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Abstract

Multi-Objective Reinforcement Learning for Power Allocation 
in Massive MIMO Networks: A Study on Spectral and Energy 

Trade-Off Optimization

                                        Oh, Youngwoo

                                        Advisor : Prof. Choi, Wooyeol, Ph.D.

                                        Department of Computer Engineering,

                                        Graduate School of Chosun University

  The joint optimization of spectral and energy efficiency through power allocation 

techniques is a critical requirement for emerging fifth-generation and beyond networks. 

While various algorithmic approaches, such as genetic algorithms and convex 

optimization, have been considered for optimizing the trade-offs between spectral 

and energy efficiency in cellular networks, these methods suffer from high 

computational costs. Deep reinforcement learning-based methods have shown promise 

in addressing the computational challenges of single-objective optimization problems 

in wireless networks. Despite the potential of deep reinforcement learning approaches, 

utilizing them for the joint optimization of spectral and energy efficiency has yet 

to be noticed in the existing literature.

  In this thesis, we propose a downlink transmit power allocation method based 

on a multi-objective asynchronous advantage single actor–multiple critics model. This 
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method aims to optimize spectral and energy efficiency trade-offs in massive 

multiple-input-multiple-output assisted multi-cell networks. Furthermore, we also 

propose a Bayesian rule-based preference weight updating mechanism, multi-objective 

advantage function, and balanced-reward aggregation method. These proposed 

methods ensure effective training and control biases toward any specific objective 

reward during the training process of our model.  

  Based on extensive simulations, we demonstrate that the proposed model-based 

power allocation method outperforms the other techniques, especially Pareto front 

approximation policy-driven multi-objective reinforcement learning-based power 

allocation strategies.
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국 문 요 약

Massive MIMO 네트워크를 위한 다중목표 강화학습 기반 전력 

할당: 스펙트럼 및 에너지 Trade-Off 최적화에 대한 연구

                                                    오 영 우

                                                    지도교수 : 최 우 열

                                                    컴퓨터공학과,

                                                    조선대학교 대학원

  5G 네트워크와 차세대 이동통신 기술의 발전에 따라 스펙트럼 및 에너지 효율성의 

공동 최적화 기술은 핵심적인 연구 주제로 자리 잡아 왔다. 그러나, 스펙트럼과 에너지 

효율성 사이의 복잡한 trade-off 관계로 인해 genetic 알고리즘 및 convex optimization 

solver 기반의 전통적인 최적화 솔루션은 높은 계산 복잡도가 요구된다. 이러한 계산 

복잡도 문제를 해결하기 위한 방안으로, 다양한 강화학습 알고리즘 기반의 솔루션 

연구가 활발히 수행되고 있으나, 이를 활용한 무선 네트워크의 다중목표를 공동으로 

최적화하기 위한 연구는 크게 활성화되지 않았다. 

  따라서, 본 학위 논문에서는 downlink multi-cell massive MIMO 네트워크 

시나리오에서의 기존 솔루션에서 야기되는 계산 복잡도를 해결함과 동시에 스펙트럼 

효율성과 에너지 효율성 사이에 발생하는 trade-off를 효과적으로 최적화하기 위한 

multi-objective asynchronous advantage single actor – multiple critics (MO-A3Cs) 

모델 기반 하향링크 전송 전력 할당 기법을 제안한다. 제안하는 모델은 multi-objective 

Markov decision process에 의해 모델링 되며, 기존의 단일 스칼라 형태의 보상은 
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보상 벡터로 확장된다. 더불어, 본 논문에서는 학습 과정에서의 스펙트럼 및 에너지 

효율성 사이의 특정 목표로 수렴되는 것을 방지함과 동시에 스펙트럼 및 에너지 

효율성을 공동으로 최적화하기 위한 행동 정책을 학습시키기 위해 Bayesian rule 

기반 선호도 가중치 갱신 기법, multi-objective advantage function 및 balanced-reward 

aggregation 기법을 소개한다. 

  실험 결과를 통해, 제안하는 MO-A3Cs 모델은 학습 과정에서의 기존의 강화학습 

모델에서 야기되는 특정 목표에 대한 편향 없이 trade-off 최적화를 위한 효율적인 

학습이 가능한 것을 확인할 수 있으며, Pareto front approximation policy 기반의 

다중목표 강화학습의 대표적인 알고리즘을 포함한 여러 하향링크 전송 전력 할당 

기법을 능가하는 공동 최적화 성능을 달성할 수 있음을 확인하였다. 
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그리고 가장 믿고 의지할 수 있는 형에게도 감사의 말을 전하고 싶습니다. 어렸을 

때부터, 바쁘신 부모님을 대신하여 항상 저를 보살펴주고, 지금까지도 진심 어린 

조언과 격려를 해준 덕에 매 힘든 순간을 잘 이겨낼 수 있었습니다. 감사합니다.

  제가 4년가량 보내왔던, 우리 스마트 네트워킹 연구실의 모든 구성원에게도 

고맙다는 말을 전하고 싶습니다. 저에게 영어는 자신감이라며, 하고 싶은 말이 있다면 

뭐든 뱉고 보라고 독려해준 Sifat, Rodoshi에게 고마움을 전합니다. 지금은 각자 

독일과 미국에서 박사 과정에 진학 중이지만, 그 누구보다 훌륭한 연구원이 될 것이라 

믿습니다. 함께 강화학습과 무선 네트워크를 연구하면서, 서로 부족한 부분에 대해 

의논하며 웃기도 많이 웃었던 Faisal과 Pulok에게도 고맙고, 그립다는 말을 전합니다. 

그리고 항상 힘든 순간 진심 어린 조언과 도움을 주며, 저와 함께 연구실에 가장 
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늦게까지 남아줬던 Islam에게도 감사를 드립니다. 해외 저널 작업과 관련하여, 

질문하면 항상 적극적으로 알려주셨던 Arif, Ganiga 박사님들께도 감사드립니다. 

언어와 문화적 장벽이 있었음에도, 저의 부족한 부분을 채워주기 위해 노력하고, 

배려하는 우리 연구실 구성원들의 마음을 항상 감사히 하며, 평생 잊지 않겠습니다.

  대학원 생활까지 함께할지 상상도 못 했지만, 고교 시절부터 석사 과정까지 11년을 

같이 보내온 강민이, 힘들 때면 복도에서 함께 이야기 나눴던 유일한 입학 동기 

영서, 과거의 저를 보는 것 같아 항상 걱정되는 연구실 막내 정태, 그리고, 항상 

먼저 밝게 인사해주는 멀티미디어컴퓨팅 연구실 동생들에게도 고맙다는 말을 전하고 

싶습니다. 각자가 원하는 목표를 위해, 묵묵히 걸어가는, 걸어왔던 우리들의 노력이 

밝은 미래가 될 수 있도록 언제 어디서든 응원하겠습니다. 

  끝으로, 대학원 생활 동안 아낌없는 조언과 도움을 주신 모든 분께 다시 한번 

고개 숙여 감사 인사 올립니다.
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Chapter Ⅰ

Introduction

A. Research Background

Figure 1.1: Illustrative example of the conventional and massive MIMO systems.

  Massive multiple-input multiple-output (MIMO) is one of the key technologies 

of fifth-generation (5G) and beyond networks and is capable of enhancing the spectral 

efficiency (SE) and cell coverage by utilizing multi-antenna transmissions at the base 

station (BS) to simultaneously serve multiple user equipment (UE) [1], [2], as shown 

in Fig. 1.1. The impact of fading and interference in massive MIMO can be reduced 

through spatial diversity and multiplexing gain. Moreover, the link reliability and 

transmission rate are improved by leveraging the spatial domain to precisely focus 

energy toward the intended UE. 
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Figure 1.2: Illustration of increased energy consumption according to the evolving wireless 
networks.

  However, deploying a large number of antennas requires high transmit power, 

leads to high interference, degrades the overall network performance, and significantly 

increases overall network energy consumption. For this reason, energy consumption 

increases as network technology evolves to fulfill the required wireless traffic, as 

shown in Fig. 1.2. As a key technology, multi-user MIMO (MU-MIMO) systems 

utilize the same frequency resources to serve multiple users at the same time, which 

leads to more efficient use of scarce spectrum resources and provides more tolerance 

to propagation losses compared to single-user MIMO (SU-MIMO) systems. A 

remarkable advancement has been made to improve the performance of downlink 

MU-MIMO systems, primarily focusing on tackling the high energy consumption 
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of the cellular network by achieving a reasonable trade-off between SE and energy 

efficiency (EE) [3], [4]. However, resource allocation techniques seriously influence 

the overall performance of MU-MIMO systems and play a vital role in harnessing 

the full potential of massive MIMO systems. To ensure that the available power 

resources are efficiently utilized, and the quality-of-service (QoS) requirements of 

the UEs are fulfilled, an efficient power allocation (PA) is challenging. 

