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Abstract 

Joint Optimization of Data Aggregation and Offloading  

for UAV-Aided IoT Systems 
 

Asif Mahmud Raivi 

Advisor: Prof. Sangman Moh, Ph.D. 

Department of Computer Engineering 

Graduate School of Chosun University 

 

 In recent years, unmanned aerial vehicles (UAVs) have been used to 

extend the Internet of things (IoT) framework owing to their vast 

applications, monitoring and surveillance capability, ubiquity, and mobility. 

To support IoT requirements, UAVs must be capable of aggregating, 

processing, and transmitting data in real-time basis. As not only the number 

of IoT devices but also the amount of data to be collected has increased, data 

aggregation is of great importance. Recently, the UAV can also function as a 

mobile edge computing server in association with aerial data aggregation. 

Owing to high flexibility and rapid deployment, unmanned aerial 

vehicles (UAVs) can provide network coverage for IoT devices in post-

disaster scenarios. UAV-aided mobile edge computing (MEC) corroborates 

computational support as well as optimal decision-making process for ground 

IoT devices. Nonetheless, both data aggregation and computational 

offloading have been separately studied in the existing literature. In this 

thesis, therefore, we propose a joint data aggregation and computational 

offloading (JDACO) scheme in UAV-enabled IoT for post-disaster scenarios. 

JDACO focuses on minimizing the total cost of energy and delay in 

aggregation and computation process by utilizing UAV as MEC server and 
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deploying multiple UAVs. Firstly, designing our objective function to 

evaluate the cost associated with aggregation and offloading process. Then, 

the optimization problem as Markov model is presented and multi-agent deep 

reinforcement learning algorithm is adopted, in which value decomposition 

with double deep Q-Network algorithm allows optimal data aggregation and 

cost-effective offloading process by utilizing the cooperative learning 

process. The experiment results reveal that the proposed JDACO scheme 

outperforms the existing schemes in terms of training time, computed data, 

energy consumption, and mission time while serving the maximum number 

of IoT devices. 
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요 약 

무인 비행체 활용 사물 인터넷 시스템을 위한 데이터 집계 

및 오프로딩의 공동 최적화 

             라이비 아시프 마무드 

                지도교수: 모상만 

         컴퓨터공학과 

                조선대학교 대학원 

 

 

최근 무인 비행체(UAV)는 방대한 응용 분야, 모니터링 및 감시 기능, 

편재성, 이동성 등으로 사물 인터넷 프레임워크를 확장하기 위해 

사용되고 있다. 사물 인터넷(IoT) 요구사항을 지원하기 위해서는 

UAV 가 실시간으로 데이터를 집계, 처리 및 전송할 수 있어야 하고, 

IoT 기기의 수뿐만 아니라 수집해야 할 데이터의 양이 증가함에 따라 

데이터 집계의 중요성이 매우 커지고 있으며, 최근에는 항공 데이터 

집계와 연계하여 모바일 엣지 컴퓨팅 서버로서의 기능도 수행하고 

있다. 

높은 유연성과 신속한 배치로 인해 무인 비행체는 재난 이후 

상황에서 IoT 장치에 대한 네트워크 커버리지를 제공할 수 있다. UAV 

지원 모바일 에지 컴퓨팅(MEC)은 지상 IoT 장치에 대한 최적의 의사 

결정 프로세스뿐만 아니라 계산 지원을 제공한다. 그럼에도 불구하고, 

데이터 집계와 계산 오프로딩은 각각 별도로 연구되어 오고 있다. 본 

연구에서는 재난 이후 상황에 대한 UAV 활용 IoT 시스템에서 데이터 

집계 및 계산 오프로딩의 공동 최적화(JDACO) 기법을 제안한다. 

JDACO 는 UAV 를 MEC 서버로 활용하고 여러 UAV 를 배치하여 
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데이터 집계 및 계산 과정의 총 에너지 비용과 지연을 최소화하는 데 

중점을 둔다. 먼저, 데이터 집계 및 오프로딩 과정과 관련된 비용을 

평가하는 목표 함수를 설계한다. 이어서 Markov 모델로서의 최적화 

문제를 제시하고 이중 심층 Q-네트워크 알고리즘을 사용하여 최적의 

데이터 집계 및 비용 효율적인 오프로딩 과정을 허용하는 다중 

에이전트 심층 강화 학습 알고리즘을 채택한다. 실험 결과에 따르면, 

제안한 JDACO 기법은 최대 수의 IoT 장치를 지원하면서 훈련 시간, 

계산 데이터, 에너지 소비 및 임무 수행 시간 측면에서 기존의 

방법들보다 우수하다. 
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1. Introduction 

1.1 Overview 

Recent technological advancements have led to unprecedented changes 

in the support roles played by unmanned aerial vehicles (UAVs) or drones, 

which were originally applied to military [1] and surveillance [2], [3] 

operations. Their low cost and ubiquity [4], coupled with their basic working 

principles [5] of fast deployment, high mobility [6], ease of use, line-of-sight 

(LoS) connectivity [7], [8] and reliable data communications [9], have led to 

their advanced support for civilian communications [10], [11]. Applications 

now include wildfire monitoring [10], consumer payload delivery [12]–[14] 

image recognition [15], aerial base-station (BS) relay [16], search and rescue 

[17], and smart agriculture [18].  By acting as bridges between cyber and 

physical layers, they have unlocked seemingly limitless possibilities for 

autonomous operations [19]. Hence, it is no surprise that they are now being 

considered for extending Internet of thing (IoT) networks [20], which will 

further facilitate our society’s low data footprint and federated processing 

needs [21], [22]. 

Rapid advent in wireless communication networks and Internet of things 

(IoT) has made terrestrial communication possible [23]. Unmanned aerial 

vehicles (UAVs) have opened new avenues for communication technology 

[24]. UAVs will soon become an integral part of existing communication 

systems owing to their easy and rapid deployment. The use of UAVs is 

increasing from military missions to industrial and commercial applications 

[14], [25]. Recently, UAVs have been proposed for restoring 

communications in post-disaster scenarios [26]. Therefore, UAVs are 

expected to become powerful and important entities for shaping 
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communication systems in the near future.  

According to a report published by Statista.com [27], the number of 

connected IoT devices is projected to reach more than 29 billion by 2030, 

three times more than the number of connections in 2020. Moreover, with 

recent developments in communication technology in association with 5G 

and beyond, it has been made possible to integrate fast moving UAV-based 

services into the existing communication system [28].  This increase is 

naturally expected to generate far more traffic than current networks can 

handle. Augmented by extant BSs, UAVs can assume the roles of computing 

centers or edge servers to process sensed data from ground IoT devices while 

reducing delays [29]–[32]. 

The implementation of new technologies poses various challenges. 

UAVs have limited battery capacity, resulting in limited flight time and need 

to be replenished before the next deployment. Therefore, to ensure smooth 

operation during the mission, the UAV flight trajectory should be carefully 

designed. Additionally, IoT devices installed for environmental monitoring 

are resource-constrained with limited computational capabilities and are 

often installed in hard-to-reach areas with the expectation of a long service 

life. Thus, any disruption in the existing communication systems can defeat 

the entire purpose of installing IoT devices. Moreover, because of their 

limited energy, IoT devices cannot communicate over long distances. 

Therefore, a well-planned strategy is required to maintain a stable 

connectivity between IoT devices and base stations (BS). 

Owing to the rapid deployment capability of UAVs with extended 

battery life resulting from recent technological advancements, they can 

perform aggregation missions and edge units to support data-driven IoT 

applications [33]. There are several approaches in the literature in which 
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UAV collect data from ground IoT devices [34]. These studies primarily 

focused on the optimal point of data gathering, trajectory design for the 

UAV, devising an energy-saving scheme, resource allocation, and reducing 

the data collection period while ensuring the quality of service (QoS), data 

freshness, maximum data collection, and reduced loss of aggregated data. 

Similarly, considering UAV as edge servers, the existing literature 

focuses on minimizing the task execution delay and energy requirements 

while ensuring maximum throughput and computation capability within the 

available edge server resources [35]. If the computation requirement is 

beyond the processing power, all or some of the computations are offloaded 

to another server with a higher computation capability, such as the BS. 

Consequently, IoT nodes can eliminate the burden of computation and 

perform for long periods of time. UAVs are perfect suitors for solving 

communication and computational issues resulting from both natural and 

man-made disasters. Additionally, urban air mobility (UAM) is drawing a lot 

of attraction both in industry and academia equally [36],[37]. 

The use of UAV as data aggregators has attracted considerable attention 

in recent years. Existing studies have focused on finding the optimal 

hovering location or cluster head selection for aggregating data from ground 

IoT nodes, as designing optimal path planning is essential for UAVs while 

ensuring minimal travel time and energy efficiency [38]. Similarly, UAVs 

are considered as an edge unit for offloading the computation-incentive tasks 

of IoT nodes, in which either binary or partial offloading is exploited in 

existing works [39]. Thus, IoT nodes are protected from heavy computation 

and long service times. Existing studies primarily focus on latency and 

energy minimization for the offloading process, while ensuring maximum 

data computation and throughput maximization. Although many studies have 
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considered static and single-UAV scenarios, recent studies have focused on 

UAV mobility and multi-UAV deployment [39]. 

1.2 Research Objective 

In the existing literature, it can be observed that data aggregation and 

computational offloading were studied separately. Recognizing the future 

prospects of UAVs for data-driven applications, a joint data aggregation and 

computation offloading scheme is proposed and introduced the two problems 

under the same umbrella, rather than considering them as separate problems. 

A more detailed study of the existing literature has been discussed in the 

related works section. 

To address the aforementioned discussions and limitations, a proposal of 

joint multi-UAV-based data aggregation and computation offloading scheme 

to mitigate the overall system cost of the process has been offered. More 

explicitly, multiple UAVs are deployed, where each UAV is responsible for 

data aggregation and computation, as well as offloading some computation to 

another UAV or BS with higher resources and computational capability. The 

introduction of a multiagent paradigm brings the action and decision-making 

of each UAV into unison, as all agents share their experiences with each 

other. The key contributions of this study are as follows:  

• A study of joint scenario of data aggregation and computation 

offloading from a data-driven aerial computing perspective, which has not 

yet been explored for UAV-enabled services. 

