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Study on Robustness of Deep Learning Against Physical Layer 

Impairments in Wireless Communication Systems 

 

 

Nazmul Islam 
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The Internet of Things (IoT) ecosystem demands fast, reliable, and efficient image data 

transmission to enable real-time Computer Vision (CV) applications. To fulfill these demands, the 

Orthogonal Frequency Division Multiplexing (OFDM)-based communication system has been 

widely utilized due to its parallel transmission scheme, higher spectral efficiency and data rate. 

However, in OFDM-based image communication systems, various impairments occur due to 

different physical layer (PHY) blocks such as source coding schemes, complex channel models, data 

transformation methods, modulation techniques, and the number of antennas, as well as interferences 

such as Inter-symbol Interferences (ISI) and Inter-carrier Interferences (ICI). These impairments can 

heavily corrupt the recovered images, making them unsuitable for downstream applications. 

Although OFDM communication systems have been thoroughly studied for several decades, and 

each PHY block is approaching maximum statistical and mathematical optimization, impairments 

still persist in the current digital communication systems. To address these challenges, researchers 

are exploring the use of artificial intelligence (AI) and Deep Learning (DL) in communication 

systems and downstream applications to improve overall system performance. DL is robust against 
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certain image perturbations and can execute CV tasks even on heavily distorted images.  

The impairments from the PHY corrupt pixel values independently, but certain intrinsic 

properties of the image, such as spatial information, may remain intact. In DL, these properties can 

be extracted as multidimensional features in the convolution layers and interpreted in the top layers, 

enabling efficient DL-based CV applications like image classification. Therefore, in this study, we 

first evaluate various OFDM-based image communication systems and the effects of various PHY 

impairments on image quality. Subsequently, we analyze the robustness of DL models against these 

impairments for downstream CV applications. For DL-based downstream applications, we consider 

traffic sign recognition in Intelligent Transport System (ITS) environments in smart cities. Our 

analysis shows that the EfficientNetV2-based model achieves an accuracy range of 70%–90% across 

OFDM-based image communication systems with high impairments. Additionally, leveraging 

different data augmentation techniques improves accuracy by up to 18%. 
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요약 

 

무선통신시스템에서 물리계층 장애에 대한 딥러닝 견고성에 관한 연

구 

 

 

이슬람 나즈물 

지도교수: 신석주 

컴퓨터공학과 

조선대학교 대학원 

 

IoT(사물인터넷) 생태계는 실시간 컴퓨터 비전(CV) 응용 프로그램을 가능하게 하기 위

한 빠르고 신뢰적이며 효율적인 이미지 데이터 전송을 필요로 한다. 이러한 요구를 충

족하기위해 직교 주파수 분할 다중화(OFDM) 기반 통신 시스템은 병렬 전송 기법을 활

용하고 높은 주파수 효율성과 데이터 전송률 덕분에 널리 사용되고 있다. 그러나 OFDM 

기반 이미지 통신 시스템에서는 소스 코딩 방식, 복잡한 채널 모델, 데이터 변환 방법, 

변조 기술 및 송수신 안테나 수와 같은 물리 계층 (PHY)에서 야기되는 다양한 손상이 

발생하며 교차 심볼 간 간섭(ISI), 교차 캐리어 간 간섭(ICI)과 같은 간섭도 존재한다. 

이러한 손상은 복구된 이미지 품질을 심하게 손상시켜 하향 스트리밍 응용 서비스에 

적합하지 않을 수 있다. OFDM 기반 통신시스템은 수십 년 동안 심도있게 연구되었기때

문에 각각의 PHY 블록은 통계적 혹은 수학적으로 최적화에 근사화되어가고 있지만 디

지털 통신시스템에서의 손상(impairment)은 여전히 통신의 장애로 여겨진다. 이러한 손

상을 해소하기위해 연구자들은 통신시스템 및 하향 스트리밍 서비스에서 인공 지능(AI)

과 딥 러닝(DL)의 활용을 탐구하여 전반적인 시스템 성능을 향상시키고 있다. DL은 특
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정 이미지 왜곡에 강하며 심하게 왜곡된 이미지에서도 CV 작업을 실행할 수 있다. 

  PHY에서 비롯된 손상은 픽셀 값에 독립적으로 손상을 초래하지만 이미지의 공

간 정보와 같은 특정 내재적 속성이 유지될 수 있다. DL에서는 이러한 속성들이 합성 

계층에서 다차원 특징으로 추출되어 최상위 계층에서 해석될 수 있으며, 이를 통해 효

율적인 DL 기반 CV 응용 프로그램인 이미지 분류와 같은 작업이 가능하다. 따라서 본 

연구에서는 먼저 다양한 OFDM 기반 이미지 통신시스템과 다양한 PHY 손상이 이미지 품

질에 어떠한 영향을 미치는 지에 대해서 평가한다. 그 후에 DL 모델이 이러한 손상에 

대한 하향 CV 응용 서비스에서의 강건성을 분석한다. DL 기반 하향 응용 서비스에서는 

스마트 시티의 지능형 교통 시스템(ITS) 환경에서의 교통 표지판 인식을 고려하였다. 

분석 결과, EfficientNetV2 기반 모델은 높은 손상이 있는 OFDM 기반 이미지 통신시스

템에서 70%에서 90%의 정확도 범위를 달성함을 보여주었다. 또한 다양한 데이터 증강 

기술을 활용하면 정확도가 최대 18% 향상됨을 입증하였다. 

. 
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I. INTRODUCTION 

The rapid advancement of technology in recent years has led to the development of a vast 

network of interconnected devices and systems known as the Internet of Things (IoT) ecosystem, 

which has transformed the way we interact with the physical world. From smart homes to connected 

vehicles, IoT technology has enabled smart devices to communicate with each other, share 

information, and make decisions based on the shared data. These smart devices, sensors, and 

actuators have enabled us to collect vast amounts of data from our surroundings to develop intelligent 

systems. Image communication system is at the center of IoT ecosystem to enable Computer Vision 

(CV) applications such as traffic sign recognition, event monitoring, medical image analysis, and 

surveillance systems. Most of these systems heavily rely on the efficient and reliable transmission of 

visual data between devices, which requires high data rate and link capacity to handle the large 

amounts of image data generated by the IoT devices in real-time.  

The emergence of Fifth Generation (5G) communication systems aims to cater to these 

requirements, with potential advancements in network capacity, spectral efficiency and infrastructure 

evolution compared to previous generations [1]. One such innovation is the Orthogonal Frequency 

Division Multiplexing (OFDM) system, which is recognized to mitigate multipath fading, and 

provide high data rate with high order modulation and parallel transmission schemes [2], [3]. The 

OFDM communication system uses both frequency and time domain multiplexing to transmit data 

over multiple sub-carriers. This division of the data stream into several subcarriers allows for parallel 

transmission, leading to more efficient use of the available bandwidth, and enabling high-speed data 

transmission with minimal interference and noise. Since its inception, it has become popular and has 

been adapted to many practical wireless communication systems and standards such as WiMAX, 

IEEE 802.11, Wi-Fi, and LTE.  

Downstream IoT applications demand robust communication systems that offer high data 

rates and bandwidth efficiency while ensuring image quality retention. While high data rate OFDM-

based image communication systems can facilitate the fast transmission of images, there are 
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significant challenges in processing the vast amount of image data with added noise introduced by 

the utilization of different OFDM systems and the environment itself. Various factors such as 

complex channel models, data transformation methods, modulation techniques, the number of 

antennas, as well as interferences such as Inter-symbol Interferences (ISI) and Inter-carrier 

Interferences (ICI) can heavily corrupt the recovered images. To address these challenges, 

researchers are exploring the use of artificial intelligence (AI) and deep learning (DL) to improve the 

performance of CV applications in IoT ecosystem. AI and DL have emerged as powerful tools for 

processing and analyzing large amounts of data in real-time for various CV applications, which can 

extract meaningful information from image data to achieve state of the art performance [4].  

1.1. Thesis Statement 

Although different physical layer (PHY) blocks in high data-rate OFDM-based image 

communication systems may introduce various impairments to the received image data, DL are 

robust against certain impairments and can significantly enhance the reliability of downstream 

applications that depend on such communication systems for image transmission. 

1.2. Objectives and Contributions 

OFDM-based wireless communication systems and DL-based CV applications (such as image 

classification tasks) have been extensively studied in their respective areas; however, their 

combination has not been thoroughly explored as per literature review, as they are two different areas 

in the science field. Therefore, this research aims to bridge the gap between the two and conduct a 

multi-tier analysis of OFDM-based image communication systems for DL applications while 

availing third-party computational resources. The objectives and contributions of the thesis can be 

further categorized as: 

Research Objective 1: Implement OFDM-based image communication system incorporating 

various techniques within the PHY blocks to improve overall communication system. Subsequently, 

evaluate the quality of the output signal and received images, under the influence of impairments 
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from the PHY block. 

Research Question 1: To what extent do various techniques applied in PHY blocks impact 

the data rate, recovered image quality, and system complexity?  

Research Contribution 1: Implemented OFDM-based image communication systems 

utilizing various source coding/decoding, modulation/demodulation, transformation, channel 

modelling, and channel estimation techniques in the PHY blocks. Evaluated the performance of the 

systems in terms of data rate, efficiency, transmission environment and system complexity. 

Additionally, analyzed the quality of the received images transmitted through these OFDM 

communication systems. 

Research Objective 2: Images received from the various communication systems mentioned 

in objective 1 can be heavily distorted due to the PHY impairments during transmission. DL are 

robust against certain distortions and can be utilized for downstream CV applications. Therefore, our 

second objective is to analyze the robustness of DL on the received images from the OFDM 

communication systems mentioned in objective 1 for the DL-based downstream task.  

Research Question 2: Can heavily distorted image data, corrupted by PHY impairments 

during transmission, be suitable for DL-based downstream applications? 

Research Contribution 2: Conducted robustness analysis of DL-based downstream CV 

applications in smart cities, specifically, traffic sign recognition in Intelligent Transport System (ITS) 

environments. The performances of two distinct DL models are analyzed on recovered images from 

various OFDM-based image communication systems implemented in contribution 1. Additionally, 

we have utilized different augmentation techniques to improve the performance of the DL models 

for the downstream tasks. 

1.3. Publications and Thesis Outline 

The main chapters of this thesis are derived from the research paper published in journals and 

conferences during my Master’s program. The thesis chapters along with the respective publications 
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are given below: 

Chapter 1: This chapter includes the introduction, thesis statement, objectives, contributions and 

thesis outline along with the publications. 

Chapter 2: This chapter provides the preliminaries for the foundation of the research. This includes 

PHY blocks in OFDM communication system and DL for CV applications. 

Chapter 3: This chapter provides the existing related studies of OFDM-based communication system, 

and robustness of DL on image perturbation. 

Chapter 4: This chapter provides the results and discussion of the contributions. It presents the 

performance analysis of various OFDM-based communication systems and the robustness of DL 

against impairments from these systems. The analysis and results in this section have been published 

in below papers (latest first): 

P1. N. Islam and S. Shin, “Impact of Source Coding on Downstream AI Applications”, IEEE 

International Conf. on Artificial Intelligence in Information and Communication (ICAIIC), 

Osaka, Japan, Feb. 2024 (In progress) 

P2. N. Islam and S. Shin, “Robust Deep Learning Models for OFDM-Based Image 

Communication Systems in Intelligent Transportation Systems (ITS) for Smart Cities”, 

Electronics, vol. 12, no. 11, p. 2425, May 2023. 

P3. N. Islam, I. Ahmad and S. Shin, “Robustness of Deep Learning Enabled IoT Applications 

Utilizing Higher Order QAM in OFDM Image Communication System”, IEEE International 

Conf. on Artificial Intelligence in Information and Communication (ICAIIC), Bali, 

Indonesia, Feb. 2023, pp. 630–635. 

P4. I. Ahmad, N. Islam and S. Shin,” Performance Analysis of Cloud-based Deep Learning 

Models on Images Recovered without Channel Correction in OFDM System”, IEEE Asia 

Pacific Conference on Communication (APCC), Jeju, Republic of Korea, Oct. 2022, pp. 
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255-259. 

P5. I. Ahmad, N. Islam, E. Kim and S. Shin, “Performance Analysis of Cloud based Deep 

Learning Models in OFDM based Image Communication system”, KICS Summer 

Conference (하계종합학술발표회), Jeju, Republic of Korea, Jun. 2022, pp. 0500-0501. 

Chapter 5: This chapter concludes the thesis with key findings and provides possible future directions. 

1.4. Other Publications 

Besides the mentioned papers, I have contributed to the following publications as first author: 

P6. N. Islam and S. Shin, “Deep Learning in Physical Layer: A Review on Data Driven End-to-

End Communication Systems and their Enabling Semantic Applications” (In progress) 

P7. N. Islam and S. Shin, “Evaluation of Neural Demappers for Trainable Constellation in an 

End-to-End Communication System", IEEE International Conference on Ubiquitous and 

Future Networks (ICUFN), Paris, France, Jul. 2023, pp. 39-42. 

P8. N. Islam and S. Shin, “Review of Deep Learning-based Malware Detection for Android and 

Windows System”, The 33rd Joint Conference on Communications and Information (JCCI 

2023), Yeosu, Republic of Korea, Apr. 2023. 
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II. BACKGROUND 

2.1. OFDM Communication System  

2.1.1. Fundamentals of OFDM System 

Orthogonal Frequency-Division Multiplexing (OFDM) is an advanced modulation technique 

that operates on multicarrier principles. This allows a single, high-rate data stream to be conveyed 

across multiple lower rate subcarriers. This is done by subdividing a high-rate bit-stream into 

numerous parallel bitstreams, each at a lower rate, and modulating each using orthogonal sub-carriers. 

Frequency-Division Multiplexing (FDM) employs a systematic approach in the utilization of the 

frequency band. It segments the band into multiple non-overlapping frequency sub-channels, 

ensuring that there is no inter-channel interference due to spectral overlap. This approach, although 

efficient in minimizing interference, doesn’t optimize the spectrum’s usage. A novel idea emerged 

in the mid-1960s, proposing the use of parallel data transmission combined with FDM using 

overlapping sub-channels, known as OFDM [5]. 

FDM is a fundamental technique used in telecommunications, where multiple signals are 

transmitted simultaneously over a single communication channel or line. In FDM, each signal is 

assigned a unique frequency range or sub-channel, ensuring that each signal can be transmitted 

without interfering with the others. This allows for the simultaneous transmission of various data 

streams over a common pathway. The mathematical representation of an FDM signal is as follows:  

𝑆ሺ𝑡ሻ ൌ ෍ 𝑠௡ሺ𝑡ሻcos ሺ2𝜋𝑓௡𝑡 ൅ 𝜑௡ሻ

ே

௡ୀଵ

, (1)

where 𝑆ሺ𝑡ሻ  is the composite signal, 𝑠௡ሺ𝑡ሻ represents each individual signal, 𝑓௡  is the carrier 

frequency of each signal, 𝜑௡ is the phase offset of each signal.  