  Furthermore, in varying dynamic environments with the dense deployment of 

network nodes and UEs, the PA becomes more crucial to managing inter-cell and 

intra-cell interference and ensuring equitable service to all UEs in the network. Given 

PA complexities in massive MIMO, innovative solutions are essential. Traditional 

techniques have limitations, and there is a growing need for more advanced methods. 

As conventional methods face scalability issues, alternative approaches now regard 

multiple objective optimization (MOO) problems.

  The MOO has recently attracted the interest of researchers to simultaneously 

optimize different objective functions in 5G and beyond networks. Conventional 

genetic algorithms and convex optimization techniques are primarily used to solve 

MOO-based PA problems. However, the computational complexity of these 

conventional PA techniques increases exponentially with the number of antennas 

in massive MIMO systems [5], [6]. In this regard, deep learning (DL) based PA 

schemes are proposed that can achieve near-optimal performance while addressing 

the computational complexity issues inherited by the iterative algorithm-based PA 
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techniques [7]-[9]. However, DL-based approaches face challenges, especially in 

dynamically changing wireless network scenarios, requiring additional training 

datasets.

  Deep reinforcement learning (DRL) is an emerging technique that employs the 

Markov decision process (MDP) framework to optimize network objectives. Through 

a trial-and-error strategy, DRL algorithms utilize interactions between agents and 

wireless network environments to determine optimal policies for solving optimization 

problems. DRL has the potential to effectively deal with computationally complex 

optimization problems in dynamic wireless networks [10]-[16].  Despite the escalating 

importance of addressing the joint optimization of SE and EE in the 5G and 

next-generation networks, the DRL-based transmit PA techniques are overlooked 

in the context of multi-cell massive MIMO systems. In contrast to the conventional 

DRL algorithm, an efficient MORL framework is needed to effectively train and 

solve multi-objective resource allocation problems in massive MIMO networks.

  Therefore, This work addresses the PA technique and joint optimization of SE 

and EE in the downlink multi-cell massive MIMO networks by proposing 

multi-objective asynchronous advantage single actor-multiple critics (MO-A3Cs) 

architecture.
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B. Contributions

The key contributions are summarized as follows:

- We propose a PA technique based on the novel MORL algorithm for the downlink 

multi-cell massive MIMO networks. The proposed MO-A3Cs algorithm utilizes 

MORL to optimize a trade-off between SE and EE in a massive MIMO network. 

the MO-A3Cs model follow Bayesian rule-based preference weights updating, the 

multi-objective advantage function, and the balanced-reward aggregation methods 

to solve the trade-off problem effectively, The proposed PA technique optimally 

allocates the transmission power in a massive MIMO network while ensuring an 

overall SE and EE balanced increase. 

- We define a multi-objective MDP (MOMDP) for the proposed MO-A3Cs model 

comprising the state space, action space, and the extended reward vector. In 

addition, We provide the proposed MO-A3Cs model-based downlink transmit PA 

strategies in multi-cell massive MIMO networks. This procedure offers insights 

into the MORL algorithm for optimizing trade-offs, a critical aspect of 5G networks 

and next-generation wireless communications. 
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- Extensive simulations are conducted to analyze the performance of the proposed 

MO-A3Cs for downlink PA in multi-cell massive MIMO networks. Compared with 

other benchmark schemes, the proposed MO-A3Cs provide better performance 

regarding average SE and power consumption in the massive MIMO networks. 

Furthermore, the simulation results depict the effectiveness of the proposed 

MO-A3Cs in achieving a joint-optimized SE and EE.

C. Thesis Organization

  The rest of the thesis organized as follows. Chapter Ⅱ presents the system model 

for the downlink multi-cell massive MIMO networks. Chapter Ⅲ presents the 

background and problem formulation, while Chapter Ⅳ presents the proposed 

MO-A3Cs model for downlink PA in multi-cell massive MIMO networks. The 

simulation setup and the detailed discussion related to simulation results are presented 

in Chapter Ⅴ. Finally, the paper is summarized and concluded in Chapter Ⅵ.
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Chapter Ⅱ

Related Work

  In this chapter, we introduce and analyze the various DRL, MARL, and MORL 

approach-based PA studies in cellular networks.

A. Deep Reinforcement Learning Approach

  The authors in [10] proposed a deep Q-network (DQN)-based PA method to enhance 

the sum rate in multi-cell networks. This approach maximizes the sum rate and 

is used as the reward. The states considered for the actions selected by the DQN 

agents include normalized interference, downlink rate, and transmit power. Similarly, 

the authors in [11] defined the MDP for sum rate maximization considering the 

previous transmission power and channel gain as a state. However, this approach 

results in a high dimensional problem [17]. To deal with this, the actor-critic (A2C) 

algorithm is utilized in [12] to reduce the complexity of the action space in the 

DQN-based PA methods. Similarly, the authors in [13] consider continuous action 

space for the downlink max-min power control problem in cell-free (CF) massive 

MIMO systems and propose a deep deterministic policy gradient (DDPG) method.  

  Furthermore, the objective function is maximized considering max-min fairness 
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[18] and the maximum product signal-to-interference-plus-noise ratio (SINR) [19] 

methods. However, single agent-based PA strategies in DRL algorithms require 

extensive training to determine optimal policies in case of optimization in complex 

environments.

B. Multi-Agent Reinforcement Learning Approach

  To deal with training overhead in single agents-based DRL technique for PA in 

dynamic wireless networks, the multi-agent reinforcement learning (MARL) approach 

was adopted with enhanced training strategy, scalable distributed learning, and 

execution in [14], [15].  The authors in [14] introduce a multi-agent DQN-based PA 

technique to maximize the sum rate in multi-cell networks. The sum rate is maximized 

using local agents with uniform target parameters while the global network updates 

the replay buffer gathered by these local agents. Furthermore, the authors demonstrate 

that the multi-agent DQN outperforms the single DQN in model training efficiency. 

Similarly, a multi-agent double DQN (DDQN)-based PA framework is proposed in 

[15] to maximize the capacity in multi-cell massive MIMO networks. The multi-agent 

DDQN model is split into sub-networks, i.e., the target Q-network and the evaluation 

Q-network, to avoid overestimating the Q-value in the DQN model. It is concluded 

that the proposed multi-agent DDQN provides improved convergence stability 

compared to the conventional DQN approach.
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C. Multi-Objective Reinforcement Learning Approach

  Recently, the emerging MORL algorithm has been used to solve MOO problems 

in the CF massive MIMO networks. The authors in [16] use a reward vector, defined 

as the sum rate and user fairness. In addition, to solve the MOO problem by 

transforming the problem into a single objective optimization (SOO). Moreover, the 

twin-delayed DDPG (TD3) algorithm with a replay buffer effectively maximizes the 

sum rate and fairness. These replay buffer-based training strategies can enhance 

sampling diversity and efficiency in massive MIMO networks.

  However, the model does not undergo training through real-time interactions 

between the network and the agent in buffer memory-based training strategies. 

Instead, it relies on old data saved in the buffer with limited memory size and uses 

it for future training. Furthermore, instead of using weight adjustment among multiple 

objectives such as sum rate and fairness, interpolation preference weights are 

considered, which are scenario-limited. These training strategies can lead to 

sub-optimal policies in the case of massive MIMO networks.

  To solve this problem, it is crucial to develop an advanced MORL algorithm 

designed to optimize transmit PA, thereby enhancing the overall SE and EE in 

massive MIMO networks. This paper introduces a novel MORL algorithm that 

leverages a MARL training strategy for efficient MORL model training. This approach 

enables interactions between each local agent and independent environments, leading 
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to the acquisition of diverse and immediate experience-data to training jointly 

optimization policy. Furthermore, we also propose and implement a Bayesian 

rule-based preference weight updating mechanism that dynamically adjusts the 

weightings of multi-objectives, including SE and EE, informed by the trajectories 

collected from each local agent. These innovations ensure that our proposed MORL 

algorithm not only trains from a diversity of experience-data but also improves both 

SE and EE in downlink multi-cell massive MIMO networks.



