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초    록 

효과적인 딥러닝 접근법을 이용한 

알츠하이머병 진단 

 

비슈나비 라미네니 

                                                                                       지도 교수: 권구락 

                              정보통신공학과 

                                     조선대학교 

 

알츠하이머병(AD)은 경도 인지 장애를 동반한 신경 퇴행성 질환으로 

기억력 저하, 행동 장애, 자기 관리 능력 저하 등을 유발한다. 이러한 

문제를 해결하기 위해서 조기진단은 중요하며, 조기 발견을 위해 

뇌영상 촬영법을 가장 많이 사용한다. 최근 가중치 영상을 기반으로 

하는 다양한 차원 분류 기법이 등장하고 있으며, 그 중에서 T1-가중치 

영상은 알츠하이머병, 초기 경도 인지 장애(EMCI), 후기 경도 인지 

장애(LMCI) 및 정상 대조군 환자를 구별하기 위해 개발되었다. 

본 논문에서는 자기공명영상에서 알츠하이머병을 검출하기 위해 

유용한 바이오마커를 추출하며, 모델의 복잡성을 줄이기 위해 

기계학습 모델을 사용하고, 알츠하이머병을 4단계로 분류하기 위하여 

딥러닝 모델을 제안한다. 
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초기 방법으로 모델의 복잡성을 완화하고 오버피팅 문제를 해결하기 

위한 기계 학습 기법을 활용하고자 한다. 이를 위해 주성분 

분석(PCA)과 제한된 볼츠만 머신(RBM)을 결합한 향상된 특징 선택 

방법과 래퍼 특징 방법을 적용한다. 이 결합된 접근법은 차원을 

축소하고 적절한 특징을 선택하는데 있어서 중요한 역할을 한다. 

본 연구는 알츠하이머병 진단을 위하여 구조적 자기 공명 

영상(sMRI) 이미지의 활용에 중점을 두었다. 다중 클래스 분류 실험을 

통해 모델의 성능을 평가하는 것이 주요 목적이다. 

계산의 복잡성을 줄이기 위하여 합성곱 신경망(CNN)을 사용하며, 

기존 방법과 비교하여 이 방법은 우수한 결과를 얻을 수 있다. 제안하는 

모델은 Residual Network에서 Skip Connection과 Visual Geometry 

Group을 적용한 CNN 모델이다. 기존의 다른 모델에 비해 낮은 

복잡도와 적은 매개변수를 사용하여 향상된 정확도를 달성하였다. 

결과는 매개변수, 정확도, 특이성, 회수율 및 F1 점수를 고려하여 

비교하였다. 제안된 모델은 정확도와 특이성이 각각 95.67% 및 

97.34%의 결과값을 가진다. 
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Abstract 

Diagnosis of Alzheimer’s Disease using 

effective Deep Learning Approach 

 
 

             Vyshnavi Ramineni 

            Advisor: Prof. Goo-Rak Kwon 

          Dept. of Information and Communication 

Engineering 

             Chosun University 

 

Alzheimer’s disease (AD) is a neurodegenerative disease with mild cognitive 

impairment, causing memory loss, behavioral issues, and poor self-care. Early 

diagnosis is crucial for interventions, and neuroimaging is a promising area 

for early detection. Recently, Various dimensional classification techniques 

based on weighted T1-Weighted images have been developed to distinguish 

between AD, early mild cognitive impairment (EMCI), late mild cognitive 

impairment (LMCI), and normal control patients. 

Machine learning techniques to reduce the model complexity by traditional 

models. In this thesis, I have used the deep learning method that has been 

proposed to extract useful Alzheimer’s disease biomarkers from magnetic 

resonance images and classify brain imaging into the 4 stages of Alzheimer’s 

disease. 



ix 

 

In this thesis, the initial approach involved the utilization of machine learning 

techniques aimed at mitigating model complexity, addressing a prevalent 

overfitting concern. To accomplish this, an enhanced feature selection method, 

combining Principal Component Analysis (PCA) and Restricted Boltzmann 

Machine (RBM), alongside a wrapper feature method, was applied. This 

combined approach was instrumental in reducing dimensionality and selecting 

the most pertinent features. 

This study focused on the utilization of structural Magnetic Resonance 

Imaging (sMRI) images for the diagnosis of Alzheimer's disease. The primary 

objective was to assess the model's performance in classification through 

multi-class classification experiments. 

The method uses the convolutional network to reduce the computational 

complexity and produces superior results compared to the existing methods. 

The proposed model is the Convolutional neural network that used the visual 

Geometry Group with the skip connection from the residual network with this 

proposed model we have achieved better accuracy with a less complex model 

and fewer parameters compared with other models that existed. The results are 

compared by noting the parameters, accuracy, specificity, recall, and F1 score. 

The proposed model shows the accuracy and specificity as 95.67% and 

97.34% respectively1
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1. Introduction 

1.1 Motivation  

The most prevalent type of dementia, Alzheimer's disease impairs memory 

and impairs our ability to recognize our surroundings. The number impacted 

is currently over 50 million and is projected to rise to 10 million by 2050[1], 

[2]. Memory loss occurs within a few weeks to months and is the primary 

indication of dementia, a collection of symptoms brought on by brain 

damage[3]. Alzheimer's disease diagnosis is still insufficient because of 

illnesses or changes in the body and mind.  

   Using clinical observations and cognitive tests, significant attempts have 

been undertaken to identify and diagnose this illness early on. Numerous 

studies have used positron emission tomography (PET) and magnetic 

resonance imaging (MRI) to emphasize the prevalence of dementia. [4] as 

indicators of dementia in particular cases of Alzheimer's disease (AD). The 

brain's shrinking in comparison to a healthy brain can be used to measure it. 

Large-scale multimodal neuroimaging data integration for disease fining has 

become difficult because to rapid advances in neuroimaging techniques. 

Consequently, there is growing interest in deep learning and computational 

machine learning approaches for integrative analysis [5]. By combining large-

scale speed, deep learning is a promising technique for Alzheimer's disease 
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diagnosis and healthcare quality improvement. It greatly enhances medical 

applications by helping with training and illness prediction, recognizing 

diagnostic subjects and settings, and exposing patterns in data. Because of this, 

a lot of research is investigating the potential of deep learning and machine 

learning methods for Alzheimer's disease characterization and detection[6].  

1.2 Research Objectives 

  In the study of health care using digital tools, deep learning has the unique 

ability to solve a massive scale. Machine learning and deep learning models 

to create an architecture is time-consuming and computationally seeks help 

from predefined feature engineering. Moreover, Researchers are investigating 

simplified deep learning (DL) algorithms as an alternative to restrained 

Machine learning (ML). Deep learning[7] a technique involving multiple 

processing layers, has significantly improved by using a backpropagation 

algorithm to discover intricate structures in large data sets, and deep 

convolutional neural networks have revolutionized the processing of images.  

  Deep learning has gained a lot of attention in medical image processing for 

analysis and classification. All the achievements have gained my research 

interest, to improve the CNN [8] based system for AD diagnosis. Considering 

this my study started with machine learning and deep learning in medical 

image processing. The study of the research is identified as follows: 
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 In the study, the dataset is collected and analyzed from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database taken 

image type is Pre-processed Structural Magnetic Resonance Imaging, 

for machine learning, the aim resolves the problem with overfitting 

and make the model complex free by using feature selection 

strategies which helps to categorize individual subjects. 

   For deep learning, the aim is to understand and classify the single 

convolutional network and later on with provide the less 

computationally less expensive and effective model foe diagnosis of 

Alzheimer’s disease in 4 classes, AD, health brain, EMCI and late 

mild cognitive impairment .    

1.3   Contributions 

The effectiveness of machine learning algorithms in Alzheimer's disease 

classification has been a subject of extensive debate. However, researchers 

continually seek ways to identify features that can enhance the accuracy of 

AD diagnosis through machine learning models. In this study, we present the 

following key components: 

 Feature Extraction: We focused on extracting subcortical and cortical 

features from brain images using Free Surfer, a widely-used tool in 

neuroimaging research. 
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 Feature Reduction and Selection: We introduced a combination of 

feature reduction and selection algorithms, integrating Principal 

Component Analysis (PCA) with Restricted Boltzmann Machine 

(RBM) and wrapper methods. This approach was designed to address 

challenges related to overfitting and model accuracy. 

 Evaluation of Classifier Performance: To diagnose Alzheimer's 

disease, we carried out a thorough analysis of several machine learning 

classifiers, such as Support Vector Machine, k-Nearest Neighbors, and 

Random Forest. 

 Deep Learning: In several medical image processing applications, 

deep learning has shown to be remarkably successful. To better the 

practical identification of Alzheimer's disease, we presented an 

upgraded CNN in this context. 

 Enhancement of Efficiency: We investigated the convolutional layer's 

computational efficiency, focusing on conventional convolutional 

layers that have a depth-wise convolutional structure. This method 

attempted to increase model accuracy while lowering the total number 

of parameters and related expenses. 

 Feature Extraction Model: Our proposed model excels in extracting 

valuable features from input data without the need for extensive pre-

processing, delivering strong performance. 
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 Comparison with Baseline Models: We compared our proposed 

method with established models like ResNet-50 and VGG. Notably, 

our proposed model achieved superior accuracy with fewer parameters 

and excelled in other parameter indices. 

1.4 Organization of Thesis  

1. Chapter 2 provides background information on Alzheimer's disease, 

the arrangement of datasets, diagnosis techniques, and past research.  

2. Chapter 3 provides the proposed machine learning and deep learning 

models. 

3. Chapter 4 provides results and evaluation of the proposed models. 

4. Chapter 5 provides summary and conclusion of thesis. 
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1. Background 

2.1 Alzheimer's Disease 

  Alzheimer's disease stands as the preeminent etiological factor contributing 

to dementia, characterized by a neurodegenerative pathology within the brain 

that precipitates a constellation of debilitating symptoms, foremost among 

them memory impairment and cognitive dysfunction of a magnitude 

sufficient to impede daily functioning. Notably, AD represents a pervasive 

affliction, accounting for an overwhelming 60-80%[9] of all documented 

dementia cases, thereby underscoring its prominence in the landscape of 

cognitive disorders. 

