improvement is slow for the higher

order M-QAM. Lower order M-QAM has a higher MS-SSIM score and demonstrates significant
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improvement with increased Ep/No, while higher order M-QAM does not exhibit a significant
improvement in the image quality across Ev/No. At Ey/No 20 dB, 16-QAM and 1024-QAM have
obtained their highest quality images with mean MS-SSIM values 43 dB and 10 dB using MMSE
channel estimation, respectively. In terms of channel estimation, MMSE performs better than LS for
all M-QAM (16-QAM at Eu/No 20 dB achieved an improvement of 20 dB using MMSE); however,
for higher order M-QAM, the difference in performance between the two techniques is not substantial.
Overall, the 16-QAM system with MMSE channel estimation had the best image quality retention
and 1024-QAM with LS had the worst image quality retention throughout the experiments in terms

BER, PSNR, and MS-SSIM evaluation matric.

©
©

o

20 dB E, N‘ =10 dB E N‘ =0dB Oriiinal

slelem]
SR

i
©
£

2
e
z

128-QAM 1024-QAM

Figure 9. Sample recovered images from OFDM system over AWGN channel. The top row of
each Ep/No represents received images from system using LS channel estimation, whereas the bottom
row images are from systems using MMSE channel estimation.
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For visual analysis, Figure 9, shows three example images from the dataset and the distortions
from different communication systems when transmitted over AWGN channel. From the visual
inspection, the noise increases across higher order M-QAM; however, with increase in Eu/No, the
image quality still improves significantly for lower order M-QAM (16-QAM) compared to higher
order M-QAM (128-QAM and 1024-QAM). Although the images may be corrupted at lower Eu/No,
the information in the region of interest (ROI) remains visible even with additional noise in the
surrounding regions due to the way the traffic sign are designed with different color contrast [79],
[80]. In terms of different channel estimation techniques, there is no visible distinction between the
LS and MMSE as the images are almost visually identical in comparison to the two channel

estimation techniques.

4.24.2. Over Rayleigh Fading Channel

The BER performance of the OFDM-based image communication system with higher order
M-QAM modulation and various channel estimation techniques over the Rayleigh Fading channel is
presented in Figure 10(a). The BER is presented on a logarithmic scale and is plotted against the
Eu/Np for the proposed systems. From the graph we can see that there is no significant improvement
in the BER across Ev/No compared to the systems over simple AWGN channel as discussed in Section
4.2.4.1, this is due to heavy noise and distortions introduce by the fading effect of the Rayleigh
Fading channel. The lowest BER was recorded with 16-QAM system utilizing MMSE channel
estimation, achieving values of 0.41 to 0.18 across Ei/No 0 dB to 20 dB, respectively. The highest
BER was obtained by 512-QAM with only a small drop from 0.47 to 0.40 across the Ey/Ny. In terms
of channel estimation, MMSE performed better than LS for all M-QAM throughout the experiment
and the difference in performance was significant at the lower Eu/Np region due to its prior channel
knowledge. Additionally, 16-QAM leveraged the greatest improvement in BER (difference of 0.1 at
Euw/No 20 dB) when using MMSE channel estimation, however, the difference in the performance
was insignificant for rest of the M-QAM with respect to different channel estimation techniques.

Overall, the BER increases with a higher order of M-QAM and MMSE channel estimation performed
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Figure 10. Performance analysis of various OFDM systems over Rayleigh Fading channel.
Analysis in terms of (a) BER, (b) PSNR, and (c) MS-SSIM with respect to various Eu/No.

better than LS channel estimation throughout the experiment. 16-QAM has the lowest average BER
using MMSE channel estimation and 512-QAM has the highest average BER using LS channel

estimation across Ep/No.