- 11 -

Chapter Ⅲ

Downlink Multi-Cell Massive MIMO Network

  In this chapter, we present the network layout followed by the main system 

assumptions, SINR and SE, the network power consumption model, and an overview 

of the joint spectral-energy optimization problem.

Figure 3.1: Illustration of the downlink multi-cell massive MIMO networks.
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A. Channel Estimation and Spectral Efficiency

  A downlink multi-cell massive MIMO network is considered with  number of 

cells as shown in Fig. 3.1. The BS is deployed at the center of each cell  where 

-th BS in the cellular network is equipped with  number of antennas. The UEs 

are assumed to be located randomly in the -th cell. Furthermore, we assume that 

each BS simultaneously serves a  number of UEs by sharing the same frequency 

band.

  The channel matrices between the -th BS and -th UE located in -th cell is 

denoted by   ∈  and can be expressed as

where   and   ∈ ×  denote the complex-valued vector space of dimension 

 and the spatial correlation matrix, respectively. Furthermore, we assume the BSs 

and UEs are perfectly synchronized and operate under the time division duplex (TDD) 

protocol. Before performing downlink transmission BS, each user transmits the pilot 

signal in the uplink to estimate the channel at the BS. The UEs reuse the pilot 

signal in the cell, and the reuse factor    is employed to reduce interference 

in the adjacent cells [20]. 

  Based on this assumption, we utilize the minimum mean-square error (MMSE) 

estimation method at the BS to effectively estimate the imperfect channel condition 


 ∼ 

  (3.1)
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corrupted by the interference and noise in the network [21]. The estimated channel 

between the -th BS and -th UE. computed from the uplink pilot signal , is 

denoted by  
 . The MMSE-based estimated channel is given by

where   
≠ 




  


 ,  denotes the identity matrix, and  is the noise 

variance. The noise added by the system is represented as 




. Based on 

the MMSE technique, the channel estimation is performed by minimizing the 

estimation error between the actual and estimated channels and is expressed as 


   

 
 .

  The downlink signal received at -th UE contains the desired signal transmitted 

from the -th BS, inter-cell and intra-cell interference, and the system-added noise. 

The downlink signal received at the -th UE from the -th BS located in the -th 

cell can be expressed as

where   denote the transmitted signal from the -th BS to each -th UE,  

denote the regularized zero-forcing (RZF) precoding vector [22]. and     represents 

the actual transmitted downlink signal to -th UE. 
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  The received SINR at the -th UE from the -th BS is written as

where  ,  , and   denote the downlink transmit power, the channel gain 

between the -th BS and the -th UE, and the interference signal power received 

at the -th user from the -th BS [10]. 

  According to Shannon's theorem, the channel capacity is defined as the maximum 

amount of information that can be transferred over a channel [7]. The achievable 

channel capacity of the established link between the -th UE and the -th BS is 

expressed as

where  and  represent the number of samples used for downlink data transmission 

and per coherence block, respectively. The downlink SE is defined as the total 

achievable data rate over the available bandwidth in massive MIMO networks and 

is measured in bits per second per Hertz (b/sec/Hertz). Based on the received SINR 

in (3.4) and the achievable channel capacity in (3.5), the total achievable SE in 

multi-cell massive MIMO networks can be formulated as [8]
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B. Power Consumption Model and Energy Efficiency

  The total power consumption in the downlink multi-cell massive MIMO networks 

is the sum of the effective transmit power  allocated based on the PA technique 

and the circuit power consumption . The total consumed power can be 

mathematically expressed as

The circuit power consumption of each -th BS in the massive MIMO network 

comprises the constant power consumed at BS denoted by   and the constant 

power incurred during the signal processing denoted by  . 

  Therefore, the total circuit power consumption of a BS can be expressed as

A large fraction of the power consumed in the network comprises the power consumed 

at the BS [23]. The power consumption of the BS comprises circuit powers required 

in operations such as the number of transmit antennas, channel estimation, and 

encoding and decoding [24]. 

  In particular, the circuit power due to the transceiver chain, which accounts for 

the most power consumption, includes components such as filters, mixers, 

digital-to-analog converters (DAC), and analog-to-digital converters (ADC). The 

power consumption of the transceiver chain component can be written as

 
  




 




  



  (3.7)

   (3.8)
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where  ,  , and   denote the transmission power of a single BS antenna, 

the local oscillator (LO), and the circuit power coefficient of the UE, respectively. 

From (3.9), the power consumption of the BS is proportional to the number of 

antennas. Furthermore, the power consumed during the channel estimation at the 

BS for each coherent block is also taken into consideration [2]. The power consumption 

in terms of the channel estimation can be calculated as

where  and   denote the bandwidth and the computational efficiency of the 

BS, respectively [25]. The circuit power consumed in the backhaul during the uplink 

and downlink data transmission can be expressed as

where  denotes the backhaul traffic power and   represents the achievable 

throughput within a cell. The value of   is calculated as  
  



 . Similarly, 

the circuit power consumed in channel encoding and decoding is denoted by  

and is given by

where  and  represent the power consumption coefficients incurred during 

        (3.9)

 


 ×

 (3.10)

   (3.11)

    (3.12)
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the encoding and decoding processes, respectively. Therefore, The EE of the downlink 

massive MIMO network is the ratio of SE to the total power consumption and can 

be formulated as

C. Definition of Joint Optimization Problem

  To evaluate the joint optimization in the multi-cell massive MIMO networks, 

simultaneously SE and EE must be optimized. Let us define a joint objective function 

of SE and EE by    . Thus, the joint optimization problem can be 

formulated as [4]

where max  denote the maximum transmit power. The transmit power   that 

affects both SE and EE is defined as a constraint and is required in the joint 

optimization problem [26]. The joint optimization problem in (3.14) is classified as 

multi-objective non-convex and NP-hard and requires high computations [10], [15].  

Therefore, in this thesis, we convert the SOO problem to the MOO problem through 

MOMDP to solve the optimization problem. In addition, we propose a PA technique 

based on the MO-A3Cs model to effectively solve the converted SOO problem.

   (3.13)



max 
(3.14)

 ≤≤max∀ 
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Chapter Ⅳ

MORL Algorithms and Problem Conversion

  In this chapter, we first briefly present the background of the MORL techniques 

for MOO problems. Then, the detailed description of the MOMDP is presented to 

transform the MOO problem into the SOO problem, which is later utilized in allocating 

power using the proposed MO-A3Cs model.

A. MORL Technique for MOO Problem

Figure 4.1: Comparison of DRL and MORL algorithms: Interaction between the agent and 
environment.

  Numerous studies have adopted and validated the DRL algorithms for PA to achieve 

enhanced performance in wireless networks. However, it is challenging to achieve 

better performance complexity trade-offs in the emerging MORL algorithm [27]. 

Compared to DRL, the MORL algorithms utilize multiple rewards in the form of 
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reward vectors to maximize multiple objectives, as shown in Fig. 4.1. To effectively 

tackle these reward vectors, the MORL algorithm either uses Pareto front 

approximation (PFA) [28], [29] or uses MOO transformation to SOO problems [27], 

[30].

  The PFA approach utilizes the reward vectors of the selected actions to determine 

the optimal point among multiple objectives based on Pareto dominance and Pareto 

fronts. The collected data from agent-environment interactions are used to construct 

a Pareto set and derive the required solution for the MOO problem. This approach 

requires a considerable buffer memory used to generate the Pareto set. Moreover, 

the Pareto fronts [31] used to determine the optimal solution require significant training 

time in large-scale environments such as massive MIMO systems [32].

  On the other hand, the transformation approaches that transform MOO problems 

into SOO problems employ strategies such as linear weighted sums [27] and constraints 

[30] and objective-preference concepts. Fig. 4.2 illustrates the process of determining 

the optimal policy for solving MOO problems using a MORL algorithm that uses 

preference weights to determine the optimal solution. In the initial stage of the MORL 

algorithm, a hypervolume is generated between multiple objectives through 

interactions between the agent and the environment, as shown in Fig. 4.2(a) In 

addition, Fig. 4.2(b) and Fig. 4.2(c) present the graphical illustration of weight 

assignment and the selection of optimal point for multiple objectives by using 
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(a) Initial steps of the MORL model training process

(b) Adjusting step of the policy by using preference weights

(c) Policy convergence step

Figure 4.2: Illustration of policy convergence in the MORL algorithms driven 
by preference weights for solving the MOO problem.
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the relative priorities  and . This transformation strategy may achieve faster 

convergence compared to the PFA approach. However, it can lead to limited training 

efficiency due to a bias towards specific objectives and the potential for converging 

to sub-optimal solutions depending on the preference weight settings [33]. 