  Within the context of developed nations, Alzheimer's disease assumes an 

imposing economic burden, standing out as one of the costliest 

neurodegenerative ailments. An estimated 26.6 million people worldwide 

were suffering from Alzheimer's disease as of 2006[10], and predictions show 

a concerning trend. whereby, by the year 2050, a disconcerting 1 in 85 

individuals will succumb to its grasp. 

The troubling reality is that more than two-thirds of dementia sufferers live 

in low- and middle-income countries, which are expected to have a significant 

increase in dementia cases soon as these areas continue their rapid 

development trajectory. This upcoming increase poses many complex 
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challenges, the most significant of which is the fact that Alzheimer's disease 

patients in these nations heavily rely on unofficial networks of caregivers. As 

a result, effectively providing treatment and care becomes increasingly 

difficult as the disease's prevalence rises. From a fiscal standpoint, 

Alzheimer's disease exacts a substantial toll, amounting to approximately 

1.01[11] percent of the global Gross National Product. Worrisomely, things 

are predicted to get worse in the years to come, with an estimated 85% 

[12]increase in global societal costs predicted by 2030, assuming no changes 

to relevant background variables occur in between.  

   I must emphasize that, despite the fact that some Alzheimer's disease 

symptoms may appear to be similar to normal aging-related cognitive changes, 

it is vital to understand that dementia in general and Alzheimer's disease 

specifically do not represent normal or innate aspects of aging. As dementia 

progresses, its clinical manifestations follow a gradual trajectory. As of right 

now, Alzheimer's disease cannot be completely cured; instead, the main goals 

are to slow down the illness's progression, improve symptom presentation, 

treat behavioral issues, and optimize overall quality of life. 

    However, currently available pharmacological therapies may temporarily 

halt the unstoppable advance of dementia when the condition's indicators are 

recognized earlier on. It is worth noting that the pursuit of more efficacious 
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treatments, preventive strategies, and, ultimately, a cure constitutes a 

paramount, long-term aspiration[13]. Early diagnosis, in this context, emerges 

as a pivotal determinant, offering prospects of more favorable therapeutic 

outcomes. Despite the substantial body of research dedicated to Alzheimer's 

disease, the pressing imperative to develop a reliable diagnostic tool endures, 

reflecting the ongoing complexities and challenges inherent to the condition's 

diagnosis and treatment. 

2.2 Magnetic Resonance Imaging 

 Magnetic Resonance Imaging (MRI) stands as a pivotal clinical imaging 

modality in radiology, facilitating comprehensive assessments of 

physiological states in both health and pathology, along with the visualization 

of anatomic structures. Through precise manipulation of radio waves, 

magnetic field gradients, and strong magnetic fields, MRI generates intricate 

images of body structures. Structurally, MRI employs these elements to 

construct detailed representations of internal organs, offering invaluable 

insights into their composition and spatial relationships. The strength and 

configuration of magnetic fields, coupled with precisely orchestrated magnetic 

field gradients and radiofrequency waves, collaborate seamlessly to create 

high-fidelity portrayals of anatomical structures. 
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Most important significance, structural Magnetic Resonance Imaging 

exemplifies a non-invasive imaging modality, characterized by its ability to 

produce three-dimensional anatomical scans with exceptional clarity and 

resolution. This capability is achieved without subjecting patients to the risks 

of ionizing radiation. This attribute renders sMRI an indispensable tool for 

medical practitioners, serving as a cornerstone for the identification, diagnosis, 

and longitudinal monitoring of a diverse spectrum of medical conditions and 

diseases. Magnetic Resonance Imaging is a crucial clinical imaging modality 

in radiology, enabling comprehensive assessments of physiological states in 

health and pathology, as well as the visualization of anatomic structures. 

Precise manipulation of radio waves, magnetic field gradients, and strong 

magnetic fields allows MRI to generate intricate images of body structures. 

Structurally, MRI utilizes these components to construct detailed 

representations of internal organs, providing invaluable insights into their 

composition and spatial relationships. The strength and configuration of 

magnetic fields, in conjunction with precisely orchestrated magnetic field 

gradients and radiofrequency waves, collaborate seamlessly to create high-

fidelity portrayals of anatomical structures. 

Significantly, structural Magnetic Resonance Imaging represents a non-

invasive imaging modality known for producing three-dimensional 
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anatomical scans with exceptional clarity and resolution. This capability is 

achieved without exposing patients to the risks of ionizing radiation, rendering 

sMRI an indispensable tool for medical practitioners. It serves as a cornerstone 

for the identification, diagnosis, and longitudinal monitoring of a diverse 

spectrum of medical conditions and diseases. 

The resulting pictures display various grayscale tones that are distinguished 

by variations in tissue thickness and water content. T1-weighted imaging, a 

fundamental MRI technique, yields images that exhibit distinct patterns based 

on the density of tissues. Notably, tissues with minimal hydrogen protons, 

such as dense bone and air, are rendered in dark hues, thereby manifesting as 

comparatively black regions. Conversely, tissues abundant in hydrogen 

protons, such as fat, the brain MRI images of various stages are shown as 

follows figure 2.1: 

                    (1) axial                             (2) sagittal                            (3) coronal 

Figure 2.1 Brain MRI images from the ADNI database of three planes. 

The pixel values within the images, each representing a specific voxel, are 

assigned varying shades of gray contingent upon their respective signal 

strengths. In this quantification, a grayscale spectrum spanning 255 discrete 
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levels is employed, with pixel values ranging from 0, indicative of complete 

blackness, to 255, signifying complete whiteness. This gradation facilitates the 

detailed depiction and discrimination of diverse anatomical structures and 

tissues within the MRI images. 

2.3 Database Organization 

 This section acknowledges the pivotal role played by an organization 

dedicated to enhancing the comprehension of Alzheimer's disease and 

facilitating the global research community by curating and disseminating 

clinical datasets. Without their invaluable support and contributions, the 

undertaking of this thesis would have been rendered exceedingly challenging. 

The Alzheimer's Disease Neuroimaging Initiative is the organization to which 

this article refers. It is a long-standing and groundbreaking research project 

that is carefully planned to support the development of clinical, imaging, 

genetic, and biochemical markers intended for the early detection and long-

term observation of Alzheimer's disease. Commencing its six-year-long 

exploration in 2004, ADNI commenced with a cohort comprising 400 

individuals diagnosed with Mild Cognitive Impairment (MCI), 200 with early-

stage Alzheimer's disease, and an equivalent number of cognitively intact 

control subjects.  
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Subsequently, during the period spanning 2009 to 2011, ADNI underwent a 

pivotal expansion known as AGNI-GO, a phase that incorporated an 

additional 200 participants afflicted with early MCI, each subjected to 

meticulous biomarker assessments at the nascent stages of the disease. This 

pivotal evolution of ADNI signifies a momentous stride towards the 

development of refined diagnostic methodologies that bear the potential to not 

only defer the progression of Alzheimer's disease but also, ultimately, proffer 

avenues for its prevention. For those seeking further in-depth information 

regarding ADNI's mission, datasets, and research activities, comprehensive 

details can be accessed on the ADNI official website: https://ida.loni.usc.edu/ 

2.4 Machine Learning 

 The Alzheimer's Disease Neuroimaging Initiative is a pioneering and 

longstanding research project designed to facilitate the development of 

markers—clinical, imaging, genetic, and biochemical—for early detection 

and long-term monitoring of Alzheimer's disease. At its essence, ADNI is a 

scientific endeavor focused on instructing computers to mimic human 

cognition, autonomously refining their learning processes through exposure to 

real-world data and empirical observations. Central to the architecture of a 

machine learning algorithm is its learning system, a constituent responsible 

https://ida.loni.usc.edu/
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for comprehending and adapting to patterns within the provided data[14]. The 

follow of Machine learning will be as follows according to figure 2.2. 

Within the domain of machine learning, three overarching paradigms emerge: 

supervised learning, unsupervised learning, and reinforcement learning. 

Supervised learning concerns itself with labeled training data, wherein input 

instances are associated with corresponding target outputs.  

 

 

 

 

Figure 2. 2 Working process of Machine Learning. 

Contrastingly, unsupervised learning grapples with unlabeled data, striving to 

elucidate underlying structure or patterns without the guidance of predefined 

output labels. Reinforcement learning, resembling a dynamic agent navigating 

an environment, centers on the pursuit of predefined objectives through a 

series of actions, adapting behavior based on received rewards, all while 

lacking explicit instructions regarding proximity to goal attainment. 

Supervised and unsupervised learning encompass a variety of machine 

learning models and algorithms, each grounded in distinct a priori assumptions 

addressing the inherently ill-posed nature of the problems they tackle. The 

limitations of training data availability contribute to challenges such as 
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imprecise mapping, data insufficiency, and intrinsic noise[14]. These issues 

necessitate diverse assumptions critical for tailoring learning processes 

effectively. The concept of inductive bias plays a pivotal role, representing a 

set of priors or expectations that guide learning algorithms in generalizing 

beyond observed training instances. This bias, also known as learning bias, 

significantly influences how the model extrapolates from provided training 

data to unseen inputs, shaping the model's predictive capabilities. At the core 

of machine learning is error minimization, exemplified by approaches like 

mean squared error and least mean squares. These processes iteratively refine 

the model's parameters, or weights, aiming to reduce discordance between 

predicted values and actual observations in the training dataset. This iterative 

refinement enhances the model's ability to generalize to novel data points. 