OFDM evolved from the basic concept of FDM. OFDM is a special case of FDM, where the 

sub-carriers are carefully chosen to be orthogonal to each other. The term ‘orthogonal’ refers to a 

precise mathematical relation between the carrier frequencies in the system. In OFDM, the sub-
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carriers are sine waves, which are mathematically orthogonal. This orthogonality is key in preventing 

interference between the sub-carriers, allowing them to be closely spaced, and hence, making the 

transmission more spectrum efficient. Orthogonality is maintained in OFDM by ensuring that the 

cross-correlation between any two sub-carriers is zero, as represented by the equation:  

න cos ሺ2𝜋𝑓ଵ𝑡ሻ
்

଴
cosሺ2𝜋𝑓ଶ𝑡ሻ ൌ 0; 𝑓𝑜𝑟 𝑓ଵ ് 𝑓ଶ (2)

This orthogonal nature of the sub-carriers in OFDM allows for the precise demodulation of 

signals at the receiver end, as long as synchronization is meticulously maintained. The OFDM signal 

is represented as:  

𝑆ሺ𝑡ሻ ൌ ෍ 𝑠௡ ∙ 𝑒௝ሺଶగ௙೙௧ାఝ೙ሻ

ேିଵ

௡ୀଵ

, (3)

where 𝑆ሺ𝑡ሻ  is the composite signal, 𝑠௡ሺ𝑡ሻ represents each individual signal, 𝑓௡  is the carrier 

frequency of each signal, 𝜑௡ is the phase offset of each signal.  

2.1.2. Advantages of OFDM communication System 

OFDM is an advanced modulation scheme used primarily in high-speed digital 

communication systems, enhancing the overall performance and efficiency of wireless networks. It 

has various advantages that make it popular for implementation in practical digital communication 

systems and standards. One of the main advantages of OFDM is its ability to handle high-speed data 

streams efficiently. It transforms the data from a serial stream to parallel streams, increasing the 

duration of data symbols on each sub-carrier. This approach mitigates Inter-Symbol Interference (ISI) 

caused by the dispersive nature of radio channels. Furthermore, to combat ISI, OFDM integrates 

guard interval, which reduces ISI and negates the necessity for a complex equalizer at the receiver. 

OFDM is also resistant against multi-path delay spread, a significant cause of ISI. It minimizes delay 

spread by the conversion of high data-rate symbols into low data-rate, increasing the symbol duration. 

OFDM ensures more effective utilization of spectral resources compared to traditional FDM. 
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Unlike FDM, where the frequency band is divided into multiple individual sub-carriers for 

transmitting parallel data streams, OFDM allows these sub-carriers to overlap spectrally while 

maintaining their orthogonality, ensuring optimized spectrum usage without causing interference. 

The robustness of OFDM against frequency selective fading or narrowband interference is a 

significant attribute of OFDM. Unlike single-carrier systems where a single fade could compromise 

the entire link, OFDM’s multicarrier nature ensures that only a handful of subcarriers are affected, 

allowing for the utilization of error correction coding to amend these minor interferences. 

Another advantage of OFDM is its adaptability to asymmetric data services, commonly seen 

in wireless networks. By altering the number of sub-channels, OFDM can support different 

transmission rates for uplink and downlink, aligning with the dynamic needs and considerations of 

mobile communication systems. Such flexibility fosters its compatibility with various access 

methods, allowing for the development of multi-carrier platforms such as Multi-Carrier Code 

Division Multiple Access (MC-CDMA) and frequency-hopping OFDM. This adaptability enables 

simultaneous data transmission from multiple users, enhancing the system's resistance to narrow-

band interference by restricting its impact to limited sub-carriers. The interoperability and seamless 

integrability of OFDM systems with various modulation techniques makes it the ideal choice for 

hybrid systems as well, such as massive Multiple Input Multiple Output (MIMO) system [6]. 

2.2. PHY blocks in OFDM Communication System  

OFDM is a parallel transmission system that allows spectra of subchannel to overlap with 

subcarrier tones and coherent detection maximizing the available bandwidth. The PHY of the OFDM 

communication system is shown in Figure 1. 

In the OFDM system, serial high data-rate sub-streams are divided into low data-rate sub-

streams and encoded onto orthogonal subcarriers. The spectral shape of the subcarriers is such that 

the discrete subchannels at the orthogonal subcarrier frequencies have a spectrum of 0 and there are 

no Inter Carrier Interference (ICI) among the subchannels. As seen in Figure 1, the encoded bit stream 
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is mapped onto a complex-valued in-phase and quadrature (IQ) constellation plane and converted to 

IQ data according to the chosen modulation techniques in the modulation block. Deployed 

modulation techniques will be further discussed in Section 2.2.2. The serial data stream is then 

converted into parallel data stream and a frequency domain OFDM symbol, 𝑋ሺ𝑘ሻ, is generated by 

inserting training data and guard bands into the IQ data. The training data are the pilot symbols 

(known data-sequence) that are inserted in the data stream to carry out channel estimation [7]. For 

pilot insertion, there are multiple techniques based on the location and order of pilots in the 

transmission. We have used comb-type pilot insertion with linear interpolation as it provides 

improved results [7]. In comb-type pilot insertion, pilots are inserted into specific OFDM subcarriers 

that are continuously transmitted throughout the communication.  

The frequency domain OFDM symbol, 𝑋ሺ𝑘ሻ , is then transformed into the time-domain 

OFDM symbol, 𝑥௧ሺ𝑛ሻ, using inverse transformation followed by parallel-to-serial (P/S) transmission. 

Figure 1. Basic block diagram of OFDM PHY. The frequency–domain and time domain symbol 
representation is also illustrated. 
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The transformation techniques will be further discussed in Section 2.2.3. In the next step, a guard 

interval known as a cyclic prefix (CP), is sliced from the end of 𝑥௧ሺ𝑛ሻ symbol and prepended to 

𝑥௧ሺ𝑛ሻ to form the full time-domain OFDM symbol, 𝑥௖௣ሺ𝑛ሻ, which extends the portion of the OFDM 

symbol in a cyclic manner. The CP mitigates the Inter-Symbol Interference (ISI) and ICI from 

multipath radio channels and neighboring OFDM symbols, and it is selected to be larger than the 

anticipated delay spread. OFDM symbol with CP length 𝑁௚ is given as: 

𝑥௖௣ሺ𝑛ሻ ൌ ൜
𝑥௧ሺ𝑁 ൅ 𝑛ሻ, െ𝑁௚ ൑ 𝑛 ൑ ⋯ , 𝑁 െ 1

𝑥௧ሺ𝑛ሻ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (4)

The signal, 𝑥௖௣ሺ𝑛ሻ, is then elevated to the radio frequency (RF) by the RF front end and 

transmitted through the air via wireless channel. During the transmission over the air, the signal 

experiences the effect of multiple paths and fading effect that creates duplicate signals with different 

time lags, phases, and amplitudes at the receiver. Applied wireless channel models will be further 

discussed in Section 2.2.4. The radio signal is then captured and re-converted to IQ samples by the 

receiver front end. The carrier synchronizer recovers the time-domain OFDM symbols at the receiver. 

The CP is then removed from 𝑦௖௣ሺ𝑛ሻ to yield the remaining IQ samples, 𝑦ሺ𝑛ሻ, which is given by: 

𝑦ሺ𝑛ሻ ൌ ቊ
𝑦௖௣ሺ𝑛ሻ, െ𝑁௚ ൑ 𝑛 ൑ ⋯ , 𝑁 െ 1

𝑦௖௣൫𝑛 ൅ 𝑁௚൯, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (5)

The symbols are then converted to parallel stream and is transformed into the frequency–

domain OFDM symbol, 𝑌ሺ𝑘ሻ, using transformation. The symbol 𝑌ሺ𝑘ሻ undergoes channel estimation 

and channel equalization to produce an estimate of the transmit frequency–domain IQ data, 𝑋෠ሺ𝑘ሻ. 

The channel estimation compares the received data sequence and pilot symbols with the previously 

known ones to obtain an estimate of the Channel Impulse Response (CIR) and perform channel 

correction. Channel estimation techniques used in the experiment will be further discussed in Section 

2.2.5. This estimate is then demodulated into soft bits (log-likelihood), 𝑏෨, which are further converted 

into binary output bits, 𝑏෠, by the channel decoder before passing it to the next communication layer. 
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2.2.1. Source Coding  

Source coding is the process of assigning binary sequences to elements of a specific alphabet. 

In this context, the term "alphabet" refers to a collection of symbols, known as ‘letters’. The set of 

these binary sequences is termed a ‘code’, while the individual sequences within the set are known 

as ‘codewords’ [9]. Fixed-length coding (FLC) is a type of source coding scheme where every 

symbol from the source alphabet is represented by an equal number of bits. For instance, an image 

with color channel Red, Green, and Blue (RGB) will have pixel value ranging from 0 to 255. When 

using fixed-length coding where each codeword has n bits, the total codewords or reconstruction 

levels M equals 2௡, where n is the length of bits, therefore each pixel value (as 2଼ ൌ 256 possible 

values) is assigned a fixed length of 8 bits. While fixed-length coding is simple and straightforward, 

it is not efficient. Lower pixel values are assigned with fixed 8-bit even when they have shorter 

codeword compared to higher pixel values [1], [9]. Additionally, redundant bits are added to the 

codewords with smaller code lengths to make them fixed length. Errors in these redundant bits, 

especially in the most significant ones, from the communication channel can drastically alter pixel 

values and heavily distort the recovered images. 

In practical scenarios, image formats usually incorporate advanced techniques, such as 

compression and variable-length coding (VLC), to minimize the data size, especially for intricate or 

large images. Standards like JPEG combine transformations, quantization, and variable-length 

coding techniques like Huffman coding to attain notable compression ratios. For many applications, 

variable-length coding methods like Huffman coding are favored over fixed-length coding, 

especially for data compression. The advantage is that variable-length coding can utilize the varying 

probabilities of symbols in data, enabling more compressed data representations. Huffman coding is 

a popular method for lossless data compression. This method involves the use of variable-length 

prefix coding to represent data in such a way that frequently occurring symbols are assigned shorter 

codes, while less common symbols are assigned longer codes. This algorithm is efficient in reducing 

data redundancy, thereby optimizing the data for storage or transmission. 
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To implement Huffman coding, first the frequency or probability of each symbol in the 

message or dataset is calculated. Symbols are then sorted based on their calculated frequencies, 

forming the basis for the construction of the Huffman tree, a binary tree where each leaf node 

represents a symbol. The tree is constructed by repetitively selecting two symbols (or trees) with the 

lowest frequencies and combining them to form a new binary tree, the frequency of which is the sum 

of the two selected symbols (or trees). This procedure continues iteratively until a single tree 

containing all symbols is formed. Next, the binary code for each symbol is generated. where moving 

left assigns a ‘0’ and moving right assigns a ‘1’ to a symbol’s code. Consequently, this leads to the 

creation of a unique binary code for each symbol, ensuring that no code acts as a prefix to another, 

ensuring that the encoded data can be uniquely decoded. For instance, a data source that produces 

symbols A, B, C, and D with probabilities 0.4, 0.3, 0.2, and 0.1, respectively. After performing 

Huffman coding, symbol A is represented by the code '0', B by '10', C by '110', and D by '111'. 

The average length L of the Huffman code can be expressed as: 

𝐿 ൌ ෍ 𝑝ሺ𝑥௜ሻ𝑙ሺ𝑥௜ሻ

ெ

௜ୀଵ

, (6)

where, 𝑝ሺ𝑥௜ሻ is the probability of source symbol 𝑥௜, 𝑙ሺ𝑥௜ሻ is the length of the Huffman codeword for 

symbol 𝑥௜ , 𝑀 is the total number of unique source symbols. In contrast to fixed-length coding, 

Huffman coding minimizes the average codeword length, hence reducing the redundancy in the 

encoded data, which results in data compression. The efficiency of Huffman coding is often measured 

in terms of entropy 𝐻ሺ𝑋ሻ, which represents the lower bound on the average length of encoding 

symbols from a source 𝑋. The entropy of a source is given by: 

𝐻ሺ𝑋ሻ ൌ െ ෍ 𝑝ሺ𝑥௜ሻ𝑙𝑜𝑔ଶ𝑝ሺ𝑥௜ሻ

ெ

௜ୀଵ

. (7) 

In an ideal scenario where the probability distribution of the source symbols is known and 

matches the assumptions made during the Huffman coding process, the efficiency of the code can be 
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close to the entropy of the source. However, the performance of Huffman coding decreases when 

there is a mismatch between the actual and assumed probability distributions [1], [9]. Moreover, 

adaptive Huffman coding can be utilized when the source statistics are unknown or non-stationary. 

In adaptive Huffman coding, the Huffman tree is updated dynamically as symbols are being encoded 

or decoded, allowing the code to adapt to the varying symbol probabilities. This makes it more robust 

in practical scenarios where the statistics of the source output are not known in advance, but it adds 

complexity to the encoding and decoding process. 

Error resilience is another consideration in source coding. In Huffman coding, an error in a 

single bit can lead to the misinterpretation of multiple symbols, making the error propagate through 

the decoded output. Error-correcting codes such as Hamming codes can be incorporated into the 

Huffman coding scheme to improve error resilience. A Hamming code can correct single-bit errors 

by adding redundant parity bits to the data. For a k-bit data word, the number of parity bits required, 

𝑟, is determined by the equation:  

2௥ ൒ 𝑘 ൅ 𝑟 ൅ 1 (8) 

Though, the trade-offs between compression efficiency, complexity, and error resilience must 

be considered when utilizing VLC, in real-world applications, Huffman coding plays a significant 

role in file compression techniques such as ZIP files and multimedia compression formats like JPEG 

and MP3 [9]. It is effective in reducing data size without loss of information, which makes it crucial 

for data compression. 

2.2.2. Digital Modulation 

Digital modulation is a technique used in communication systems to transmit information, 

encoded as digital data, using an analog signal. Different modulation schemes, such as amplitude, 

frequency, and phase modulation, are applied to alter the carrier wave, propagating the information 

within it for transmission. These modulated signals can traverse through the communication channel, 

encountering various impairments such as noise, attenuation, and interference. Despite these 
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challenges, the receiver's demodulation process aims to accurately recover the original information 

from the modulated signals. 

Most practical OFDM communication systems exhibit passband frequency responses, and to 

achieve high throughput with bandwidth and power efficiency, digital passband modulation is 

frequently employed in these systems. Digital passband modulation schemes can be categorized 

according to the variation in amplitude, phase, or frequency of the transmitted signal with respect to 

the message signal, such as ASK, PSK, FSK, and QAM. Binary digital modulation is one of the 

simplest forms of digital modulation, where the modulating data signal consists of two distinct levels, 

representing binary '0' or '1'. A widely recognized binary modulation technique is Binary Phase Shift 

Keying (BPSK), which conveys data by altering the phase of the carrier wave. On the other hand, 

M-ary digital modulation is a more sophisticated technique that allows the transmission of more than 

one bit of information in each symbol. In M-ary modulation, "M" symbolizes the number of unique 

states or levels the modulated signal can have. For example, Quadrature Amplitude Modulation 

(QAM) and Phase Shift Keying (PSK) are common M-ary modulation techniques [1]. With a higher 

number of states, M-ary modulation can transmit more bits per symbol, enabling the transfer of data 

at a much higher rate compared to binary modulation, making it suitable for high-speed data 

transmission applications. 