  To this end, various methods have been suggested to effectively determine preference 

weights for MORL. These methods include the utilization of uniform weights [34], 

random weights [35], and dynamic weights [36]. The uniform and random preference 

weight approaches have limitations in that the convergence of the MORL model 

must be verified through various experiments to train the optimal points for multiple 

objectives. On the other hand, the dynamic weight approach allows for dynamically 

determined weights to optimize the policy designed to solve the MOO problem. 

However, this method requires additional buffer memory to update the weights for 

each objective. 

  Therefore, we propose a novel MORL algorithm to solve multi-objective functions 

and trade-off problems between SE and EE. The proposed model employs a MOMDP 

framework and integrates a Bayesian rule-based technique for updating preference 

weights, a multi-objective advantage function, and a balanced reward aggregation 

method. The multi-objective advantage function allows for the individual evaluation 

of action value for each objective. Moreover, the balanced-reward aggregation method 

aggregates rewards considering each preference weight, ensuring a more efficient 

approach to action selection by the agents.
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B. MOMDP-Based Conversion of MOO to SOO

  The MOMDP is an extension of the MDP and deals with multiple rewards in 

the form of a reward vector. In addition, the MOMDP can be defined as a tuple 

〈〉, where  ,  ,  ′ denotes the state space, action space, and the 

transition probability of taking action  for state transitions from   to ′, respectively. 

The reward vector  consists of the respective objective rewards for SE and EE. 

Thus,  can be expressed as  ～∀∈ ⋯, where   represents the total 

number of objectives. Similarly, the discount factor  , which determines how much 

the agent considers long-term rewards, is defined as ∈ . Furthermore, we employ 

preference weights  ～∀∈ ⋯ indicate the relative priority of each 

objective [37], [38].

  Therefore, the scalarized function for processing the reward vector in scalar form 

is defined as     × . The joint optimization problem in (3.14) is 

transformed and can be rewritten as

where  and  denote the preference weights that indicate the relative priorities 

of SE and EE, respectively. The states  , which facilitate the observation of various 

features related to the problem in (4.1), can be defined as



max  
(4.1)    ≥
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where  ,  , and   denote the channel gain, achievable channel capacity, and 

the transmit power between -th BS and -th UE at the time step , respectively. 

These state   are utilized by an agent to efficiently observe the SE and EE while 

interacting with the downlink multi-cell massive MIMO network.

  The action space   consists of feasible downlink transmission powers between 

all BSs and UEs. However, defining the action space as the set of all possible 

transmission powers in a multi-cell massive MIMO network, the dimensional issue 

arises [17]. To this end, we utilize a discretization strategy using quantization [39] 

of transmit power between min and max  with a specific quantization level to select 

action  . The discretized action space based on quantization can be expressed as

where   denotes the quantization level, which indicates the degree at which the 

transmission power range between min and max  be divided into discrete values. 

This discretization approach allows an increase in the power at each   level and 

effectively generates a variety of power action space between min and max .

  Finally, the immediate reward vector obtained through the interaction between 

the agent and environment in a massive MIMO network at a certain time instant 

can be expressed as

  
 

 
  ∀ (4.2)









minminmin
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where ,  denote average SE and EE, respectively. In general, the 

total value of SE is higher than the achievable total EE, which can lead to convergence 

instability and extend to training duration, Thus, we used the average SE and EE 

to reduce the variability of rewards and ensure more smoother convergence during 

the model training process.

    (4.4)
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Chapter Ⅴ

Proposed MO-A3Cs Technique for Power Allocation

  In this chapter, we introduce the proposed MO-A3Cs model-based PA framework 

followed by a Bayesian rule-based preference update mechanism, multi-objective 

function with reward aggregation method, and optimization of each actor and critic 

network. The proposed MO-A3Cs model uses the multi-critic model to simultaneously 

consider multi-objectives and estimate the expected value for each objective. The 

single actor determines the optimal power value for different objectives by aggregating 

the predicted values from each critic model. The proposed downlink PA framework 

based on MO-A3Cs model, the utilized single-actor, and multi-critic neural networks 

is illustrated in Fig. 5.1 and Fig. 5.2, respectively.

  Furthermore, the MO-A3Cs model integrates the extension of the asynchronous 

advantage actor-critic (A3C) [40] along with the proposed Bayesian rule-based 

preference weight update, multi-objective advantage function, and balanced-reward 

aggregation method. Our proposed approach is inspired by the A3C model, which 

consists of an actor-network that selects actions and a critic network that evaluates 

the chosen actions. The actor and critic networks interact with each other and decide 

whether to take a specific action  from the available action space  at a particular 

. The critic evaluates the selected  by the actor using the value function ϕ.
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Figure 5.1: The proposed MO-A3Cs based transmit PA framework for SE-EE joint optimization 
in the downlink multi-cell massive MIMO networks.

Figure 5.2: Structure of the neural network of the single actor and multi-critics network 
on the proposed MO-A3Cs model.
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  The update process of the actor network is given as

where  represents the policy parameters of the actor,  is the learning rate,  denotes 

the time step, and  indicates the maximum number of episode, while  
  

∞

   

represents the accumulated reward computed by the discount factor , ϕ is 

the value function for state  , and ∇log denotes the gradient of the actor 

network. The network aims to maximize the expected reward by utilizing the 

advantage function, which is based on the difference between   and ϕ for a 

given state  . 

  For the critic, it aims to minimize the error between the accumulated reward 

  obtained from the actor and its predicted value ϕ. The critic evaluates the 

value of the selected action   based on

where ϕ denotes the parameters of the critic network and ϕ
 ϕ  represents 

the gradient of the squared error, respectively.

←
  



 ϕ×∇log (5.1)

ϕ←ϕϕ
ϕ

 (5.2)
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A. Bayesian Rule-Based Preference Updates

  The proposed preference weight update method utilizes trajectories collected 

through multiple local agents to update the preference weights  for observed 

objective, i.e., SE and EE in a multi-cell massive MIMO network. The update strategy 

ensures diverse experiences for global network training without relying on potentially 

biased experiences from initially collected data and helps in the joint optimization 

of SE and EE. In the MORL algorithm, the preference weights follow uniform and 

random initialization [36]. In the case of uniform initialization, each objective is 

initialized with an equal weight given by

Using this uniform method, SE and EE are initialized with the same preference 

weights despite the local agents interacting with distinct and independent multi-cell 

massive MIMO environments. Such an initialization implies that the agents must 

update it more frequently, and more training is required to find the joint optimization 

policy. To address this issue, we propose an adaptive update mechanism using Bayesian 

rules with random preference initialization. The preference weight is initialized from 

uniform distribution as ∼ . To quantify the relative priority of the objectives, 

the weights are normalized as follows.

   ∀ ⋯  (5.3)
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where  represents the objective function for each SE and EE, and  denotes the 

initial trajectory capturing the sequence of interactions between the agent and the 

environment. For the given state, action, and reward vector at time step , 

       ⋯                 . The normalization process facilitates the 

comparison of the relative importance of each objective. Later, each local agent utilizes 

the   as prior probabilities for calculating the likelihood of objectives. The likelihood 

function for each objective can be expressed as

where the likelihood  represents the probability of observing the trajectory 

 , which consists of states  , actions  , given the objective function . This metric 

indicates how well the observed   aligns with , and the preference weights update 

is made based on the posterior probability of the  using Bayesian rules. Therefore, 

the agent assesses whether the trajectory   of the current state   sufficiently aligns 

which objective function . As the samples in the trajectory   change at step 

, the agent adaptively adjusts the weight   using the Bayesian rule and is given 

by [41]



  








(5.4)


  



 (5.5)
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where the prior probability and the likelihood function are given in (5.4) and (5.5), 

respectively. 

  The process described by (5.6) represents updating preference weights for the 

objective function based on trajectory  , and prior probabilities of previous preference 

weights. Therefore, the proposed preference weights updating techniques utilize the 

posterior probability of , updated from the Bayesian rule, as its preference weight. 