• A joint data aggregation and computational offloading (JDACO) 

scheme mathematically for a multi-UAV scenario is developed. The 

proposed optimization problem primarily focuses on minimizing the total 

cost of energy consumption and delay for the aggregation and offloading 
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processes, while ensuring maximum IoT device coverage. 

• To address the joint optimization problem, a multi-agent 

reinforcement learning-based algorithm is proposed in which a dueling 

double deep Q network (D3QN) for the discrete action space is adopted and a 

decision maker for each UAV. Value decomposition network (VDN) 

algorithm is employed for cooperative learning among the UAVs. 

• The proposed algorithm is evaluated using two other learning 

algorithms and one non-learning algorithm in terms of key performance 

metrics. Simulation results demonstrate the superiority of the proposed 

algorithm over other benchmarks. 

1.3 Thesis Layout 

The remainder of this thesis is organized as follows:  

Firstly, the relevant studies that have been conducted thus far in the 

respective fields of data aggregation and task offloading are explored in 

Section 2. The proposed system model is presented in Section 3 and the 

optimization problem is formulated in Section 4. In Section 5, the formulated 

optimization problem is transformed into a Markov game model. In Section 

6, the performance of the proposed JDACO algorithm is demonstrated and 

compared with that of other benchmarks. Finally, the conclusion of this 

thesis is discussed in Section 7. 
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2. Related Works 

Most studies on UAV-aided data-driven applications can be categorized 

into two main classes. The first focuses on utilizing UAV as relays or base 

stations (BS) to provide a backbone for data-gathering applications. In such 

cases, the UAV is considered a data aggregator, where the trajectory of the 

UAVs is designed based on the communication schedule [40]. In the second 

class, UAVs act as mobile edge computing (MEC) units to support the 

computational capabilities of a given network [41]. 

2.1 Existing Data Aggregation Techniques in UAV-Aided 

IoT 

UAV is performing a key integral role of aerial data aggregation [42]. A 

brief description of each of the roles of UAV-aided IoT data aggregation is 

discussed as follows.   

A. Direct Aggregation 

UAV can perform aggregation tasks by itself, using its onboard processing 

capability. A typical scenario would involve UAV loitering over a collection 

of designated ground nodes in the area of interest. Trajectories and waypoints 

can be applied based on the arrangement of nodes, their computational 

power, etc. After aggregation, the UAV sends the aggregated data to a 

ground device for further processing. In most cases, a single UAV is 

deployed at a time. There are several advantages to this scenario. For 

example, if the UAV can perform aggregation, the ground IoT devices will 

require less processing and fewer computations, which extends their 

lifetimes. However, UAVs must be loaded with greater storage and 

computational power, causing them to require more visits to charging 
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stations.  

B. Aggregation as Collector 

UAVs can collect aggregated or raw sensing data from distributed ground 

IoT devices and CHs in the field of interest and relay them to sinks or BSs. 

Flight plan and trajectory considerations are roughly the same as before, as 

are the advantages for ground nodes, in that they are not burdened with 

additional processing requirements. The UAV, on the other hand, does not 

require extra computational and processing power as it is solely responsible 

for data collection and relay. 

C. Aggregation as Sink 

UAVs can be deployed as aerial sinks or BSs, in which they perform the 

roles of aggregation and extended processing. To fulfill this role, UAVs must 

have very strong onboard computational and processing power. This is very 

beneficial to regions of interest lacking communication infrastructures (e.g., 

post-disaster recovery). In such cases, the need for multiple simultaneous 

UAVs would be greater, further increasing the logistical complexity. 

D. Hybrid Aggregation  

UAVs will likely perform a combination of the roles described above, even 

simultaneously. Naturally, the computational power and processing 

capability would need to be very robust, as would the flight planning 

capacity of the command-and-control infrastructure. Fig. 3 presents a role-

based aggregation scheme in which different UAV types are deployed in 

rural and urban areas to perform related aggregated tasks. In the following 

UAV-enabled data aggregation techniques are extensively reviewed. The 

various UAV roles in IoT data aggregation are exemplified across many 
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literatures. 

ML approaches to data aggregation and processing are quite popular 

among disparate research fields. However, for aerial data aggregation, there 

is currently a lack of sufficient data that can be used for model training. To 

address this issue, DRL is a viable option for handling unstructured or 

unknown features in which knowledge discovery is expected during 

operations. Unlike supervised learning, in which a labeled dataset is trained 

for model prediction, and unsupervised learning, in which unlabeled data are 

analyzed on the fly, DRL interacts with unknown datasets from scratch as 

they explore the region of interest, working toward a desired algorithmic 

reward by applying a trial-and-error method. For UAV flight planning, DRL 

can be used to design optimal trajectories and data-aggregation procedures.  

Federated learning (FL) is another approach as it benefits from 

decentralized training data consumption, which allows the model to 

experientially learn from iterative activities. To apply FL to UAV data 

aggregation, edge processing units are often required, either aboard the UAV 

or via the ground relay. Notably, during operations, information security and 

communications protocols are vital planning and design considerations.  

Parameter optimization techniques can be classified into two categories: 

deterministic and stochastic. Deterministic algorithms are based on a set of 

specific rules for solving problems, whereas stochastic ones follow 

probabilistic transition rules. 

Inspired by the trajectory control and device communication protocol 

dilemmas faced by aerial data aggregators, a DRL-based DDPG scheme 

called ODDPG was proposed in [43]. In authentic environmental conditions, 



 

9  

 

the states of IoT devices (e.g., battery level, queue backlog, and channel 

state) will likely be unknown to the UAV. The DDPG scheme prevents 

memory overflow and maximizes data aggregation as the UAV cruises 

among widespread ground IoT devices. In the example of [43], the 

researchers used Google’s TensorFlow to take the joint UAV trajectory and 

data communication schedule as discrete-time partially observable Markov 

decision processes, and waypoints and battery levels were formulated as 

states. The desired action was then to locate the next waypoint and IoT 

device. The model reward was the aggregated data collected from IoT 

devices. Because the DDPG model exploits an actor–critic neural network 

algorithm, mini-batch gradient descent is applied as the loss with respect to 

UAV speed, packet arrival schedule, and IoT device channel condition for 

network training and instantaneous trajectory updating. Lessons learned: In-

flight trajectory updating is quite challenging when real-time data are 

required owing to the inherent fallibility of DRL and FL schemes. However, 

DDPG provides better packet-loss results than if the free-walk model (the 

basic random baseline) were used. Moreover, classification errors can be 

overcome if the model is trained for longer periods. However, DDPG and 

policy-based gradient methods typically have slow convergence rates; hence, 

the model performs better when IoT node information is known in advance. 

Based on the application scenario, some of the superior machine learning 

approaches such as soft actor-critic (SAC) and proximal policy optimization 

(PPO) can be explored. Combining SAC with DDPG approach can maximize 

exploration by incorporating entropy into objective function leading to robust 

policies whereas PPO utilizes multiple updates of data for smooth and stable 

learning. 
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The IDAS scheme was formulated in [44] to restore post-disaster 

communications among IoT devices using DRL for UAV flight planning and 

associated tasks. The scheme relies on a tradeoff between data aggregation 

and energy costs. For training, a state–action reward is sampled from the 

UAV’s previous flight record in mini-batches, and another actor–critic 

configuration is applied using an update factor to improve learning stability. 

The scheme used four deep neural networks to produce optimized aerial data 

aggregation schemes and achieved the highest data aggregation rates under 

variable UAV speeds among all benchmarks. However, increasing the speed 

leads to missed nodes and very high energy consumption on behalf of the 

UAV. Notably, this method is quite suitable for reestablishing 

communications and aerial data aggregation capabilities after a disaster. 

Rather than using simple system model to describe a post-disaster data 

aggregation scenario, a detailed model is necessary, which considers device 

activation and non-overlapping data aggregation for the effective and 

efficient use of UAV-enabled data aggregation service. 

Blockchain-based secure schemes are reliable when dealing with sensitive 

data. An FL-based blockchain-embedded data accumulation scheme using 

drones for IoT (FBI) was proposed in [45], in which a two-step data 

authentication method was applied. The first validation mechanism used a 

cuckoo filter, and the subsequent mechanism used a Hampel filter to 

calculate the loss function. Trained models with local IoT data were used to 

prevent unauthorized access during training. A long short-term memory was 

used for task preparation, and the UAV maintained NLOS communication 

most of the time. 

The study of arbitrary spatial patterns is known as stochastic geometry and 
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is used to predict communication network performance. UAV-based IoT 

services are used to predict the coverage and energy consumption of multiple 

aggregators. Research in [46] demonstrated how the communications 

spectrum can be time-division multiplexed among ground user equipment 

(UE), terrestrial BSs, and UAVs when the locations of ground nodes are 

known. The available frequencies were validated using stochastic geometry. 

Notably, both UE and IoT device coverages were considered during UAV 

flight planning for energy management and flight altitude. 

Ensuring the longest and most optimized operation times for IoT sensor 

nodes is challenging. For UAV data aggregation, the research in [47] applied 

a genetic algorithm (GA), which is one of the popular heuristic approaches, 

to find optimal solutions under both constrained and unconstrained 

conditions by imitating the natural selection processes of biological 

evolution. At each iteration (generation), the GA selects an individual from 

the population to become a parent of the next round of offspring. This 

evolutionary process continues until an optimal performing generation is 

reached. A greedy algorithm comprising two subproblems was applied to 

manipulate the spatial correlations between energy-efficient UAV flight 

planning and IoT device scheduling, based on their locations and activation 

schedules. Because the aggregation points were determined by adopting the 

nearest neighbor scheme, the TSP problem was solved. 

ICS [48] offers a collision-free data aggregation scheme based on 

incremental clustering that coordinates UAV motions and trajectories. 

Notionally, the CH is offered sufficient time to collect data for aggregation 

prior to being visited by the UAV. Owing to this aggregation delay, the 

maximum number of nodes can be harvested.  Owing to incremental 



 

12  

 

clustering and scheduling scheme that calculates the transmission schedule of 

sensors based on the UAV's trajectory and velocity, allowing cluster heads 

visited later to have more time to collect data. This approach significantly 

reduces the data aggregation time. 