Various M-ary modulation techniques are commonly used in digital communications. QPSK 

utilizes a four-point constellation diagram, uniformly distributed around a circular path. Due to its 

four phases, QPSK has the ability to transmit two bits per symbol, using gray coding to optimize the 

bit error rate (BER). The symbols of the constellation design using sine and cosine is essential for 

the transmission. The representation of QPSK signal for the nth phase is given by: 

𝑠ሺ𝑡ሻ ൌ ඨ
2𝐸
𝑇

cos ቀ2𝜋𝑓௖𝑡 ൅ ሺ2𝑛 െ 1ሻ
𝜋
4

ቁ , 𝑛 ൌ 1,2,3,4, (9) 

where 𝐸 is the energy per symbol, 𝑇 is the period of the signal, 𝑓௖ is the carrier frequency, and 𝑛 is 

the index variable that takes values 1, 2, 3, or 4, representing each of the four possible phase shifts 
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corresponding to phase shifts of 𝜋 4⁄ , 3𝜋 4⁄ , 5𝜋 4⁄  𝑎𝑛𝑑 7𝜋 4⁄ , respectively in QPSK. This can be 

represented in IQ plane. The in-phase (I) function of the signal is: 

𝜑ூ ൌ ඨ
2
𝑇

cosሺ2𝜋𝑓௖𝑡ሻ,  (10)

and the quadrature-phase (Q) function is: 

𝜑ொ ൌ ඨ
2
𝑇

sinሺ2𝜋𝑓௖𝑡ሻ.  (11)

The signal constellation design of QPSK consist of 4 points in the IQ with coordinates 

േඥ𝐸 2⁄ , േඥ𝐸 2⁄ , and the total power is split between the two carriers equally. 

M-QAM is an advanced modulation technique that varies both amplitude and phase of the 

transmitted signal simultaneously, resulting in greater bandwidth and power efficiency which can be 

extended to advanced systems, such as MIMO [2], [3], [11]. Additionally, high data rate can be 

achieved when utilizing higher order M-QAM; however, using higher order M-QAM for higher data 

rates comes with a cost of higher BER, cell-to-cell interference, smaller coverage area, and hardware 

complexity [2], [3], [11]. Despite these challenges, M-QAM is extensively used in various IEEE 

standards and wireless communication systems, such as 5G digital video broadcast communications, 

satellite communications, Wi-Fi, WiMAX, VDSL, and more. A few applications with different order 

of M-QAM for modern communication standards are given in Table 1 [12]. 

Table 1. Applications utilizing M-QAM Modulation for modern communication standards. 

Communication Systems M-QAM Utilized 
IEEE 802.11n/g/ad/ay 16, 64 

IEEE 802.16m (WiMAX 2) 16, 64 
IEEE 802.11ac/af/ah 16, 64,256 

DVB-T2 (Digital Video Broadcasting-Terrestrial) 16, 64,256 
IEEE 802.22b 16, 64,256 

TS 36.331 (Release 14-LTE Advanced Pro) 16, 64,256 
TS 36.331 (Release 15-5G support) 16, 64,256, 1024 

IEEE 802.11ax (Wi-fi 6) 16, 64,256, 1024 
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The M-QAM signal waveforms are composed of two independently amplitude-modulated 

carriers that are in quadrature to each other as shown below [13]: 

𝑠ሺ𝑡ሻ ൌ 𝐼ሺ𝑡ሻ cosሺ2𝜋𝑓௖𝑡ሻ െ 𝑄ሺ𝑡ሻ sinሺ2𝜋𝑓௖𝑡ሻ, 0 ൑ 𝑡 ൑ 𝑇, (12)

where 𝑇 time duration of symbol, 𝑓௖ is the carrier frequency, and 𝐼ሺ𝑡ሻ and 𝑄ሺ𝑡ሻ are the respective IQ 

components of the signal.  

Wireless communication systems aim to achieve high data-rate transmission with efficient 

utilization of limited bandwidth for the best quality of service (QoS), and high spectral and power 

efficiency. This can be achieved by reducing the average transmit power of the constellation design 

in the modulation schemes [2], [3], [11]. Most of the M-QAM constellation designs proposed decades 

ago (from early 1960s) are still being used in commercial communication systems. M-QAM has the 

unique capability to encode information in both amplitude and phase of the transmitted signal, 

allowing higher spectral efficiency. This enables more bits to be encoded per symbol for a given 

average energy in the constellation design [2], [3]. Rectangular M-QAM (RQAM) constellation 

design is widely used due to its improved error performance and use of a simple maximum likelihood 

detection method, which reduces system complexity [12], [14]. Square M-QAM (SQAM) is a type 

of RQAM constellation that is optimized for even-length symbols (16-QAM, 64-QAM, 256-QAM, 

and 1024-QAM) [15]. The distribution of constellation points (symbols) in SQAM forms a perfect 

square lattice with equal rows and columns and maximizes the minimum Euclidean distance between 

points for a given average symbol power. In SQAM, each constellation points shares boundaries with 

a maximum of four neighboring points and differs by only one bit, therefore it has perfect gray coding, 

with a Gray Code penalty (GP) value 1 [14]. The GP was introduced in [14] as the average difference 

in bits between adjacent symbols in a constellation: 

𝐺௉ ൌ
1
𝑀

෍ 𝐺௉
ௌ೔

ெ

௜ୀଵ

, (13)

where 𝑀 ൌ  2௞, 𝑘 is the length of symbol and 𝐺௉
ௌ೔is the GP for the 𝑖௧௛ data symbol, 𝑆௜. In SQAM, 
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the 𝑘 bits of the serial data stream are represented on a two-dimensional constellation design using 

gray coding. The 𝐼ሺ𝑡ሻ and 𝑄ሺ𝑡ሻ distributed over the set ሼേ𝑑, േ3𝑑, … , േሺ𝑀 െ 1ሻ𝑑ሽ independently, 

where 2𝑑 is the adjacent Euclidean distance between the two constellation points given by [13]: 

𝑑 ൌ ඨ
3𝑙𝑜𝑔ଶ𝑀 ∙ 𝐸௕

ሺ𝑀ଶ െ 1ሻ
, (14)

where 𝐸௕ is the bit energy and 𝑀 is the order of QAM. Bit Error Rate (BER) is a vital factor 

in evaluating the effectiveness of constellation designs in modulation schemes. Later sections will 

cover the analysis of the experimental results, but the theoretical bit error calculation of SQAM is 

given by [13]: 

𝐵௘ ൌ
1

𝑙𝑜𝑔ଶ√𝑀
෍ 𝐵௘ሺ𝑖ሻ

௟௢௚మ√ெ

௜ୀଵ

, (15)

where 𝐵௘ሺ𝑖ሻ is the bit error probability of the 𝑖௧௛ bit. 

When designing constellation points with odd length of symbols (32-QAM, 128-QAM, 512-

QAM) in RQAM, the constellation points are usually distributed to form a perfect rectangle, either 

with a horizontal shape parallel to the in-phase axis or with a vertical shape parallel to the imaginary 

axis, both having the same average energy; however, this is not desirable as it increases the peak and 

average powers. To overcome this, [14] proposes SQAM with the outer corner constellation points 

relocated for odd length of symbols forming a cross shape constellation design referred to as cross-

constellation M-QAM (XQAM). XQAM reduces the peak and average energy and provides at least 

1 dB gain over prefect rectangular shape constellation design [14], [16]. The generalized GP for 

higher order XQAM constellation design can be given as  ቀ1 ൅
ଵ

√ଶெ
൅

ଵ

ଷெ
ቁ  [16]. For the BER 

calculations, authors in [14] proposed an approximate expression which was reproduced by authors 

in [16] for XQAM as: 
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𝐵௘ሺ𝑀ሻ ≅ 𝐺௣
𝐴௡

𝑙𝑜𝑔ଶ𝑀
1
2

𝑒𝑟𝑓𝑐 ቆ
𝑑

ඥ𝑁଴

ቇ, (16)

where 𝐺௣ is the GP, 𝐴௡ is the average number of nearest neighbors of a constellation point 

[given by൬4 െ ቀ
଺

√ଶெ
ቁ൰ for XQAM of M൒ 32], 𝑁଴ is the noise density, 2𝑑 is the adjacent Euclidean 

distance between the two constellation points and 𝑒𝑟𝑓𝑐ሺ∙ሻ is the error function defined as: 

𝑒𝑟𝑓𝑐ሺ𝑥ሻ ൌ  
2

√𝜋
න 𝑒ି௧మ

𝑑𝑡
ஶ

௫
. (17)

The decision region for SQAM is simple because the IQ component has distinct vertical and 

horizontal decision regions. However, for XQAM constellations, only horizontal and vertical 

decision regions are not sufficient as their corner constellation points are not available. In XQAM, 

the end columns symbols are relocated to new cross-type positions in the constellation, forming three 

types of symbols, edge symbols, corner symbols, and interior symbols [14], [16], as shown in Figure 

2. The inner symbols form a closed square decision region, while the edge symbols form semi-infinite 

rectangles. The decision region for the corner symbols forms a 45-degree angle along the horizontal 

and vertical axes. Due to this irregular pattern, some of the noisy symbols are not transformed into 

the mapped decision region, resulting in higher bits in error for XQAM constellation design [2], [12]. 

Higher order M-QAM utilizes a greater number of bits per symbol and can significantly 

 
Figure 2. Constellation design for M-QAM modulation. (a) XQAM for odd length of symbol (32-
QAM). (b) SQAM for even length of symbol (64-QAM). 

Regular Constellation Points Points to be relocated from regular RQAM Relocated points to form XQAM

(b)(a)
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increase the data rate. The potential capacity of a system utilizing higher order M-QAM can be 

calculated by using Shannon’s channel capacity formula [17] as: 

𝐶 ൌ 𝐵𝑙𝑜𝑔ଶ ൬1 ൅
𝑆
𝑁

൰ bits/s, (18)

where 𝐶 is the channel capacity in bits per second, 𝐵 is the bandwidth of the channel in Hertz, 

𝑆 is the signal power, and 𝑁 is the noise power. Using Equation (18) to express Shannon bound as 

bandwidth efficiency, 𝜂 ൌ
஼

஻
, it can be expressed as: 

𝜂 ൌ 𝑙𝑜𝑔ଶ ൬1 ൅
𝑆
𝑁

൰ bits/s/Hz.  (19)

In IEEE 802.11ax (Wi-Fi 6) standard, 160 MHz is the maximum allocated channel width [18]. 

Considering that, we can calculate the bandwidth efficiency using Equation (19) for higher order M-

QAM, as given in Table 2. It shows that with higher order M-QAM, the data rate increases 

significantly. Additionally, the table also shows PAPR and GP values for higher order M-QAM 

calculated in [12]. From the table, we can observe that XQAM exhibits higher GP compared to 

SQAM due to its irregular pattern; however, SQAM has higher PAPR compared to XQAM, due to 

its full lattice structure [12]. For the experiment we have considered higher order M-QAM (16-QAM 

to 1024-QAM) modulation with both SQAM and XQAM constellation design for the OFDM-based 

image communication system. 

 

Table 2. Parameters and bandwidth efficiency of XQAM and SQAM constellation designs. 

M‐QAM  Bits per Symbol (k)  PAPR  GP  Bandwidth Efficiency ꜛ 

16 ⁺  4  1.80  1  640 Mbps 

32 *  5  1.70  1.166  800 Mbps 

64 ⁺  6  2.333  1  960 Mbps 

128 *  7  2.073  1.065  1.12 Gbps 

256 ⁺  8  2.647  1  1.28 Gbps 

512 *  9  2.28 1.039 1.44 Gbps 

1024 ⁺  10  2.81  1  1.6 Gbps 
* XQAM constellation; ⁺ SQAM constellation; ꜛ Per 160 MHz Channel. 
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2.2.3. Transformation 

Transformation techniques are used in OFDM to modulate and demodulate the data on the 

subcarriers. In the transmitter, after the data symbols are mapped onto the subcarriers in the frequency 

domain, an inverse transformation is applied that converts the frequency-domain symbols into a time-

domain signal which can be transmitted over the communication channel. At the receiver, the 

received time-domain signal is converted back to the frequency domain to demodulate the data 

symbols from the subcarriers using forward transformation which facilitates the extraction of the data 

symbols from the received signal. There are various Transformation techniques such as, Discrete 

Fourier Transform (DFT) [19], Fast Fourier Transform (FFT) [20] and Discrete Cosine Transform 

(DCT) [21].  

In DFT-OFDM systems, the frequency domain OFDM symbol, 𝑋ሺ𝑘ሻ, is first transformed into 

the time-domain OFDM symbol, 𝑥௧ሺ𝑛ሻ, using an N-point inverse discrete Fourier transform (IDFT). 

IDFT transformation reduces the system complexity of parallel symbols and removes any pulse shift 

that occurred in the modulation process [22]. The IDFT equation is given below: 

𝑥௧ሺ𝑛ሻ ൌ
1
𝑁

෍ 𝑋ሺ𝑘ሻ𝑒
௝ଶగ௞௡

ே

ேିଵ

௞ୀ଴

, (20)

where 𝑗 ൌ √െ1, 𝑁  is the DFT length, 𝑋ሺ𝑘ሻ  is the frequency–domain OFDM symbol for  𝑘 ൌ

0, 1, ⋯ , 𝑁 െ 1, and 𝑥௧ሺ𝑛ሻ is the resultant time-domain OFDM symbol. At the receiver, discrete 

Fourier transform (DFT) is used to convert the time-domain signal back to the frequency domain 

signal, 𝑌ሺ𝑘ሻ. The DFT transformation is given by: 

𝑌ሺ𝑘ሻ ൌ
1
𝑁

෍ 𝑦ሺ𝑛ሻ𝑒
ି௝ଶగ௞௡

ே

ேିଵ

௡ୀ଴

, (21)

where 𝑦ሺ𝑛ሻ is the received signal after removing the CP. The FFT is an algorithm to compute the 

DFT efficiently, and it does not have a distinct equation of its own. The FFT algorithm computes the 

same result as the DFT but in a more efficient manner. The equation remains the same, but it reduces 
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the number of computations required from 𝑂ሺ𝑁ଶሻ 𝑡𝑜 𝑂ሺ𝑁𝑙𝑜𝑔𝑁ሻ, where N is the number of data 

points. 