By adopting this proposed updates strategy, the DRL agents can more efficiently 

observe the trade-off between SE and EE during the model training process. Moreover, 

the proposed preference weight update mechanism overcomes shortcomings of the 

conventional interpolation weights-based [16], [34] and buffer memory-based dynamic 

weights update approaches [36]. Next, we present the multi-objective advantage 

function for the proposed MO-A3Cs method.

B. Multi-Objective Advantage Function

  The A3C model predicts the ϕ from the current state   in the critic network 

and employs the advantage function to evaluate and update the actor-critic network. 

This function measures the difference between the   and ϕ for a specific action 

 

  








(5.6)



- 31 -

  taken on the current state  . It is beneficial to evaluate the value of the chosen 

action   [40]. 

  However, such an advantage function is optimized for training a single objective 

and ineffective for solving MOO problems. To solve the MOO problem, this work 

extends the single objective advantage function to a multi-objective advantage 

function. Let  be the number of objectives, then the multi-objective advantage 

function can be expressed as

where     ϕ  ϕ denotes the temporal difference error (TD error) 

[42]. Using this advantage function, the value of actions for SE and EE is independently 

assessed, simultaneously considering each objective. The actor update is performed 

using the proposed balanced-reward aggregation method utilizing this multi-objective 

advantage function.

  In the MORL algorithm, reward aggregation represents the summation of 

multi-objective rewards based on the scalarized function  , considering their 

relative priorities [43]. Generally, in the MORL algorithm, where trade-offs are not 

considered, all the objective rewards in the reward vector are summed and employed 

as a single reward. This can be mathematically expressed as

 ϕ
 

∞

  ∈⋯ (5.7)

←
  




  



×∇log (5.8)
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For SE and EE as objectives, the absence of preference weights  makes it challenging 

to be used to solve the trade-off between them. To apply the preference weights 

 , most MORL algorithms utilized the combined-reward aggregation [44] that reflects 

preference weights for each objective and can be expressed as

where  ϕ denotes the aggregation of the accumulated reward   

considering  for each objective using the scalarized function  which is applied 

in the multi-objective advantage function. Unlike (5.8), this approach allows for 

considering priorities for each objective, providing a more effective way to address 

SE-EE trade-off problems. Nevertheless, an issue with this method is that the  

for each objective is not reflected in the value function ϕ. This suggests that 

the agent might select actions biased towards a specific objective, not fully considering 

the preferences for both SE and EE, due to asymmetric updates to the value function 

ϕ in each critic network. For instance, if the value function for SE is considered 

more important than that for the value function of EE, and without preference weights 

 , the agent focuses on prioritizing actions that maximize SE, which may potentially 

lead to EE degradation. 

  To deal with this, this work considers a balanced-reward aggregation method that 

can be defined as

←
  




  


×∇log (5.9)
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This method applies preference weights   to both the cumulative reward   and 

the value function ϕ for each objective. This approach leads to more efficient 

training to determine and improve the optimal PA policy for jointly optimizing the 

SE and EE.

C. Optimization of MO-A3Cs Updates

  In this section, we introduce the update methods for the single-actor and multi-critic 

networks for the proposed model. The update for the single actor network, which 

determines the optimal action  , in the MO-A3Cs model, can be expressed as

where  denotes the number of trajectories ,  denotes the trajectory index  , 

and  is the probability of selected   for state   according to policy . 

The loss function,  , for the single actor, computes the difference between the 

expected value function ϕ and the actual reward   using multi-objective 

advantage function and the balanced-reward aggregation methods. Hence, the actor 

updates the action policy by considering the preference weights  for each objective.

  The structure of the proposed multi-critic networks is depicted in Fig. 5.1 and 

←
  




  



×∇log (5.10)
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have an independent critic network for each SE and EE, which leads to a more 

accurate estimation of the value function ϕ for each objective. The update and 

optimized multi-critics can be defined as

where   represents the parameters of the critic network for the -th objective. Since 

each critic network is updated independently for each objective, updates can be made 

without influencing the value function estimation for other objectives. This extended 

multi-critic enables the estimation of the optimal value function ϕ for each SE 

and EE and facilitates a more appropriate balance between SE and EE trade-offs.

  Furthermore, this thesis paper introduces action distribution entropy to encourage 

agents to select and explore various actions in a multi-cell massive MIMO network 

environment. This entropy prevents premature convergence to sub-optimal solutions 

and enhances long-term convergence performance [45]. Thus, the action distribution 

entropy utilized in this paper can be expressed as

The larger entropy value  enables the agent to explore the environment and 

search in the expanded action space to collect diverse trajectories, leading to effective 

training of MO-A3Cs. Finally, the total loss function utilized for the MO-A3Cs model 

is given by

ϕ 


 



ϕ
  (5.12)

 


log (5.13)
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where  represents the loss function of the single actor, and ϕ denotes the 

loss function of the critic network. Additionally,  is a weight used for regularizing 

the action distribution entropy, and its value ranges between 0 and 1. The value 

of  is set to 0.001. The total loss function is minimized for single actor and multi-critic 

networks. 

  The training procedure of the MO-A3Cs model for each thread is given in Algorithm 

1. The algorithm initializes by synchronizing the key parameters between the global 

network and local threads followed by the preference weight initialization. For each 

time instant of the local thread, random preference weights are assigned to each 

local agent based on a distinct downlink multi-cell massive MIMO environment. 

The collected trajectories from each agent are leveraged and the global network is 

updated asynchronously. This training strategy benefits from the independent 

evaluation of SE and EE by the multi-critic network, distinct from existing MORL 

algorithms. This evaluation directs the joint optimization policy updates through 

the proposed balanced-reward aggregation function. Ultimately, by integrating a 

MARL-based training strategy and the proposed innovative MORL algorithm.

  
  



ϕ (5.14)
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Chapter Ⅵ

Simulation Results and Analyses

  In this chapter, we present the simulation setup, the employed benchmarks, and 

simulation results to evaluate the performance of the proposed MO-A3Cs-based PA 

in downlink multi-cell massive MIMO networks.

A. Simulation Parameters

  In the simulation setup, we consider 16 square cells with one BS per cell, and 

each cell has an area of 250 × 250 m. The UEs in the network are equipped with 

a single antenna and are randomly and uniformly distributed in each cell. The 

minimum distance between the BS and the UE is set to 25 m. The channel gain 

at a distance of 1 km is -148.1 dB, and the path loss exponent is set to 3.76. The 

noise power of the receiver and the noise figure of each BS are set to -94 dBm 

and 7 dBm, respectively. The parameters considered in the massive MIMO system 

and the power consumption model utilized in simulations are listed in Table 6.1.
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B. MO-A3Cs Architecture

  The proposed MO-A3Cs model comprises four fully connected layers, including 

two hidden layers and an input and output layer. The state space size is utilized 

as an input to the first layer, and the size of both the first and second hidden layers 

is the size of 128 and uses a ReLU activation function. The single actor network 

outputs the probability of possible action   given the state   through the softmax 

function, which results in a probability distribution between 0 and 1. On the other 

hand, the multi-critic networks comprise several critic networks based on the number 

of objectives  . 

System parameters Network setup
Number of cells () 16

Number of UEs per cell () [5, 10]
Number of transmit antennas ( ) [20, 100]

Bandwidth () 20 MHz
Pilot reuse factor () 4

Coherence block length () 200
Power for BS antennas ( ) 0.4 W

Power for BS local oscillator ( ) 0.2 W
Power per UE ( ) 0.2 W

Power for backhaul traffic () 0.25 W/(Gbit/s)
Power for data encoding () 0.1 W/(Gbit/s)
Power for data decoding () 0.8 W/(Gbit/s)
BS computation efficiency ( ) 75 Gflops/W

UL transmit power () 0.1 W
Fixed BS power ( ) 10 W

Fixed power for signal process ( ) 0.1 W
Minimum transmission power (min) 5 dBm
Maximum transmission power (max) 38 dBm

Table 6.1: System parameters of the downlink multi-cell massive MIMO network setup.
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  To effectively train the proposed model and various benchmark models, the 

hyper-parameters of each DRL and MORL model utilized are set as described in 

Table 6.2.

C. Benchmark Methods

  The performance of the proposed PA scheme is compared with the existing 

benchmarks, including iterative algorithm-based PA methods, conventional DRL 

models, and MORL model-based PA techniques.