The PSNR evaluation on the received images is shown in Figure 10 (b). and it shows a similar
pattern to BER. The PSNR value improves with higher Ep/No, however it decreases with higher order
M-QAM across all Ew/Ny due to increased error bits that subsequently resulted in lower image quality.
The 16-QAM and 1024-QAM systems demonstrated their best image quality using MMSE channel
estimation at E,/Ng 20 dB, with average PSNR values of 20 dB and 17 dB, respectively. In terms of
channel estimation, in contrast to the BER analysis, the PSNR value of images from systems using
LS was better than MMSE from Ey/No 0 dB to 5 dB; however, after Ex/Ny 5 dB, all the M-QAM
systems performed better with MMSE channel estimation, and the highest quality improvement of
the image due to different channel estimation was observed by the 16-QAM system (improvement
of 1 dB). Throughout the experiments, the 16-QAM system with MMSE channel estimation
maintained the highest level of image quality retention (except at Ey/No 0 dB), while the 512-QAM
system with LS estimation exhibited the lowest image quality. Like PSNR, the MS-SSIM values

exhibit some improving trends with higher Ei/No but show a decline in image quality for higher order
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M-QAM as shown in Figure 10 (c). The 16-QAM and 1024-QAM systems had the highest MS-SSIM
score at Ey/Ng 20 dB, with scores of 6.5 and 5.18 while using MMSE and LS channel estimation,
respectively. In terms of channel estimation, all the M-QAM systems performed better with MMSE
channel estimation across Ey/No 5 dB to 20 dB, except for 1024-QAM, where MMSE channel
estimation showed significant drop compared to LS. Overall, the 16-QAM system with MMSE
channel estimation maintained the highest MS-SSIM score, while the 1024-QAM system with

MMSE estimation had the lowest throughout the experiment.

Figure 11. shows recovered images from communication system over Rayleigh Fading
channel. Compared to the visual inspection of images from AWGN channel discussed in Section
4.2.4.1, the images from the Rayleigh Fading channel are heavily distorted and most of the ROI
information at the lower Ey/Ny are not clearly visible. The amount of noise on the images decreases
slightly with higher Ey/Ny, and that is sufficient to make the information on the ROI visible due to
the robust design of the traffic signs with different color contrast [79], [80]. Therefore, for higher
Ew/No, the images may be heavily distorted but the information in the ROI (speed limit) is still slightly
visible, and the DL models can exploit that and extract the features from the ROI to predict the signs
correctly, which will be further discussed in Section 4.4.3.3. Another trend that is observed is that
the images from the M-QAM systems with odd length of symbol (128-QAM) have reduced the
brightness compared to the even length of the symbol, which retained brightness the same as the
original image. In terms of channel estimation, the images at E/No 0 dB from system utilizing MMSE
channel estimation (bottom row) is clearer compared to LS channel estimation (top row) across the
M-QAM, where the information in the ROI is not visible at all for the LS channel estimation.
Therefore, it indicates that MMSE retains better quality images for lower Ey/No compared to LS in

terms of human visual perspective.
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Figure 11. Sample recovered images from OFDM system over Rayleigh Fading channel. The
top row of each Eu/Ny represents received images from system using LS channel estimation, whereas
the bottom row images are from systems using MMSE channel estimation.

4.3. Downstream DL Application: Traffic Sign Recognitions

The integration of advanced information and communication technologies along with Internet
of Things (IoT) devices has brought a significant transformation to the Intelligent Transportation
System (ITS) in smart cities. The incorporation of these technologies has resulted in synchronized
transport networks, improved driving experience, optimized traffic management, and facilitated
intelligent vehicular applications [81], [82]. The image communication system lies at the core of the
ITS, enabling applications that directly connect vehicles with traffic infrastructures and management

systems [83]. One such application of traffic sign recognition in ITS was considered in this
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experiment. Traffic sign recognition is an essential CV application of an ITS environment and the
collection and recognition of these signs are critical to ensure smooth traffic flow and prevention of
accidents [83]. Effective traffic sign recognition in ITS requires both the collection of real-time
images using high data rate communication systems, and the accurate recognition of these images
using Al-enabled systems, respectively. In this experiment, the performance analysis of both these

aspects was considered.