The present study is centered upon a thorough exploration of supervised 

learning methodologies, specifically focusing on Random Forest, k-Nearest 

Neighbor, and Support Vector Machine techniques. Additionally, it 

encompasses the application of unsupervised learning methods for data 

preprocessing, including Principal Component Analysis and Restricted 

Boltzmann Machines. This comprehensive investigation seeks to elucidate the 

utility and performance of these machine learning approaches within the 

context of the research domain. 
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2.4.1      Deep Learning 

Deep learning, a subset of representation learning, employs computational 

models characterized by multiple layers of processing units that acquire and 

represent input data at varying levels of abstraction, mirroring the complex 

processes of human information analysis. These models, known as deep neural 

networks or artificial neural networks, autonomously discern optimal data 

representations directly from raw input, eliminating the need for prior feature 

selection. Utilizing a hierarchical architecture with layers of varying 

complexity, deep learning enables sequential nonlinear transformations to raw 

data, resulting in higher-level features that are less susceptible to input noise. 

Deep neural networks comprise interconnected layers that cooperatively 

recognize, classify, and characterize elements within input data. Forward 

propagation, involving computations passing through the network layers, 

incorporates visible layers for input and output. Backpropagation, 

complementing forward propagation, uses algorithms like gradient descent to 

compute prediction errors and adjust the network's weights and biases, 

facilitating model training. This iterative application enhances prediction 

precision over time. 

While this outlines the fundamental structure of deep neural networks, it's 

crucial to note the intricate landscape of deep learning, encompassing diverse 
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neural network architectures tailored to specific domains. Examples include 

Convolutional Neural Networks for computer vision tasks and image 

classification, surpassing human performance in object identification in 2015, 

and Recurrent Neural Networks (RNNs) adept at handling sequential or time-

series data in natural language processing and speech recognition domains. 

Convolutional Neural Network  

Convolutional Neural Networks stand as widely utilized deep learning 

architectures with applications spanning image recognition, mobile vision, 

object identification, and surveillance. Inspired by biological organisms' optic 

nerves, CNNs employ interconnected neurons for precise data analysis. 

However, their computational demands and data storage requirements pose 

challenges to computational performance and energy efficiency. These 

challenges, not adequately addressed by conventional processors, have led to 

the proposal of various CNN accelerators across different hardware platforms. 

A typical CNN comprises two main components: feature extraction and 

classification. The feature extractor processes input data, extracting invariant 

features like edges and corners, mapping them to a low-dimensional vector 

output feature map. These aggregated characteristics then feed into the 

classifier, a fully connected neural network determining the input's class or 

category through computational and sub-sampling layers. The operational 

flow of a CNN for processing an input image and performing object 
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classification based on feature values is illustrated in the accompanying figure 

2.3 [15]. 

CNN layers are categorized into three fundamental types: 

 Convolutional Layer 

 Pooling Layer 

 Fully Connected Layer 

Convolutional layer: The initial layer within a convolutional network is the 

convolutional layer, serving as the locus for most computational operations.  

 

Figure 2.3 Convolutional neural Network structure[15]. 

This layer necessitates input data, a filter (commonly referred to as a kernel), 

and a feature map, among other components. Consider an input resembling a 

color image, constituting a 3D matrix of pixels, embodying height, width, and 

depth dimensions, corresponding to the RGB color space. 



18 

 

The feature detector, a weighted 2D array, serves as a window onto an image 

segment with a typical 3x3 matrix configuration determining the receptive 

field size. Applied to the image through dot product computations between the 

input pixels and the filter, the filter shifts iteratively with a predefined stride 

until traversing the entire image. This sequence produces a feature map, 

activation map, or convolved features, encapsulating extracted salient 

information. 

Pooling layer: Pooling layers, alternatively termed down sampling layers, 

serve as dimensionality reduction mechanisms, curtailing the number of 

elements within the input. Analogous to the convolutional layer, pooling 

entails the traversal of a filter across the input; however, this filter operates 

without any weights. Instead, the kernel employs an aggregation function to 

populate the output array using values from the receptive field. Pooling falls 

into two primary categories. 

Max Pooling: This method selects the pixel with the highest value within the 

receptive field as the filter progresses across the input. Max pooling is the 

preferred strategy compared to average pooling. 

Average Pooling: It computes the mean value within the receptive field as the 

filter traverses the input, transmitting this value to the output array. 
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   Although pooling layers entail some information loss, they confer several 

advantages to CNNs, including complexity reduction, computational 

efficiency enhancement, and the mitigation of overfitting risks. 

Fully Connected layer: The fully connected layer, constituting the final 

segment of a CNN architecture, differs from earlier layers by establishing 

direct connections between every node in the output layer and every pixel 

value in the input image. In contrast to prior layers, which connected nodes to 

specific input areas, fully connected layers create direct connections between 

every node. Crucial for classification tasks utilizing features from earlier 

layers, this layer employs Rectified Linear Unit (ReLU) functions in 

convolutional and pooling layers for input categorization, while SoftMax 

activation functions are common in fully connected layers. This yields 

probability scores ranging from 0 to 1 for each class. 

2.5   Related Work 

  Many techniques have surfaced in the last few years to improve the 

classification performance in the field of neuroimaging, considering the 

benefits provided by ML and DL models. This paper investigates various 

machine learning classification frameworks employed in neuroimaging, 

alongside approaches based on Convolutional Neural Networks. 
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2.5.1 Classification of Alzehimer’s Disease using ML 

Recently, binary and multi-class classification techniques have been used to 

identify Alzheimer's disease early using a range of machine learning 

algorithms. For instance, A fully automated classification system based on 

cortical thickness characteristics was created by Kim et al [16]. and Long et 

al. [17] investigated regional morphological changes in the brain and 

discovered that deformations in the amygdala and hippocampus were 

suggestive of mild cognitive impairment. Additionally, their research showed 

how crucial diffusive structural changes in the gray matter of the whole brain 

are in determining the presence of mild to moderate Alzheimer's disease. A 

linear support vector machine was used to categorize the individuals SVM. 

In contrast, Guo et al. [18] proposed a data-saving method for feature 

extraction that used a multi-kernel support vector machine to classify brain 

regions and functional magnetic resonance imaging-derived subgraph 

features. This approach effectively preserved both global topological 

information and sensitivity to regional brain changes. In contrast, Guo et al. 

[18] used using independent component analysis to mine the gray matter (GM) 

for features, white matter (WM) and CSF. Following that, AD was classified 

using an SVM classification tool. Tong et al. [19] also developed a multiple-

instance learning technique based on features produced by graph-mapping 
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isolated MRI voxel patches for the classification of dementia. To distinguish 

AD patients from normal control volunteers, an SVM classifier was employed. 

Subsequently, Zhang et al [20] devised a multimodal classification strategy 

that leveraged biomarkers, such as Cerebrospinal fluid (CSF) and positron 

emission tomography (PET) are used to differentiate between AD (or MCI) 

and normal control. sMRI, positron emission tomography, and cerebrospinal 

fluid, to distinguish between AD (or MCI) and normal control participants via 

a multiple-kernel SVM. Their proposed model demonstrated high accuracy for 

AD classification and promising accuracy for MCI classification in binary 

classification scenarios. Using principal component analysis for feature 

extraction and support vector machines for classification, In a different study, 

Salvatore et al. [7]employed MR images as a biomarker for early Alzheimer's 

disease classification. Their study effectively identified the entorhinal cortex, 

basal ganglia, gyrus rectus, precuneus, cerebellum, and hippocampal regions 

as crucial areas involved in the pathophysiological mechanisms of Alzheimer's 

disease using a nested 20-fold cross-validation technique. 

Moreover, Baron et al. [21] introduced a voxel-based feature extraction 

method for diagnostics that makes use of statistical voxel features. 

Furthermore, Gupta et al. [22] classified atrophic states, such as AD, normal 

control, and asymptomatic Alzheimer's disease, by incorporating combined 
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voxel-based morphometry (VBM) features, cortical and subcortical 

volumetric features (CSC), and hippocampal volumetric features using 

machine learning algorithms like SVM, K-nearest neighbor, and Random 

Forest. 

2.5.2   CNN appraches for Alzheimer's Disease classification 

Understand of pervious study, with supporting paper. 461 MRI scans were 

taken from the ADNI dataset by Jyoti Islam et al.[23]who then cropped the 

images to improve them. Using patches from the horizontal, frontal, and 

median planes, the author created a patch-wise feature extraction method that 

produced a 93.18 percent accuracy when put into a 2D ConvNet deep learning 

framework ensemble.  

818 MRI images from the ADNI collection were subjected to both a machine 

learning technique and a deep learning technique by Weiming Lin et al. [24]. 

The pre-processing workflow applied to these images included age correction, 

registration, and skull stripping. In addition, 151 patches were extracted from 

each MRI for additional improvement. The data obtained by passing Free 

Surfer on the original scans were coupled with additional features acquired by 

feeding 2.5 dimensional patches to ConvNet and submitting it to extreme 

machine learning. Despite the fact that this method relied on a manual feature 

extraction process, the simulation results were accurate to 79.9%. 
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Pre-processed MRI scans (using Free surfer) are converted to 2D slices in 

the Rachna Jain et al [25]. study. The 32 most knowledgeable slices are then 

selected and cropped to create 3 Channel slices, which are then fed into the 

VGG-16 model and combined with dense layers to produce a binary and three-

class Alzheimer's categorization. After 4800 slices were taken from the 150 

participants in the experiment, the three-class accuracy AD/MCI/NC was 

95.73 percent. 

Their three-dimensional models (3D-ResNet and 3D-VGG) are widely used 

in studies to categorize 3D medical pictures. Additionally, the application of 

3D CNN was concentrated in the classification of Alzheimer's Disease 

Neuroimaging Initiative data by Ahsan Hosseini-Asl et al. [26] The 

biomarkers for several AD classes were found and features extracted from 

MRIs using a 3D convolutional neural network. 