Hyper-parameters SE-DQN EE-DQN PQN MO-A3Cs
Learning rate 0.001 0.001 0.001 0.001

Discount factor 0.98 0.98 0.98 0.98
Hidden layers 2 2 2 2
Hidden size [128, 128] [128, 128] [128, 128] [128, 128]
Batch size 64 64 64 64

Update interval 10 10 10 N/A
Number of agents N/A N/A N/A 16

Optimizer Adam Adam Adam Adam
Activation functions ReLU ReLU ReLU ReLU

Maximum steps 100,000 100,000 100,000 100,000
Warm-up steps 10,000 10,000 30,000 N/A

Replay buffer size 50,000 50,000 100,000 N/A
Initial  1.0 1.0 1.0 N/A
Final  0.01 0.01 0.01 N/A-decay 0.995 0.995 0.995 N/A

Loss function Huber Huber MSE (5.14)

Table 6.2: Hyperparameters of the utilized DRL and MORL models.
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1. Algorithmic Approaches

  The considered benchmark algorithms comprise an equal PA method which allocates 

equal transmission power, and a PA technique based on the Dinkelbach algorithm 

[46]. Typically, the Dinkelbach algorithm addresses the fractional programming 

problem [47]. For Dinkelbach algorithm, we transformed the problem in (3.14) into 


max

 . Here,  and  represent the objective function of SE and EE, 

respectively, and  indicates the downlink transmission power. This fractional 

programming problem exhibits non-linear and non-convex characteristics. In the 

Dinkelbach algorithm, the problem is transformed into a sub-problem of the form 


max     and then addressed through an iterative process based on an 

arbitrary scalar value  updated using the ratio of  to  in each iteration. 

This value is updated to 

  using the optimal solution  obtained at each stage. 

In addition, this iterative process is conducted by gradually adjusting the transmission 

power up to the max . 

  Therefore, the Dinkelbach-based downlink PA method optimizes the transmit power 

until the ratio of SE to EE in the transformed sub-problem becomes smaller than 

the parameter . Considering the computational complexity and accuracy of the 

Dinkelbach algorithm, the value  is set to 0.001.
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2. Reinforcement Learning Approaches

  The considered DRL and MORL benchmarks include SE-DQN, EE-DQN, and 

the PFA-based DQN (PQN), where the SE-DQN and EE-DQN aim to maximize 

SE and EE, respectively. The PQN model jointly optimizes SE and EE. During 

training, these models use the -greedy algorithm, a strategy for balancing exploration 

and exploitation [48]. The value of ∈   while the remaining hyperparameters 

for each model are listed in Table 6.2. In the DRL models, the state space of SE-DQN 

includes channel gain and downlink user rate, while the EE-DQN model state space 

consists of power consumption and computed EE. PQN adopts the same state space 

as the proposed MO-A3Cs model.

D. Performance Comparison and Analyses

  In this section, we evaluate the performance of the proposed MO-A3Cs-based 

PA in the downlink multi-cell massive MIMO network. 
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1. Training Performance Evaluation

Figure 6.1: Training results of MO-A3Cs model at different learning rates: Average SE reward.

Figure 6.2: Training results of MO-A3Cs model at different learning rates: Average EE reward.
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  Fig. 6.1 and 6.2 depict the comparison of reward for average SE and average 

EE based on the learning rate in the proposed MO-A3Cs model. The learning rate 

 belongs to the set   , which determines the speed at which the 

model trains from the collected data in the environment.

  For the setting   , significant instabilities and fluctuations in the average 

objective rewards were observed during the training process. On the other hand, 

the    showed improvements in the instability and fluctuations at    

from the perspective of average SE and EE rewards.

  Futeremore, based on the median of each objective reward, the    

demonstrated improvements of 1.90% and 0.85% in average SE compared to the 

   and   , and the average EE enhanced by 3.36% and 0.52%, respectively. 
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Figure 6.3: Training results of MO-A3Cs model at various discount factors: Average SE reward.

Figure 6.4: Training results of MO-A3Cs model at various discount factors: Average EE 
reward.
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  Fig. 6.3 and 6.4 illustrate the training performance of the MO-A3Cs 

model for each different discount discount factor. In   , the improved 

median reward for SE was 3.96%, 4.77%, 0.18%, 1.81%, and EE reward was 

15.93%, 9.96%, 6.92%, 14.28% compared to the      , 

respectively.

  These training results confirm that the proposed MO-A3Cs model can 

enhance its overall training performance by focusing more on the future 

rewards. However, it was observed that in the setting of    and 

  , despite exhausting all of the training iterations, the rewards for SE 

and EE did not increase. This suggests that the discount factor  setting 

can significantly influence the training performance of the MO-A3Cs model.
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Figure 6.5: Training results of MO-A3Cs model according to the different number of deployed 
local agents: Average SE reward.

Figure 6.6: Training results of MO-A3Cs model according to the different number of deployed 
local agents: Average EE reward.
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  In this thesis, we propose the MO-A3Cs model designed based on the fundamental 

structure of the A3C model, utilizing multiple local agents to address the training 

speed degradation issue associated with the single-agent DRL and buffer memory 

usage. The proposed MORL architecture allows each local agent to interact 

independently within a downlink multi-cell massive MIMO network environment, 

collecting diverse trajectories and training the global network. Consequently, it is 

required to analyze the influence of the number of local agents on the training 

performance of the proposed MO-A3Cs model.

Fig. 6.5 and 6.6 demonstrate the analysis results of each objective reward of MO-A3Cs 

according to the number of local agents. The results of 4 local agents have limited 

diversity in the collected samples in the environments, leading to relatively lower 

training performance. In contrast, employing 16 local agents results demonstrated 

an improvement of 9.48% and 3.37% in the rewards for average SE, and 7.97% 

and 3.83% in the average EE reward, compared to the number of 4 and 8 agents, 

respectively.
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Figure 6.7: Training results of MO-A3Cs model at different quantization levels: Comparison 
of training efficiency.

Metrics   = 50   = 100   = 200   = 300   = 500

Convergence training steps 19,144 28,421 42,345 47,451 66,753

Convergence time (min.) 11.21 34.19 58.43 71.16 203.54

Total training time (min.) 60.30 94.24 141.44 191.02 282.42

Table 6.3: Impact of quantization on training efficiency of the MO-A3Cs model.
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  As discussed in Chapter III-B, the quantization level   is a key parameter affecting 

the training performance of the proposed model. Fig. 6.7 demonstrates the training 

performance of the MO-A3Cs model at various   levels. In   = 30, the average 

cumulative rewards for SE and EE were the lowest at 10.66 and 6.67, respectively. 

With the setting of   = 100, the SE increased by 0.86, but the EE reward decreased 

by 0.38 compared to   = 30, while with   = 200, improvements were recorded 

in both SE and EE, achieving respective values of 13.16 and 7.04. Furthermore, 

  = 300 showed the highest SE and EE rewards at 14.04 and 7.75.

  Table 6.3 shows the training complexity of the MO-A3Cs model for different values 

of  . In   = 50, the fastest convergence was achieved in 11.21 minutes. In contrast, 

the   = 500 settings took 203.54 minutes to converge, indicating a significant 

increase in training time and duration. In addition, changing from 200 to 300 raised 

5,106 steps, while changing from 300 to 500 greatly increased by 19,302 steps for 

convergence. The experiment demonstrates that the most balanced setting between 

performance and training complexity for the proposed MO-A3Cs model is   = 

300.
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Figure 6.8: Training results of MO-A3Cs model for each different preference weights 
initialization technique: Average SE reward.

Figure 6.9: Training results of MO-A3Cs model for each different preference weights 
initialization technique: Average EE reward.
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  Fig. 6.8 and 6.9 show the average SE and EE rewards for uniform and random 

initialization methods in the MO-A3Cs model training, respectively. The simulation 

results demonstrate that utilizing the random method in the proposed MO-A3Cs 

model achieves the median of SE and EE rewards that are 1.57% and 1.55% higher 

than the uniform initialization. This result suggests that random initialization is 

more effective in the proposed Bayesian rule-based preference update mechanism, 

as discussed in Chapter V-A.
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Figure 6.10: Training results of MO-A3Cs model for each different preference weights 
update methods: Average SE reward.