Furthermore, to effectively deploy Al-enabled system in an ITS environment for CV
applications, a robust computing infrastructure is required for handling large amounts of image data,
processing it in real-time, and performing complex computations [84]-[86]. Edge servers and cloud
servers are two potential solutions that can meet these requirements [86]. Edge servers are located
close to the data source, and can process data locally, leading to faster processing, reduced latency,

and improved reliability. Cloud servers, on the other hand, provide vast computing power and storage

Monitor & Control

Training Validation Testing||  \LaaS

&
= :
2. ]!
g Detection !
3 Sl — ||
= - 2= |([Classification| :
=3
z =—] —[ |
2 —1— |Imenn‘ctﬂt10n| b
O - !
N
i
\4 |
. =] Inference Engine
£ Data =g {
E e Ly
g
©
§ Inference Server
2 1A
2 1
3 vi
R~

() o (o

( OFDM system: 5G.LTE, Wi-Fi | |

g i G —

[ Communication J [ Edge Computing ]

£
| 5> e pe
[ IoT end devices: Image sensing ] =
(a) (b)

Figure 12. Schematic of downstream DL application. It illustrates an overview of used case
scenario utilizing Edge—Cloud collaboration for deep learning-based CV applications in (a) generic
IoT ecosystem and (b) ITS environment within a Smart City.
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capacity, making them ideal for data-intensive tasks such as DL model training. By combining the
computing power of edge and cloud servers, it is possible to process and analyze data in real-time
while minimizing latency and reducing communication costs forming and edge—cloud collaboration
[86]. Figure 12. shows such an infrastructure for the traffic sign recognition application in ITS, as
considered in this experiment. Images are first transmitted to the edge server through various OFDM-
based image communication systems, where they are introduced to noise and distortions from the
system. The edge server then carries out inferencing on the received distorted images using a trained
model, which were trained in the cloud server using a public dataset. The cloud center has several
models that are task specific to enable Machine Learning as a Service (MLaaS) [86], [87]. In this
scenario, the edge server requested a model for classification task to carry out traffic sign recognition

in the ITS environment.

4.4. DL Models

In this section we discuss the robustness of DL models on images recovered from different
communication systems presented in Section 4.2. We briefly describe the CNN models utilized in
the experiment and the motivation of the choice, followed by the robustness analysis of the individual
models with and without augmentation techniques under the influence of the different

communication systems.

4.4.1. ResNet152V2

ResNet152V2 is a CNN model belonging to the ResNet family, commonly used for image
classification tasks in computer vision applications [88], [89]. It is a more advanced and intricate
version of the ResNet model with a total of 152 layers and utilizes skip connections (referred to as
residual connections) which make it easier for the model to learn from lower layers and improve
overall performance. ResNet152V2 employs a bottleneck design, which reduces the number of
parameters required in each layer while maintaining the same level of representation power, making

it a more efficient model compared to the earlier models in the series. Additionally, ResNet152V2
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Table 4. Parameters of the DL models used in the experiments.

ResNet152V2 EfficientNetV2-B0
Model Input Size: 224 x 224
Max Pool, 2048
Flatten, 2048 Average Pool, 1280
Top Layers: Fully Connected, 4096 * Flatten, 1280
Fully Connected, 4096 * Fully Connected, 256 *
Dropout, 4096 Fully Connected, 7 *
Fully Connected, 7 *
Total parameter: 83,534,343 6,249,047
Trainable parameter: 83,390,599 6,188,439
Non-trainable parameter: 143,744 60,608
* ReLU Activation  * Softmax Activation.

uses better weight initialization to prevent the vanishing and exploding gradient problems, and
normalization approaches, by combining batch normalization and weight normalization, to improve
the stability and speed of training [88], [89]. ResNet152V2 also utilizes different training techniques,
such as augmentation and stochastic depth to improve the model’s generalizability, making it more
potent and reliable for image classification tasks compared to other models in the family [88], [89].
Overall, ResNet152V2 performs better than its predecessor and other CNN models in terms of
accuracy while requiring fewer parameters. However, it is a very deep and complex model with many
layers which demands significant computational resources. These demands can be fulfilled by edge-
cloud collaboration. Therefore, for our experiment we have considered ResNet152V2 architecture
for feature extraction with a proposed classifier for the classification task, as shown in Figure 13, and

parameters of the model are mentioned in Table 4.