DCT-OFDM is similar to DFT, and the operation takes place in a similar manner with 

inverse operation at the transmitter end and forward operation at the receiver end. One fundamental 

difference lies in their basis functions. DFT employs a mix of sine and cosine functions as its basis, 

allowing it to handle both amplitude and phase information, resulting in a complex output. On the 

other hand, DCT exclusively uses cosine functions, resulting in a purely real output, thus lacking 

phase information, which inherently offers symmetry in its output. This could reduce complexity in 

signal processing and imbalance in the in-phase/quadrature imbalance. Additionally, DCT 

concentrates the signal energy into lower frequency components, which can be advantageous in 

certain scenarios, such as image and audio transmissions over OFDM systems. At the transmitter, 

the IDCT is given by: 

𝑥௧ሺ𝑛ሻ ൌ
1
𝑁

෍ 𝛼ሺ𝑘ሻ𝑋ሺ𝑘ሻcos ቆ
𝜋𝑘ሺ2𝑛 ൅ 1ሻ

2𝑁
ቇ

ேିଵ

௞ୀ଴

, (22)

where: 

𝛼ሺ𝑘ሻ ൌ

⎩
⎪
⎨

⎪
⎧

1

√𝑁
, 𝑘 ൌ 0

ඨ
2
𝑁

, 𝑘 ൌ 1, 2, … , 𝑁 െ 1

. (23)

the forward DCT at the receiver is given by: 

𝑌ሺ𝑘ሻ ൌ 𝛼ሺ𝑘ሻ ෍ 𝑦ሺ𝑛ሻcos ቆ
𝜋𝑘ሺ2𝑛 ൅ 1ሻ

2𝑁
ቇ

ேିଵ

௡ୀ଴

, (24)

DFT is more commonly used in OFDM compared to DCT due to its capacity to handle both the 

magnitude and phase information of signals. 
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2.2.4. Wireless Channel 

A simplified wireless channel is well specified in [7], [23]. The time-domain received signal 

over a wireless channel can be defined as: 

𝑦௖௣ሺ𝑛ሻ ൌ 𝑥௖௣ሺ𝑛ሻ ⊗ ℎሺ𝑛ሻ ൅ 𝑤ሺ𝑛ሻ,  (25)

where 𝑦௖௣ሺ𝑛ሻ, 𝑥௖௣ሺ𝑛ሻ, ℎሺ𝑛ሻ, 𝑤ሺ𝑛ሻ, and ⊗ are the received signal, transmitted signal, channel 

impulse response, AWGN, and convolution operator, respectively, in the time domain. The 

frequency–domain received signal is obtained by DFT transformation of (5) as: 

𝑌ሺ𝑘ሻ ൌ 𝑋ሺ𝑘ሻ ⋅ 𝐻ሺ𝑘ሻ ൅ 𝑊ሺ𝑘ሻ,  (26)

where 𝑌ሺ𝑘ሻ, 𝑋ሺ𝑘ሻ, 𝐻ሺ𝑘ሻ, 𝑊ሺ𝑘ሻ , and ⋅  are the received signal, transmitted single, channel 

impulse response, AWGN, and element-wise product, respectively, in the frequency domain. AWGN 

with zero mean Gaussian distribution and uniform spectral density is often used to model the additive 

noise (for example, electric noise, thermal noise, interference) in the OFDM system. Therefore, the 

AWGN, 𝑤ሺ𝑛ሻ, from Gaussian distribution with zero mean and standard deviation, is given by: 

𝑤ሺ𝑛ሻ ൌ ൜
𝜎 ⋅ 𝒩ேሺ0, 𝜎ሻ, 𝐹𝑜𝑟 𝑟𝑒𝑎𝑙

𝜎 ⋅ ሾ𝒩ேሺ0,1ሻ ൅ 𝑗𝒩ேሺ0, 𝜎ሻሿ, 𝐹𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑥
, (27)

where 𝒩ேሺ0, 𝜎ሻ is the Gaussian noise vector with 0 mean and standard deviation 𝜎 ൌ
ேబ

ଶ
, and 𝑁଴ is 

the power spectral density. 

Signal transmitted over wireless channel experience reflection, diffraction, and scattering, 

leading to multiple versions of the same signal arriving at the receiver with different amplitude, phase, 

and delay. This phenomenon is known as the multipath fading effect and can be modelled as linear 

finite impulse-response (FIR) filter give as [24]: 

𝑦௧ ൌ ෍ ℎ௟ ⋅ 𝑥ሺ௧ି௟ሻ

௅ିଵ

௟ୀ଴

, where, ℎ௟ ൌ ෍ ඥ𝛺௞𝑧௞

௄

௄ୀଵ

𝑠𝑖𝑛𝑐 ൬
𝜏௞

𝑇௦
െ 𝑙൰, (28)

vector 𝛺 and 𝜏 are the power-delay profile (PDP) of fading process, and 𝑧௞ and 𝑇௦ are the complex-

valued variable and sampling period of the discrete signal, respectively. 𝐿 are the filter length chosen, 
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such that |ℎ௟| is small for 𝑙 ൒ 𝐿 or 𝑙 ൏ 0. The effect of different channels on frequency–domain 

symbols of the proposed 16-QAM OFDM system is shown in Figure 3. 

For the multipath Rayleigh Fading channel, the real and imaginary part of 𝑧௞ are independent 

and identically distributed (IID) Gaussian random variables, therefore |𝑧௞|ଶ follows the Rayleigh 

Fading distribution. 𝐾 is the number of paths in multipath fading channel and if 𝐾 ൌ 1 it is said to 

be flat fading with only on path, whereas, if 𝐾 ൐ 1 it is frequency selective fading with multipath 

interference. For the experiment, we have considered simple AWGN channel and Rayleigh Fading 

channel for the OFDM-based image communication system. 

2.2.5. Channel Estimation 

Channel estimation is crucial to obtain information about the Channel Impulse Response 

(CIR). Pilot-aided channel estimation is often used at the receiver by inserting known data sequences 

(pilots) in the form of block, comb, or scatter patterns to sample the channel distortions [25], [26]. 

These pilots are recognizable at the receiver and are either constant or low auto-correlation sequences, 

such as Zadoff–Chu sequences. For channel correction, the received bit sequence is compared with 

the known ones at the receiver to estimate the CIR, which is then equalized to mitigate the channel 

distortions [25], [27].  

 
Figure 3. Effect of various channel models. System with 16-QAM Modulation using LS Channel 
Estimation at Eb/N0 15 dB over (a) AWGN and (b) Rayleigh Fading Channel  

RX
TX

RX
TX

(a) (b)
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The most common pilot-aided channel estimation method is the least square (LS) technique. 

The LS method increases the sampling rate of the channel frequency responses at the pilot subcarriers, 

and then uses interpolation, such as linear, spline, or cubic, to estimate the Channel Impulse Response 

(CIR) at the data subcarriers [7], [23], [26]. The LS estimator of the channel is given by:  

𝑋෠ሺ𝑘ሻ ൌ
𝑌ሺ𝑘ሻ

𝐻෡௣
௅ௌ , (29)

where,  𝐻෡௣
௅ௌ ൌ ℱ ቆ

𝑌௣

𝑋௣
ቇ. (30)

𝑋෠ሺ𝑘ሻis the estimated channel, 𝐻෡௣
௅ௌ contains the LS estimate, 𝑌௣ ∈ ℂே೛ൈ ଵ is the received pilots, 𝑋௣ ∈

ℂே೛ൈ ே೛  is a matrix with known transmitted pilot symbols on its diagonals, and ℱሺ⋅ሻ  is the 

interpolation operation, such as linear, cubic, spline, etc. [25]. The LS algorithm is simple because it 

disregards noise and ICI, therefore, it is calculated with minimal complexity without any channel 

statistics knowledge; however, it results in high means square error (MSE).  

Minimum Mean Square Error (MMSE) channel estimation technique utilizes the second-order 

statistics of the channel conditions (prior channel knowledge) and performs channel estimation [28], 

[29]. It uses channel auto convenience to reduce the MSE, as shown below: 

𝐻෡௣
ெெௌா ൌ 𝑅ுሾ𝑅ு ൅ ሺ𝑋௣𝑋௣

ுሻିଵሿିଵ𝐻෡௣
௅ௌ, (31)

where 𝑅ு  is the frequency–domain correlation matrix at the pilot-symbols with 𝑅ு ൌ

𝐸ሾ𝐻௣𝐻௣
றሿ  and the channel coefficient matrix can be obtained via interpolation [28]. In our 

experiment we have considered both LS and MMSE channel estimation with linear interpolation. 

Linear interpolation utilizes the frequency response of two neighboring pilots to estimate the 

frequency response of the data subcarriers in between them, therefore, it has simple computational 

complexity [28]. Overall, MMSE channel estimation outperforms LS estimator, especially in lower 

Eb/N0 regions. However, as the number of subcarriers in an OFDM system increases, the 

computational complexity of the MMSE estimator also increases due to the computations required 

for matrix inversions [30].  
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2.3. DL for Image Classification Task 

2.3.1. DL Basics 

The Artificial Neural Network (ANN) can learn from examples and use that knowledge to 

classify new, unseen data. This is referred to as a classification task and ANNs are particularly well-

suited to this task [31], [32]. The capability to classify new unseen data (known as generalization) 

make ANNs highly effective in solving classification problems where the desired outcome cannot be 

pre-determined [32]. 

ANNs consist of input and output layers, with one or more hidden layers made up of 

interconnected nodes called neurons. The most common type of layer is the fully connected layer, 

where every neuron is connected to every other neuron in the previous and next layer. The activation 

function determines the transmission of information between these neurons in the layers. To 

effectively train an ANN, a loss is calculated between the predicted outputs and the actual outputs. 

The training algorithms tracks and updates the weights of the neurons to minimize the loss over time, 

using optimization techniques. Moreover, backpropagation algorithm is used to propagate error 

information from the last layer to the first layer for weight modification and train the model in 

iteration or epoch. During training, the model assesses its performance on validation data (which is 

distinct from the training data) to fine-tune the hyperparameters and improve the model architecture. 

If the model is not trained enough, it is referred to as underfitting, meaning that it did not learn the 

training set well enough. On the other hand, overfitting occurs when the network has learned the 

training set too well, causing it to struggle with new data [33]. Different regularization techniques 

are adapted to mitigate the underfitting and overfitting problem. The final evaluation of the model’s 

generalization is performed on unseen data, known as testing or inferencing.  

A Deep Neural Network (DNN) is a type of ANN with multiple hidden layers. The term “deep” 

refers to the number of sequential layers within the network, indicating the number of times the input 

data passes through the transfer functions of sequential layers. This results in a more complex model 
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capable of capturing and representing high-level abstractions and patterns in the data. DNNs are 

designed to learn and make predictions based on large amounts of complex data, by processing and 

transforming the data iteratively through multiple hidden layers [4]. 

2.3.2. Convolutional Neural Network 

Convolutional neural network (CNN) is a type of DNN that was introduced in [34] to provide 

an efficient learning method for images. The CNN architecture mostly consists of a convolutional 

layer, pooling layer, activation function, fully connected layer, and output layer. The convolutional 

layer is used for extracting features from input data. It utilizes a filter (represented by a small weight 

matrix) that slides over the input data, performing element-wise multiplication and addition to 

produce a set of feature maps. These filters have adjustable weights, learned through 

backpropagation, and are used to recognize local patterns in the input data. The convolutional layer 

is effective in learning features that are invariant to shifts in the input, reducing model complexity 

and improving model generalization. The size, stride, and padding of the filters can be adjusted to 

control the spatial dimensions of the output feature maps. By using multiple convolutional layers, 

the model can learn hierarchical representations of the input data, making it effective for tasks such 

as image classification and object detection. 

A convolution layer consists of a set of 𝐹 filters known as depth. The weights of the filters are 

𝑊௙ ∈ ℝ௔ൈ௕, 𝑓 ൌ 1, … , 𝐹. These weights generate feature map, 𝑌௙ ∈ ℝ௡ᇲൈ௠ᇲ
 from an input matrix 

𝑋 ∈ ℝ௡ൈ௠ as per the given convolution: 

𝑌௜,௝
௙ ൌ ෍ ෍ 𝑊௔ି௞,௕ି௟

௙
௕ିଵ

௟ୀ଴

⋅ 𝑋ଵା௦ሺ௜ିଵሻି௞,ଵା௦ሺ௝ିଵሻି௟

௔ିଵ

௞ୀ଴

, (32)

where 𝑠  is called stride with value ≥ 1, 𝑛ᇱ ൌ 1 ൅ ⌊ሺ𝑛 ൅ 𝑎 െ 2ሻ 𝑠⁄ ⌋  and 𝑚ᇱ ൌ 1 ൅

⌊ሺ𝑚 ൅ 𝑏 െ 2ሻ 𝑠⁄ ⌋. It is assumed 𝑋 is zero-padded which denotes, 𝑋௜,௝ ൌ 0 for all 𝑖 ∉ ሾ1, 𝑛ሿ and 𝑗 ∉

ሾ1, 𝑚ሿ. Furthermore, in image processing, 𝑋 is usually a three-dimensional tensor; therefore, the 

weights are three-dimensional as well and applies on all input channels simultaneously. After 
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obtaining the feature maps from a convolution layer, a pooling layer performs down-sampling on the 

feature maps obtained from the previous convolution layer. The purpose of pooling is to reduce the 

spatial dimensions of the feature maps, making the network more computationally efficient, and 

invariant to translations in the input image. Therefore, the pooling layers partitions 𝑌 into 𝑝 ൈ 𝑝 

regions with values representing the most important information from the set and computes a single 

output value using pooling techniques such as max-pooling and average-pooling, which, respectively, 

take the maximum or average value from the features in the pooling window as the output before 

passing it to the next layer.  

The activation function (non-linearity layer) in CNN introduces non-linearity into the network, 

which benefits the stacking of multiple layers in a network. The activation function is typically 

applied to each element of the input vector and is used to determine the output of the network, often 

in a binary format, such as 0 or 1. The resulting non-linearity enables deep neural networks to model 

complex, non-linear systems and provides a powerful tool for pattern recognition tasks. Previously, 

tanh and sigmoid activation functions were popular; however, with the understanding that most data 

are centered around zero, newer techniques, such as rectified linear units (ReLU) and exponential 

linear units (ELU), have become prevalent because they offer non-linear behavior near zero [35], 

[36].  

A fully connected layer (also known as a dense layer) in CNN is connected to all neurons in 

the previous layer and next layer. It takes the output from the convolutional layers and applies a 

matrix multiplication operation, followed by a bias offset, to produce a final prediction for the image 

classification. The final layer in CNN is usually a fully connected layer, which produces a vector of 

values, each representing a probability for a given class (category that data sample belongs to). More 

details on CNN can be referred to in [4]. 

Augmentation Techniques: Improving the generalization of the model and mitigating the 

overfitting problem is a major challenge in the deep learning field, including in CNN models. Data 

augmentation is a method that addresses this challenge by improving the sufficiency and diversity of 
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the training data. It is used to artificially expand the size of the training dataset by generating modified 

versions of images in the dataset, creating a more diverse and comprehensive representation of the 

real-world data. The goal is to make the model more robust to variations in the data and reduce 

overfitting by increasing the diversity of the training set. Common techniques include random 

rotation, scaling, flipping, cropping, and adding noise to the images. Additionally, data augmentation 

helps to reduce bias in the model by creating new data that helps the model better capture the nuances 

and variations in the real-world data. LeNet-5 [37] was one of the first CNN applications that utilized 

image data augmentations for handwritten digit classification. The authors in [38] presents various 

existing methods and promising developments of data augmentation in DL. 
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III. RELATED WORK 

3.1. OFDM-Based Image Communication System 

Orthogonal Frequency Division Multiplexing (OFDM) is a standard communication system 

that has been adapted across various technologies and standards. In this section, we will discuss a 

few of the related works that utilize OFDM communication system for image transmission. The 

authors in [39] investigated the transmission of gray scale images using an OFDM system with 

various even-ordered M-QAM modulations (from 4-QAM to 256-QAM) and channels with different 

fading and shadowing parameters. The results demonstrate that lower order M-QAM modulation 

provides a higher quality of recovered image due to a lower Bit Error Rate (BER). Authors in [40] 

evaluated the performance of Quadrature Phase Shift Keying (QPSK), 4-QAM, 16-PSK, 16-QAM 

modulation for an OFDM-based image transmission system over an Additive White Gaussian Noise 

(AWGN) channel. Their results showed that 16-QAM provided the best performance in terms of 

image quality and BER. Authors in [41] investigates the integration of Discrete Wavelet Transform 

(DWT) and Fast Fourier Transform (FFT)-based OFDM with QPSK modulation for the transmission 

of grayscale images in AWGN and Rayleigh channels. They propose the integration of two adaptive 

filtering techniques, least mean squares (LMS) and recursive least squares (RLS), to reduce BER and 

concludes LMS outperforms RLS in terms of noise pattern detection and efficient recovery of the 

modulating signal. Authors in [42] proposed a new technique for transmitting images over 

underwater time-dispersive fading channels, called Progressive Zero-Padding (PZP)-OFDM using 

QPSK modulation, which improves the BER in underwater environments. Authors in [43] analyzed 

the BER performance of image transmission in non-OFDM and OFDM communication systems 

under various channel conditions (AWGN, Rician and Rayleigh Fading channels) and modulation 

techniques (Binary-PSK, QPSK, 16-QAM). Their results show that OFDM has better performance 

compared to non-OFDM, and overall BPSK in AWGN had the lowest BER. Authors in [44] have 

implemented a real-time practical OFDM system for image transmission using Raspberry Pi (RPi) 

and Pluto software-defined radios (PlutoSDR). The performance of the system was evaluated by 
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comparing the BER for different modulation schemes, including BPSK, QPSK, 16-PSK, and 256-

PSK, where BPSK had the best performance. Authors in [45] investigated the impact of channel 

estimation for OFDM based image transmission through AWGN channel with various modulation 

schemes (BPSK, QPSK, 8-PSK, and 16-QAM), and concluded that Least Square (LS) method 

significantly improved the quality of the restored images. Authors in [46] employed two types of 

OFDM systems, FFT-OFDM and DWT-OFDM, to transmit compressed images using Discrete 

Cosine Transform (DCT), Wavelet (WAV) transform, and compressive sensing methods using 

different modulation techniques (BPSK, QPSK, 16-QAM, and 64-QAM) over AWGN channel. 