Figure 6.11: Training results of MO-A3Cs model for each different preference weights update 
methods: Average EE reward.
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  Fig. 6.10 and 6.11 depict the average objective rewards of the MO-A3Cs model 

for various preference weight update methods. The uniform update method sets both 

preference weights to 0.5. The random update method adjusts preference weights 

with random values between 0 and 1. The exp update method designed to adjust 

preference weights employs a strategy that exponentially decreases calculated as 

  exp  × . Here,  represents the parameter determining the weight 

decrease rate. This method encourages agents to reduce exploration towards objectives 

with high rewards and intensively explore objectives with lower rewards. In this 

simulation, to minimize bias towards SE, the   values for SE and EE were set 

to 0.08 and 0.06, respectively.

  The simulation results show that the proposed Bayesian rule-based preference 

weight update technique outperforms other methods in achieving the highest objective 

rewards. Specifically, compared to the exp, uniform, and random methods, the median 

rewards for SE improved by 0.55%, 1.58%, and 5.95%, while those for EE improved 

by 3.16%, 7.88%, and 12.75%, respectively. Conventional update methods in the 

MORL algorithm tend to prioritize SE over EE due to relatively higher values, leading 

to a decreased priority for EE. On the other hand, our proposed Bayesian rule-based 

update method adaptively adjusts weights based on obtained trajectories from an 

interaction between the agents and the environment.
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Figure 6.12: Training results of MO-A3Cs model at different reward-aggregation methods: 
Average SE reward.

Figure 6.13: Training results of MO-A3Cs model at different reward-aggregation methods: 
Average EE reward.
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  Fig. 6.12 and 6.13 show the evaluation of various aggregation methods such as 

sum-reward, combined-reward, and the proposed balanced-reward as addressed in 

Section V-B. The simulation results reveal that the sum-reward method mainly focuses 

on increasing SE during model training, overlooking the trade-off between SE and 

EE. In contrast, the combined-reward method, which reflects preference weights, 

showed enhanced performance of 3.24% for SE and 11.10% for EE compared to 

the sum-reward method. 

  Furthermore, our proposed balanced-reward aggregation method outperformed 

other aggregation methods, with enhancements of 5.23% and 17.92% over the 

sum-reward method and 1.93% and 6.13% compared to the combined-reward method.
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Figure 6.14: Validation of the proposed MO-A3Cs model: Comparison and analysis of Average 
SE reward with PQN model.

Figure 6.15: Validation of the proposed MO-A3Cs model: Comparison and analysis of average 
EE reward with PQN model.
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  Fig. 6.14 and 6.15 present the training performance of the proposed MO-A3Cs 

model in comparison to the PQN model, a representative model of the MORL 

algorithm. The simulation results indicate that the average SE reward of MO-A3Cs 

was approximately 2.26% lower than PQN, while its EE reward was about 7.56% 

higher. This suggests that the proposed MO-A3Cs model achieves more effective 

joint optimization of the average SE and EE rewards compared to the PQN model. 

  Furthermore, the PQN model converges rapidly to a sub-optimal solution for the 

average EE reward due to its reliance on obtained samples from replay buffers. In 

contrast, the MO-A3Cs model employs a multi-agent training strategy, enhancing 

sampling efficiency without utilizing buffer memory. This approach enables the 

MO-A3Cs model to train more efficiently to achieve joint optimization of SE and 

EE.
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Figure 6.16: Validation of the proposed MO-A3Cs model: Comparison and analysis of 
convergence results with various benchmark models.

  Fig. 6.16 presents a comparative analysis of the convergence direction of 

multi-objective rewards during the training processes of the SE-DQN, EE-DQN, PQN, 

and the proposed MO-A3Cs model. For the SE-DQN and EE-DQN models, which 

were designed to maximize average SE and EE respectively, it can be observed that 

as the training progresses, the models converge towards maximizing the target 

objective reward with other objective rewards being ignored.

  In contrast, the PQN model is a representative MORL algorithm utilized to validate 

the convergence direction of the MO-A3Cs model. The PQN converges by considering 

the multi-objectives, jointly optimizing SE and EE. However, as the number of training 

iterations increases, the model exhibits a direction similar to that of the SE-DQN 
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model. This result is due to the limited sample data in the buffer memory used 

during the Pareto set generation and the approximate Pareto Front process in the 

PQN model. This suggests that while the PQN can learn a convergence policy that 

jointly optimizes SE and EE, it may lead to a biased training direction toward a 

specific objective reward in the model training process.

  On the other hand, the proposed model, through independent exploration by 

multiple local agents in various downlink multi-cell massive MIMO networks, trains 

the global network based on diverse trajectories. This model training strategy, unlike 

buffer memory-based model training, can reflect various real-time data and observe 

states   collected by each local agent, enabling more effective model training. 

Furthermore, by employing the proposed multi-objective advantage function and 

balanced-reward aggregation method for joint optimization of SE and EE during 

the model training process, it was experimentally verified that the proposed MO-A3Cs 

model achieves the most joint optimization performance compared to the utilized 

DRL benchmarks.
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Figure 6.17: Validation of the proposed MO-A3Cs model: Comparison of multi-objective reward 
with various benchmark models.

  Fig. 6.17 depicts the average cumulative rewards achieved for each SE and EE 

during the training process of the utilized DRL and MORL models. The SE-DQN, 

aiming to maximize SE, reached the highest average cumulative reward of 14.39 

for SE. Similarly, the EE-DQN, focusing on EE maximization, recorded a reward 

of 7.75 for EE. However, the single-objective models tend to maximize one target 

reward at the expense of other objectives. In contrast, the proposed MO-A3Cs achieved 

average cumulative rewards of 12.96 and 7.08 for SE and EE, respectively. 

  In addition, The difference between the average cumulative SE and EE rewards 

is 5.88 for MO-A3Cs, 8.88 for SE-DQN, 3.56 for EE-DQN, and 6.38 for the PQN 

model. These results demonstrate that our proposed MO-A3Cs model achieves the 

most efficient joint optimization compared to the benchmark models.
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2. Simulation Results

Figure 6.18: An evaluation of the total power consumption for downlink transmit PA methods 
across different numbers of transmit antenna   from 20 to 100.

  Fig. 6.18 illustrates the total power consumption of different PA techniques at 

settings   ,   , and varying transmit antenna from    to   . 

The SE-DQN method achieved the highest average power consumption at 60.37 dBm, 

while the EE-DQN method recorded the lowest at 54.76 dBm. The Dinkelbach and 

PQN methods consumed 58.32 dBm and 58.13 dBm, respectively. Moreover, the 

proposed MO-A3Cs-based PA showed an average consumption of 57.68 dBm, which 

is about 4.66% lower than the SE-DQN and 5.07% higher than the EE-DQN. It 

also consumed 0.78% and 1.11% less power than the PQN and Dinkelbach, respectively. 

In summary, the simulation results demonstrate that the proposed MO-A3Cs-based 

PA method can effectively power control at the downlink transmission.
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Figure 6.19: Comparison of the CDF for average SE across different downlink transmit PA 

methods at varying transmit antenna   from 20 to 100.

Figure 6.20: Comparison of the CDF for average EE across different downlink transmit PA 
methods at varying transmit antenna   from 20 to 100.
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  Fig. 6.19 presents the cumulative distribution function (CDF) analysis results for 

the SE and EE of various PA techniques under the settings of   ,   , and 

varying numbers of downlink transmit antenna from    to   . 

  In Fig. 6.19, the MO-A3Cs-based PA technique demonstrates a performance that 

is approximately 2.19% lower than the PQN method. However, compared to EE-DQN 

and the Dinkelbach techniques, it achieves higher performances by approximately 

9.07% and 5.39%, respectively. The enhanced SE performance of the PQN compared 

to the MO-A3Cs can be attributed to differences in their training policies, leading 

to different optimal transmission powers. 

  Moreover, Fig. 6.20 indicates that the EE performance of the MO-A3Cs is close 

to the EE-DQN method. In contrast to Fig. 6.19, the CDF of EE shows that both 

PQN and Dinkelbach perform 8.79% and 6.32% lower than the MO-A3Cs, respectively. 

This analysis confirms that the proposed MO-A3Cs-based PA technique jointly 

optimizes the overall SE and EE.
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  Table 6.4 and 6.5 show the trade-off optimization performance with varying 

antennas, and maximum transmit powers, respectively. The optimal point is where 

SE and EE are jointly optimized.