4.4.2. EfficientNetV2.B0

EfficientNet [90] is a family of CNN models that are designed to achieve state-of-the-art
accuracy with highly efficient use of computational resources. Since its inception, it has become
popular for computer vision applications due to its ability to achieve high accuracy on image
classification tasks while using fewer parameters and floating-point operations (FLOPs) than other

popular CNN models. EfficientNet utilizes neural architecture search (NAS) to design the baseline
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Figure 13. ResNet152-based proposed DL model for traffic sign recognition in ITS. For a layer
‘1x1 conv—2—1, 64°, 1x1 is the filter size, 2—1 is module number, and 64 is the number of filters.
The ellipses show that the blocks are repeated.

model, EfficientNet-BO, which has a better trade-off between parameters and accuracy. The model
is then uniformly scaled up in terms of depth, width, and resolution to obtain a family of models,
ranging from EfficientNet-BO (the smallest model) to EfficientNet-B7 (the largest model). Despite
using depth-wise convolution to achieve superiority in terms of the number of parameters and FLOPS,
EfficientNetV1 had limitations in fully utilizing accelerators, which limited its training and inference
speed. EfficientNetV2 [91] mitigates these limitations while ensuring parameter efficiency. It
proposes three solutions, first, to adjust the size and regularization progressively during training;
second, a non-uniform scaling strategy to add more layers in later stages; and third, the proposed
Fused-MBConv in the early stage to improve training speed (introducing a small overhead on
parameters and FLOPs). Therefore, in our experiment we have used EfficientNetV2-B0 to achieve
state-of-the-art accuracy while ensuring parameter efficiency using the smallest model (BO) in the
family and leveraging faster training and inference time (V2). The EfficientNetV2-B0 architecture
(adapted from [91], [92]) with our proposed classifier is shown in Figure 14. and the parameters are

mentioned in Table 4.
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Figure 14. EfficientNetV2-B0-based proposed DL model for traffic sign recognition in ITS.
For this study, we have considered the German Traffic Sign Recognition Benchmark (GTSRB)
dataset with speed limit signs of seven different classes, 30, 50, 60, 70, 80, 100, and 120. The dataset
was divided into 80% for training, 10% for validation, and 10% for testing. For training, Stochastic
Gradient Descent (SGD) optimizer and cross entropy-loss was used for both models, with learning
rates ranging from 0.01 to 0.000001 and 0.1 to 0.0001 for ResNet152V2 and EfficientNetV2-BO0,
respectively, using the reduce learning rate (ReduceLR) technique. Furthermore, various
augmentation techniques, such as 20-degree rotation, horizontal and vertical shift with factor 0.1,
nearest fill mode, and 0.25 to 1.25 factor zoom and brightness, were applied to achieve high

validation accuracy during training (as discussed in Section 2.3.2).
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4.4.3. Performance Analysis of DL. Models

In the experiment, ResNet152V2 achieved 98% training accuracy, and EfficientNetV2-B0
achieved 100% training accuracy. The training accuracy is comparable to related classification study
on GTSRB dataset using ResNet152 [93] and EfficientNetV2 [94] family which achieved 96% and
98%, respectively. The validation accuracy of the models showed significant difference with and
without applying augmentation techniques in the experiment. ResNet152V2 achieved 84% validation
accuracy without augmentation, indicating overfitting and poor generalization; however, when the
augmentation techniques were applied, the validation accuracy improved to 96%. Similarly,
EfficientNetV2-B0 achieved 95% validation accuracy without augmentation, which improved to 99%
with augmentation. Both the training and validation of the two models were completed on pristine
(original) images. The inference (test) accuracy of the models on noisy images from different

communication systems is further discussed.

4.4.3.1. Over AWGN Channel

The DL model performance in terms of classification accuracy on the reconstructed images
from various communication systems over AWGN channel is discussed in this section. The dotted
lines illustrate the model accuracy achieved without applying any augmentation techniques during
training, whereas the solid lines represent the accuracy achieved with augmentation techniques (WA)
applied during training. The accuracy of the DL model corresponds to the mean value across all

inferencing images for the specific M-QAM and E,/No.