Suggested the diagnostic model AD, which combines major characteristics 

and spatial data taken from MRIs. It is based on an attention-driven 

mechanism with a densely linked 3D CNN. The depthwise separable 

convolution was proposed by J Liu et al. [27] as an alternative to the standard 

convolution. Their concept was trained using the transfer learning models of 

GoogLeNet and AlexNet, which drastically lowered the computing cost and 

parameters. 
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On the other hand, Liu.J et al. [28] built a CNN-based architecture utilizing 

the OASIS dataset employing the ADNI data, they obtained 78.02% accuracy 

for multiclass classification, and 84.65% accuracy for MCI versus CN, which 

is 72.96% accuracy for AD vs MCI, with 75.2% efficiency for MCI vs CN 

classifications. Later, they refined their work to use a deep separable 

convolution model to lower the number of parameters, and they reached 

77.79% accuracy by reducing the model's parameters by 87.94% in the same 

study. Furthermore, to extract characteristics from gray matter MRI images, 

Xu et al.[29] proposed a modified model of  Tresnet architecture in their 

article. They were able to categorize AD vs. CN with an accuracy of 86.9% 

and multiple classes with an accuracy of 63.2%. 
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2.  Proposed Method 

3.1 Overview 

The results of the experiments described in Chapter 1 are presented in this 

chapter. In the context of this thesis, I have utilized deep learning and machine 

learning techniques to develop a successful classification strategy that 

separates Alzheimer's from other diagnostic categories. The chapter is 

structured into two distinct segments. The initial segment is dedicated to the 

exposition of the proposed machine learning-based model, while the 

subsequent portion delves into the discussion of the deep learning-based 

model. 

3.2 ML approach for Alzheimer’s disease Classification 

The ADNI dataset comprises nearly 6,000 individuals, spanning an age range 

of 18 to 96 years. From this extensive pool, a selection process was undertaken 

to preprocess images pertaining to 278 patients in accordance with the ADNI 

protocol, and these images were employed in the present study. Detailed 

demographic information regarding the subjects utilized in this investigation 

is provided in Table 1. 

    In order to ensure an impartial and rigorous analysis, the dataset was 

partitioned using a 75/25 ratio. Specifically, 75% of the dataset was designated 

for training purposes, while the remaining 25% was reserved for testing. 
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   Furthermore, this dataset offers accompanying metadata, which 

encompasses demographic details such as gender, initial subject weight, age, 

and diagnostic group for each image. The data employed in the formulation of 

this research paper was obtained from the ADNI consortium. 

Table 1. Demographic representation of all subjects. 

Group 
Noof 

Subjects 
Age Range 

AD 58 76.65 ± 8.6 

LMCI 73 72.80 ± 6.9 

EMCI 75 74.83 ± 6.1 

HC 72 79.83 ± 5.7 

AD: Alzheimer’s disease; LMCI: Late Mild Cognitive Impairment; EMCI:  

Early Mild Cognitive Impairment; CN: Normal Control. 

3.2.1      Selected Features 

In the context of this thesis, Free Surfer Software was employed to extract a 

pair of volumetric features. 

 Cortical Features 

 Subcortical Features 
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3.2.2     Volumetric volumes 

The phrase "volumetric feature" pertains to the quantification of volume 

within designated cerebral regions by summing the voxels encompassed by 

the delineated region of interest (ROI). In the scope of this research, 930 

features were extracted from the cortex and subcortical volumes of each 

subject's brain utilizing the Free Surfer toolbox. 

3.2.3   Cortical and Subcortical dementia 

The cerebral cortex, colloquially known as the "cortex," is a prominent brain 

region crucial for cognitive processes such as language and memory. Cortical 

dementia conditions, including Alzheimer's disease, frontotemporal dementia, 

Binswanger's disease, and Creutzfeldt-Jakob disease, manifest as gray matter 

involvement, leading to symptoms like aphasia, memory loss, and 

comprehension difficulties. In contrast, subcortical dementias, affecting brain 

areas below the cortex, primarily impact white matter and include conditions 

like AIDS dementia complex, Parkinson's dementia, and Huntington's disease 

These diseases exhibit cognitive function slowing and personality changes, 

with intact language and memory functions in the early stages. While most 

dementia types involve widespread cerebral cortex degeneration, some, 

termed "subcortical dementia," specifically damage areas beneath the cortex. 
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3.2.4   Extraction of Features 

In all, 930 features from subcortical and cortical segmentation were used in 

this investigation. Free surfer software has been used to automate workflow 

which performs the stage of pre-processing step to get the designed result of 

brain parcellation images of the data of each subject’s space. T1-weighted 

images are taken from the extracting the features in the method where cortical 

and subcortical preprocessing images are used in this thesis. 

3.2.5    Selection of Features 

The extracted data have been normalized from the preprocessing – zero mean 

and variance using scalar 𝑓(𝑥) . Normalizing the data help clear out the 

abnormality in the data, by doing so the analysis can be complicated. The 

normalized matrix of element 𝑥(𝑖, 𝑗) is given by: 

                                 𝑥𝑛𝑜𝑟𝑚 =
𝑥(ⅈ−𝑗)−𝑚ⅇ𝑎𝑛(𝑥𝑗)

𝑠𝑡𝑑(𝑥𝑗)
                    (1)                                                        

3.2.5.1   Principal Component Analysis 

    One popular method for reducing the dimensional sample from higher to 

lower sample/features is Principal Component Analysis.  The dimensional 

feature can be reduced from 2D to 1D plane using this method. Therefore, we 

have utilized this technique in this case to minimize the feature of both 
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subcortical and cortical features extracted from the free surfer toolbox. Using 

a starting feature and a linear combination of dataset features in 𝑑-dimension 

space, PCA builds a 𝑘-dimensional subspace using 𝑘 less than 𝑑.  𝑃𝐶 obtains 

Variables 𝑘 , all of which are addressed to the maximum, except for the 

variation, which is already accounted for in all subsequent components.    

Below is the formula that can be used for computing 𝑃𝐶𝑠(2): 

                                     𝑃𝑐1 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯                                       (2)                                         

PCA can be used extensively for feature selection and just for dimension 

reduction. 

3.2.5.2   Restricted Boltzmann Machine 

Restricted Boltzmann Machines are a class of unsupervised learning 

algorithms within machine learning, excelling in modeling intricate data 

patterns, particularly in complex modalities like images, speech, and textual 

information. Architecturally, RBMs consist of a visible layer and a hidden 

layer with undirected interconnections allowing bi-directional information 

flow. The "restricted" nature of connections within the same layer streamlines 

both learning and inference procedures.  

Fundamentally, RBMs iteratively adjust connection weights to acquire a 

probabilistic representation of input data, minimizing the disparity between 

input and learned distributions. This training process enables RBMs to 
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perform tasks such as dimensionality reduction, feature extraction, 

collaborative filtering, and data generation. Recognized for capturing intricate 

data patterns, RBMs find versatile applications in recommendation systems, 

image recognition, and natural language processing. Additionally, RBMs are 

foundational in deep learning, contributing to the development of advanced 

architectures like deep belief networks and deep neural networks. 

3.2.5.3     Forward and Backward Feature selection 

Forward Feature Selection and Backward Feature Selection represent 

fundamental techniques applied within the realm of feature selection, a pivotal 

process in the fields of machine learning and data analysis. These 

methodologies assume a critical role in augmenting the efficacy and 

proficiency of diverse modeling and classification endeavors. 

a. Forward Feature Selection: 

   Forward Feature Selection manifests as a systematic procedure, 

commencing with an empty feature set and iteratively augmenting it with 

additional features. At each step, it assesses the model's performance 

following the inclusion of a feature and selects the most pertinent feature based 

on specific criteria, which may encompass classification accuracy, 

information gain, or error reduction. This process persists until a predefined 
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termination criterion is satisfied, which could involve reaching a designated 

feature count or attaining a desired level of model performance. 

   Within academic discourse, Forward Feature Selection occupies a prominent 

position as a method of paramount significance for the refinement of feature 

subsets in machine learning models. Its application is often centered on the 

identification of the most informative variables that contribute to a model's 

predictive capabilities, all while mitigating concerns related to overfitting and 

computational complexity. 

b. Backward Feature Selection: 

   In contrast, Backward Feature Selection initiates with a complete feature set 

and progressively prunes features based on specific criteria. It adheres to a 

stepwise methodology, systematically eliminating the least informative 

features in each iteration. Analogous to Forward Feature Selection, the process 

concludes upon meeting a termination criterion. 

   Within academic deliberations, Backward Feature Selection enjoys 

widespread recognition for its role in simplifying intricate models by 

preserving exclusively the most relevant features. This method is lauded for 

its ability to enhance model interpretability, reduce susceptibility to 

overfitting, and augment computational efficiency. 
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   In the domain of academic research and scholarly publications, both 

Forward and Backward Feature Selection techniques find comprehensive 

exploration and are juxtaposed within diverse contexts of machine learning 

and data analysis tasks. Researchers frequently expound upon these 

methodologies, their application domains, and their implications for model 

performance, concurrently engaging in discourse concerning the relative 

advantages and drawbacks of each approach across varying scenarios. 

3.2.6   Classification 

To assess the classification accuracy predicated on subcortical and cortical 

attributes, three distinct and widely recognized classifier algorithms were 

employed. 

3.2.6.1   Random Forest 

   Random Forest, a prominent ensemble machine learning technique utilized 

in classification and regression tasks, enhances predictive accuracy and 

mitigates overfitting by amalgamating predictions from multiple decision 

trees. Its strength lies in introducing randomness through bootstrapping and 

feature sampling. Bootstrapping involves random selection of training data 

subsets, fostering diversity in individual decision trees and reducing the risk 

of overfitting. Feature randomness is introduced by considering random 

subsets of features during tree construction, further improving model 
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performance. Renowned for its robustness and effectiveness with complex 

datasets, Random Forest provides feature importance scores, aiding 

interpretability. Its versatility spans domains like finance, healthcare, image 

analysis, and natural language processing. Adaptable to various dataset sizes 

and scalable on multicore processors or distributed clusters, Random Forest is 

a reliable and accurate modeling technique, making it a go-to choose for 

predictive tasks. 