Their results showed that 16-QAM DWT-OFDM outperformed FFT-OFDM with lower Mean 

Square Error (MSE) while avoiding the use of a cyclic prefix. Authors in [47] compared different 

modulation techniques (QPSK, 16-QAM, and 64-QAM) for transmitting grayscale and Red Green 

Blue (RGB) images over OFDM image communication system under varying channel conditions 

(AWGN and Rayleigh Fading), and filters (Wiener, Median, and No Filter). Their results show QPSK 

in AWGN channel had better recovered images using a median filterer for a lower Signal-to-Noise 

Ratio (SNR) value. Authors in [48] investigated the effect of improved tone reservation (ITR) on the 

peak-to-average power ratio (PAPR) of a 16-QAM-OFDM system for transmitting images over 

AWGN channel. Their results show that ITR can effectively reduce PAPR, leading to improved 

image quality and fewer transmission errors. The authors in [49] and [50] performed a comprehensive 

analysis of image communication under various conditions in Single User Multiple Input Multiple 

Output (SU-MIMO) and Massive MIMO OFDM systems, respectively. They evaluated the effect of 

various channel conditions (AWGN, Rayleigh), modulation techniques (BPSK, QPSK, 8-PSK, 16-

PSK, 32-PSK, 64-PSK), antenna configurations, number of users, and transformation techniques 

(FFT, Fractional Fourier Transform, DWT, DCT) on image communication in 5G networks. The 

results from the former study indicated that using the DCT transformation technique improved the 

BER compared to FFT and increasing the number of received antennas led to higher quality 

recovered images. The later study indicated that DWT outperformed FRFT and FFT in terms of BER; 

however, as the number of users continued to increase in the Massive MIMO system, the quality of 
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the recovered image decreased irrespective of the transformation technique used. Additionally, both 

studies showed that lower-order PSK modulation produced better results overall.  

There have been several studies of image transmission across OFDM communication system 

with DL based channel coding and decoding techniques for CV applications. For instance, [51] first 

proposed deep joint source-channel coding (JSCC) for wireless image transmission by combining 

the source and channel coding into a single auto-encoder structure. It optimized source compression 

and error correction coding through back-propagation, which outperformed conventional schemes 

(separate source and channel coding) under AWGN and Rayleigh flat fading channels. This scheme 

was further extended to larger neural networks [52], feedback network [53], progressive transmission 

[54], and additional attention modules [25,26]. Motivated by model-based deep learning, DL-based 

JSCC were also extended to OFDM image communication system with fading channels in [27,28]. 

The former study fed the neural network-encoded image as frequency domain OFDM baseband 

symbols and used adversarial measures to further improve the quality of reconstructed images. The 

latter utilized double attention mechanism to better map image features to subchannels and ensure 

important features were transmitted over the high-quality subchannels. Both [27,28] outperformed 

conventional separate coding schemes.  

The aforementioned research works focused on OFDM-based image communication systems; 

however, they have not considered, multi-tier analysis of the blocks in the OFDM PHY that 

encompasses higher-order modulation schemes, various channel models and channel estimation. 

Additionally, it is not yet practical to adapt PHY as a DL architecture. Furthermore, DL application 

of the received images for a specific task has not been considered, only system performance and 

image quality has been studied. The authors in [59]–[61] attempted to mitigate this gap and 

considered DL-based applications, and analyzed the performance of DL models on received images 

from various OFDM communication systems. Authors in [59] determined that images from FFT-

based OFDM were better for image transmission for cloud-based DL applications, as opposed to 

DCT-based systems. Authors [60] investigated the impact of channel correction on DL models in the 
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OFDM-based image communication system and showed that channel correction had a major impact 

on the quality of recovered images, although DL models still produced acceptable results without it 

(with a lesser degree of improvement). Authors in [61] evaluated the impact of higher order M-QAM 

on the performance of the DL model. Their results showed that the DL model accuracy was lower 

on images from higher order M-QAM compared to lower order M-QAM, but the overall accuracy 

was still relatively high and suitable for applications that are unaffected by small fluctuations in DL 

accuracy. The studies have investigated the DL-based applications for image communication systems; 

however, they have not considered multi-tier analysis of the OFDM communication system, 

including fading channels, modulation techniques, and channel estimation methods. Additionally, 

they have not evaluated different DL models, nor have they exploited any model training techniques, 

such as data augmentation, to improve the DL model accuracy. Therefore, for this study we consider 

multi-tier analysis of various OFDM-based image communication systems and robustness analysis 

of multiple DL models on images recovered from these systems to enable CV applications in ITS. 

Therefore, the focus of this thesis is on the PHY of OFDM communication systems, and the MIMO 

systems are left for future work. 

3.2. Robustness of DL Models on Image Perturbation 

Robustness analysis of DL models on noisy images from different communication systems 

for CV applications are also considered in this study. In this section, we will discuss the related work 

based on robustness of DL models on images with different types of noise perturbation. Despite the 

success of Deep Neural Network (DNN) with complex and high-dimensional image data, they are 

still not robust against image perturbations. Authors in [62] were the first to discover the vulnerability 

of DNNs to certain input perturbations, which result in significant discontinuities in their outputs. 

These perturbations were named adversarial examples and were found to cause a wide range of DL 

models to misclassify, regardless of the different model architecture or training data. The authors 

also examined several interesting properties of neural networks, including their capacity for learning 

intricate functions, the existence of adversarial examples that can confuse the network, and their 
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ability to generalize and extrapolate. Authors in [63] carry out further studies on adversarial models 

and present defense systems, such as adversarial training, input transformations, and robust 

optimization to minimize the effect of adversarial examples. 

Among various image perturbation, visible noise on digital images is a type of perturbation 

resulting from perceptible alterations made to the image pixels, and it can have an impact on DL-

based image classification tasks. The introduction of visible noise in digital images during the 

processes of its acquisition, encoding, transmission, and processing is an inherent consequence of 

the utilization of electronic components, particularly sensors and actuators [64], [65]. A 

comprehensive overview of digital image noise models can be found in [65], which highlights 

various types of noise that can impact digital images, such as additive Gaussian noise, quantization 

noise, color quantization with dither, salt–pepper noise, Rayleigh noise, gamma noise, uniform noise 

(white noise), and Poisson noise. The paper also discusses methods for modeling and analyzing these 

noises using probability density functions and statistical models, and common techniques for 

removing them, such as spatial filtering, frequency filtering, and wavelet denoising.  

DL has made remarkable advancements in various domains, particularly in image 

classification. However, the accuracy of these models degrades when images are subjected to such 

distortions and noise [66]. Authors in [66] evaluated various factors that contribute to image quality, 

including resolution, noise, and blur, and evaluated their individual impacts on DNNs. The outcomes 

indicated that noise and blur have a stronger impact on DNNs than other factors. The authors also 

presented strategies, such as pre-processing and data augmentation, for improving DNN performance 

on low-quality images. Authors in [67] evaluated the robustness of Convolutional Neural Networks 

(CNN) to various types of image degradations, such as Gaussian noise, salt and pepper noise, Joint 

Photographic Experts Group (JPEG) compression, and motion-blur. The results showed that CNNs 

are generally more robust to image degradation compared to traditional methods, but they still have 

limitations. To address these limitations, the authors proposed a CNN architecture called a capsule 

network, which was shown to be more robust to degradation. Authors in [68] investigate the effect 
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of color information on the robustness of CNNs for image classification tasks. They have compared 

the performance of CNNs trained on color images and grayscale images when subjected to 

degradation, such as Gaussian noise and JPEG compression. The results show that CNNs trained on 

color images are more robust to degradation compared to those trained on grayscale images, due to 

the additional cues provided by the color information. In CV tasks, CNNs have shown outstanding 

performance when applied to identically and independently distributed data. However, they are 

vulnerable to changes in data distribution [62] and color corruption [69] as they only use local 

features [70], [71]. Authors in [72] proposed Vision Transformers (ViT) to mitigate this challenge 

by considering global image context and reduced bias towards local textures, resulting in robustness 

towards occlusions. Although the aforementioned studies have shown promising results in improving 

the accuracy and robustness of CNN models against various noise perturbation on the images, they 

have not considered various communications systems and the performance of DL models on images 

with heavy noise perturbations introduced by these communication systems. Therefore, in current 

study we focus on the performance of CNN models against noise from various OFDM-based image 

communication systems for CV applications in ITS. 
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IV. RESULTS AND DISCUSSION 

4.1. Evaluation Matrices  

4.1.1. Image Communication System Analysis Matrices 

BER: The Bit Error Rate (BER) is a standard performance metric in digital wireless 

communication systems to measure the quality of the reconstructed signal at the receiver. It calculates 

the ratio of incorrect bits to the total number of bits transmitted, typically expressed as a ratio. The 

BER is a crucial measure in determining the maximum achievable data rate for a given system design, 

considering the presence of noise and other sources of interference in the channel.  

PSNR: Peak Signal-to-Noise Ratio (PSNR) is an important metric to evaluate the quality of 

recovered images in image communication systems. Unlike BER, which indicates the performance 

of the communication system in bit level, PSNR provides a measure of the perceptual quality of the 

images by comparing the received image with the original transmitted image. PSNR is a full-

reference image quality measure that uses an objective approach based on explicit numerical criteria, 

such as comparisons with ground truth or prior knowledge expressed in terms of statistical parameters 

and tests. The PSNR value is measured in Decibels (dB) and approaches infinity as the mean square 

error (MSE) approaches zero, implying that a higher PSNR value indicates a higher-quality image. 

A low PSNR value, on the other hand, signifies significant numerical differences between the original 

and recovered images [73].  

MS-SSIM: The MS-SSIM (multi-scale structural similarity index) is another full-reference 

image metric developed to compare the quality of an input image to that of a reference image with 

no distortion. Developed by Wang et al. [73], the MS-SSIM is correlated with the quality perception 

of the human visual system (HVS). It works by aggregating the inner similarity indexes obtained 

from multiple spatial scales (resolutions) to estimate the overall similarity between the input and 

reference images. MS-SSIM is an improved metric of single-scale SSIM (SS-SSIM), resolving the 

limitations of being only suitable for limited visual contexts and unable to account for the vast visual 
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diversity [74]. MS-SSIM is also measured in dB and the values are usually represented in log scale 

to observe high quality results, െ10𝑙𝑜𝑔ଵ଴ሺ1 െ 𝑀ሻ, where 𝑀 is the MS-SSIM score. 

The full-reference image quality measures such as PSNR, MS-SSIM, require a reference 

image with no distortion to calculate an objective quality score. However, in cases where images are 

generated, or no reference image is available, non-reference image quality can be used. Perception-

based Image QUality Evaluator (PIQUE) is a non-reference perception-based evaluation matric that 

uses arbitrary distortion for image quality measurement in natural images [75]. PIQUE value is in 

the range of [0 to 100], and the score is interpreted in steps of twenties, for example, 0 to 20 means 

excellent and 81 to 100 means bad quality of the image. 

4.1.2. DL Performance Analysis Matrices 

In DL, performance analysis is critical to understand the performance of the DL model, in 

tasks such as classification or regression. Various metrics help in evaluating the performance of these 

models. 

Accuracy is a fundamental DL performance metric. It quantifies the overall correctness of the 

model by calculating the proportion of true predictions among the total number of instances.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
. (33)

A true positive (TP) is an outcome where the model correctly predicts the positive class, while a true 

negative (TN) is an outcome where the model correctly predicts the negative class. False positives 

(FP) are instances where the model incorrectly predicts the positive class, and false negatives (FN) 

are instances where the model incorrectly predicts the negative class. 

Precision and recall (sensitivity) are particularly crucial in imbalanced datasets. Precision 

refers to the proportion of true positive predictions among all instances that the model predicted as 

positive. It represents the reliability of the model in predicting positive instances. Recall, or 

sensitivity, indicates the ability of the model to correctly identify positive instances from actual 
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positives, helping understand the model's coverage of the positive class in the dataset. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
, (34)

 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
. (35)

F1-score uses precision and recall evaluating the performance of the model. It is particularly 

useful when the class distribution is imbalanced, ensuring that both false positives and false negatives 

are considered in the evaluation. The F1 score ranges from 0 to 1, where a score of 1 indicates a 

perfect model and a score of 0 indicates a poor model. It gives more weight to lower numbers; thus, 

a model can only achieve a high F1 score if both precision and recall are high. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ 2 ൈ
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙

. (36)

There are various visual representations to evaluate the Models’ performance. A confusion 

matrix is a comprehensive table used for performance evaluation. It comprises of all four elements: 

TP, TN, FP, and FN. This matrix provides a more detailed view of the model's performance, helping 

identify the types and sources of errors made. 

The generalizability of the DL model can also be observed using the t-distributed stochastic 

neighbor embedding (t-SNE) [76] visualization algorithm. It is a probabilistic dimensionality 

reduction algorithm which maps high-dimensional feature points into low-dimensional feature space 

(typically 2D or 3D) while preserving the similarities. Features close to each other in the high-

dimensional space are mapped closer to each other in the lower-dimensional space with high 

probability. Points that are close together in the t-SNE plot are likely to have similar features or 

attributes (in terms of color, texture, or shape), whereas points that are far apart are likely to be 

dissimilar. 

Gradient-weighted Class Activation Mapping (Grad-CAM) heat map is another visualization 

algorithm that is used to visualize the attention region for a CNN based DL models while making 
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predictions [77], [78]. It uses the gradient of the final convolutional layer with respect to the predicted 

class to weigh the layer activations, and then averages these weighted values over the spatial 

dimensions to obtain a class activation map. The map shows the crucial region of the image that is 

used to make the prediction by the CNN model. 

In the following section, we present the performance analysis of the study. First, we discuss 

the performance of various OFDM image communication systems and the effect of PHY 

impairments on image quality. Then, we discuss the environment considered for the downstream DL 

application, and finally the robustness of DL against these impairments for downstream CV 

applications. 

4.2. Performance Analysis of OFDM Image Communication System 

In this section, we discuss the performance of various OFDM image communication systems 

and the effect of PHY impairments on image quality.  

4.2.1. Transformation and QPSK Modulation 

For one of the simulation analyses, we have considered FFT and DCT based OFDM 

implementation for their low computational complexity. Figure 4. illustrates quality of the recovered 

images in terms of PSNR (dB). The image communication system based on DCT-OFDM has 

 

Figure 4. PSNR of recovered images using different transformation techniques. Communication 
system is OFDM using QPSK modulation over AWGN channel.  
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preserved higher quality of the recovered images than FFT-OFDM. At Eb/N0 8dB, around 24% 

improvement in image quality was observed by using DCT Transformation.  