It is often necessary to minimize the total flight and loitering times of 

UAVs, and the authors in [49] developed a mathematically mixed-integer 

NP-hard problem to arrive at a decoupled heuristic solution. For problem 

formulation, IoT devices were placed across a predefined area according to 

the Poisson point process. The area was then further divided into random 

subregions. In this scenario, UAVs communicated with IoTs using a slotted 

ALOHA random-access protocol in which activation messages were received 

by both parties. A multi-cooperative UAV trajectory was designed in which 

loitering locations were formulated using stochastic geometry. A decoupled 

heuristic approach was then used to address the NP-hard mixed-integer 

problem, replacing it with an approximation of the closed-form traveling 

period. 

While considering aerial data aggregation scenarios, the existing studies 

have primarily focused on designing optimal trajectories by finding the 

optimal hovering point, minimizing mission energy, and covering the 

maximum number of IoT devices for aggregation. In [40], the authors studied 

mission cost minimization while covering the maximum number of IoT 

devices using multiple UAV as aggregators. A heuristic approach was used 

to solve the proposed problem. This study considers an IoT device activation 

model for an intruding probability scenario of communication between a 

UAV and IoT nodes. 

In [50], a UAV was employed as a data aggregator, and the aggregated 
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data were relayed to a base station (BS). In addition to the impact of the 

UAV altitude on the aggregation rate, the data-to-overhead ratio was studied 

to measure the effectiveness of data aggregation using UAV. The study 

mentions the possibility of further utilization of UAV as an edge unit to 

minimize end-to-end delay but does not explore that option. 

The study in [49] aims to minimize the hovering and travelling time for 

data aggregation by a UAV visiting each node using a decoupled heuristic 

approach. This study demonstrates that a clear trade-off between hovering 

and travelling times is necessary for optimal data aggregation. 

In [51], the struggle between the trajectory and data aggregation based on 

device activation in a multi-UAV scenario was studied. The concept of 

shared observation among UAV uses a long short-term memory (LSTM) 

deep deterministic policy gradient (DDPG) approach. The scheme addresses 

the pressing issues of data loss owing to buffer overflow and communication 

failures that may occur at ground IoT nodes.  

2.2 Existing Computation Offloading Techniques in UAV-

MEC 

Computation of the sensing data is necessary because IoT nodes are 

reconstructed and have very limited computation capability. Edge units or 

devices are often introduced to address the computation problem and reduce 

the overall latency and energy consumption of the offloading process [52]. 

The study in [39] study UAV as MEC edge units, where the offloading 

process was classified into two categories: binary and partial offloading. The 

main idea behind utilizing UAV as edge units is to reduce the overall delay 

and energy consumption for IoT devices with resource-intensive tasks. 
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Moreover, in hierarchical aerial networks such as the space-air-ground 

integrated network (SAGIN), every component of each layer is considered an 

MEC unit and is able to perform resource-intensive tasks. 

In [53], a partial offloading mechanism was proposed for a hierarchical 

network, where the IoT and UAV game-theoretic-based offloading decision 

method was suggested. Additionally, a heuristic approach was proposed to 

make offloading decisions between the UAV and a high-altitude platform 

(HAP). To utilize all the layers to the fullest extent possible, an adjustment 

algorithm is introduced. However, the mobility of the UAV and HAP is 

static, and the detailed mechanism of task collection has not been studied. 

In [54], another partial offloading mechanism was studied, in which 

UAV mobility was considered. The proposed method aims to minimize the 

overall delay and energy requirements of the offloading process, while 

maximizing the number of arrival tasks. This study considers the local 

processing and task queuing delays in the total processing delay calculation. 

The algorithmic approach utilizes multi-objective reinforcement learning 

(MORL) to obtain the optimal solution. However, their proposed problem 

was demonstrated using only a single UAV. 

In [55], a binary offloading problem was proposed, which was solved by 

a multi-agent actor-critic approach that aims to solve multiple objectives 

such as offloading decisions, flight direction, and distance.  The proposed 

model has a relatively simple sensing model that is unrealistic considering 

the real environment. Considering all the matters at hand, we propose the 

JDACO scheme for maximum IoT device coverage with minimal energy and 

time expenditure for both the data aggregation and computation offloading 

processes.  
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2.3 Comparison of Existing Aggregation and Offloading 

Algorithms in UAV-MEC 

In this section, we discuss a comparative summary of the existing works 

which shows a clear distinction between this work. As mentioned earlier, 

many of the existing works on UAV aided data-driven applications consider 

either data aggregation or computation aggregation as a separate entity or as 

part of the assumption. In this work, both UAV-aided data aggregation and 

computation offloading are studied equally and joint problem is formulated 

to address the issue. Table 1. demonstrates the key distinction between 

existing works vs this work.  

Table 1. Comparative summary of existing works and ours 
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3. System Model and Problem Formulation 

In this section, the system model of a multi-UAV-aided MEC for UAV-

enabled IoT is presented. After introducing the application scenario, 

mobility, communication, data aggregation, local computation, and 

offloading computation models were formally addressed.  

3.1. Motivation Scenario 

In this thesis, a post-disaster region where multiple UAVs are deployed 

to aggregate data from live homogeneous IoT nodes on the ground is 

considered, as existing communication infrastructure such as base stations 

(BS) is no longer available. The deployed IoT nodes are responsible for 

monitoring environmental conditions, and low-tier UAVs (LT-UAV) are 

responsible for aggregating and offloading data based on the task size. 

Because the existing communication network has been disrupted, a UAV 

with a longer flight time and computation power, called a high-tier UAV 

(HT-UAV), hovers at a fixed altitude (which is higher than the altitudes of 

LT-UAVs) such that all the LT-UAVs are under the communication 

coverage of the HT-UAV.  

Figure 1 shows a typical example of the network configuration in the 

application scenario. To aggregate data from ground IoT devices, LT-UAVs 

must hover over several hovering locations where data can be collected from 

the maximum number of IoT devices. As LT-UAVs aggregate data from IoT 

devices, each LT-UAV flies for the maximum travel time of 𝑇max before the 

maximum energy 𝐸max  of the UAV is depleted, and then lands on the 

ground.  
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Figure 1. Application scenario of typical network configuration. 

An assumption is that, during the hovering mode, each LT-UAV flies at 

a pre-defined average velocity of 𝑉avg  and 𝑉 = 0 m/s. The ground node 

locations are known beforehand and are distributed statically over the area of 

interest. Node locations can be expressed as 𝒾 = [𝑥𝑖, 𝑦𝑖]. To avoid collisions 

with other UAVs or foreign objects, each UAV has object detection 

capabilities, thereby ensuring a safe flight plan. IoT devices are static and 

randomly distributed across geographical areas. Each UAV maintains a 

considerable altitude to ensure strong line-of-sight (LoS) communication in 

urban regions. Additionally, the HT-UAV ensures the synchronized 

trajectory of other LT-UAVs for both non-overlapping aggregation locations 

and the estimation of the number of active IoT devices in the area of interest. 

Table 2 lists the key notation and definitions of the respective notation used 

in the entire thesis.  
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Table 2. List of key notations with respective definition 
Notation Definition 

𝑃LoS
𝑖,𝑗

, 𝑃NLoS
𝑖,𝑗

 Line-of-sight (LoS) and non-line-of-sight (NLoS) probability 

between IoT node i and LT-UAV j. 

𝐿LoS
𝑖,𝑗

, 𝐿NLoS
𝑖,𝑗

 Path loss for LoS and NLoS condition 

𝛬𝑖,𝑗 Average path loss between IoT node i and LT-UAV j. 

𝕊𝑖,𝑗 Signal-to-interference-plus-noise-ratio (SINR) between IoT node 

i and LT-UAV j. 

𝑅𝑖,𝑗 Expected data rate between IoT node i and LT-UAV j. 

𝐺𝑗,𝑘 Channel gain between LT-UAV j and HT-UAV k. 

𝕊𝑗,𝑘 Signal-to-interference-plus-noise-ratio (SINR) between LT-UAV 

j and HT-UAV k. 

𝑅𝑗,𝑘 Uplink data rate between LT-UAV j and HT-UAV k. 

𝑁𝑖 The number of active IoT nodes ready for transmitting data. 

Å𝑖,𝑗, �̃�𝑖,𝑗 Indicator function for establishing communication and multiple 

transmissions between IoT node i and LT-UAV j. 

𝛷𝑗,𝑘 Binary decision variable for local computation and offloading 

between LT-UAV j and HT-UAV k. 

 

3.2. LT-UAV Mobility Model 

To ensure a strong LoS and avoid obstacles in urban regions we assume 

that the LT-UAVs fly at a considerable altitude of ℎ𝑗 . The horizontal 

direction and distance travelled by the LT-UAV at time slot 𝑡 is denoted as 

∅(t) and 𝑑(t), respectively, provided the following conditions are satisfied:  

        0 ≤ ∅(t) ≤ 2𝜋,   0 ≤ 𝑑(t) ≤ 𝑑max,                           (1) 

where 𝑑𝑚𝑎𝑥  is the maximum flying distance of the LT-UAV owing to its 

limited battery capacity. 
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We adopted a conventional Cartesian coordinate system to represent the 

mobility of the UAV. Let  𝒰(t) = [𝑥j(t), 𝑦j(t)] represent the LT-UAV’s 

location at time slot 𝑡. Thus, based on the ∅(t) and 𝑑(t), the coordinate of 

the LT-UAV at the next time slot t + 1 can be expressed as   

              {
𝑥𝑗(𝑡 + 1) =  𝑥𝑗(𝑡) + 𝑑(𝑡) ∙ cos(∅(𝑡))

𝑦𝑗(𝑡 + 1) = 𝑦𝑗(𝑡) + 𝑑(𝑡) ∙ sin(∅(𝑡))
.                       (2) 

The LT-UAV was assumed to travel within an enclosed rectangular 

region with side lengths are 𝑥max and 𝑦max. We have 

                    0 ≤ 𝑥𝑗(𝑡) ≤ 𝑥max ,   0 ≤ 𝑦𝑗(𝑡) ≤ 𝑦max.                      (3) 

Similar to previous studies [54], [56], we adopted the propulsion power 

requirement of a rotary-wing UAV to define its power consumption, which is 

given by  

𝑃(𝑣(𝑡)) = 𝑃1 (1 +
3𝑣(𝑡)2

𝑈tip
2 ) + 𝑃2 ( √1 +  

𝑣(𝑡)4

4𝑣0
4  −  

𝑣(𝑡)2

2𝑣0
2 )

1/2

       

+
1

2
𝑑0𝜌𝑔𝐴𝑣(𝑡)3                                          (4) 

The given equation comprises three components: blade profile, induced 

power, and parasitic power. 𝑃1  is the blade profile power in the hovering 

state, and 𝑃2 is the induced power. 𝑈𝑡𝑖𝑝 refers to the speed of the rotor blade 

tip and 𝑣0 is the average induced rotor velocity during the hovering state. 