3.2.6.2   Support Vector Machine 

The Support Vector Machine is a versatile machine learning algorithm, 

highly applicable to classification and regression tasks. It revolves around the 

optimization of a hyperplane to segregate data points or make numerical 

predictions while maximizing the margin, signifying the spatial separation 

between the data points and the hyperplane. Key facts of SVM by figure 3.1. 

 

 

 

 

 

                                  

                                Figure 3. 1 Support Vector Machine. 
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    Epsilon-Support Vector Regression: Predicting numerical values with 

'epsilon' controlling prediction error. SVM excels with high-dimensional data, 

especially in modest to moderate dataset sizes, applied broadly in fields such 

as image classification, text categorization, and bioinformatics. 

3.2.6.3   K-Nearest Neighbors 

K-Nearest Neighbors stands as a foundational and intuitively 

comprehensible machine learning algorithm, adeptly employed in the realms 

of both classification and regression tasks. Its core operational tenet revolves 

around the concept of proximity, whereby it ascertains the classification of 

data points or prognosticates numerical values. This determination is 

predicated on the consensus of the majority class for classification tasks or the 

mean values for regression tasks within the local neighborhood of the data 

points in the feature space. KNN's appeal lies in its inherent simplicity, 

rendering it an esteemed choice for diverse applications. It particularly shines 

when the data exhibits inherent spatial locality or clustering characteristics. 

3.2.7    Proposed Method 

The process is as following: 

1. Obtain an already preprocessed dataset that includes subjects with 

Alzheimer's disease, Early Mild Cognitive Impairment, Late Mild 
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Cognitive Impairment, and a control group of subjects who are 

Normal. 

2.  Utilize the Free Surfer toolbox for the extraction of subcortical and 

cortical features. 

3. Feature normalization 

4. Dimension reduction 

5. Feature selection  

6. Classification of Alzheimer's disease into four distinct groups 

employing machine learning techniques. 

3.3 Architecture 

3.3.1   Implementation Details of Machine learning 

In the realm of Alzheimer's disease, the integration of computational analysis 

tools offers promising prospects for early-stage diagnosis. Machine learning 

plays a pivotal role in healthcare, leveraging computational and statistical 

techniques to efficiently process vast datasets and identify patterns for 

diagnostic purposes. Four stages, ranging from MCI to severe AD, are used to 

identify the disease based on observed morphological changes in both gray 

and white matter, indicating the disease's stage. This study focuses on using 

structural MRI and emphasizes cortical and subcortical thickness as 

biomarkers for AD classification. Feature extraction, utilizing both subcortical 
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and cortical features, incorporates Principal Component Analysis for 

dimensionality reduction and wrapping methods for effective feature 

selection. In the context of multi-class classification, traditional machine 

learning techniques like Support Vector Machine, k-Nearest Neighbor, and 

Random Forest are evaluated for their efficacy in enhancing accuracy and 

simplifying model application to medical images. SVM is adept at handling 

regression, classification, and overfitting issues, while k-NN utilizes labeled 

data within a straightforward algorithmic framework. This experimental 

project integrates PCA and RBM to facilitate feature selection in Alzheimer's 

disease classification. In the integration of PCA and RBM, seeing in the figure 

3.2, PCA serves as a conventional technique for reducing the dimensionality 

of samples, transitioning from higher to lower sample/features dimensions. 

Utilizing Principal Component Analysis to reduce dimensional features from 

2D to 1D, this method minimizes dimensions for both subcortical and cortical 

features extracted from the Free Surfer toolbox[30]. PCA maps features from 

the original dataset in d-dimensional space to a K-dimensional subspace, 

maximizing variance with each principal component. PCA serves for feature 

selection and dimension reduction, with its output used as input for Restricted 

Boltzmann Machine to facilitate feature classification without intricate manual 

engineering. Forward and Backward feature selection methods are 

implemented as wrapper-type algorithms, progressively adding, or eliminating 
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features based on performance. In the classification phase, after feature 

extraction, normalization, and specific feature selection, SVM, K-NN, and RF 

models discern the presence or absence of Alzheimer's disease. The 

experiment's workflow encompasses these machine-learning models, 

implemented using the Scikit-Learn package in Python.
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Figure 3. 2 Machine Learning based Proposed Method Architecture. 
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3.3.2 Implementation Details of Deep learning 

    The present investigation involved the construction of a two-dimensional 

(2D) model utilizing three-dimensional (3D) structural magnetic resonance 

imaging scans acquired from a sample of 600 participants. This sample 

comprised 150 individuals diagnosed with Alzheimer's disease, 150 with 

Early Mild Cognitive Impairment, 150 with Late Mild Cognitive Impairment, 

and 150 cognitively normal individuals. The initial magnetic resonance (MR) 

pictures were subjected to resampling to attain a resolution of 96 × 96 × 1. The 

brain fields were demarcated based on certain anatomical orientations (axial, 

coronal, and sagittal) to facilitate training and testing procedures. 

Consequently, a dataset consisting of 72,000 feature fields was obtained. Out 

of the total, 18,000 instances were associated with the AD group, 18,000 with 

EMCI, 18,000 with LMCI, and 18,000 with the CN group. 

During the experimental phase, random partitioning was conducted for each 

group, resulting in three subsets: Training (70%), validation (10%), and testing 

(20%). The categorization methods outlined in the proposal was executed 

using Python 3.9.13, utilizing the Keras library built on the TensorFlow 

framework. The network parameters were initially randomized, and an 

optimizer called Adaptive Moment Estimation (Adam) was utilized. In order 
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to address the issue of overfitting, a dropout layer was used. The method under 

consideration was utilized to perform a multiclass classification task. More 

specifically, its objective was to differentiate between individuals diagnosed 

with Alzheimer's disease, those who are cognitively normal, as well as 

individuals in the early MRI and late MCI stages of mild cognitive 

impairment. 

3.3.2.1   Deep learning Architectures 

The VGG-Net model: 

    This network is a well-known Convolutional Neural Network model that 

was created at Oxford University in the beginning of 2014 by Simonyan and 

Zisserman. The 1,000 distinct class images in the ImageNet ILSVRC dataset 

were used to pretrain the Visual Geometry Group, or VGG. The training 

dataset consisted of 1.3 million images, with an additional 50,000 images for 

validation purposes. A specific architectural version of VGG, VGG-19, with 

19 deeply interconnected layers, has consistently demonstrated superior 

performance when compared to other state-of-the-art models. 
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Figure 3. 3 Basic architecture of VGG-Net [31]. 

Effective feature extraction is made possible by the model architecture of 

VGG-19, which consists of a few convolutional layers that are strongly and 

densely linked. Additionally, it uses max pooling instead of down sampling 

and prior to last classification via the SoftMax function as activation function, 

as opposed to average pooling. In this work, the VGG-19 baseline model is 

applied to the ADNI dataset to classify Alzheimer's disease into different 

stages. The basic architecture of the VGG model is shown visually in the 

accompanying figure 3.3. 

ResNet Model: 

During ILSVRC-2015, the Residual Network emerged as the top performer 

in classification, localization, and detection tasks. Researchers began to 

explore whether enhancing learning involved merely adding more layers atop 

an existing network. However, they encountered a challenge known as the 



42 

 

degradation problem, where the performance of earlier models, such as VGG, 

did not improve beyond a certain layer depth but rather worsened. To address 

this issue, they introduced the concept of the residual function, which serves 

as the foundational component of a [32]Residual Network (ResNet). 

ResNet was directly used in this study based on the 50-layer non-bottleneck 

architecture. This architecture included links with progressively larger 

dimensions, such as identity links with padding and projection links utilizing 

1x1 filter size convolutions. Using the ADNI dataset, the base model for 

ResNet is used and residual network skip connection is shown in figure 3.4. 

 

 

 

 

 

Figure 3. 4 Basic residual network represents the skip connection. 

3.3.3 Proposed Model 

Convolutional layers are the cornerstones of any deep Convolutional Neural 

Network, utilizing sophisticated activation functions to produce the best 

results. The proposed methodology employs a deep CNN to autonomously 
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extract insights from complete brain MRI data and identify Alzheimer's 

disease.  

The suggested workflow is illustrated graphically in figure 3.6, which 

consists of three main steps: CNN processing, 3D volume partitioning, and 

brain volume segmentation. Table 2, displays the ADNI subjects utilized in 

the deep learning technique. Our method presents a simple yet incredibly 

effective convolutional technique, which concurrently employs standard 

convolutional layers, depth-wise convolution, and a subsequent skip 

convolutional layer. This strategy enables the model to learn multifaceted 

features from brain MRI scans, taking inspiration from the architectural 

pattern of ResNet. 

Table 2. Demographic Representation of ADNI Subjects. 