Though DCT transformation retains better image quality as per analysis, it is not a standard 

technique used in OFDM. DFT/IDFT or FFT/ IFFT are standard transformation techniques for 

frequency-time domain conversion in OFDM communication system. These methods are well-

established and often used in practice due to their effectiveness in managing multi-carrier modulation. 

They aid in creating orthogonal subcarriers in the OFDM for efficient use of the available spectrum, 

which is essential for reducing Inter-Carrier Interference (ICI). They also facilitate the system's 

robustness against multi-path propagation effects and aid in coping with frequency-selective fading. 

For the rest of the simulation IDFT/DFT will be utilized as transformation techniques due to the 

aforementioned benefits. 

For modulation techniques, QPSK has been initially utilized in the simulation. In QPSK, the 

phase of the carrier signal is varied to transmit data, with each symbol carrying 2 bits of information. 

This is a low data-rate transmission and may not be suitable for downstream IoT applications that 

demand high data-rate for real time communication. Therefore, for the rest of the experiment we will 

be utilized higher order QAM for high data-rate and advantages mentioned in Section 2.2.2. 

4.2.2. Source Coding and Channel Model 

Images can be compressed using either lossless or lossy methods. While lossless compression 

aims to preserve image quality, lossy compression ensures higher compression savings [10]. 

However, increased compression savings have adverse effects on DL performance [8]. Therefore, 

instead of compression savings, this study mainly focuses on evaluating the image quality recovered 

from OFDM systems using FLC and VLC. In the experiment, for FLC, the corresponding decimal 

values of each pixel are coded to a fixed 8-bit length codeword. On the other hand, for VLC, the 

decimal values are coded as variable length codes according to the length of their respective 
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codewords. The information about the length of each codeword for every pixel is transmitted as side 

information to the receiver for successful decoding. Although transmitting side information may 

increase the overall system overhead, it avoids the synchronization problems commonly experienced 

in standard VLC coding, such as Huffman coding. 

The BER analysis (on a logarithmic scale) for the proposed OFDM-based image 

communication system over both AWGN and Rayleigh fading channels is illustrated in Figure 5(a). 

Over the AWGN channel, there is a significant drop in BER as Eb/N0 increases. At an Eb/N0 of 10dB, 

the system achieved the lowest BER of 0.03. Throughout the experiment, FCL and VLC achieved 

identical BER. In contrast, for the system over the Rayleigh fading channel, the BER does not 

decrease significantly at higher Eb/N0 values compared to the AWGN channel. The lowest BER 

recorded was 0.32 at an Eb/N0 of 10dB. Similar to AWGN channel, both FLC and VLC yield identical 

BER values throughout the experiment. The reason for that could be multifold. Firstly, BER is the 

rate of number of bits in error, which remain consistent regardless of the number of bits transmitted 

using the different source coding scheme. Secondly, although FLC and VLC inherently differ in 

terms of average code length, their efficiencies are comparable over the given channel conditions, 

(a)                                                                                  (b) 
Figure 5. Performance analysis using different source coding schemes. (a) is BER, and (b) is
PSNR of 16-QAM OFDM. 
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which did not particularly favor one coding scheme over the other. Lastly, the inherent characteristics 

of the AWGN and Rayleigh fading channels did not differentiate between the two different coding 

techniques, resulting in identical values. 

The quality of the recovered images in terms of PSNR from the proposed systems over AWGN 

and Rayleigh fading channels is presented in Figure 5(b). Images recovered from the AWGN channel 

exhibit high quality, which further improves with an increase in Eb/N0. Using VLC, as the Eb/N0 

increased, the PSNR improved by 41%, reaching a peak of 28.78dB at an Eb/N0 of 10dB. A similar 

trend is observed with system using FLC, where the PSNR improved by 67%, attaining a maximum 

of 24.62dB at the same Eb/N0. However, there is a significant difference between the image qualities 

from systems using FLC and VLC. Though the BER remain consistent between the two source 

coding schemes as observed previously, the error in the bits can drastically change a pixel value 

depending on its codeword position as discussed in Section 2.2.1., resulting in difference in image 

quality. Throughout the experiment, VLC consistently achieved better image quality compared to 

FLC, with improvement of highest 39% and lowest 17% observed at 0 dB and 10dB, respectively. 

Images from the communications system over a Rayleigh fading channel were heavily distorted with 

noise, which was observed in the PSNR analysis as well. At Eb/N0 10dB, the highest PSNR of 18dB 

and 11dB was observed by the system using VLC and FLC, respectively. There was no significant 

improvement in image quality even with the increase in Eb/N0. Throughout the experiment, the PSNR 

value improved only by 1dB and 2dB for VLC and FLC, respectively. Similar to the AWGN channel, 

there was a significant difference in image quality between FLC and VLC schemes. VLC achieved 

the highest improvement of 98% at Eb/N0 0dB and lowest 64% at Eb/N0 10dB, compared to FLC. 

Figure 6. presents sample images recovered from various systems for visual analysis. Based 

on visual inspection, VLC retains better image quality compared to FLC, especially over the Rayleigh 

fading channel. Using FLC over Rayleigh fading channel, the information in the Region of Interest 

(ROI) is invisible at lower Eb/N0 regions. 
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To summarize the parameters in the experiment, FLC and VLC are utilized for source coding. 

The modulation technique used is 16-QAM (rectangular constellation) with a symbol length of 4. 

The data stream for the system comprises 64 subcarriers, 16 CP, and 4 pilots (using comb-type pilot 

insertion). IDFT and DFT are used for the transformation techniques. LS with linear interpolation is 

employed for channel estimation, and zero-forcing is applied for channel equalization. For the 

channel model, AWGN and a Rayleigh fading channel are considered for wireless transmission. 

4.2.3. Channel Correction  

Another experiment was carried out to analyze the effect of channel correction on the OFDM 

communication system and recovered image quality. For this purpose, two OFDM systems were 

implemented for image communication. The first OFDM system was implemented with channel 

correction (withCC) using Least Square channel estimation technique. and second without channel 

correction (withoutCC). For the pilot insertion, comb-type pilot based estimation was used. As for 

the rest simulation parameters, 16-QAM for modulation, DFT/IDFT for transformation and simple 

AWGN channel for the channel model were utilized. The system’s efficiency is being considered in 

terms of bit error rate (BER) and image quality metrics, such as PSNR and PIQUE. 

For proposed OFDM based image communication systems, namely withCC and withoutCC, 

BER analysis is shown in Figure 7. The BER value for an image is obtained by taking the average of 

  Original         0dB          2dB           8dB          10dB     0dB      2dB           8dB          10dB 
                        AWGN Channel                                         Rayleigh Fading Channel 

Figure 6. Sample images from communication systems. Images at various Eb/N0 using FLC (top) 
and VLC (bottom) over the two channels is shown. 
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OFDM data sub-carriers. The BER presented in Figure 7 (a). is the mean across all the images in test  

dataset. The BER of both systems improves with higher Eb/N0. For Eb/N0=10, there is up to 17% and 

9% BER reduction compared to Eb/N0=0 for withCC and withoutCC systems, respectively. However, 

such higher Eb/N0 is not feasible in practice. When comparing the BER of the two systems, withCC 

has better signal quality than withoutCC system, due to the channel correction. 

The BER measure does not provide any information about perceptual quality of recovered 

images. Therefore, in analysis we have considered PSNR and PIQUE to quantify quality of the 

images. Figure 7(b). shows the PSNR value, taken as the mean across all the images in test dataset. 

Similar to BER, the PSNR value also improves with higher Eb/N0. In withCC system, there is a 

significant difference between the PSNR values for each Eb/N0 as compared to withoutCC. The 

PSNR value increases up to 11 dB and 3 dB for withCC and withoutCC systems, respectively. 

Overall, withCC system is able to retain higher quality images than its counterpart. The measure of 

statistical features in terms of PIQUE of the proposed systems is shown in Fig.5 (b). The values are 

the mean across all the images in the test dataset. In general, when natural images datasets are 

constructed, conditions under which the images are acquired may differ, which sometimes result in 

image distortions. Therefore, Figure 7(c). also shows quality of the original images, which is used as 

   (a)                                                  (b)                                                  (c) 

Figure 7. Performance analysis of system with and without channel correction. Analysis in 
terms of (a) BER, (b) PSNR, and (c) PIQUE in 16-QAM OFDM over AWGN channel. 
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a baseline to compare other methods with it. Following the same trend as PSNR, PIQUE score 

improves with higher Eb/N0 for both systems. For the given range of Eb/N0, PIQUE is improved up 

to 15 and 6 for withCC and withoutCC systems, respectively. The withCC system achieves PIQUE 

same as original image after 7 dB whereas, withoutCC system does not reach closer to the original 

images throughout the experiments. In addition, for excellent quality of images,  𝐸௕ 𝑁଴⁄ ൒ 3 should 

be used when OFDM system has channel correction and  𝐸௕ 𝑁଴⁄ ൒ 5 should be used when there is 

no channel correction. For withCC systems’   𝐸௕ 𝑁଴⁄ ൒ 8  the recovered images have surpassed 

quality of the original pristine images. The reason is that PIQUE measure is designed for simple 

distortions resulting from image compression and additive noises, and not for the case when images 

have complex distortions occurred during communication. 

Channel correction has a major impact on the quality of signal and recovered images even on 

simple AWGN channel. Furthermore, in OFDM communication system, channel correction is 

essential for mitigating the effects of multipath and frequency-selective fading, ensuring that the 

transmitted signals are accurately received by correcting distortions and interferences. It improves 

the system’s adaptability, synchronization, and overall signal-to-noise ratio, resulting in more robust 

and reliable wireless communications. For the rest of the experiment, we utilized channel correction 

block, considering LS and MMSE channel estimation techniques. 

4.2.4. Channel Estimation, M-QAM and Channel Models 

For the next experiments we have considered various OFDM communication systems for 

image transmission. Within the system, we have considered higher order M-QAM modulation to 

attain a high data rate, at the cost of added noise in the images. Additionally, we have considered 

various channel models and channel estimation techniques to evaluate the noise and image quality 

under different system conditions. Multipath AWGN channel and Rayleigh Fading channel with 

AWGN were used as channel models to simulate real-world environmental conditions. Simple LS 

and more complex MMSE channel estimation were used to evaluate the trade-off between image 

quality and system complexity. The simulation parameters for the OFDM-based image 
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communication system considering, higher order M-QAM, different channel estimation and different 

channel model is given in Table 3. 

To evaluate the performance of the OFDM-based image communication system, and output 

image quality, we will categorize the next discussion based on different channel models. This 

approach aims for clarity in presenting the performance outcomes in various environments. 

Specifically, the evaluation will be divided into two main sections: Evaluation over AWGN Channel 

and Evaluation over Rayleigh Fading Channel. 

4.2.4.1. Over AWGN Channel 

 Figure 8 (a). illustrates the BER in logarithmic scale versus Eb/N0 for the proposed OFDM-

based image communication system over AWGN channel, using higher order M-QAM and different 

channel estimation techniques. The graph indicates that lower order M-QAM experiences a sharp 

drop in BER with higher Eb/N0, characterized by the waterfall trend, whereas the drop in the higher 

order M-QAM is insignificant across all Eb/N0 values due to the increased number of error bits. At 

Eb/N0 20 dB, 16-QAM and 1024-QAM have reached their lowest mean BER of 2.25 × 10−5 and 0.05 

using MMSE channel estimation, respectively. For channel estimation analysis, MMSE outperforms 

LS channel estimation across all M-QAM, and for 16-QAM at Eb/N0 20 dB, the use of MMSE 

resulted in the highest improvement (approximately 40 times lower BER) compared to LS channel 

Table 3. Simulation parameters of the OFDM-based image communication system. 

Parameters Values 
Source Coding Variable Length Coding 

Modulation Technique M-QAM 
Modulation Order M ∈ ሼ16, 32, 64, 128, 256, 512, 1024ሽ 

Transformation IDFT/DFT 
Length of Symbol (k) 𝑙𝑜𝑔ଶሺ𝑀ሻ 

Subcarriers (S) 𝑛 ൈ 2௡

Cyclic Prefix (CP) 𝑆/4
Pilots (P) 𝐶𝑃/4

Pilot Insertion Comb-type 
Channel Model AWGN, Rayleigh Fading 

Channel Estimation LS, MMSE 
Channel Equalization Zero-Forcing 
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estimation. Overall, the 16-QAM system using MMSE channel estimation has the lowest average 

BER and 1024-QAM system using LS estimation has the highest average BER. 

The image− quality measure in terms of PSNR of the recovered images for the proposed 

systems is shown in Figure 8 (b). The PSNR values follow a similar pattern to the BER and improve 

with higher Eb/N0; however, when using higher order M-QAM, the PSNR values decrease indicating 

the decline in image quality across all Eb/N0. Additionally in high Eb/N0 regions, the quality of the 

image improves significantly for lower order M-QAM with a steep upward incline compared to 

higher order M-QAM, which has a more flattened incline. At Eb/N0 20 dB, 16-QAM and 1024-QAM 

have obtained their highest quality images with mean PSNR value of 66 dB and 26 dB using MMSE 

channel estimation, respectively. With respect to channel estimation, MMSE outperformed LS across 

all M-QAM, and 16-QAM at Eb/N0 20 dB achieved highest improvement of 26 dB when utilizing 

MMSE channel estimation; however, with the higher order M-QAM, the improvement due to 

different channel estimation is less significant. MS-SSIM evaluation metrics (in logarithmic scale) 

have almost identical trends with PSNR, as illustrated in Figure 8(c). For higher Eb/N0 the MS-SSIM  

improves significantly for lower order M-QAM, however, the improvement is slow for the higher 

order M-QAM. Lower order M-QAM has a higher MS-SSIM score and demonstrates significant 

   (a)                                                   (b)                                                  (c) 

Figure 8. Performance analysis of various OFDM systems over AWGN channel. Analysis in 
terms of (a) BER, (b) PSNR, and (c) MS-SSIM with respect to various Eb/N0. 
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improvement with increased Eb/N0, while higher order M-QAM does not exhibit a significant 

improvement in the image quality across Eb/N0. At Eb/N0 20 dB, 16-QAM and 1024-QAM have 

obtained their highest quality images with mean MS-SSIM values 43 dB and 10 dB using MMSE 

channel estimation, respectively. In terms of channel estimation, MMSE performs better than LS for 

all M-QAM (16-QAM at Eb/N0 20 dB achieved an improvement of 20 dB using MMSE); however, 

for higher order M-QAM, the difference in performance between the two techniques is not substantial. 

Overall, the 16-QAM system with MMSE channel estimation had the best image quality retention 

and 1024-QAM with LS had the worst image quality retention throughout the experiments in terms 

BER, PSNR, and MS-SSIM evaluation matric.  

Figure 9. Sample recovered images from OFDM system over AWGN channel. The top row of 
each Eb/N0 represents received images from system using LS channel estimation, whereas the bottom
row images are from systems using MMSE channel estimation. 
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For visual analysis, Figure 9, shows three example images from the dataset and the distortions 

from different communication systems when transmitted over AWGN channel. From the visual 

inspection, the noise increases across higher order M-QAM; however, with increase in Eb/N0, the 

image quality still improves significantly for lower order M-QAM (16-QAM) compared to higher 

order M-QAM (128-QAM and 1024-QAM). Although the images may be corrupted at lower Eb/N0, 

the information in the region of interest (ROI) remains visible even with additional noise in the 

surrounding regions due to the way the traffic sign are designed with different color contrast [79], 

[80]. In terms of different channel estimation techniques, there is no visible distinction between the 

LS and MMSE as the images are almost visually identical in comparison to the two channel 

estimation techniques. 