Performance analysis of ResNet152V2 over AWGN channel: When augmentation
techniques are not applied during the training of ResNet152V2 model, the accuracy achieved on the
clean (original) images is 84%, and the overall accuracy of the model is low, as shown in Figure 15.
This is due to the model not being able to learn and generalize well without augmentation techniques.
From the graph, we can observe that the accuracy of the model decreases significantly with higher
order M-QAM in the lower Eu/Ny regions; however, for the higher Ey/No regions the model is able

to generalize well and achieves almost same accuracy as it performed on the original images across
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Figure 15. Performance of ResNet125V2 on images transmitted over AWGN channel. For order
of M-QAM, M€{16,32,--,1024} across each Ep/Np.

all M-QAM (except 512-QAM and 1024-QAM). We can see a clear distinction between the accuracy
of the model on images from M-QAM systems with odd length of symbol and even length of symbol
with a zig-zag pattern in the lower Ey/Ny regions. There is a sharp drop in the accuracy of the model
on images from M-QAM systems with odd length of symbol (32-QAM, 128-QAM, and 512-QAM)
which is due to the increased error bits, as discussed in Section 2.2.2. The highest difference in
accuracy on images across different M-QAM was observed at Ew/No 0 dB, with 14% difference
between highest accuracy (16-QAM) and lowest accuracy (512-QAM), this difference is less than 2%
for Ev/No 20 dB. For channel estimation, accuracy was better on systems using MMSE channel
estimation; however, the improvement is insignificant. Overall, the lowest accuracy observed
without augmentation is 63% on images from 512-QAM system using LS channel estimation at E,/No
0 dB. On the other hand, images from 16-QAM to 256-QAM achieved a highest accuracy of 84%

(same as on the original images) for Ep/No 15 dB and 20 dB.

When augmentation techniques were applied, the ResNet152V2 was able to learn better and
the accuracy of the model on clean (original) images improved to 96%. The impact of M-QAM with
odd and even length of symbol is still observed, however the overall accuracy of the model improved
significantly across all M-QAM. There is no drastic drop in accuracy across higher order M-QAM
and the difference in the accuracy is less than 4% for all Ey/No. This is due to the model being able

to generalize well across all M-QAM as it was trained with different augmentation techniques.
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Accuracy with respect to channel estimation techniques has overlapping patterns, indicating that
there is no significant impact when using more complex channel estimation (such as MMSE) on the
accuracy of the DL model. With augmentation, the lowest accuracy obtained was 89% for 512-QAM
system at Ep/No 0 dB; however, beyond Ey/No 10 dB the accuracy of the model was greater than 93%

across all M-QAM and different channel estimation techniques.

Performance analysis of EfficientNetV2-B0 over AWGN channel: In contrast to
ResNet152V2, EfficientNetV2-B0 achieved 95% accuracy on the clean (original) images even
without applying any augmentation techniques during training as shown in Figure 16., this is due to
its better learnability, as discussed in Section 4.4.2. However, there is a drop in the accuracy of
models on images across higher order M-QAM. At Ey/No 0 dB, the highest drop in accuracy of 6%
was observed on images from 16-QAM (highest accuracy) to 512-QAM (lowest accuracy); however,
the difference in accuracy across M-QAM systems becomes smaller with increase in Ey/No. For Ev/No
20 dB the accuracy curve almost flattens (indicating no difference in accuracy across higher order
M-QAM), and the accuracy was almost same as it was on the original images. This indicates that the
model can generalize the noise on the images across all systems and provide better accuracy even for

higher order M-QAM systems.