Group 
No of 

Subjects 
Age Range 

Gender 

(M/F) 

AD 150 73.62 ± 7.6 77/73 

LMCI 150 76.34 ± 6.9 91/59 

EMCI 150 78.09 ± 8.1 70/80 

HC 150 79.56 ± 3.7 84/66 

 

Standard Convolution: 
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    Figure 3.5 shows the typical folding procedure. Here, a standard 

convolutional layer receives an input feature map I with dimensions 𝐷𝑓 × 𝐷𝑓 

× 𝑀 [40] and outputs an O feature map with dimensions 𝐷𝑔 × 𝐷𝑔  × 𝑁. Here, 

𝐷𝑓 denotes the 𝑀 indicates the number of the input feature map channels, 𝑁 

indicates the number of output value map channels, and the width and height 

of the input map channels Visual representation was shown in figure 3.5. To 

extract the features, a convolution kernel with 𝐷𝑘  × 𝐷𝑘 dimensions is 

employed. The convolution kernel's width and height are indicated by the 

symbol 𝐷𝑘. When going using a feature map 𝐼 to highlight feature map 𝑂, the 

standard convolution is calculated using the following formula, which is as 

follows: 

                              𝐺𝑘,ℎ,𝑛 = 𝛴ⅈ,𝑗,𝑚𝑘ⅈ,𝑗,𝑚,𝑛.𝐼𝐾+ⅈ−1,𝑙+𝑗−1,𝑚,                       (3)                                     

   In this case, the convolution kernels are represented by 𝑘, the initial feature 

maps by 𝐼 , and the outcome feature maps by 𝐺 . 𝑖  , 𝑗  determine where the 

elements are located within the convolutional kernel. In addition, the elements' 

positions in the input and output feature maps are indicated by the variables 𝑘 

The parameters for standard convolution are parameter and computed in the 

following manner: 

                                       𝐹 = 𝑀 × 𝑁 × 𝐷𝑘                  
2                                     (4) 

                                     𝐺 = 𝑀 × 𝑁 × 𝐷𝑘  
2 × 𝐷𝑘                  

2                               (5)   
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    The following notations are used in this context: 𝐷𝑓 stands for the width and 

height squared of the input feature map; 𝐷𝑘 for the width and height of the 

convolution kernel; 𝑀 for the number of channels in the input feature map; 𝑁 

for the number of channels in the output feature map; and 𝐹  for the total 

number of model parameters. 

 

 

 

 

 

Figure 3. 5 Standard Convolutional Architecture[33]. 

 

 

Proposed model Implementation Details: 

Convolutional layers are fundamental components of complex deep 

Convolutional Neural Networks, utilizing advanced activation functions to 

enhance performance. The proposed approach utilizes a convolutional neural 

network will automatically extract features from MRI scans in context of 

Alzheimer's disease diagnosis. The graphic presented illustrates the suggested 

pipeline, which consists of 3 main stages: brain measure like volume scaling, 

3D volume slicing, and Convolutional neural network processing. Our 
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proposed convolutional method is influenced by the architecture patterns of 

ResNet and ConvMixer. It follows a simple yet better approach as shown in 

Figure 3.6 and layer sizing in table 3. The proposed methodology involves the 

concurrent implementation of a conventional convolutional layer, followed by 

a skip convolutional layer, which allows the model to capture multi-level 

characteristics from brain MRI scans. 

These MRI scans were initially resampled to a resolution of 96 × 96 × 1. 

Subsequently, 40 brain regions were generated for each subject, including 

axial, coronal, and sagittal views, resulting in a total of 72,000 feature fields. 

These features were distributed as 18,000 for AD, 18,000 for EMCI, 18,000 

for LMCI, and 18,000 for NC groups.  

 

 

Figure 3. 6 The structure of the suggested model. 
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3. Results 

3.1 Performance Metrics 

The evaluation of multi-class classification is conducted through the 

utilization of the confusion matrix, as presented in Table 3. Model 

performance is assessed using SVM, KNN, and RF classifiers, with each 

classifier responsible for predicting the correct number of outputs in the form 

of a matrix.  

Table 3. Proposed Architecture layers. 

Con. Layer: Convolutional Layer; Residual Con. Layer: Residual 

Convolutional Layer. 

Layer Type Size Input Output 

Con. Layer 1-1 7 × 7 × 256 96 × 96 × 1 96 × 96 × 256 

Con. Layer 2-1 7 × 7 × 256 96 × 96 × 256 96 × 96 × 256 

Con. Layer 2-2 7 × 7 × 256 96 × 96 × 256 96 × 96 × 256 

Con. Layer 2-3 7 × 7 × 256 96 × 96 × 256 96 × 96 × 256 

ADD 1  96 × 96 × 256 96 × 96 × 256 

Max pooling 1 1 × 1 × 256 96 × 96 × 256 96 × 96 × 256 

Batch Normalization 0.4   

Con. Layer 3-1 7 × 7 × 256 96 × 96 × 256 48 × 48 × 256 

Con. Layer 3-2 7 × 7 × 256 48 × 48 × 256 48 × 48 × 256 

Con. Layer 3-3 7 × 7 × 256 48 × 48 × 256 48 × 48 × 256 

ADD 2  48 × 48 × 256 48 × 48 × 256 

Max pooling 2 1 × 1 × 256 48 × 48 × 256 48 × 48 × 256 

Batch Normalization 0.4   

Con. Layer 4-1 7 × 7 × 256 48 × 48 × 256 24 × 24 × 256 

Con. Layer 4-2 7 × 7 × 256 24 × 24 × 256 24 × 24 × 256 

Con. Layer 4-3 7 × 7 × 256 24 × 24 × 256 24 × 24 × 256 

ADD 3  24 × 24 × 256 24 × 24 × 256 

Max pooling 3 1 × 1 × 256 24 × 24 × 256 24 × 24 × 256 

Batch Normalization 0.4   

Residual Con. Layer 7 × 7 × 256 96 × 96 × 1 24 × 24 × 256 

ADD 4  24 × 24 × 256 24 × 24 × 256 

FC 3 256 3 
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 This matrix can be further dissected into distinct components, namely, truly 

positive (TP), true negative (TN), false positive (FP), and false negative (FN). 

Below offers a mathematical representation elucidating the comprehension of 

these calculations. True negative and true positive correspond to the accurate 

identification of control cases, while false positive and false negative denote 

instances of incorrect identification. Nonetheless, accuracy may not provide a 

reliable measure due to the variable class distribution. Therefore, additional 

metrics, namely precision, recall, and F1-score, are incorporated. Sensitivity, 

denoted as the capacity to predict group accuracy, and recall, which assesses 

accuracy in the absence of the group, are included. The F1-score, in turn, 

represents the harmonic mean of both precision and recall. 

In the context of multi-class classifiers, evaluation and accuracy represent 

pivotal parameters for computing the confusion matrix with table 4. 

                             𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (6) 

                                       𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                    (7)                                   

                                  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (8)                               

                                               𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (9)                                
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Table 4. Multiclass confusion matrix Prediction classification. 

Prediction classification 

Actual 

classification 

classes AD LMCI EMCI HC 

AD TP 𝐹𝐴𝐿 𝐹𝐴𝐸 𝐹𝐴𝐻 

LMCI 𝐹𝐿𝐴 TP 𝐹𝐿𝐸 𝐹𝐿𝐻 

EMCI 𝐹𝐸𝐴 𝐹𝐸𝐿 TP 𝐹𝐸𝐻 

HC 𝐹𝐻𝐴 𝐹𝐻𝐿 𝐹𝐻𝐸 TP 

 

3.2 Results of Machine learning 

   The outcomes were derived through the implementation of classification 

methodologies, specifically SVM, K-NN, and RF. These methods relied on 

the utilization of both cortical and sub-cortical features to yield the results. 

The classification results obtained using PCA, PCA & RBM, Forward feature 

selection, and Backward feature selection are presented in tables 5. Upon 

examining the accuracy, it becomes evident that, in comparison to forward 

feature selection, backward feature selection demonstrates superior accuracy. 

Conducted within a Python environment, the feature selection process in both 

subcortical and cortical regions, coupled with the experimental classification, 

demonstrated commendable performance. The proposed model, integrating 

PCA and RBM with the Random Forest classifier, outperformed, achieving 

an impressive 88.65% accuracy in multi-class classification. In RF 

classification, all models, including PCA, PCA and RBM, and forward and 

backward feature selection, demonstrated strong performance with accuracy 
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rates of 81.49%, 88.65%, 84.45%, and 85.16%. Notably, while wrapping 

methods promising results, the PCA with RBM approach achieved slightly 

superior accuracy across all three classifiers. Classifiers.
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Table 5 . Results of Machine Learning model. 

Classifie

r’s 

PCA PCA and RBM 
Forward Feature 

selection 

Backward Feature 

selection 

ACC

% 

PRE

% 

RECA

% 

ACC

% 

PRE

% 

RECA

% 

ACC

% 

PRE

% 

RECA

% 

ACC

% 

PRE

% 

RECA

% 

SVM 79.48 76.66 84.69 85.69 83.39 90.78 80.51 74.68 83.3 83.3 82.31 87.9 

K-NN 80.73 78.25 83.67 83.67 80.45 89.32 75.9 73.91 79.89 79.89 76.04 84.78 

RF 81.49 77.62 89.87 88.65 85.82 93.23 84.45 81.87 88.56 88.56 83.33 89.36 

   ACC: Accuracy; PRE: Precision; RECA: Recall 

Table 6. Comparison of methods performance for multi-class classification. 

 

 

 

 ACC: Accuracy; SEN: sensitivity; SPE: Specificity 

 

Method ACC% SEN% SPE% Precision% F1-score% 

ResNet 50 95.17 95.15 96.49 94.77 94.75 

VGG 13 91.27 92.31 95.63 91.39 91.32 

Proposed Model 95.67 94.16 97.34 95.43 95.51 
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4.3 Deep Learning Results 

   ResNet and VGG Net, both standard models utilized in the study, were 

compared. Applying standard classification performance metrics, including 

sensitivity, specificity, precision, F1 score, and accuracy, to ResNet revealed 

an accuracy of approximately 95.34% (see Table 6). The improved feature 

propagation and the addition of skip connections are responsible for this 

higher accuracy. Nevertheless, the suggested model outperformed VGG 

Network and ResNet, displaying the greatest accuracy of 95.67%. When 

accounting for other performance metrics, our proposed model outperformed 

the baseline models. For instance, it exceeded the baseline models with 

95.43% precision and 97.34% specificity. ResNet produced a slightly higher 

sensitivity score of 95.31%, overall, our model performed much better than. 

The ADNI dataset and the accompanying confusion matrix as shown in 

figure3.7 displaying the accuracy for the training and validation datasets 

show how effective our CNN model is in multi-class classification. 
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Figure 3. 7 Confusion matrix of the deep learning method. 
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4. Discussion 

   Numerous investigations have been conducted to address Alzheimer's 

disease symptoms and improve early detection. A few classification methods 

based on T1-weighted images have been presented to differentiate patients 

into AD, MCI, and HC groups. The most notable use of structural and 

functional measurements has been in the classification of patients with 

Alzheimer's disease. 