The power of the parasite was also contained. 𝑑0 , 𝜌 , 𝑔, and 𝐴  which are 

fuselage drag ratio, density of air, solidity of the rotor, and disk area, 

respectively. Under hovering conditions, the power consumption of the UAV 

is an aggregation of 𝑃1 and 𝑃2. The overall energy requirement of the UAV 

during its flight duration 𝑇 is given by 
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                               𝐸𝑗
fly

(𝑡) =  ∑ 𝑃(𝑣(𝑡))∆𝑡𝑇
0 .                              (5) 

3.3. Communication Model 

   The communication model is formulated into two different segments: 

communication between the IoT node and LT-UAV and communication 

between the LT-UAV and HT-UAV. 

A. Downlink Communication Model 

As stated previously, the LT-UAV maintains a considerable altitude to 

maintain a strong LoS. Therefore, the LoS probability between the ground 

IoT node 𝑖 and LT-UAV 𝑗 can be expressed as 

                                  𝑃LoS
𝑖,𝑗

=  
1

1+𝛼𝑒
−β(𝜃𝑖,𝑗−α),                                         (6) 

where 𝛼 and 𝛽 are the environmental constant values and the elevation angle, 

respectively, and 𝜃𝑖,𝑗 = (
180

𝜋
) sin−1(

ℎ𝑗

𝑑𝑖,𝑗
) , where 𝑑𝑖,𝑗  denotes the distance 

between IoT node 𝑖  and LT-UAV 𝑗  and can be expressed as 𝑑𝑖,𝑗 =

√((𝑥𝑗(𝑡) − 𝑥𝑖)2 + (𝑦𝑗(𝑡) − 𝑦𝑖)2 + ℎ𝑗
2)) . As expected, non-line-of-sight 

(NLoS) probability is 𝑃NLoS
𝑖,𝑗

= 1 − 𝑃LoS
𝑖,𝑗

. The path-loss expression for both 

LoS and NLoS is expressed as 

𝐿LoS
𝑖,𝑗

=  𝜂LoS(
4𝜋𝑓c

𝑐
𝑑𝑖,𝑗)ξ                                      (7) 

and 

                             𝐿NLoS
𝑖,𝑗

=  𝜂NLoS(
4𝜋𝑓c

𝑐
𝑑𝑖,𝑗)ξ,                                   (8) 
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respectively, where 𝜂𝐿𝑜𝑆  and 𝜂𝑁𝐿𝑜𝑆  are the attenuation factor for LoS and 

NLoS state, respectively, 𝑓𝑐 is the carrier frequency, 𝑐 is the speed of light, 

and 𝜉 is the path loss component. Thus, the average path loss 𝛬𝑖,𝑗 between 

IoT node 𝑖 and LT-UAV 𝑗 can be found as 

                   𝛬𝑖,𝑗 =  𝑃LoS
𝑖,𝑗

×  𝐿LoS
𝑖,𝑗

+ 𝑃NLoS
𝑖,𝑗

×  𝐿NLoS
𝑖,𝑗

.                          (9) 

Therefore, average channel gain at time instant 𝑡 is 𝐺𝑖,𝑗(𝑡) =  𝛬𝑖,𝑗
−1. It is 

assumed that each IoT node 𝑖 has a transmit power 𝑃𝑖(𝑡) at time instant 𝑡 and 

the IoT devices communicate with the LT-UAV via a time-division multiple 

access (TDMA) scheme. Employing the TDMA scheme eliminates intra-

cluster interference. However, neighboring UAV may cause interference. 

Considering these factors, the signal-to-interference-plus-noise-ratio (SINR) 

between IoT node i and LT-UAV j at time instant 𝑡 is expressed as 

                        𝕊𝑖,𝑗(𝑡) =
𝑃𝑖(𝑡) 𝐺𝑖,𝑗(𝑡)

𝑃𝑛(𝑡)𝐺𝑚,𝑛(𝑡)+𝜎2  𝑛=1,𝑚≠𝑖,𝑛≠𝑗,                         (10) 

where 𝜎2 denotes the Gaussian noise variance. Using Shannon’s theorem, we 

calculated the approximate data rate between IoT node 𝑖  and LT-UAV 𝑗 , 

which is denoted as 

                         𝑅𝑖,𝑗(𝑡) =  ℬ1 𝑙𝑜𝑔2(1 + 𝕊𝑖,𝑗(𝑡))                           (11) 

where ℬ1 is the channel bandwidth for the downlink communication. 

B. Uplink Communication Model 

Because the existing communication infrastructure, such as the BS, is no 

longer available in the post-disaster scenario, LT-UAVs are resource-

constrained and need to offload the aggregated data to the HT-UAV, which 
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has higher processing power and computation capacity. Assuming that the 

wireless link between the LT-UAV and HT-UAV maintains clear LoS 

characteristics, the channel quality depends on the instantaneous distance 

between them [57]. Let 𝓋 = [𝑥k, 𝑦k] denote HT-UAV coordinates. Then, the 

instantaneous distance between LT-UAV 𝑗 and HT-UAV k is given as 𝑑j,k =

√||𝓋 − 𝒰(t)||2. Therefore, the channel power gain between the LT and HT-

UAV, following the path loss model in free space at time instant 𝑡, can be 

expressed as 

𝐺𝑗,𝑘(𝑡) =  𝒫0𝑑𝑗,𝑘
−2 =  

𝒫0

||𝓋−𝒰(𝑡)||2,                               (12) 

where 𝒫0 is the power gain of the channel at 1 m distance and is subjected to 

the antenna gain and carrier frequency. 

Because we intend to maintain communication between LT-UAVs and HT-

UAV continuously, we exploit the benefit of the frequency division multiple 

access (FDMA) scheme. The uplink bandwidth ℬ2  is divided into 𝐽  non-

overlapping sub-bands of 𝐽 LT-UAVs. Thus, in each time slot, each LTUAV 

uplink was allotted a subband of 
ℬ2

𝐽
. Then, the SINR can be formulated as 

       𝕊𝑗,𝑘(𝑡) =
𝑃𝑗(𝑡)𝐺𝑗,𝑘(𝑡)

ℬ2
𝐽

𝜎0
2

 =
𝑃𝑗(𝑡)𝒫0

ℬ2
𝐽

||𝓋−𝒰(𝑡)||2𝜎0
2
,                          (13) 

where 𝑃𝑗(t) is the transmission power of the LT-UAV and 𝜎0
2 is the spectrum 

power density of white Gaussian noise (WGN) at the HT-UAV. Similar to 

Equation (10), we can calculate the uplink data rate using Shannon’s 

theorem:  

               𝑅𝑗,𝑘(𝑡) =  
ℬ2

𝐽
𝑙𝑜𝑔2(1 + 𝕊𝑗,𝑘(𝑡)).                             (14) 
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3.4. Data Aggregation Model 

For data aggregation from ground IoT nodes using a UAV, a definitive IoT 

device activation pattern is essential for designing appropriate waypoints and 

optimal hovering location [49]. 

A. IoT Device Activation Model 

Monitoring IoT sensors such as smart metering are usually accompanied by 

periodic activation, whereas event-driven IoT sensors such as wildfire 

monitoring follow random activation scenarios [40]. The central server has prior 

information regarding the periodic activation conditions. Thus, the periodic IoT 

device activation model for the number of active IoT devices, 𝒩act, over period 

[0, 𝑇] can be expressed as  

               𝒩act =
𝑇

𝜏𝑖
,                                                     (15) 

where 𝜏𝑖  is the period during which the IoT device is active. In the case of 

randomly activated IoT devices that are often subjected to bursty traffic and 

short activation intervals, we incorporate the probability density function of the 

random activation model, 𝒩act, as studied in [40] over the time period [0, 𝑇], 

which is defined as  

              𝐷(𝑡) =  
𝑡𝒶−1(𝑇−𝑡)𝒷−1

𝑇𝒶+𝒷−1 𝐵(𝒶,𝒷)
 ,                                    (16) 

where 𝐵(𝒶, 𝒷) = ∫ 𝑡𝒶−11

0
(1 − 𝑡)𝒷−1𝑑𝑡 is the beta function with parameters 

denoted as 𝒶 and 𝒷, and are known as shape parameters provided 𝒶, 𝒷 ≥ 0. 

Using both periodic and random activation models is a crucial design 
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consideration because we aim to determine the optimal hovering location for 

maximal data aggregation. 

B. Aggregation Cost Calculation 

The selection of an appropriate aggregation location is a prerequisite for 

energy-saving. In our work, we aim to find the optimal hovering location, where 

the maximum number of IoT devices can be served based on the received SINR 

at LT-UAV j. The number of active IoT devices at any given time can be 

expressed as |𝑁𝑖| =  𝑁𝑖
per

+  𝑁𝑖
rand. A more elaboration is  

        𝑁𝑖(𝑡) =  ∑ 𝜑𝑖
per(𝑡)

𝑊𝑖
per

𝑖=1
+ ∑ 𝜑𝑖

rand(𝑡)
𝑊𝑖

rand

𝑖=1 ,                   (17) 

where 𝜑𝑖
per

(𝑡) and 𝜑𝑖
rand(𝑡) are binary functions and defined as 

                       𝜑𝑖
per(𝑡) = {

1,   if 𝑖 is active at 𝑡p 

0,                 otherwise
.                           (18a) 

and 

                    𝜑𝑖
rand(𝑡) = {

1,   if 𝐷(𝑡) ≥ 𝐷(𝑡th)  
0,                  otherwise

.                        (18b) 

respectively. 