Furthermore, applying augmentation techniques during training drastically improved the

EfficientNetV2-B0 model and it was able to predict almost all the clean images correctly, achieving
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Figure 16. Performance of EfficientNetV2-B0 on images transmitted over AWGN channel.
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99% accuracy. The difference in accuracy on images from higher order M-QAM is less than 2% with
only little distinctions between M-QAMs with odd and even length of symbol. When applying
augmentation, the lowest accuracy obtained was 97% on images from 512-QAM at 0 dB. However,
beyond Eu/Np 10 dB, the model accuracy on images from most of the systems was same as it
performed on the original images (except 128-QAM at 10 dB, 512-QAM and 1024-QAM at 15 dB,
and 1024-QAM at 20 dB). Throughout the experiment, the accuracy from system with different
channel estimation had overlapping patterns and there were no clear indications that complex channel
estimation (such as MMSE) improves the model accuracy. In comparison to the two DL models,
EfficientNetV2-B0 outperformed ResNet152V2 across all image communication systems, regardless

of whether augmentation was applied or not, this is due it its robustness as discussed in Section 4.4.2.

4.4.3.2. Over Rayleigh Fading Channel

In the evaluation of communication systems and image quality discussed in Section 4.2, we
have observed severe degradation in performance when the Rayleigh Fading channel is utilized, as
compared to employing only a simple AWGN channel model. We can see a similar trend in the
accuracy of the DL models; however, when the DL models utilized augmentation techniques during
training, they have achieved favorable results even on the Rayleigh Fading channel, as shown in

figures in this section.

Performance analysis of ResNet152V2 over Rayleigh Fading Channel: When using
ResNet152V2 without applying augmentation techniques during training, the accuracy on the images
from the Rayleigh Fading channel achieved very low accuracy, as shown in Figure 17. The accuracy
of the DL model dropped on images from higher order M-QAM systems and there was no significant
improvement with higher E,/Ny, in fact the difference in accuracy on the images from lower order
M-QAM and higher order M-QAM was more significant in the higher Ey/Ny region. The difference
in accuracy on images from 16-QAM (highest accuracy) to 1024-QAM (lowest accuracy) was 8% at
Ew/No 0 dB; however, the difference was 21% at Ey/No 20 dB. This is because the image quality in

lower order M-QAM improved more significantly compared to those in higher order M-QAM with
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Figure 17. Performance of ResNet125V2 on images transmitted over Rayleigh Fading.

the increase in Ev/No. Additionally, it also indicates that the model was not able to generalize well
on the images from different M-QAM systems. The highest accuracy obtained without augmentation
was 68% at Ey/No 20 dB for 16-QAM system with MMSE channel estimation and the lowest
accuracy of 46% was obtained at E,/No 10 dB on images from the 1024-QAM system with MMSE
channel estimation. For analysis on different channel estimations, there was no significant difference
in the improvement in accuracy (except for 16-QAM and 1024-QAM) due to different channel
estimation, as it had overlapping trends throughout the experiment. Images from 16-QAM system
using MMSE channel estimation achieved almost 5% better accuracy compared to LS at Ep/Ng 15
dB and 20 dB; however, images from 1024-QAM achieved almost same improvement in accuracy

using LS channel estimation compared to MMSE for Ey/Ng higher than 5dB.

The ResNet152V2 model trained using augmentation techniques performed much better even
on the multipath Rayleigh Fading channel. Overall, the model accuracy improved, and after Ev/No
10 dB the model accuracy was greater than 86% across all systems (except 1024-QAM). The highest
accuracy of 90% was obtained by 64-QAM at Ey/No 15 dB and 20 dB and the lowest accuracy of 75%
was obtained at Ey/No 10 dB on images from 1024-QAM system, both using MMSE channel
estimation. Overall, the difference in accuracy on images across higher order M-QAM was less than
4% (except 1024-QAM) which indicates the model was able to generalize well on images even from

higher order M-QAM system. In terms of the effect of channel estimation techniques, there were
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distinct differences in the accuracy of the model on images from systems utilizing different channel
estimation techniques in the lower Ep/No regions. From E,/No 0-10 dB the accuracy on images from
systems using MMSE channel estimation was greater compared to LS channel estimation, and at
Ew/No 0 dB this difference was the highest with almost 5% improvement in accuracy for 64-QAM,
128-QAM, 256-QAM and 512-QAM. The gap gradually decreased for Ey/No higher than 10 dB, and
an overlapping pattern (except 1024-QAM) of accuracy on images from systems utilizing both

channel estimation techniques was observed.