   For instance, Liu et al. [41] used ROI methods to extract all the features from 

the brain, and the multiple kernels boosting (MKBoost) algorithm was used to 

classify the results. Using a one sMRI modality for dataset, Lie achieved 

94.65% accuracy for AD vs. CN, 89.63% accuracy for AD vs. MCI, and 

85.79% accuracy for MCI vs. CN classification. However, Sun et al. [42] 

proposed spatial-anatomical using a SVM method for extraction. To further 

induce structural sparsity, they added a group lasso penalty. Their method 

produced classification results of 95.1% accuracy for AD versus CN, 70.8% 

accuracy for MCI versus CN: 65.7% accuracy for AD versus MCI. Moreover, 

S. Kadiioury et al [34] presented a semantically labeled PET image feature 

group classification method, achieving an accuracy of 91.2% for AD vs HC 

classification. Khajehnejad et al [35] employed a manifold-based semi-

supervised learning approach for AD diagnosis, achieving an accuracy rate of 

93.86%. 



55 

 

   This study aims to improve the accuracy of the model by combining a feature 

selection technique with previous research. The research explores the 

application of a combined feature set that includes subcortical volume and 

cortical thickness for classification in AD, EMCI, LMCI, and HC. Using an 

effective combined feature selection method, it evaluates the performance of 

several learning classifiers (Random Forest, K-NN, and SVM). The multi-

class classification yielded the following results table 7.  Key findings and 

publishing techniques. 

For the implementation of machine learning algorithms in disease 

classification, preprocessing techniques are typically necessary, making it a 

time-consuming and computationally intensive task. Thus, researchers have 

directed their efforts toward developing computer-based systems capable of 

early-stage Alzheimer's disease detection. CNN-based image classification is 

increasingly applied in medical disease diagnosis. However, developing an 

efficient CNN model that yields favorable results is a challenging endeavor. 

Consequently, this study introduces an approach that prioritizes accuracy and 

minimizes parameters.  

   Traditionally, contemporary models concentrated on increasing network 

depth and complexity to enhance classification performance, often obtained 

with the vanishing gradient issue. In response, this study proposes a modified 
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convolutional network to address and mitigate the vanishing gradient 

problem[36], promote feature reuse, and drastically reduce the number of 

parameters. The CNN network structure incorporates standard convolutional 

layers along with skip convolutional layers to capture global data features 

while simplifying model complexity. Moreover, a comparative study is carried 

out between the suggested model and the current deep learning techniques. 

Hosseini et al.'s study [37] developed a 3D convolutional based on auto-

encoder that produced multi-class classification accuracy of 89.1%. With 

99.2% accuracy, Basaia et al. [38] developed a deep learning algorithm based 

on structural cross-sectional MRI scans for the diagnosis of individual cases 

of Alzheimer's disease.  Aderghal et al [35]relied on a transfer learning scheme 

with CNN obtaining an accuracy of 91.86%. The table below provides a 

parameter-wise comparison of various deep learning.  
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Table 7. Result of deep learning model with comparison. 

References Subjects No of Samples Method ACC % SEN% 

SPEC

% 

Hosseini et al.,[26] MRI AD-70, MCI-70, CN-70 

3D Con-Auto 

Encoder 89.10   

Jyoti Islam et al., [23] MRI(OASIS) 416 2D CNN 93.18 94 93 

Liu. J et at., [27] MRI(OASIS) AD-90, MCI-136, CN-266 

Multi-Layer 

Neural Network 78.02 83.21 75.32 

Nitika Goenka et al., [39] MRI AD-70, MCI-224, CN-475 3D CNN 95.37 97.2 82.7 

Liu. M et al.,[28] MRI AD-97, MCI-233, CN-119 3D Dense Net 88.90 86.60 90.80 

Rachna Jain et al., [25] MRI AD-50, MCI-50, CN-50 

Conventional 

+DL 95.73   

Xu et al., [29] MRI AD-85, MCI-244, CN-133 

Tresnet_L+Sk_mo

dule 63.20 84.0 85.40 

Min Lin et al., [24] MRI AD-188, MCI-361, CN-229 3D CNN 79   

This study MRI 

AD-150, LMCI-150, EMCI-150, 

CN-150 Proposed Method 95.67 94.16 97.34 

   AD = Alzheimer’s disease; MCI = mild Cognitive Impairment; CN = Cognitive Normal; LMCI =Late mild                                  

Cognitive impairment, EMCI = Early mild cognitive impairment. 
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5. Conclusion 

This thesis leveraged machine learning and deep learning techniques for the 

classification of Alzheimer's disease and other diagnostic groups using the 

ADNI dataset. In the context of machine learning, the thesis introduced a novel 

approach that combines dimension reduction and feature selection methods to 

effectively predict Alzheimer's disease and healthy groups within the ADNI 

dataset. An automated toolbox was used to combine subcortical and 

subcortical features in this method. Three classifiers SVM, KNN, and RF were 

used to complete the classification task. In all three cases, the experimental 

results showed promising performance. 

   In the domain of deep learning, this thesis optimized CNN for 3D whole-

brain images, achieving the highest accuracy through a repeated convolutional 

block network architecture. This proposed method surpassed existing state-of-

the-art systems. Notably, the method operates autonomously and at 

remarkable speed. It provides a means to uncover significant data patterns, 

validate previous expert findings, aid in diagnostic scenarios, and potentially 

detect patterns related to diseases beyond Alzheimer's. 

   Future research endeavors may explore achieving comparable or superior 

results for pre-processed images that have undergone skull alignment and 

subtraction. Additionally, there is potential in integrating patient history data 
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to complement the MRI information, informing decision-making, and 

establishing connections with a patient's background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 

 

References 

[1] A. Association, “2015 Alzheimer’s disease facts and figures,” 

Alzheimers Dement., vol. 11, no. 3, pp. 332–384, 2015, doi: 

10.1016/j.jalz.2015.02.003. 

[2] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in 

medicine: a practical introduction,” BMC Med. Res. Methodol., vol. 19, 

no. 1, p. 64, Mar. 2019, doi: 10.1186/s12874-019-0681-4. 

[3] R. A. Sperling et al., “Toward defining the preclinical stages of 

Alzheimer’s disease: Recommendations from the National Institute on 

Aging-Alzheimer’s Association workgroups on diagnostic guidelines for 

Alzheimer’s disease,” Alzheimers Dement., vol. 7, no. 3, pp. 280–292, 

May 2011, doi: 10.1016/j.jalz.2011.03.003. 

[4] M. A. DeTure and D. W. Dickson, “The neuropathological diagnosis of 

Alzheimer’s disease,” Mol. Neurodegener., vol. 14, no. 1, p. 32, Aug. 

2019, doi: 10.1186/s13024-019-0333-5. 

[5] A. H. Syaifullah, A. Shiino, H. Kitahara, R. Ito, M. Ishida, and K. 

Tanigaki, “Machine Learning for Diagnosis of AD and Prediction of 

MCI Progression From Brain MRI Using Brain Anatomical Analysis 

Using Diffeomorphic Deformation,” Front. Neurol., vol. 11, 2021, 

Accessed: Feb. 02, 2023. [Online]. Available: 

https://www.frontiersin.org/articles/10.3389/fneur.2020.576029 



61 

 

[6] “A Novel Deep Learning Based Multi-class Classification Method for 

Alzheimer’s Disease Detection Using Brain MRI Data | SpringerLink.” 

Accessed: Sep. 20, 2023. [Online]. Available: 

https://link.springer.com/chapter/10.1007/978-3-319-70772-3_20 

[7] T. M. Schouten et al., “Individual classification of Alzheimer’s disease 

with diffusion magnetic resonance imaging,” NeuroImage, vol. 152, pp. 

476–481, May 2017, doi: 10.1016/j.neuroimage.2017.03.025. 

[8] C. Lian, M. Liu, J. Zhang, and D. Shen, “Hierarchical Fully 

Convolutional Network for Joint Atrophy Localization and Alzheimer’s 

Disease Diagnosis Using Structural MRI,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 42, no. 4, pp. 880–893, Apr. 2020, doi: 

10.1109/TPAMI.2018.2889096. 

[9] C. Wattmo, E. Londos, and L. Minthon, “Risk factors that affect life 

expectancy in Alzheimer’s disease: a 15-year follow-up,” Dement. 

Geriatr. Cogn. Disord., vol. 38, no. 5–6, pp. 286–299, 2014, doi: 

10.1159/000362926. 

[10] A. Wimo and M. Prince, “Alzheimer’s Disease International World 

Alzheimer Report 2010 The Global Economic Impact of Dementia,” 

2010. 

[11] L. J. Bain et al., “Healthy Brain Aging: A Meeting Report From The 

Sylvan M. Cohen Annual Retreat Of The University of Pennsylvania 



62 

 

Institute On Aging,” Alzheimers Dement. J. Alzheimers Assoc., vol. 4, 

no. 6, pp. 443–446, Nov. 2008, doi: 10.1016/j.jalz.2008.08.006. 

[12] C. R. Jack et al., “NIA-AA Research Framework: Toward a biological 

definition of Alzheimer’s disease,” Alzheimers Dement. J. Alzheimers 

Assoc., vol. 14, no. 4, pp. 535–562, Apr. 2018, doi: 

10.1016/j.jalz.2018.02.018. 

[13] P. Tiraboschi, L. A. Hansen, L. J. Thal, and J. Corey-Bloom, “The 

importance of neuritic plaques and tangles to the development and 

evolution of AD,” Neurology, vol. 62, no. 11, pp. 1984–1989, Jun. 2004, 

doi: 10.1212/01.wnl.0000129697.01779.0a. 