Furthermore, if the SINR value reaches certain threshold, 𝕊i,j
th, then the IoT node 

establishes communication with LT-UAV and 𝕊𝑖,𝑗(𝑡) ≥ 𝕊𝑖,𝑗
th . Therefore, the 

indicator function can be defined as: 

                           Å𝑖,𝑗(𝑡) = {
1, if 𝕊𝑖,𝑗(𝑡) ≥ 𝕊𝑖,𝑗

th

0,         otherwise
.                                (19) 
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To avoid multiple communications and ensure that one IoT node communicates 

with a particular LT-UAV simultaneously, we introduce another indicator 

function: 

    �̃�𝑖,𝑗(𝑡) = {
 1, if Å𝑖,𝑗(𝑡) = 1 and 𝜑𝑖 = 1

0,                          otherwise
.                       (20) 

Therefore, the modified expression for the data rate in Equation (10) is 

transformed into: 

𝑅𝑖,𝑗(𝑡) =  Å𝑖,𝑗(𝑡)�̃�𝑖,𝑗(𝑡)ℬ1 𝑙𝑜𝑔2(1 + 𝕊𝑖,𝑗(𝑡)).                 (21) 

Finally, the time period for aggregating data at a particular hovering point of 

the LT-UAV can be expressed as 

   𝑇𝑗
agg

=  ∑ 𝜑𝑖
per𝑊𝑖

per

𝑖=1
(

𝑆𝑖

𝑅𝑖,𝑗(𝑡)
) + ∑ 𝜑𝑖

rand (
𝑆𝑖

𝑅𝑖,𝑗(𝑡)
)

𝑊𝑖
rand

𝑖=1 .               (22) 

where 𝑆𝑖  is the data or task size collected from the IoT devices, and the 

energy during hovering can be expressed as 

                           𝐸𝑗
agg

(𝑡) = ∑ 𝑃(𝑣(𝑡))∆𝑡
𝑇𝑗

agg

0 .                                   (23) 

3.5. Local Computation Model 

After all data from the IoT nodes are aggregated by the LT-UAV, the 

onboard processing unit starts processing the data locally. Similar to the local 

processing model in [55], the internal unit of each LT-UAV was equipped 

with a single-core CPU. Thus, the LT-UAV can execute only one task at a 

time, and the remainder is offloaded to the HT-UAV for further processing. 

Thus, the queuing delay was not considered in the proposed model. Because 

IoT nodes are homogenous, the task size is uniform, and the number of 
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arriving tasks is the same as the number of active IoT nodes at a particular 

time, 𝑁𝑖(𝑡). The duration of the local computing can be expressed as   

                            𝑇𝑗
loc(t) = ∑ (1 − 𝛷𝑗,𝑘 )

𝑆𝑖𝑉𝑗

𝑓𝑗
loc

J
𝑗=1 ,                          (24) 

where 𝑓𝑗
loc is the local CPU frequency of the LT-UAV, and 𝑉j is the required 

CPU cycle to complete the task. 𝛷𝑗,𝑘 ∈ [0, 1] is the binary decision variable 

for either local execution or offloading to the HT-UAV, and can be 

represented as 

                           𝛷𝑗,𝑘 =  {
1,           if offloaded  
0,  locally computed

.                              (25) 

We can compute the energy expanded for the local computation as  

     𝐸𝑗
loc(𝑡) =  𝑃𝑗

loc × 𝑇𝑗
loc(𝑡) = 𝑃𝑗

loc ∑ (1 − Φj,k)
𝑆𝑖𝑉j

𝑓j
loc

J
j=1 ,              (26) 

where 𝑃𝑗
loc  is the power requirement for local computation and is 

proportional to the cubic power of the local frequency 𝑓𝑗
loc of the LT-UAV 

[58]. The resulting equation is as follows:  

                   𝐸𝑗
loc(𝑡) =  𝜇(𝑓j

loc)2 ∑ (1 − Φj,k)𝑆𝑖𝑉j
J
j=1 ,                         (27) 

where 𝜇 is the LT-UAV’s effective capacitance factor subjected to the CPU 

chip architecture. 

3.6. Offloading Computation Model 

Considering the limited resources and computational capacity of LT-

UAV, tasks are offloaded to HT-UAV, which are equipped with higher 
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processing power and edge units. Therefore, the transmission time from an 

LT-UAV 𝑗 to an HT-UAV 𝑘 can be written as 

                        𝑇𝑗
tran(𝑡) = ∑ ∑ (𝛷𝑗,𝑘)

𝑆𝑖𝑉𝑘 

𝑅𝑖,𝑗(𝑡)

𝑁𝑖−1
𝑛=0

J
j=1 .                             (28) 

Similarly, the energy requirement for the data transmission is expressed as  

                       𝐸𝑗
tran(𝑡) = 𝑃𝑗

tran × 𝑇𝑗
tran(𝑡),                                   (29) 

where 𝑃𝑗
tran is the transmission energy required for offloading. Similar to the 

previously defined duration of the local computation, we define the 

offloading computation time as  

                        𝑇𝑗
Off(t) = ∑ ∑ (𝛷𝑗,𝑘)

𝑆𝑖𝑉𝑘

𝑓𝑘
off

𝑁i−1
𝑛=0

J
𝑗=1 ,                               (30) 

where 𝑓𝑘
off denotes the CPU frequency of the HT-UAV. Similarly, the energy 

expanded for offloading can be calculated as follows: 

 𝐸𝑘
off(𝑡) =  𝑃𝑗

off × 𝑇𝑗
Off = 𝑃𝑗

off ∑ ∑ (Φj,k)
𝑆𝑖𝑉𝑘

𝑓𝑘
off

𝑁i−1
𝑛=0

J
𝑗=1 ,                (31) 

where 𝑃𝑗
off  denotes the processing power required for the HT-UAV. As 

mentioned previously, the resulting equation becomes 

             𝐸𝑗
loc(𝑡) =  𝜇(𝑓k

off)2 ∑ ∑ (Φj,k)𝑆𝑖𝑉𝑗
𝑁i−1
𝑛=0

J
j=1 .                      (32) 

3.7. Energy and Delay Cost Calculation 

According to all the defined equations, we can obtain the total cost of 

energy and delay associated with the proposed problem. Therefore, the 

overall energy cost associated with the joint data aggregation and offloading 

processes can be expressed as:  

        𝐸tot(𝑡) =  𝐸𝑗
fly

(𝑡) + 𝐸𝑗
agg

(𝑡) + 𝐸𝑗
loc(𝑡) + 𝐸𝑗

tran(𝑡)+ 𝐸𝑘
off(𝑡).        (33) 



 

29  

 

Similarly, the total delay can be expressed as  

          𝑇tot(𝑡) =  𝑇𝑗
agg

(𝑡) + 𝑇𝑗
loc(𝑡) + 𝑇𝑗

tran(𝑡)+ 𝑇𝑘
off(𝑡)                 (34)                                                  

3.8. Problem Formulation 

Our objective is to design an optimized algorithm for the overall data 

aggregation and offloading processes while serving the maximum number of 

IoT nodes. Based on an earlier discussion, our goal is to minimize both the total 

energy consumption of LT-UAVs and the total aggregation and task execution 

time. Task execution time is the elapsed time for local execution and offloading. 

The total aggregation and task execution time is the time elapsed from the 

beginning of the data aggregation (i.e., the first transmission of the data to be 

aggregated from the IoT devices) to the end of the computation offloading (i.e., 

the last reception of the task to be offloaded). To define the optimization 

problem, we normalized 𝐸tot and 𝑇tot as 𝐸𝑛 = 𝐸tot 𝐸max⁄  and 𝑇𝑛 = 𝑇tot 𝑇max⁄ , 

respectively, where 𝐸max  and 𝑇max  are the maximum values of 𝐸tot  and 𝑇tot , 

respectively. The optimization problem can be formulated as follows:  

               P1 :      
min
𝑁i, 𝐻

𝜔1𝐸n + 𝜔2𝑇n                                   (35) 

                    𝑠. 𝑡. 𝐸tot ≤ 𝐸th,                                              (C1) 

                          0 ≤ ∅(t) ≤ 2𝜋,                                            (C2) 

                          0 ≤ 𝑑(t) ≤ 𝑑max,                                        (C3) 

                          𝕊i,j(t) ≥ 𝕊i,j
th,                                                (C4) 

                          0 ≤ Åi,j(t)  ≤ 1,                                          (C5) 

                          0 ≤ �̃�i,j(t)  ≤ 1,                                          (C6) 

                          𝑆i ≤ 𝑆i(max)                                                 (C7) 
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                          0 ≤ Φj,k ≤ 1,                                              (C8) 

where 𝜔1 and 𝜔2 are the weight parameters for the total energy requirement of 

LT-UAVs and the total aggregation and task execution time, respectively, and  

𝜔1 + 𝜔2= 1. Based on the mission requirement, the parameters 𝜔1 and 𝜔2 

can be adjusted. Constraint C1 ensures that each UAV does not exceed the 

maximum threshold energy available for the duration of the mission. 

Constraints C2 and C3 are UAV movement constraints. Constraint C4 

ensures the optimal hovering location selection based on the received SINR 

between the UAV and IoT nodes. where C5 is the indicator constraint for C4, 

Constraint C6 ensures that each IoT node can be connected simultaneously to 

a particular LT-UAV. Constraint C7 ensures that the UAV buffer memory is 

not overflowed by incoming data. C8 is the offloading constraint between 

LT-UAVs and HT-UAV, which depends on the computational capability of 

LT-UAVs. 

To select the optimal hovering location 𝐻 for data aggregation, we 

introduced several constraints on the UAV mobility. Therefore, we introduce 

another optimization problem for solving the UAV trajectory problem, which 

can be expressed as  

P2 :   min
𝐻

∑ ∑ ∑ ‖ℎe − ℎf‖
𝐹
f=0
f≠e

𝐸
e=0

𝑈
u=1 𝑥ef

U                      (36) 

     𝑠. 𝑡.  ∑ ∑ 𝑥ef
UE

e=0
U
u=1 = 1 ∀𝑓= 1, … , 𝐹,  f ≠ i,                      (C9) 

           ∑ 𝑥eg
U −E

e=1 ∑ 𝑥gf
UE

f=1 = 0 ∀g= 1, … , 𝐺,                    (C10) 

                        ∑ 𝑥0f
UF

f=1 = 1 ∀f= 1, … , F,                                (C11) 

                            ∑ 𝑥f0
UF

f = 1 ∀f= F,                                        (C12) 

                     𝜗ℎe
− 𝜗ℎf

+ 𝐸 ∑ 𝑥ef
UU

u=1 ≤ 𝐸 − 1,                           (C13) 
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                                2 ≤ e ≠ f ≤ 𝐸,                                        (C14) 

where, 𝑥ef
U  ∈ {0,1} is a binary variable indicating LT-UAV’s movement for 

points e to f. Constraint C9 ensures that each hovering location is visited by 

UAV at least once. C10 ensures that each LT UAV leaves the same hovering 

point after aggregation. C11 and C12 indicate that the LT-UAV started its 

mission from the designated initial position and returned to the initial point 

after the completion of the mission. C13 and C14 are known as Miller-

Tucker-Zemlin constraints [40], [59], which eliminate the subtour of LT-

UAVs. 
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4. Joint Data Aggregation and Computation 

Offloading (JDACO) 

In this section, a multi-agent deep reinforcement learning based (MA-DRL) 

approach is introduced to address proposed optimization problem P1 for joint 

data aggregation and computation offloading. We first model our original 

optimization problem as a Markov game, and then use the VD3QN approach 

[60] to solve the problem. 