Performance analysis of EfficientNetV2-B0 over Rayleigh Fading Channel: Like
ResNet152V2, the accuracy of EfficientNetV2-B0 also decreases on images from systems using the
Rayleigh Fading channel compared to simple AWGN channel, as shown in Figure 18. Without
applying augmentation techniques during training, the model was not able to generalize well, and the
accuracy of the models decreases significantly with higher order M-QAM. There is a slight
improvement in accuracy of the model on images from lower order M-QAM with the increase in
Ew/No; however, accuracy on images from higher order M-QAM shows very little improvement.
Without augmentation, the highest accuracy of 90% was obtained on images from the 16-QAM
system at Ey/No 20 dB and the lowest accuracy of 70% was obtained on images from 1024-QAM at
Ew/No 5 dB, using MMSE channel estimation. There was no significant difference in improvement
by using different channel estimation techniques, except on images from the 1024-QAM system,
where the model on images from system utilizing LS obtained approximately 8% greater accuracy
compared to MMSE at E,/Ny greater than 5 dB. The model performed slightly better on systems
utilizing MMSE for 32-QAM, 64-QAM, 128-QAM, and 512-QAM at Ey/Ny 0 dB, however this

improvement is insignificant considering the overall performance throughout the experiment.

The EfficientNetV2-B0 model trained with augmentation techniques had drastic improvement

across all systems. The model could generalize well since the difference in accuracy across M-QAM
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Figure 18. Performance of EfficientNetV2-B0 on images transmitted over Rayleigh Fading.
systems is less than 2% (except 1024-QAM) at all Ey/Ny. Throughout the experiment, the accuracy

of the model was greater than 95% across all systems (except 1024-QAM). The highest accuracy of
99% was obtained on images from 16-QAM system at Ey/No 20 dB, whereas the lowest accuracy of
88% was obtained on images from 1024-QAM system at Ey/No 20 dB, both using MMSE channel
estimation techniques. The improvement in accuracy on images from systems using different channel
estimation was observed only at Ey/No 0 dB, where accuracy was approximately 4% better on images
from systems using MMSE compared to LS across all systems (except 16-QAM and 1024-QAM).
However, at higher Ey/Ny regions, different channel estimations did not have a significant impact on
the accuracy, except for 1024-QAM, where accuracy on images from a system using LS channel
estimation had approximately 5% greater accuracy compared to MMSE. Which indicates that the
effect of using complex channel estimation (such as MMSE) improves the model accuracy at lower
Ew/No regions; however, it can have contrasting effect at higher Ep/No regions and higher order M-

QAM.

Comparing the performance of the two models, EfficientNetV2-B0 had greater accuracy on
images from systems over the Rayleigh Fading channel, compared to ResNet152V2. The accuracy
of the EfficientNetV2-B0 model trained using augmentation was from 88 to 99%, whereas for

ResNet152V?2 it was between 75% and 90% across all systems.
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4.4.3.3. Visual Analysis of DL Generalizability

The generalizability of the DL model across the M-QAM system using different channel
estimation can be further observed using the t-distributed stochastic neighbor embedding (t-SNE)
[76] visualization algorithm, as shown in Figure 19. It is a probabilistic dimensionality reduction
algorithm which maps high-dimensional feature points into low-dimensional feature space (typically
2D or 3D) while preserving the similarities. Features close to each other in the high-dimensional
space are mapped closer to each other in the lower-dimensional space with high probability. Points
that are close together in the t-SNE plot are likely to have similar features or attributes (in terms of
color, texture, or shape), whereas points that are far apart are likely to be dissimilar. From Figure 19.,
it can be observed that the same class points from the DL model trained with augmentation are close
together and do not have many overlapping points of different class (color) across Ey/No 0 dB, 10

dB, and 20 dB for the M-QAM systems. Whereas points from the DL model trained without
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Figure 19. Two-dimensional t-SNE plot. It shows feature space analysis of EfficientNetV2-B0
model on recovered images over Rayleigh Fading channel. Each color of the dots represents one of
the seven classes chosen from the GTSRB dataset.
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augmentation are more scattered and overlap with other classes. There are no significant differences
in class separability for different channel estimation used across the M-QAM systems. Overall, DL
model trained with augmentation provides better separability between the seven classes and their
features, resulting in better classification performance across all communication systems compared

to DL model trained without augmentation.