[14] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, 

perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 

Jul. 2015, doi: 10.1126/science.aaa8415. 

[15] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a 

convolutional neural network,” in 2017 International Conference on 

Engineering and Technology (ICET), Aug. 2017, pp. 1–6. doi: 

10.1109/ICEngTechnol.2017.8308186. 

[16] J. P. Kim et al., “Machine learning based hierarchical classification of 

frontotemporal dementia and Alzheimer’s disease,” NeuroImage Clin., 

vol. 23, p. 101811, 2019, doi: 10.1016/j.nicl.2019.101811. 



63 

 

[17] X. Long, L. Chen, C. Jiang, L. Zhang, and Alzheimer’s Disease 

Neuroimaging Initiative, “Prediction and classification of Alzheimer 

disease based on quantification of MRI deformation,” PloS One, vol. 12, 

no. 3, p. e0173372, 2017, doi: 10.1371/journal.pone.0173372. 

[18] H. Guo, F. Zhang, J. Chen, Y. Xu, and J. Xiang, “Machine Learning 

Classification Combining Multiple Features of A Hyper-Network of 

fMRI Data in Alzheimer’s Disease,” Front. Neurosci., vol. 11, 2017, 

Accessed: Oct. 16, 2023. [Online]. Available: 

https://www.frontiersin.org/articles/10.3389/fnins.2017.00615 

[19] T. Tong, R. Wolz, Q. Gao, R. Guerrero, J. V. Hajnal, and D. Rueckert, 

“Multiple instance learning for classification of dementia in brain MRI,” 

Med. Image Anal., vol. 18, no. 5, pp. 808–818, Jul. 2014, doi: 

10.1016/j.media.2014.04.006. 

[20] D. Zhang, Y. Wang, L. Zhou, H. Yuan, D. Shen, and Alzheimer’s 

Disease Neuroimaging Initiative, “Multimodal classification of 

Alzheimer’s disease and mild cognitive impairment,” NeuroImage, vol. 

55, no. 3, pp. 856–867, Apr. 2011, doi: 

10.1016/j.neuroimage.2011.01.008. 

[21] J. C. Baron et al., “In vivo mapping of gray matter loss with voxel-based 

morphometry in mild Alzheimer’s disease,” NeuroImage, vol. 14, no. 2, 

pp. 298–309, Aug. 2001, doi: 10.1006/nimg.2001.0848. 



64 

 

[22] Y. Gupta et al., “Early diagnosis of Alzheimer’s disease using combined 

features from voxel-based morphometry and cortical, subcortical, and 

hippocampus regions of MRI T1 brain images,” PloS One, vol. 14, no. 

10, p. e0222446, 2019, doi: 10.1371/journal.pone.0222446. 

[23] J. Islam and Y. Zhang, “Brain MRI analysis for Alzheimer’s disease 

diagnosis using an ensemble system of deep convolutional neural 

networks,” Brain Inform., vol. 5, no. 2, p. 2, May 2018, doi: 

10.1186/s40708-018-0080-3. 

[24] M. Lin, Q. Chen, and S. Yan, “Network In Network.” arXiv, Mar. 04, 

2014. doi: 10.48550/arXiv.1312.4400. 

[25] R. Jain, N. Jain, A. Aggarwal, and D. J. Hemanth, “Convolutional neural 

network based Alzheimer’s disease classification from magnetic 

resonance brain images,” Cogn. Syst. Res., vol. 57, pp. 147–159, Oct. 

2019, doi: 10.1016/j.cogsys.2018.12.015. 

[26] E. Hosseini-Asl, R. Keynto, and A. El-Baz, “Alzheimer’s Disease 

Diagnostics by Adaptation of 3D Convolutional Network,” in 2016 IEEE 

International Conference on Image Processing (ICIP), Sep. 2016, pp. 

126–130. doi: 10.1109/ICIP.2016.7532332. 

[27] J. Liu, M. Li, Y. Luo, S. Yang, W. Li, and Y. Bi, “Alzheimer’s disease 

detection using depthwise separable convolutional neural networks,” 



65 

 

Comput. Methods Programs Biomed., vol. 203, p. 106032, May 2021, 

doi: 10.1016/j.cmpb.2021.106032. 

[28] M. Liu et al., “A multi-model deep convolutional neural network for 

automatic hippocampus segmentation and classification in Alzheimer’s 

disease,” NeuroImage, vol. 208, p. 116459, Mar. 2020, doi: 

10.1016/j.neuroimage.2019.116459. 

[29] Z. Xu, H. Deng, J. Liu, and Y. Yang, “Diagnosis of Alzheimer’s Disease 

Based on the Modified Tresnet,” Electronics, vol. 10, no. 16, Art. no. 16, 

Jan. 2021, doi: 10.3390/electronics10161908. 

[30] V. Ramineni and G.-R. Kwon, “Diagnosis of Alzheimer’s Disease using 

Wrapper Feature Selection Method,” Smart Media J., vol. 12, no. 3, pp. 

30–37, 2023, doi: 10.30693/SMJ.2023.12.3.30. 

[31] M. Y. Kamil, “A deep learning framework to detect Covid-19 disease via 

chest X-ray and CT scan images,” Int. J. Electr. Comput. Eng. IJECE, 

vol. 11, no. 1, Art. no. 1, Feb. 2021, doi: 10.11591/ijece.v11i1.pp844-

850. 

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 

Recognition.” arXiv, Dec. 10, 2015. Accessed: Oct. 16, 2023. [Online]. 

Available: http://arxiv.org/abs/1512.03385 

[33] “A Basic Introduction to Separable Convolutions | by Chi-Feng Wang | 

Towards Data Science.” Accessed: Nov. 21, 2023. [Online]. Available: 



66 

 

https://towardsdatascience.com/a-basic-introduction-to-separable-

convolutions-b99ec3102728 

[34] S. H. Nozadi, S. Kadoury, and null The Alzheimer’s Disease 

Neuroimaging Initiative, “Classification of Alzheimer’s and MCI 

Patients from Semantically Parcelled PET Images: A Comparison 

between AV45 and FDG-PET,” Int. J. Biomed. Imaging, vol. 2018, p. 

1247430, 2018, doi: 10.1155/2018/1247430. 

[35] M. Khajehnejad, F. H. Saatlou, and H. Mohammadzade, “Alzheimer’s 

Disease Early Diagnosis Using Manifold-Based Semi-Supervised 

Learning,” Brain Sci., vol. 7, no. 8, p. 109, Aug. 2017, doi: 

10.3390/brainsci7080109. 

[36] I. Tolstikhin et al., “MLP-Mixer: An all-MLP Architecture for Vision.” 

arXiv, Jun. 11, 2021. doi: 10.48550/arXiv.2105.01601. 

[37] E. Hosseini-Asl, R. Keynton, and A. El-Baz, “Alzheimer’s disease 

diagnostics by adaptation of 3D convolutional network,” in 2016 IEEE 

International Conference on Image Processing (ICIP), Sep. 2016, pp. 

126–130. doi: 10.1109/ICIP.2016.7532332. 

[38] S. Basaia et al., “Automated classification of Alzheimer’s disease and 

mild cognitive impairment using a single MRI and deep neural 

networks,” NeuroImage Clin., vol. 21, p. 101645, 2019, doi: 

10.1016/j.nicl.2018.101645. 



67 

 

[39] N. Goenka and S. Tiwari, “AlzVNet: A volumetric convolutional neural 

network for multiclass classification of Alzheimer’s disease through 

multiple neuroimaging computational approaches,” Biomed. Signal 

Process. Control, vol. 74, p. 103500, Apr. 2022, doi: 

10.1016/j.bspc.2022.103500. 

 

 

 

 

 

 

 

 

 

 



68 

 

ACKNOWLEDGEMENT 

   The results of my master's program at the Faculty of Information and 

Communication at Chosun University are presented in this thesis. I have 

learned a lot over the course of these amazing two years, which have been both 

joyful and challenging. Despite the occasional difficulty and challenge of the 

work itself, completing my task has been incredibly exciting. The numerous 

people who helped during this time were really supportive and helpful. 

   First and foremost, I want to express my gratitude to my advisor for all of 

his help, guidance, and priceless knowledge that he shared with me while I 

was writing my thesis. My research has given me exposure that will be a 

priceless asset to my life. 

 I also want to thank everyone who has helped me during my brief absence, 

including my instructors, seniors, lab participants, friends, and family. In 

closing, I would like to thank ADNI and its collaborators for their amazing 

work, heavy workloads, and willingness to share data, without which neither 

this thesis nor the original work presented here could have been accomplished. 


	목차
	1. Introduction 1
	1.1 Motivation 1
	1.2  Research Objectives 2
	1.3  Contributions 3
	1.4  Organization of Thesis 5
	2. Background 6
	2.1  Alzheimer's Disease 6
	2.2 Magnetic Resonance Imaging 8
	2.3 Database Organization 11
	2.4  Machine Learning 12
	2.4.1 Deep Learning 15
	2.5   Related Work 19
	2.5.1 Classification of Alzehimer’s Disease using ML 20
	2.5.2 CNN appraches for Alzheimer's Disease classification 22
	3. Proposed Method 25
	3.1 Overview 25
	3.2 ML approach for Alzheimer’s disease Classification 25
	3.2.1  Selected Features 26
	3.2.2 Volumetric volumes 27
	3.2.3 Cortical and Subcortical dementia 27
	3.2.4 Extraction of Features 28
	3.2.5 Selection of Features 28
	3.2.6 Classification 32
	3.3  Architecture 35
	3.3.1  Implementation Details of Machine learning 35
	3.3.2 Implementation Details of Deep learning 39
	3.3.3 Proposed Model 42
	4. Results 47
	4.1 Performance Metrics 47
	4.2  Results of Machine learning 49
	4.3  Deep Learning Results 52
	5. Discussion 54
	6. Conclusion 58
	References 60
	ACKNOWLEDGEMENT 68