4.1. Markov Game Formulation 

Because we deployed multiple UAV for joint data aggregation and 

offloading, each UAV’s action was affected by the collaborative action of the 

other UAVs. Therefore, the proposed optimization problem can be 

transformed into a Markov game framework. The Markov game is an 

extension of the Markov decision process (MDP) for multi-agent scenarios 

[61]. A Markov game with 𝑁 number agents can be designated as tuple 

(𝑆, 𝐴, 𝑅, 𝑃), where  𝑆, 𝐴, 𝑅, 𝑃 denote the state, action, reward function, and 

state-transition probability, respectively. At each time step, the agent ƞ takes 

an action 𝑎ƞ ∈ 𝐴  based on a certain policy after observing the current 

environment state 𝑠ƞ ∈ 𝑆 . A next state 𝑠′ is chosen according to the state 

transition probability 𝑃(𝑠ƞ
′|𝑠ƞ, 𝑎1, 𝑎2, 𝑎3, … , 𝑎ƞ). By selecting the next state in 

an environment, reward 𝑟 is obtained based on the reward function  𝑅. In 

terms of machine learning, a reward is simply a quantitative value that 

demonstrates the amount of an agent’s action that has an impact on the 

agent’s learning or objective. 
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We next discuss each component’s definition for the Markov game 

formulation. 

• Agent: Each LT-UAV is considered an agent as it begins interacting with 

the given environment and other LT-UAVs to maximize collaborative 

non-overlapping rewards and exchange information with each other. 

Therefore, the environment becomes fully observable, and each 

observation can be considered a state. Because each LT-UAV (agent) is 

deployed from the depot for data aggregation and makes local 

computations or offloading decisions, each UAV performs an appropriate 

action based on its respective policy. As each action is performed, a 

reward is generated from the environment and forwarded to the 

subsequent state. When each agent reaches its optimal goal, it stops 

receiving an additional reward from the environment or moves to the 

next state.    

• State 𝑆: Because we deployed multiple LT-UAV in our simulation 

environment, our optimization problem can be described as a multi-agent 

Markov game. Every agent has its own state and acts independently of 

others. For the agent ƞ, the state space, 𝑠ƞ, can be defined as  

                            𝑠ƞ = {𝑂ƞ, 𝑂−ƞ}.                                          (37) 

The state space has two components, the first component 𝑂ƞ is the self-

observations of LT-UAV, whereas the second component 𝑂−ƞ  is the 

observation of the other LT-UAVs. The self-observations, 𝑂ƞ , can be 

defined as 𝑂ƞ = {𝑏ƞ, 𝐸ƞ, 𝒾, 𝒰ƞ, 𝕊ƞ
i,j

, �̃�i,j(ƞ), 𝑁i}  where 𝑏ƞ  is the network 

identifier of each LT-UAV as we utilize the network-sharing method [62] 

and represented by one-hot vector, 𝐸ƞ is the remaining energy of the LT-
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UAV, 𝒾  is the location information of IoT nodes, 𝒰ƞ  is the location 

information, 𝕊ƞ
i,j

 is the SINR between i and j, �̃�𝑖,𝑗(ƞ) is the one-hot vector 

indexing indicating the UAV and IoT association and 𝑁i  is the task 

aggregated by LT-UAV to process. Similarly, 𝑂−ƞ is the shared observation 

resulting from the other agents in the environment and can be described 

as  𝑂−ƞ = {𝒾, 𝒰−ƞ, �̃�𝑖,𝑗(−ƞ)} where 𝒰−ƞis the location information of other 

LT-UAVs and �̃�𝑖,𝑗(−ƞ) is the device association parameter. 

• Action 𝐴: Each agent requires an appropriate action in every time 

slot based on the current self and shared observations. The combined 

action of the agents can be expressed as 𝑎ƞ =

{𝑎𝑀, Åi,j(ƞ), �̃�i,j(ƞ), 𝑥ef
U , Φj(ƞ),k} where all the actions are taken in discrete 

action place and Åi,j(ƞ), �̃�i,j(ƞ), 𝑥ef
U  , Φj(ƞ),k ∈ ℵ ,  ℵ  being the number of 

possible actions of Åi,j(ƞ), �̃�i,j(ƞ), 𝑥ef
U , Φj(ƞ),k and are all binary variables. 

By integrating the LT-UAV mobility in horizontal direction, ∅ in discrete 

action space, the total number of possible actions for the LT-UAV is 

2ℵ × ∅.  

• State Transition Probability 𝑃: The state of each agent or LT-UAV 

depends on its present location. Using equation (2) we can define the 

deterministic environment for the LT-UAV’s position where the state 

transition probability for the next state of the agent is  

𝑃(𝑠ƞ
′|𝑠ƞ, 𝑎1, 𝑎2, 𝑎3, … , 𝑎ƞ) = 1.  

• Reward function 𝑅 : As discussed earlier, the reward is the 

quantitative value received by an agent after interacting with the given 

environment, which numerically demonstrates how well the optimization 
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objective has been achieved. The reward for the discrete time step can be 

defined as:  

                         𝑟t = 𝑟c + 𝑟e + 𝑟p .                                        (38) 

As indicated in (34), the reward equation comprises the following 

three parts: The first part 𝑟c  is awarded to successfully complete the 

overall mission and is a positive number. The second part 𝑟e is a violation 

constraint owing to the energy of the agent and the negative number. The 

final term is the penalty term  𝑟𝑝, which is also a negative number. The 

penalty term is 𝑟p = 𝑟SINR + 𝑟ass + 𝑟mov + 𝑟off, where 𝑟SINR is the SINR 

constraint violation term, 𝑟ass  is the device association violation term, 

𝑟mov is the movement constraint violation term, and 𝑟off is the offloading 

constraint violation term.  

For each episode of time step 𝜏, minimizing the overall energy and delay 

for the aggregation and offloading process, our proposed problem (P1) turns 

into maximizing the cumulative reward 𝐺 = ∑ ∑ 𝑟𝑡
ƞ𝑁

ƞ=1
𝑇
𝑡=1 . Therefore, the 

proposed Markov game formulation was an episodic task [63]. In every 

episode, the agent begins its journey from the initial state and ends in the 

terminal state by returning to its initial deployment position.  
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Figure 2. JDACO architecture and workflow 

4.2. VD3QN Based Solution Approach 

To solve our modified formulated problem, we adopted a learning-based 

algorithm called VD3QN [60], which is a combination of VDN [62] and a 

Dueling Double Deep Q Network (D3QN) [64] as shown in Figure 2. We 

modified the existing VD3QN algorithm to our advantage and modeled the 

proposed problem accordingly. The D3QN act as decision maker for each 

agent using the local action values 𝑄(𝑠ƞ, 𝑎ƞ), whereas the VDN generates the 

global action value 𝑄tot(𝑠, 𝑎) . Therefore, sequential optimal actions were 

achieved by achieving a common objective for an individual agent or LT-

UAV. In the following, the D3QN and VDN architectures are studied to 

solve the formulated Markov game.  

1) D3QN: To obtain an optimal policy for an action-value function, the 

D3QN can be utilized as a value-based reinforcement learning technique 

[64]. Unlike standard DQNs [65], D3QN approximates the state value and 

state-dependent information first for each action taken and then perform 

aggregation function of the layers to obtain estimated action value function 

𝑄.  

Each agent acquires observation of the environmental state 𝑠 and utilizing the 

parameterized deep neural network (DNN) to produce action-value function, 
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𝑄(𝑠, 𝑎; 𝛿) which is an approximal value of the original action-value function, 

𝑄(𝑠, 𝑎). Moreover, utilizing the dueling architecture, the D3QN can quickly 

identify the 𝑄 value, which ultimately helps in a faster training process by 

choosing the appropriate action. 

To learn the parameters of the neural network (NN), storing the state 

transitions (𝑠, 𝑎, 𝑟, 𝑠′) in experience replay buffer 𝑩 plays a significant role, 

where 𝑠′ is the next state after action 𝑎 is performed and reward r is received 

in return. As the training phase continued, a minibatch of state transitions 

was randomly chosen from the replay memory buffer. Then, the parameters 

are brought up to date each time by reducing the square of the temporal 

difference (TD) error, which is given by  

              𝐿(𝛿) = 𝑬𝑠,𝑎,𝑟,𝑠′[(𝒚𝐷3𝑄𝑁 − 𝑄(𝑠, 𝑎; 𝛿))
𝟐

].                        (39) 

To address the overestimation problem of original Q-learning, we utilized the 

double Q-learning architecture [66], which is given by 

             𝒚D3QN = 𝑟 + 𝜍𝑄 (s′, arg min
a′

𝑄(s′, a′ ; δ); 𝛿t).                       (40) 

where 𝜍 is the discount factor and 𝛿t is the target parameters of the target 

neural network. It is to be noted that the architecture of the target network is 

same as action-value NN which obtains value from δ  to ensure stable 

learning [67]. 

2) VDN Architecture: In the proposed model, each agent works for the 

common objective of maximizing the number of devices served while 

minimizing the overall energy and time. Value decomposition divides the 

value function of a multi-agent problem into separate value functions for 

each agent. This allows agents to learn to cooperate with each other because 
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they do not compete for the same resources. Therefore, all agents work 

independently and share their current state and observations cooperatively to 

find the global solution. Thus, we adopted the VDN [62] approach to find the 

global action-value function, which is denoted by 𝑄𝑡𝑜𝑡.VDN calculates the 

joint action-value function using the value-decomposition layer. Then, the 

summation of the action-value functions is calculated from the other agents, 

which is defined as 

                       𝑄𝑡𝑜𝑡(𝑠, 𝑎) = ∑ 𝑄ƞ(𝑠ƞ, 𝑎ƞ; 𝛿)𝑁
ƞ=1 ,                               (41) 

where 𝑠ƞ and 𝑎ƞ are each agent’s state and actions respectively. By utilizing 

the value-decomposition layer, each agent can learn a better joint action in a 

noncompeting cooperative manner. 