Gradient-weighted Class Activation Mapping (Grad-CAM) heat map is another visualization
algorithm that is used to visualize the attention region for a CNN while making predictions [77], [78].
It uses the gradient of the final convolutional layer with respect to the predicted class to weigh the
layer activations, and then averages these weighted values over the spatial dimensions to obtain a
class activation map. The map shows the crucial region of the image that is used to make the
prediction by the CNN model. Figure 20. shows the Grad-CAM visualization of EfficientNetV2-B0
model prediction on images recovered from different communication systems. The images that were

correctly predicted has Grad-CAM heat map concentrated in the ROI region of the traffic sign,

(Original) 16-QAM 128-QAM 1024-QAM 16-QAM 128-QAM 1024-QAM

LS (Ey/N, =0 dB) MMSE (E/N, =0 dB)

Figure 20. Grad-CAM visualizations. Analysis of EfficientNetV2-B0 model (with Augmentation)
on sample image re-covered from different OFDM-based image communication systems under the
Rayleigh Fading channel. The recovered image from different communication system (top), Grad-
CAM heat map of the DL model’s attention region (middle) and superimposed heat map over the
image (bottom) is shown. Images with green border are correctly predicted and images with red
border are incorrectly predicted.
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whereas the two images that were wrongly predicted has the Grad-CAM heat map outside the ROI,
therefore it could not extract the important features from the ROI to make the accurate prediction for

the traffic sign.

For the t-SNE and Grad-CAM analysis, we visualize the performance of EfficientnetV2-B0
on noisy images recovered from OFDM communication system using the Rayleigh Fading channel
only. The reason for this is that we have observed from Section 4.4.3 that EfficientnetV2-BO0 is
superior and more robust compared to ResNetV152, and the Rayleigh Fading channel replicates the

real-world environment inducing more noise on the images.

For the experiment, the simulation of the various image communication systems and the BER
analysis was conducted using Python 3.9.7, and the image quality analysis (PSNR and MS-SSIM)
was performed using MATLAB R2021b. The performance analysis of the DL models was carried
out using Python 3.9.7 and TensorFlow 2.2.0. The experiments were carried out jointly on Intel Core

15-4590 CPU and NVIDIA Tesla V100 (32 GB Memory) GPU.
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V. CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this study, we have analyzed the performance of DL models on images transmitted over
various OFDM wireless communication systems for CV applications. Specifically, we have
considered physical impairment from various techniques implemented in source coding, modulation,
channel estimation, transformation, and channel model block in OFDM communication system. The
main objective was to achieve a higher data rate to enable real time downstream CV applications
while maintaining the overall communication system complexity. In general, the utilization of a
higher order M-QAM in the fading channel environment leads to heavily corrupted image data in the
output, regardless of the channel estimation techniques. However, our results have shown that the
feature extractor of a DL model can be robust against these distortions with suitable data
augmentation techniques, thereby improving the model generalizability across the higher order M-
QAM. In other words, this trained feature extractor can extract meaningful features even from very

noisy images, which can be utilized for downstream tasks, such as traffic sign recognition in ITS.

5.2. Future Work

Integration of advanced communication systems like MIMO, NOMA, and other hybrid
systems significantly improve communication efficiency, and reliability that is crucial in IoT
ecosystem. Additionally, transmissions in an [oT environment consist of a diverse array of data types
such as image, video, audio, and text. Therefore, multi-modal downstream DL applications,

integrated with advanced communication systems, can be an extension of the current study.

The present study implemented legacy OFDM PHY for communication system. An interesting
future direction is implementing PHY as a DL architecture for end-to-end learning of the
communication system. This is a paradigm shift from traditional model-driven (block-based)
communication system to data-driven communication system, which would enable intelligent

applications such as semantic communication system to enable beyond 5G networks.
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