4.2.4.2. Over Rayleigh Fading Channel 

The BER performance of the OFDM-based image communication system with higher order 

M-QAM modulation and various channel estimation techniques over the Rayleigh Fading channel is 

presented in Figure 10(a). The BER is presented on a logarithmic scale and is plotted against the 

Eb/N0 for the proposed systems. From the graph we can see that there is no significant improvement 

in the BER across Eb/N0 compared to the systems over simple AWGN channel as discussed in Section 

4.2.4.1, this is due to heavy noise and distortions introduce by the fading effect of the Rayleigh 

Fading channel. The lowest BER was recorded with 16-QAM system utilizing MMSE channel 

estimation, achieving values of 0.41 to 0.18 across Eb/N0 0 dB to 20 dB, respectively. The highest 

BER was obtained by 512-QAM with only a small drop from 0.47 to 0.40 across the Eb/N0. In terms 

of channel estimation, MMSE performed better than LS for all M-QAM throughout the experiment 

and the difference in performance was significant at the lower Eb/N0 region due to its prior channel 

knowledge. Additionally, 16-QAM leveraged the greatest improvement in BER (difference of 0.1 at 

Eb/N0 20 dB) when using MMSE channel estimation, however, the difference in the performance 

was insignificant for rest of the M-QAM with respect to different channel estimation techniques. 

Overall, the BER increases with a higher order of M-QAM and MMSE channel estimation performed 
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better than LS channel estimation throughout the experiment. 16-QAM has the lowest average BER 

using MMSE channel estimation and 512-QAM has the highest average BER using LS channel 

estimation across Eb/N0. 

The PSNR evaluation on the received images is shown in Figure 10 (b). and it shows a similar 

pattern to BER. The PSNR value improves with higher Eb/N0, however it decreases with higher order 

M-QAM across all Eb/N0 due to increased error bits that subsequently resulted in lower image quality. 

The 16-QAM and 1024-QAM systems demonstrated their best image quality using MMSE channel 

estimation at Eb/N0 20 dB, with average PSNR values of 20 dB and 17 dB, respectively. In terms of 

channel estimation, in contrast to the BER analysis, the PSNR value of images from systems using 

LS was better than MMSE from Eb/N0 0 dB to 5 dB; however, after Eb/N0 5 dB, all the M-QAM 

systems performed better with MMSE channel estimation, and the highest quality improvement of 

the image due to different channel estimation was observed by the 16-QAM system (improvement 

of 1 dB). Throughout the experiments, the 16-QAM system with MMSE channel estimation 

maintained the highest level of image quality retention (except at Eb/N0 0 dB), while the 512-QAM 

system with LS estimation exhibited the lowest image quality. Like PSNR, the MS-SSIM values 

exhibit some improving trends with higher Eb/N0 but show a decline in image quality for higher order 

   (a)                                                   (b)                                                  (c) 

Figure 10. Performance analysis of various OFDM systems over Rayleigh Fading channel.
Analysis in terms of (a) BER, (b) PSNR, and (c) MS-SSIM with respect to various Eb/N0. 
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M-QAM as shown in Figure 10 (c). The 16-QAM and 1024-QAM systems had the highest MS-SSIM 

score at Eb/N0 20 dB, with scores of 6.5 and 5.18 while using MMSE and LS channel estimation, 

respectively. In terms of channel estimation, all the M-QAM systems performed better with MMSE 

channel estimation across Eb/N0 5 dB to 20 dB, except for 1024-QAM, where MMSE channel 

estimation showed significant drop compared to LS. Overall, the 16-QAM system with MMSE 

channel estimation maintained the highest MS-SSIM score, while the 1024-QAM system with 

MMSE estimation had the lowest throughout the experiment.  

Figure 11. shows recovered images from communication system over Rayleigh Fading 

channel. Compared to the visual inspection of images from AWGN channel discussed in Section 

4.2.4.1, the images from the Rayleigh Fading channel are heavily distorted and most of the ROI 

information at the lower Eb/N0 are not clearly visible. The amount of noise on the images decreases 

slightly with higher Eb/N0, and that is sufficient to make the information on the ROI visible due to 

the robust design of the traffic signs with different color contrast [79], [80]. Therefore, for higher 

Eb/N0, the images may be heavily distorted but the information in the ROI (speed limit) is still slightly 

visible, and the DL models can exploit that and extract the features from the ROI to predict the signs 

correctly, which will be further discussed in Section 4.4.3.3. Another trend that is observed is that 

the images from the M-QAM systems with odd length of symbol (128-QAM) have reduced the 

brightness compared to the even length of the symbol, which retained brightness the same as the 

original image. In terms of channel estimation, the images at Eb/N0 0 dB from system utilizing MMSE 

channel estimation (bottom row) is clearer compared to LS channel estimation (top row) across the 

M-QAM, where the information in the ROI is not visible at all for the LS channel estimation. 

Therefore, it indicates that MMSE retains better quality images for lower Eb/N0 compared to LS in 

terms of human visual perspective. 
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4.3. Downstream DL Application: Traffic Sign Recognitions  

The integration of advanced information and communication technologies along with Internet 

of Things (IoT) devices has brought a significant transformation to the Intelligent Transportation 

System (ITS) in smart cities. The incorporation of these technologies has resulted in synchronized 

transport networks, improved driving experience, optimized traffic management, and facilitated 

intelligent vehicular applications [81], [82]. The image communication system lies at the core of the 

ITS, enabling applications that directly connect vehicles with traffic infrastructures and management 

systems [83]. One such application of traffic sign recognition in ITS was considered in this 

Figure 11. Sample recovered images from OFDM system over Rayleigh Fading channel. The 
top row of each Eb/N0 represents received images from system using LS channel estimation, whereas
the bottom row images are from systems using MMSE channel estimation. 



- 52 - 

 

experiment. Traffic sign recognition is an essential CV application of an ITS environment and the 

collection and recognition of these signs are critical to ensure smooth traffic flow and prevention of 

accidents [83]. Effective traffic sign recognition in ITS requires both the collection of real-time 

images using high data rate communication systems, and the accurate recognition of these images 

using AI-enabled systems, respectively. In this experiment, the performance analysis of both these 

aspects was considered.  

Furthermore, to effectively deploy AI-enabled system in an ITS environment for CV 

applications, a robust computing infrastructure is required for handling large amounts of image data, 

processing it in real-time, and performing complex computations [84]–[86]. Edge servers and cloud 

servers are two potential solutions that can meet these requirements [86]. Edge servers are located 

close to the data source, and can process data locally, leading to faster processing, reduced latency, 

and improved reliability. Cloud servers, on the other hand, provide vast computing power and storage 

(a)                                                                           (b) 

Figure 12. Schematic of downstream DL application. It illustrates an overview of used case 
scenario utilizing Edge–Cloud collaboration for deep learning-based CV applications in (a) generic 
IoT ecosystem and (b) ITS environment within a Smart City.
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capacity, making them ideal for data-intensive tasks such as DL model training. By combining the 

computing power of edge and cloud servers, it is possible to process and analyze data in real-time 

while minimizing latency and reducing communication costs forming and edge–cloud collaboration 

[86]. Figure 12. shows such an infrastructure for the traffic sign recognition application in ITS, as 

considered in this experiment. Images are first transmitted to the edge server through various OFDM-

based image communication systems, where they are introduced to noise and distortions from the 

system. The edge server then carries out inferencing on the received distorted images using a trained 

model, which were trained in the cloud server using a public dataset. The cloud center has several 

models that are task specific to enable Machine Learning as a Service (MLaaS) [86], [87]. In this 

scenario, the edge server requested a model for classification task to carry out traffic sign recognition 

in the ITS environment. 

4.4. DL Models 

In this section we discuss the robustness of DL models on images recovered from different 

communication systems presented in Section 4.2. We briefly describe the CNN models utilized in 

the experiment and the motivation of the choice, followed by the robustness analysis of the individual 

models with and without augmentation techniques under the influence of the different 

communication systems.  

4.4.1. ResNet152V2 

ResNet152V2 is a CNN model belonging to the ResNet family, commonly used for image 

classification tasks in computer vision applications [88], [89]. It is a more advanced and intricate 

version of the ResNet model with a total of 152 layers and utilizes skip connections (referred to as 

residual connections) which make it easier for the model to learn from lower layers and improve 

overall performance. ResNet152V2 employs a bottleneck design, which reduces the number of 

parameters required in each layer while maintaining the same level of representation power, making 

it a more efficient model compared to the earlier models in the series. Additionally, ResNet152V2 
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uses better weight initialization to prevent the vanishing and exploding gradient problems, and 

normalization approaches, by combining batch normalization and weight normalization, to improve 

the stability and speed of training [88], [89]. ResNet152V2 also utilizes different training techniques, 

such as augmentation and stochastic depth to improve the model’s generalizability, making it more 

potent and reliable for image classification tasks compared to other models in the family [88], [89]. 

Overall, ResNet152V2 performs better than its predecessor and other CNN models in terms of 

accuracy while requiring fewer parameters. However, it is a very deep and complex model with many 

layers which demands significant computational resources. These demands can be fulfilled by edge-

cloud collaboration. Therefore, for our experiment we have considered ResNet152V2 architecture 

for feature extraction with a proposed classifier for the classification task, as shown in Figure 13, and 

parameters of the model are mentioned in Table 4. 

4.4.2. EfficientNetV2.B0 

EfficientNet [90] is a family of CNN models that are designed to achieve state-of-the-art 

accuracy with highly efficient use of computational resources. Since its inception, it has become 

popular for computer vision applications due to its ability to achieve high accuracy on image 

classification tasks while using fewer parameters and floating-point operations (FLOPs) than other 

popular CNN models. EfficientNet utilizes neural architecture search (NAS) to design the baseline 

Table 4. Parameters of the DL models used in the experiments. 

  ResNet152V2  EfficientNetV2‐B0 

Model Input Size: 224 × 224

Top Layers: 

Max Pool, 2048 

Flatten, 2048 

Fully Connected, 4096 * 

Fully Connected, 4096 * 

Dropout, 4096 

Fully Connected, 7 ⁺ 

Average Pool, 1280 

Flatten, 1280 

Fully Connected, 256 * 

Fully Connected, 7 ⁺ 

Total parameter: 83,534,343 6,249,047 

Trainable parameter:  83,390,599  6,188,439 

Non‐trainable parameter: 143,744  60,608 
* ReLU Activation      ⁺ Softmax Activation. 
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model, EfficientNet-B0, which has a better trade-off between parameters and accuracy. The model 

is then uniformly scaled up in terms of depth, width, and resolution to obtain a family of models, 

ranging from EfficientNet-B0 (the smallest model) to EfficientNet-B7 (the largest model). Despite 

using depth-wise convolution to achieve superiority in terms of the number of parameters and FLOPS, 

EfficientNetV1 had limitations in fully utilizing accelerators, which limited its training and inference 

speed. EfficientNetV2 [91] mitigates these limitations while ensuring parameter efficiency. It 

proposes three solutions, first, to adjust the size and regularization progressively during training; 

second, a non-uniform scaling strategy to add more layers in later stages; and third, the proposed 

Fused-MBConv in the early stage to improve training speed (introducing a small overhead on 

parameters and FLOPs). Therefore, in our experiment we have used EfficientNetV2-B0 to achieve 

state-of-the-art accuracy while ensuring parameter efficiency using the smallest model (B0) in the 

family and leveraging faster training and inference time (V2). The EfficientNetV2-B0 architecture 

(adapted from [91], [92]) with our proposed classifier is shown in Figure 14. and the parameters are 

mentioned in Table 4. 

Figure 13. ResNet152-based proposed DL model for traffic sign recognition in ITS. For a layer 
‘1×1 conv−2−1, 64’, 1×1 is the filter size, 2−1 is module number, and 64 is the number of filters.
The ellipses show that the blocks are repeated.
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For this study, we have considered the German Traffic Sign Recognition Benchmark (GTSRB) 

dataset with speed limit signs of seven different classes, 30, 50, 60, 70, 80, 100, and 120. The dataset 

was divided into 80% for training, 10% for validation, and 10% for testing. For training, Stochastic 

Gradient Descent (SGD) optimizer and cross entropy-loss was used for both models, with learning 

rates ranging from 0.01 to 0.000001 and 0.1 to 0.0001 for ResNet152V2 and EfficientNetV2-B0, 

respectively, using the reduce learning rate (ReduceLR) technique. Furthermore, various 

augmentation techniques, such as 20-degree rotation, horizontal and vertical shift with factor 0.1, 

nearest fill mode, and 0.25 to 1.25 factor zoom and brightness, were applied to achieve high 

validation accuracy during training (as discussed in Section 2.3.2). 

Figure 14. EfficientNetV2-B0-based proposed DL model for traffic sign recognition in ITS. 

+

+

Batch Normalization (BN)
Depth-wise Conv2D

Global Average Pooling

Rescaling
Conv2D
Reshape
Flatten
Input

Activation
Normalization
Fully Connected

Legend

Module 1A
Module 1B

Module 2A
Module 2B

×

×

×

+

+

Module 3A

Module 3B

Module 3C

×

× +

×

+

+

Module 4A

Module 4B

Module 4E

Prediction

×

× +

×

+

+

Module 5A

Module 5B

Module 5H
Proposed 
Classifier

+
×

Addition Operation
Multiplication Operation
Output from Activation
Output from BN
Output from Conv2D
Output from Operations



- 57 - 

 

4.4.3. Performance Analysis of DL Models  

In the experiment, ResNet152V2 achieved 98% training accuracy, and EfficientNetV2-B0 

achieved 100% training accuracy. The training accuracy is comparable to related classification study 

on GTSRB dataset using ResNet152 [93] and EfficientNetV2 [94] family which achieved 96% and 

98%, respectively. The validation accuracy of the models showed significant difference with and 

without applying augmentation techniques in the experiment. ResNet152V2 achieved 84% validation 

accuracy without augmentation, indicating overfitting and poor generalization; however, when the 

augmentation techniques were applied, the validation accuracy improved to 96%. Similarly, 

EfficientNetV2-B0 achieved 95% validation accuracy without augmentation, which improved to 99% 

with augmentation. Both the training and validation of the two models were completed on pristine 

(original) images. The inference (test) accuracy of the models on noisy images from different 

communication systems is further discussed. 

4.4.3.1. Over AWGN Channel 

The DL model performance in terms of classification accuracy on the reconstructed images 

from various communication systems over AWGN channel is discussed in this section. The dotted 

lines illustrate the model accuracy achieved without applying any augmentation techniques during 

training, whereas the solid lines represent the accuracy achieved with augmentation techniques (WA) 

applied during training. The accuracy of the DL model corresponds to the mean value across all 

inferencing images for the specific M-QAM and Eb/N0. 

Performance analysis of ResNet152V2 over AWGN channel: When augmentation 

techniques are not applied during the training of ResNet152V2 model, the accuracy achieved on the 

clean (original) images is 84%, and the overall accuracy of the model is low, as shown in Figure 15. 

This is due to the model not being able to learn and generalize well without augmentation techniques. 