  Table 6.4 demonstrates the trade-off optimization performance for each PA method 

with varying numbers of transmit antennas from 20 to 100. The equal PA technique 

shows the lowest performance across all metrics, as it does not undertake efficient 

power control. In addition, the optimal points for the SE-DQN and EE-DQN methods 

were recorded as (28.16, 4.38) and (19.87, 6.72), respectively. These methods can 

maximize specific objectives while sacrificing other objectives. In contrast, the 

PA methods Optimal point Avg.SE Avg.EE
Equal (21.43, 4.61) 24.90 3.96

Dinkelbach (25.08, 5.16) 29.16 4.42
SE-DQN (28.16, 4.38) 29.75 3.91
EE-DQN (19.87, 6.72) 28.78 4.55

PQN (25.84, 4.89) 29.70 4.15
MO-A3Cs (25.69, 5.26) 29.60 4.37

Table 6.4: Comparison of trade-offs optimization in downlink transmit PA methods across 
varying numbers of transmit antenna   from 20 to 100.

PA methods Optimal point Avg.SE Avg.EE
Equal (19.77, 4.01) 22.87 3.37

Dinkelbach (23.55, 4.56) 27.20 3.80
SE-DQN (24.49, 4.18) 28.01 3.38
EE-DQN (23.53, 4.69) 26.82 3.90

PQN (24.36, 4.30) 27.80 3.59
MO-A3Cs (24.22, 4.63) 27.74 3.71

Table 6.5: Comparison of trade-offs optimization in downlink transmit PA methods across 
varying maximum transmit power max from 20 to 60.
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Dinkelbach achieved points of (25.08, 5.16). Moreover, the proposed MO-A3Cs 

recorded the most balanced point (25.69, 5.26), while the PQN showed a slightly 

higher SE value of (25.84, 4.89) than the MO-A3Cs. However, a notable difference 

is observed in EE values. Regarding average SE, the PQN method approximates 

the performance of SE-DQN with a value of 29.70, while the MO-A3Cs record a 

slightly lower at 29.60. For average EE, the MO-A3Cs achieve an improved value 

of 4.37, representing a 0.22 enhancement over the PQN-based PA approach. 

  Table 6.5 presents the SE-EE trade-off optimization performance with the number 

of antennas fixed at 40, while the maximum transmission power ranges from 20 

to 60 dBm. These changes in transmission power constraints directly impact the 

action space and the estimation accuracy of the utilized models. The simulation 

results demonstrate that the proposed MO-A3Cs method achieves the most efficient 

optimal points at (24.22, 4.63). In contrast, the PQN appears to closely approximate 

the performance of the SE-DQN. Moreover, with its adopted PFA approach, the 

PQN method requires diverse samples to generate the Pareto set and approximate 

the Pareto front, especially with changes in key parameters such as max . This implies 

a need for expanded buffer memory and training duration, in contrast to our proposed 

MO-A3Cs method. 
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(a) Average SE with varying numbers of UEs

(b) Average EE with varying numbers of UEs

Figure 6.21: Performance evaluation and analysis of average SE and EE for each downlink 
PA method in densely deployed UEs per each cell in massive MIMO networks including 
pre-trained models; (a) Average SE with varying numbers of UEs, (b) Average EE with 
varying numbers of UEs.

  Fig. 6.21 (a) and (b) demonstrate a decrease in average SE and EE as the number 

of UEs increases in the downlink multi-cell massive MIMO network with    

and   . This decline is attributed to increased power consumption at BSs due 

to a higher number of deployed UEs, coupled with the growth of network density 
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and interference, leading to a decrease in SE and negatively impacting both SE and 

EE metrics.

  Unlike the results in Fig. 6.19 and 6.20, there is a considerable performance difference 

between the proposed MO-A3Cs model and the PQN model. In particular, the PQN 

model, despite its capability to handle changing the key network parameters such 

as the number of antennas, shows limitations in the case of an increasing number 

of UEs. An increase in UEs seriously influences the overall network density, leading 

to more complex changes in network environments compared to variations in the 

number of transmit antennas. As a result, when the PQN was applied in dense 

scenarios not matching the number of UE sets from the training environment, it 

performed the lowest. In contrast, the proposed MO-A3Cs model-based downlink 

PA technique approximately achieved the performance of SE-DQN in Fig. 6.21(a) 

and the EE-DQN in Fig. 6.21(b), respectively.

  The simulation results reveal that the MO-A3Cs model-based downlink PA method 

achieves adaptive and robust performance, even in environments different from the 

training setup, outperforming iterative algorithm-based, DRL, and MORL models.
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Figure 6.22: Execution time comparison for each downlink PA method for different numbers 
of UEs and    and    including the pre-trained models. 

  Fig. 6.22 presents the execution time of the proposed pre-trained MO-A3Cs model 

as a function of  in comparison with the other learning and model-based algorithms. 

Fig. 6.22 depicts that the execution time for the Dinkelbach-based downlink PA 

method increases exponentially with the number of UEs whereas the DRL, 

MORL-based, and equal PA techniques have less computational complexity even 

for a higher number of UEs.

  These comprehensive simulation results demonstrate that the proposed MO-A3Cs 

model-based downlink PA framework provides reduced computational costs compared 

to the interactive algorithms while ensuring robust and joint optimization of SE 

and EE in dynamically changing downlink multi-cell massive MIMO networks.
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Chapter Ⅶ

Conclusion

A. Summary

  In this thesis, we propose a transmit PA technique based on the MO-A3Cs model 

to achieve the SE-EE trade-off in multi-cell massive MIMO networks. The proposed 

model learns the optimal joint policies to optimize the SE and EE by integrating 

the MARL-based training strategy with the proposed MORL algorithm. Unlike deep 

learning and iterative algorithms, trial-and-error-based reinforcement learning 

maximizes the rewards, takes optimal action through real-time interactions with the 

environment, and ensure adaptability and robustness in various network scenarios. 

Comprehensive simulation results demonstrate that our proposed MO-A3Cs 

model-based downlink PA method optimizes the SE-EE trade-off more effectively 

and outperforms the conventional MORL algorithm with the PFA approach in terms 

of joint SE-EE optimization in a dynamic environment. In particular, our proposed 

PA technique shows robust and flexible performance when varying key network 

parameters, such as max  and   in the multi-cell massive MIMO networks. Lastly, 

we demonstrated that our MO-A3Cs model-based PA method has the possibility 

of an innovative MORL-based solution for PA techniques in massive MIMO networks.
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B. Future Work

  The future work for two issues are summarized as follows:

Issue 1: Expansion of the action space to solve the real-world problems

  In this thesis, we utilized a quantization level-based discretized action space to 

address the downlink power control in multi-cell massive MIMO networks. This 

approach reduces the overhead associated with training models in a continuous action 

space and provides an efficiently generated action space. However, for real-world 

problems such as adaptive decision-making with multiple objectives, there is a need 

to further refine and expand the action space. To this end, our future work aims 

to extend the proposed MO-A3Cs architecture and the MOMDP to incorporate a 

continuous action space tailored for such real-world challenges.

Issue 2: Scalability of the proposed MO-A3Cs model

  The MO-A3Cs model introduced in this work is designed to optimize the trade-off 

between SE and EE. However, to address the challenges of next-generation networks, 

we must consider the characteristics of heterogeneous networks. Therefore, our future 

work will focus on verifying and expanding the MO-A3Cs model in heterogeneous 

and next-generation wireless networks.
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Abbreviations

5G Fifth-Generation

A2C Advantage Actor-Critic
A3C Asynchronous A2C
ADC Analog-to-Digital Converter
AWGN Additive White Gaussian Noise

BS Base Station

CDF Cumulative Distribution Function
CF Cell-Free

DAC Digital-to-Analog Converter
DDPG Deep Deterministic Policy Gradient
DDQN Double DQN
DL Deep Learning
DNN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning

EE Energy Efficiency
EE-DQN Energy Efficiency-DQN

LO Local Oscillator

MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process
MIMO Multiple-Input Multiple-Output
MMSE Minimum Mean-Square Error
MO-A3Cs Multi-Objective Asynchronous Advantage Actor-multiple Critics
MOMDP Multi-Objective MDP
MOO Multiple Objective Optimization
MSE Mean-Squared Error
MU-MIMO Multi-User MIMO

PA Power Allocation
PFA Pareto front approximation
PQN PFA-based DQN
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RZF Regularized Zero-Forcing

SE Spectral Efficiency
SE-DQN Spectral Efficiency-DQN
SINR Signal-to-Interference-plus-Noise Ratio
SOO Single Objective Optimization
SU-MIMO Single-User MIMO

TD error Temporal Difference error
TD3 Twin Delayed DDPG
TDD Time Division Duplex

UE User Equipment
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