Algorithm 1 describes the proposed JDACO algorithm. In the training mode, 

every episode is defined by events where all agents start from the initial 

position, carry out aggregation, local computing, and offloading procedures, 

and then return to the initial position based on the remaining battery level. 

For each agent, each episode begins with 𝜏 = 0 with initial state and reset all 

other parameters as defined in line 3. In line 4, we impose the maximum 

number of allowable steps to prevent an agent wandering around, and an 

energy condition is imposed to ensure that the agent does not fall off while 

wandering around. This is necessary as at the early stage of the training 

phase, agents have very little knowledge with a high probability of 

exploration, 𝝐. Therefore, a new episode is initiated if an agent meets the 

desired target, or if a selected number of steps is reached. As the training 

phase continues, each agent encounters local state 𝑠ƞ (line 6). From line 7 to 

8, based on the observed state, a random action is chosen from the action 
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space using 𝝐-greedy policy or using action-value function 𝑄(𝑎ƞ, 𝑠ƞ; 𝜹) and 

then agent’s location, energy information and other binary parameters are 

updated. As stated in line 10, the environment then generates reward 𝑟ƞ based on 

the prescribed reward formulation. As agents work in a cooperative manner, 

the sum of all the agent’s reward is calculated as 𝑟total = ∑ 𝑟ƞƞ  (line 10). At 

this stage, the combined action 𝑎, current state 𝑠, following state 𝑠′, and total 

reward 𝑟total are recorded in the replay memory buffer 𝑩. After that, time 

step 𝜏 and exploration rate 𝝐 are updated as stated in line 13. Using the stored 

transition at the end, the DNN of the agent is trained, as stated in lines 15–18. 

More importantly, the 𝜹 parameter is updated as loss function is minimized and 

denoted as: 

                 𝐿(𝛿) = 1

⊓𝐛
∑ [(𝑦tot − 𝑄tot(𝑠, 𝑎; 𝛿))

2
]⊓𝐛
,                           (42)  

with 

       𝑦tot = 𝑟total + 𝜍𝑄tot (s′, arg min
a′

𝑄tot(𝑠′, 𝑎′ ; 𝛿); 𝛿t,                    (43) 

where ⊓𝐛 is the sampled episode number from replay buffer and  𝜹𝐭 are the 

parameters of the target NN. To stabilize the training process, 𝜹𝐭  are soft 

updated after every 𝑊 episodes, as mentioned in line 18. Notably the 

aggregation operation is performed to sum the respective 𝑄 values and is not 

included in the parameters of the NN. 
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Algorithm 1: JDACO for energy and delay minimization 

Input: Maximum episode number ⊓𝐞𝐩𝐬 , maximum step number per episode ⊓𝐬𝐭𝐩 , 

exploration at start 𝝐𝟎, decay rate 𝜺, achieving objective reward 𝒓𝐨, defilement reward 𝒓𝐝, 

replay buffer 𝑩, batch size ⊓𝐛, Number of agent ƞ, initial LT-UAV position 𝓤𝟎, LT-UAV 

maximum energy 𝑬max IoT node location 𝓲, Number of tasks 𝑵𝐢, initial parameters for NN 

𝜹, target parameters for NN 𝜹𝐭, rate of learning 𝜶, rate of soft update 𝜷. 

Output: Trained parameter 𝜹.  

1 Initialize 𝜹, 𝝐 = 𝜺𝟎, 𝜹𝐭 = 𝜹; 

2 for 𝑛eps = 1,2,3, … ,⊓eps do 

3 Set timestep 𝜏 = 0 and reset agent’s position and other parameters 

 𝒰ƞ(t)= 𝒰ƞ
init for each LT-UAV ƞ; 

4 while 𝒰ƞ(t) ≠ 𝒰ƞ
fin and 𝐸ƞ ≤ 𝑬max  and 𝜏 ≤⊓stp do 

5 for agent ƞ = 1,2,3, … , 𝑁 do 

6 Get state 𝑠ƞ, based on agent’s position; 

7 Selection of action 𝑎ƞ from the defined action-space 𝐴 
using 𝝐-greedy exploration policy, as  

𝑎ƞ = {
random action,               probabilistic 𝝐
arg max

𝑎ƞ∈𝐴
𝑄(𝑎ƞ, 𝑠ƞ; 𝜹) ,             otherwise; 

8 Perform action 𝑎ƞ, update agent’s position 𝒰ƞ(t), agent’s energy and other 

binary parameters  

9 end 

10 Calculate reward 𝑟𝑡 using equation (38) and obtain the cumulative reward  𝐺. 

11 Collect combined action 𝑎, current state 𝑠 and following state 𝑠′; 

12 Record the state transition information (𝑠, 𝑎, 𝑠′, 𝑟total) in replay buffer 𝑩; 

13 Update new timestep 𝜏 → 𝜏 + 1 and new exploration rate 𝝐 → 𝜺 × 𝝐 

14 end 

15 Sample ⊓𝐛 episodes of minibatch from replay buffer 𝑩;  

16 Obtain the loss function using equation (37) 

17 Using gradient descent optimizer, update 𝜹 

𝜹 → 𝜹 − 𝛼∇𝜹(𝑦tot − 𝑄tot(𝑠, 𝑎; 𝜹)); 

18 After every 𝑊episodes, update target parameter 𝜹𝐭 using soft update mechanism 

using, 

𝜹𝐭 = (1 − 𝜷)𝜹𝐭 + 𝜷𝜹; 

19 end 
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4.3. Complexity Analysis 

To analyze the complexity of the proposed scheme, we studied the time 

and space complexities of the DDQN training and VDN aggregation 

separately, and then studied the time and space complexities of our proposed 

JDACO algorithm based on the modified VD3QN. The time complexity of 

the DDQN architecture for experience collection is expressed by 𝑂(⊓ ×⊓𝐬𝐭𝐩), 

where ⊓  is the number of episodes during training phase and ⊓𝐬𝐭𝐩  is the 

timesteps per episode. To update the replay buffer during training phase, the 

time complexity is denoted as 𝑂( ⊓𝐛× 𝑀), where ⊓𝐛 is the batch size and 𝑀 is 

the number of iterations per episode. For the VDN aggregation, the time 

complexity can be given as 𝑂(ƞ × 𝐴), where ƞ being the number of agents 

and𝐴 being the cardinality of the individual agent’s action space. Thus, the 

time complexity of JDACO can be given as 𝑂(⊓𝐬𝐭𝐩× 𝑆 × 𝐴𝟐), where 𝑆 being 

the number of states and 𝐴 is the number of possible actions from the action 

space. This is because JDACO must explore all possible combinations of 

decision variables for all agents at each time step. 

The space complexity of the DDQN is 𝑂(𝐵 + 𝑃), where 𝐵 and 𝑃 are the 

replay buffer size and number of parameters in the network used for storing 

experiences and neural parameters, respectively. As for the VDN space 

complexity, it can be defined as 𝑂(𝐴 × ƞ), The space complexity of JDACO 

can be expressed as 𝑂(𝑆 × 𝐴)  as JDACO needs to store the Q-table, for 

every state and action. 
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5. Performance Evaluation 

In this section, the performance of the proposed JDACO is evaluated by 

simulation results and compared to conventional schemes using TensorFlow 

framework version 1.15 on a desktop computer equipped with two 1070Ti 

processors with a total of 16GB of memory. To demonstrate the effectiveness 

of the proposed algorithm, we selected two learning-based approaches as our 

benchmarks: Q-learning with mixing (Qmix) [68] and counterfactual multi-

agent policy gradients (COMA) [69]. We selected the heuristic greedy 

approach (HGA) as the nonlearning-based approach. 

Similar to the VDN approach, Qmix is a value-based approach that 

utilizes centralized training decentralize execution method. It addresses the 

challenge of coordinating multiple agents to achieve a common goal by 

combining individual agent policies into a joint action-value function. We 

replaced the gated recurrent unit (GRU) with a D3QN unit to adopt Qmix in 

our problem. On the other hand, COMA is a deep reinforcement learning 

algorithm that uses counterfactual reasoning to assign credits to individual 

agents in cooperative multi-agent systems. It combines a centralized critic to 

evaluate the joint action value with individual actor networks that select 

actions for each agent based on local observations. To incorporate COMA 

into our formulated MDP, we replaced the GRU with multi-layer perceptron 

(MPL) NN. For the non-learning-based approach, we formulate the HGA as 

a binary integer programming problem by utilizing only the binary variables 

that are solved by the Python library called PuLP [70]. 
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5.1. Simulation Setup 

We performed the primary simulation by deploying multiple LT-UAVs 

from the initial coordinates (0, 0). The IoT nodes were randomly deployed 

over an area of (10 × 10 Km). The coordinates of the HT-UAV were (5, 5). 

As we aim to minimize both the energy and delay for the aggregation and 

computational offloading processes, we emphasize equal weights for both 

terms. The simulation parameters are listed in Table 3. 