From the graph, we can observe that the accuracy of the model decreases significantly with higher 

order M-QAM in the lower Eb/N0 regions; however, for the higher Eb/N0 regions the model is able 

to generalize well and achieves almost same accuracy as it performed on the original images across 
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all M-QAM (except 512-QAM and 1024-QAM). We can see a clear distinction between the accuracy 

of the model on images from M-QAM systems with odd length of symbol and even length of symbol 

with a zig-zag pattern in the lower Eb/N0 regions. There is a sharp drop in the accuracy of the model 

on images from M-QAM systems with odd length of symbol (32-QAM, 128-QAM, and 512-QAM) 

which is due to the increased error bits, as discussed in Section 2.2.2. The highest difference in 

accuracy on images across different M-QAM was observed at Eb/N0 0 dB, with 14% difference 

between highest accuracy (16-QAM) and lowest accuracy (512-QAM), this difference is less than 2% 

for Eb/N0 20 dB. For channel estimation, accuracy was better on systems using MMSE channel 

estimation; however, the improvement is insignificant. Overall, the lowest accuracy observed 

without augmentation is 63% on images from 512-QAM system using LS channel estimation at Eb/N0 

0 dB. On the other hand, images from 16-QAM to 256-QAM achieved a highest accuracy of 84% 

(same as on the original images) for Eb/N0 15 dB and 20 dB. 

When augmentation techniques were applied, the ResNet152V2 was able to learn better and 

the accuracy of the model on clean (original) images improved to 96%. The impact of M-QAM with 

odd and even length of symbol is still observed, however the overall accuracy of the model improved 

significantly across all M-QAM. There is no drastic drop in accuracy across higher order M-QAM 

and the difference in the accuracy is less than 4% for all Eb/N0. This is due to the model being able 

to generalize well across all M-QAM as it was trained with different augmentation techniques. 

Figure 15. Performance of ResNet125V2 on images transmitted over AWGN channel. For order 

of M-QAM, M∈{16,32,⋯,1024}  across each Eb/N0.
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Accuracy with respect to channel estimation techniques has overlapping patterns, indicating that 

there is no significant impact when using more complex channel estimation (such as MMSE) on the 

accuracy of the DL model. With augmentation, the lowest accuracy obtained was 89% for 512-QAM 

system at Eb/N0 0 dB; however, beyond Eb/N0 10 dB the accuracy of the model was greater than 93% 

across all M-QAM and different channel estimation techniques. 

Performance analysis of EfficientNetV2-B0 over AWGN channel: In contrast to 

ResNet152V2, EfficientNetV2-B0 achieved 95% accuracy on the clean (original) images even 

without applying any augmentation techniques during training as shown in Figure 16., this is due to 

its better learnability, as discussed in Section 4.4.2. However, there is a drop in the accuracy of 

models on images across higher order M-QAM. At Eb/N0 0 dB, the highest drop in accuracy of 6% 

was observed on images from 16-QAM (highest accuracy) to 512-QAM (lowest accuracy); however, 

the difference in accuracy across M-QAM systems becomes smaller with increase in Eb/N0. For Eb/N0 

20 dB the accuracy curve almost flattens (indicating no difference in accuracy across higher order 

M-QAM), and the accuracy was almost same as it was on the original images. This indicates that the 

model can generalize the noise on the images across all systems and provide better accuracy even for 

higher order M-QAM systems.  

Furthermore, applying augmentation techniques during training drastically improved the 

EfficientNetV2-B0 model and it was able to predict almost all the clean images correctly, achieving 

Figure 16. Performance of EfficientNetV2-B0 on images transmitted over AWGN channel. 
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99% accuracy. The difference in accuracy on images from higher order M-QAM is less than 2% with 

only little distinctions between M-QAMs with odd and even length of symbol. When applying 

augmentation, the lowest accuracy obtained was 97% on images from 512-QAM at 0 dB. However, 

beyond Eb/N0 10 dB, the model accuracy on images from most of the systems was same as it 

performed on the original images (except 128-QAM at 10 dB, 512-QAM and 1024-QAM at 15 dB, 

and 1024-QAM at 20 dB). Throughout the experiment, the accuracy from system with different 

channel estimation had overlapping patterns and there were no clear indications that complex channel 

estimation (such as MMSE) improves the model accuracy. In comparison to the two DL models, 

EfficientNetV2-B0 outperformed ResNet152V2 across all image communication systems, regardless 

of whether augmentation was applied or not, this is due it its robustness as discussed in Section 4.4.2. 

4.4.3.2. Over Rayleigh Fading Channel 

In the evaluation of communication systems and image quality discussed in Section 4.2, we 

have observed severe degradation in performance when the Rayleigh Fading channel is utilized, as 

compared to employing only a simple AWGN channel model. We can see a similar trend in the 

accuracy of the DL models; however, when the DL models utilized augmentation techniques during 

training, they have achieved favorable results even on the Rayleigh Fading channel, as shown in 

figures in this section. 

Performance analysis of ResNet152V2 over Rayleigh Fading Channel: When using 

ResNet152V2 without applying augmentation techniques during training, the accuracy on the images 

from the Rayleigh Fading channel achieved very low accuracy, as shown in Figure 17. The accuracy 

of the DL model dropped on images from higher order M-QAM systems and there was no significant 

improvement with higher Eb/N0, in fact the difference in accuracy on the images from lower order 

M-QAM and higher order M-QAM was more significant in the higher Eb/N0 region. The difference 

in accuracy on images from 16-QAM (highest accuracy) to 1024-QAM (lowest accuracy) was 8% at 

Eb/N0 0 dB; however, the difference was 21% at Eb/N0 20 dB. This is because the image quality in 

lower order M-QAM improved more significantly compared to those in higher order M-QAM with 
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the increase in Eb/N0. Additionally, it also indicates that the model was not able to generalize well 

on the images from different M-QAM systems. The highest accuracy obtained without augmentation 

was 68% at Eb/N0 20 dB for 16-QAM system with MMSE channel estimation and the lowest 

accuracy of 46% was obtained at Eb/N0 10 dB on images from the 1024-QAM system with MMSE 

channel estimation. For analysis on different channel estimations, there was no significant difference 

in the improvement in accuracy (except for 16-QAM and 1024-QAM) due to different channel 

estimation, as it had overlapping trends throughout the experiment. Images from 16-QAM system 

using MMSE channel estimation achieved almost 5% better accuracy compared to LS at Eb/N0 15 

dB and 20 dB; however, images from 1024-QAM achieved almost same improvement in accuracy 

using LS channel estimation compared to MMSE for Eb/N0 higher than 5dB.  

The ResNet152V2 model trained using augmentation techniques performed much better even 

on the multipath Rayleigh Fading channel. Overall, the model accuracy improved, and after Eb/N0 

10 dB the model accuracy was greater than 86% across all systems (except 1024-QAM). The highest 

accuracy of 90% was obtained by 64-QAM at Eb/N0 15 dB and 20 dB and the lowest accuracy of 75% 

was obtained at Eb/N0 10 dB on images from 1024-QAM system, both using MMSE channel 

estimation. Overall, the difference in accuracy on images across higher order M-QAM was less than 

4% (except 1024-QAM) which indicates the model was able to generalize well on images even from 

higher order M-QAM system. In terms of the effect of channel estimation techniques, there were 

Figure 17. Performance of ResNet125V2 on images transmitted over Rayleigh Fading.  
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distinct differences in the accuracy of the model on images from systems utilizing different channel 

estimation techniques in the lower Eb/N0 regions. From Eb/N0 0–10 dB the accuracy on images from 

systems using MMSE channel estimation was greater compared to LS channel estimation, and at 

Eb/N0 0 dB this difference was the highest with almost 5% improvement in accuracy for 64-QAM, 

128-QAM, 256-QAM and 512-QAM. The gap gradually decreased for Eb/N0 higher than 10 dB, and 

an overlapping pattern (except 1024-QAM) of accuracy on images from systems utilizing both 

channel estimation techniques was observed.  

Performance analysis of EfficientNetV2-B0 over Rayleigh Fading Channel: Like 

ResNet152V2, the accuracy of EfficientNetV2-B0 also decreases on images from systems using the 

Rayleigh Fading channel compared to simple AWGN channel, as shown in Figure 18. Without 

applying augmentation techniques during training, the model was not able to generalize well, and the 

accuracy of the models decreases significantly with higher order M-QAM. There is a slight 

improvement in accuracy of the model on images from lower order M-QAM with the increase in 

Eb/N0; however, accuracy on images from higher order M-QAM shows very little improvement. 

Without augmentation, the highest accuracy of 90% was obtained on images from the 16-QAM 

system at Eb/N0 20 dB and the lowest accuracy of 70% was obtained on images from 1024-QAM at 

Eb/N0 5 dB, using MMSE channel estimation. There was no significant difference in improvement 

by using different channel estimation techniques, except on images from the 1024-QAM system, 

where the model on images from system utilizing LS obtained approximately 8% greater accuracy 

compared to MMSE at Eb/N0 greater than 5 dB. The model performed slightly better on systems 

utilizing MMSE for 32-QAM, 64-QAM, 128-QAM, and 512-QAM at Eb/N0 0 dB, however this 

improvement is insignificant considering the overall performance throughout the experiment.  

The EfficientNetV2-B0 model trained with augmentation techniques had drastic improvement 

across all systems. The model could generalize well since the difference in accuracy across M-QAM 
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systems is less than 2% (except 1024-QAM) at all Eb/N0. Throughout the experiment, the accuracy  

of the model was greater than 95% across all systems (except 1024-QAM). The highest accuracy of 

99% was obtained on images from 16-QAM system at Eb/N0 20 dB, whereas the lowest accuracy of 

88% was obtained on images from 1024-QAM system at Eb/N0 20 dB, both using MMSE channel 

estimation techniques. The improvement in accuracy on images from systems using different channel 

estimation was observed only at Eb/N0 0 dB, where accuracy was approximately 4% better on images 

from systems using MMSE compared to LS across all systems (except 16-QAM and 1024-QAM). 

However, at higher Eb/N0 regions, different channel estimations did not have a significant impact on 

the accuracy, except for 1024-QAM, where accuracy on images from a system using LS channel 

estimation had approximately 5% greater accuracy compared to MMSE. Which indicates that the 

effect of using complex channel estimation (such as MMSE) improves the model accuracy at lower 

Eb/N0 regions; however, it can have contrasting effect at higher Eb/N0 regions and higher order M-

QAM. 

Comparing the performance of the two models, EfficientNetV2-B0 had greater accuracy on 

images from systems over the Rayleigh Fading channel, compared to ResNet152V2. The accuracy 

of the EfficientNetV2-B0 model trained using augmentation was from 88 to 99%, whereas for 

ResNet152V2 it was between 75% and 90% across all systems. 

 

Figure 18. Performance of EfficientNetV2-B0 on images transmitted over Rayleigh Fading.  
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4.4.3.3. Visual Analysis of DL Generalizability 

The generalizability of the DL model across the M-QAM system using different channel 

estimation can be further observed using the t-distributed stochastic neighbor embedding (t-SNE) 

[76] visualization algorithm, as shown in Figure 19. It is a probabilistic dimensionality reduction 

algorithm which maps high-dimensional feature points into low-dimensional feature space (typically 

2D or 3D) while preserving the similarities. Features close to each other in the high-dimensional 

space are mapped closer to each other in the lower-dimensional space with high probability. Points 

that are close together in the t-SNE plot are likely to have similar features or attributes (in terms of 

color, texture, or shape), whereas points that are far apart are likely to be dissimilar. From Figure 19., 

it can be observed that the same class points from the DL model trained with augmentation are close 

together and do not have many overlapping points of different class (color) across Eb/N0 0 dB, 10 

dB, and 20 dB for the M-QAM systems. Whereas points from the DL model trained without 

Figure 19. Two-dimensional t-SNE plot. It shows feature space analysis of EfficientNetV2-B0 
model on recovered images over Rayleigh Fading channel. Each color of the dots represents one of
the seven classes chosen from the GTSRB dataset.  
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augmentation are more scattered and overlap with other classes. There are no significant differences 

in class separability for different channel estimation used across the M-QAM systems. Overall, DL 

model trained with augmentation provides better separability between the seven classes and their 

features, resulting in better classification performance across all communication systems compared 

to DL model trained without augmentation. 

Gradient-weighted Class Activation Mapping (Grad-CAM) heat map is another visualization 

algorithm that is used to visualize the attention region for a CNN while making predictions [77], [78]. 

It uses the gradient of the final convolutional layer with respect to the predicted class to weigh the 

layer activations, and then averages these weighted values over the spatial dimensions to obtain a 

class activation map. The map shows the crucial region of the image that is used to make the 

prediction by the CNN model. Figure 20. shows the Grad-CAM visualization of EfficientNetV2-B0 

model prediction on images recovered from different communication systems. The images that were 

correctly predicted has Grad-CAM heat map concentrated in the ROI region of the traffic sign, 

 
Figure 20. Grad-CAM visualizations. Analysis of EfficientNetV2-B0 model (with Augmentation) 
on sample image re-covered from different OFDM-based image communication systems under the 
Rayleigh Fading channel. The recovered image from different communication system (top), Grad-
CAM heat map of the DL model’s attention region (middle) and superimposed heat map over the
image (bottom) is shown. Images with green border are correctly predicted and images with red
border are incorrectly predicted. 
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whereas the two images that were wrongly predicted has the Grad-CAM heat map outside the ROI, 

therefore it could not extract the important features from the ROI to make the accurate prediction for 

the traffic sign.  

For the t-SNE and Grad-CAM analysis, we visualize the performance of EfficientnetV2-B0 

on noisy images recovered from OFDM communication system using the Rayleigh Fading channel 

only. The reason for this is that we have observed from Section 4.4.3 that EfficientnetV2-B0 is 

superior and more robust compared to ResNetV152, and the Rayleigh Fading channel replicates the 

real-world environment inducing more noise on the images. 

For the experiment, the simulation of the various image communication systems and the BER 

analysis was conducted using Python 3.9.7, and the image quality analysis (PSNR and MS-SSIM) 

was performed using MATLAB R2021b. The performance analysis of the DL models was carried 

out using Python 3.9.7 and TensorFlow 2.2.0. The experiments were carried out jointly on Intel Core 

i5-4590 CPU and NVIDIA Tesla V100 (32 GB Memory) GPU.  
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V. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 

In this study, we have analyzed the performance of DL models on images transmitted over 

various OFDM wireless communication systems for CV applications. Specifically, we have 

considered physical impairment from various techniques implemented in source coding, modulation, 

channel estimation, transformation, and channel model block in OFDM communication system. The 

main objective was to achieve a higher data rate to enable real time downstream CV applications 

while maintaining the overall communication system complexity. In general, the utilization of a 

higher order M-QAM in the fading channel environment leads to heavily corrupted image data in the 

output, regardless of the channel estimation techniques. However, our results have shown that the 

feature extractor of a DL model can be robust against these distortions with suitable data 

augmentation techniques, thereby improving the model generalizability across the higher order M-

QAM. In other words, this trained feature extractor can extract meaningful features even from very 

noisy images, which can be utilized for downstream tasks, such as traffic sign recognition in ITS. 

5.2. Future Work 

Integration of advanced communication systems like MIMO, NOMA, and other hybrid 

systems significantly improve communication efficiency, and reliability that is crucial in IoT 

ecosystem. Additionally, transmissions in an IoT environment consist of a diverse array of data types 

such as image, video, audio, and text. Therefore, multi-modal downstream DL applications, 

integrated with advanced communication systems, can be an extension of the current study. 

The present study implemented legacy OFDM PHY for communication system. An interesting 

future direction is implementing PHY as a DL architecture for end-to-end learning of the 

communication system. This is a paradigm shift from traditional model-driven (block-based) 

communication system to data-driven communication system, which would enable intelligent 

applications such as semantic communication system to enable beyond 5G networks. 
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