Table 3. Simulation Parameter 
Parameter Value 

Simulation area 10×10Km2 

𝜂LoS and 𝜂NLoS values 1.6 dBm and 23 dBm 

Carrier frequency,  2 GHz 

Environment constant α and β 10.39, 0.05 

Weight parameters 𝜔1 and 𝜔2 0.5 (𝜔1 = 𝜔2) 

UAV altitude, ℎ𝑗 100 m 

Number of IoT nodes [20, 40, 60 80, 100 (default),] 

Number of UAVs [3, 5(default), 7] 

Blade profile power, 𝑃1 79.8563 W 

Induced power, 𝑃2 88.6279 W 

Rotor blade tip speed, 𝑈𝑡𝑖𝑝 120 m/s 

Average induced velocity of rotor during hovering 

state, 𝑣0  
4.03 m/s 

Fuselage drag ratio, 𝑑0 0.6 

Density of air, 𝜌 1.225 kg/m3 

Solidity of the rotor, 𝑔 0.05 

Disk area, 𝐴 0.503 m2 

Effective capacitance factor, 𝜇  10-28 

Task size [2.5, 5 (default), 7.5, 10] Mbit 

Channel power, 𝒫0 1.42×10-4 

Local CPU frequency, 𝑓j
loc 109 cycles/s 

CPU cycle to finish the task, 𝑉j 270 cycles/bit 

CPU frequency of the HT-UAV, 𝑓k
off 5×1010 cycles/s 

Maximum episodes, ⊓𝐞𝐩𝐬 1200 

Maximum steps, ⊓𝐬𝐭𝐩 60 

Exploration probability at beginning 1 

Mission completion reward, 𝑟c 130 

Energy violation reward, 𝑟e -20 
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Parameter Value 

Batch size, ⊓𝐛 64 

Soft update, 𝛽 0.01 

Learning rate, 𝜶 0.001 

Discount factor, ℸ 0.99 

Buffer size 𝑩 500000 

 

In the proposed JDACO architecture, we utilized a feed-forward, fully 

connected neural network with three hidden layers containing 256, 512, and 

128 neurons. The neuron in the final layer corresponds to all possible actions 

that the agents can take. For simplicity, we consider three degrees of freedom 

(forward, left, and right) for each LT-UAV. The simulation values for the 

propulsion-power calculation of the LT-UAV were adopted from [71]. It is 

important to note that different factors, such as the number of agents and 

violation constraints, can have an impact on algorithm convergence. 

In our simulation, the following performance metrics were evaluated: A brief 

description of each metric is provided below. 

• Average reward: The performance indication of an agent over time 

helps to visualize the agent’s learning interactions from the environment. 

It comprises the cumulative reward over time by improving the decision-

making policy. An average reward curve or learning curve illustrates the 

fluctuating rewards as an agent explores different strategies to achieve 

convergence or stability of the learning process. 

• Total number of IoT nodes in service: This performance metric 

indicates the active IoT nodes among all deployed IoT nodes that have 

successfully transmitted data to the LT-UAV for computation. Usually, a 

higher number suggests that the proposed scheme can achieve large 
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amounts of data without missing any IoT nodes that are ready to upload 

the data. 

• Total amount of computed data: This indicates the total amount of data 

that an LT-UAV can gather for processing. A higher amount of data 

computation indicates that the LT-UAV was able to aggregate data from 

IoT nodes for computation or offloading without missing any of the 

nodes, which might result in data loss owing to the overflow of the buffer 

memory of IoT nodes.   

• Mission time: This indicates the average time required for LT-UAVs to 

complete their journey, starting from deployment from the initial position, 

data aggregation time, data computation time, offloading time, and 

finally returning to the initial deployment position. The shorter time 

required for the predefined energy of the LT-UAV demonstrates the 

effectiveness of the proposed scheme.  

• Total energy consumption: The total energy required for the LT-UAV 

to complete its mission, which includes travelling to the optimal hovering 

location, data aggregation, computation, and energy consumption 

offloading. Overall, lower energy consumption is an indication of an 

energy-efficient scheme. 

• Total aggregation and task execution time: This refers to the time 

required to process data starting from the aggregation point when the 

UAV is hovering. In this state, the LT-UAV aggregates data from the 

ground nodes until no other nodes are ready to transmit the data. The 

execution time refers to the combination of local computation by the LT-

UAV, transmission from the LT-UAV to the HT-UAV, and offloading by 

the HT-UAV. Because the delay for each data point is variable, we 

calculate the average delay for the overall aggregation, offloading, and 
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computation processes. In our proposed scheme, we ignore the queuing 

delay because the LT-UAV processes only a single task at a time, and the 

HT-UAV has sufficient processing power, making the queuing delay 

insignificant. The aggregation time for the LT-UAV is higher than the 

task execution time, as the LT-UAV collects and aggregates data from 

IoT nodes and is usually expressed in seconds. On the other hand, task 

execution usually takes a shorter time frame of approximately a few 

milliseconds. 

5.2. Simulation Results and Discussion  

First, the performances of the training processes of the DRL-based 

approaches is compared, as illustrated in Figure 3. The simulation results for 

the training process involved two instances with three LT-UAVs and five 

HT-UAVs for all DRL approaches. The results demonstrate the convergence 

of the algorithms for all instances. However, among learning-based 

approaches, COMA performed the worst. COMA operates under the 

principle of a counterfactual baseline mechanism, which inhibits the 

exploratory ability of the centralized critic. This renders COMA unsuitable 

for the proposed JDACO scheme. However, JDACO and Qmix show 

similarities in performance because both provide value-factorization-based 

solutions. The performance of the Qmix network can be improved by 

combining it with a more complex NN architecture and a global state with an 

action value. This is still unlikely to outshine the performance of JDACO 

because the local state of an agent has a full observation of all other agents, 

and further improvement is not guaranteed. Overall, JDACO reached 

convergence at a faster rate than the other baseline algorithms. 
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(a) (b) 

Figure. 3. Average reward (a) with 3 LT-UAVs and (b) with 5 LT-UAVs. 

 

Figure 4 shows the simulation scenario of our scheme with respect to an 

example deployment of HT-UAV, LT-UAVs, and IoT nodes. The IoT node 

distribution, LT-UAV coverage, HT-UAV coverage, and respective 

trajectories of the LT-UAVs are graphically shown. A simulated 

environment was generated using three LT-UAVs for 100 IoT nodes. The 

coordinates (0, 0) indicate the deployment points of the LT-UAVs, and 

coordinates (5, 5) indicate the positions of the HT-UAVs. Note that the 

negative distance is a vector representation of the simulation area. 

In Figure 5, the performance of all benchmarks for IoT devices is explored. 

Compared to all the other benchmarks, HGA exhibited the poorest 

performance. This is understandable because a greedy approach aims to find 

the shortest way to finish the mission without prioritizing the number of IoT 

nodes in service and fulfilling the other constraints. On the other hand, 

among the learning-based benchmarks, JDACO and Qmix showed similar 

performances, whereas JDACO was superior to Qmix and COMA. 
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Figure 4. An example deployment of 

HT-UAV, LT-UAV and IoT nodes. 

Figure 5. Total number of IoT nodes 

in service. 

 

A further comparison of the amount of computed data among the different 

baseline algorithms is illustrated, as shown in Figure 6. For simplicity, the 

deployed nodes are sensory in nature is assumed, and each aggregated datum 

per sensor contains approximately 5 Mbits of data.  It can be observed that 

JDACO computes more data than the other baseline approaches. This 

indicates that less data loss is ensured by the proposed JDACO scheme, 

whereas the other schemes fail to compute a portion of their data. This result 

also indicates the linear scalability of the proposed scheme compared to other 

baseline algorithms. 

The mission times for the different schemes are compared while varying the 

number of LT-UAVs deployed, as illustrated in Figure 7. It is not surprising 

that the HGA scheme requires the longest time to complete the aggregation 

and offloading mission, as it must satisfy all conditions for aggregation and 

computation constraints. While it is true that increasing the number of UAVs 

reduces the overall mission time for all baseline schemes, JDACO requires 

the shortest mission time for all three use cases (i.e., for different numbers of  
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LT-UAVs) among all other benchmarks.  

The energy consumed by the LT-UAVs for different baseline schemes is 

studied. The energy expenditures for different CPU cycles for an LT-UAV 

with 100 IoT nodes is calculated. As shown in Figure 8, the proposed 

JDACO algorithm consumes less energy than the other learning-based 

algorithms. We also observed the impact of computational capability on the 

energy requirements. By proposing an energy-saving scheme, the UAVs can 

perform missions for a longer time in JDACO, which extends the scalability 

of the proposed scheme. 

The aggregation and execution times for different task sizes are also 

evaluated and compared them with those of other benchmarks. The average 

aggregation and offloading times for each benchmark is explored because 

each LT-UAV has its own respective time based on observations from the 

environment. As seen from Figure. 9. Overall, the proposed JDACO scheme 

had less aggregation and execution time when matched with other 

benchmarks. The HGA has a higher time requirement for both instances. 

  

Figure 6. The total amount of 

computed data. 

Figure 7. Mission time for different 

number of LT-UAVs. 
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Although Qmix demonstrates a performance similar to that of the proposed 

scheme, COMA requires longer aggregation and task execution times in both 

cases. 

The impact of task size on performance is evaluated as well. In other words, 

the total energy consumption and mission execution time were observed by 

varying the task size. First, the energy consumed by the UAVs for different 

task sizes is studied. Figure. 10 shows the energy consumed by the different 

 

Figure 8. Total energy consumption of LT-UAV for different computation 

power of LT-UAV processor. 

  

(a) (b) 

Figure 9. Aggregation time (a) and execution time (b) for different task sizes 
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benchmarks. It should be noted that increasing task size influences the 

overall energy consumption for the process (i.e., the task) to be completed. 

Therefore, it is clear that increasing the task size increases the energy 

consumption of UAVs. As shown in Figure. 10, the proposed JDACO 

algorithm consumed the least amount of energy for the aggregation and 

computational offloading processes. 

Similar to the energy consumption, the mission time by varying the task size 

is examined. Increasing the task size increases the overall mission time, 

because additional time is required to aggregate and compute the data for 

different task sizes. Figure 11. illustrates the different mission times required 

for the data aggregation and computation offloading processes for different  

schemes. The proposed JDACO scheme requires the least mission time 

compared to all the other benchmarks, as shown in Figure 11. 

 

  

  
Figure 10. Total energy consumption 

of LT-UAVs for different task sizes. 

Figure 11. Mission time for different 

number of LT-UAVs. 
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6. Conclusion and Future Works 

In this study, we presented a joint data aggregation and computation 

offloading scheme for post-disaster scenarios that minimizes the total cost of 

energy consumption and delays the aggregation and offloading processes. 

The joint optimization problem was defined and formulated as an MDP. We 

then solved the formulated the MDP problem by proposing an MA-DRL-

based JDACO algorithm to perform discrete cooperative action. The 

simulation study shows that the proposed JDACO algorithm performs 

superiorly compared to other benchmarks in terms of mission execution time 

(i.e., delay) and energy consumption, while ensuring the maximum number 

of IoT devices in service.  

In future work, not only consider mobile ground nodes will be 

considered, but also incorporation of the object detection ability of individual 

UAVs as an extension of this work. Additionally, we would like to further 

extend our work with the heterogeneous IoT nodes.  
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