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Abstract 

A Study on Multi-Class Teeth Segmentation in Dental 2D 

Panoramic X-ray Images 

Ghafoor Muhammad Afnan 

Advisor: Prof. Bumshik Lee 

Department of Information and Communication Engineering 

Graduate School  

Chosun University 

 

This thesis proposed a cutting-edge multiclass teeth segmentation architecture 

that integrates an M-Net-like structure with Swin Transformers and a novel 

component named Teeth Attention Block (TAB). Existing teeth image 

segmentation methods have issues with less accurate and unreliable 

segmentation outcomes due to the complex and varying morphology of teeth, 

although teeth segmentation in dental panoramic images is essential for dental 

disease diagnosis. An M-Net-like structure with Swin Transformers and TAB 

is incorporated into the proposed novel teeth segmentation model. The 

proposed TAB utilizes a unique attention mechanism that focuses specifically 

on the complex structures of teeth. The attention mechanism in TAB precisely 

highlights key elements of teeth features in panoramic images, resulting in 

more accurate segmentation outcomes. The proposed architecture effectively 

captures local and global contextual information, accurately defining each 
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tooth and its surrounding structures. Furthermore, a multiscale supervision 

strategy is employed, which leverages the left and right legs of the U-Net 

structure, boosting the performance of the segmentation with enhanced feature 

representation. The squared Dice loss is utilized to tackle the class imbalance 

issue, ensuring accurate segmentation across all classes. The proposed method 

was validated on a panoramic teeth X-ray dataset, which was taken in a real-

world dental diagnosis. The experimental results demonstrate the efficacy of 

the proposed architecture for tooth segmentation on multiple benchmark dental 

image datasets, outperforming existing state-of-the-art methods in objective 

metrics and visual examinations.  
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한 글 요 약 

치과 2D 파노라마 X-ray 영상에서 멀티클래스            

치아 분할에 관한 연구 

 

가푸어 무함마드 아프난 

지도교수: 이범식 

정보통신공학과 

조선대학교 대학원 

 

본 논문에서는 M-Net 기반 Swin Transformers(Swin Transformers) 

및 TAB (Teeth Attention Block)라는 새로운 구성 요소를 갖는 다중 

클래스 치아 분할 아키텍처를 제안하였다. 기존 치아 영상 분할 

방법은 복잡하고 다양한 치아 형태로 인해 정확하고 신뢰할 수 없는 

분할 결과가 발생하는 문제가 존재한다. 제안하는 치안 분할 

방법에서 TAB는 치아의 복잡한 구조에 초점을 맞추는 새로운 어텐션 

메커니즘을 이용한다. TAB의 어텐션 메커니즘은 치과 파노라마 X-

ray 영상에서 치아 특징의 주요 요소를 정확하게 강조하여 보다 

정확한 분할 결과를 도출할 수 있도록 도움을 준다. 또한 제안하는 

치아 분할 아키텍처는 지역 및 전역의 치아 정보를 효과적으로 

캡처하여 각 치아와 그 주변 구조를 정확하게 분할할 수 있도록 

한다. 또한 U-Net의 왼쪽 다리 (left-leg)와 오른쪽 다리(right-

leg)를 활용하는 다중 스케일 감독 방법 채택하여 향상된 영상의 
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특징 표현으로 분할 성능을 향상시킨다. 제안 방법에서는 클래스 

불균형 문제를 해결하기 위해 자승 Dice 손실 함수를 적용하여 보다 

정확한 치아 분할할 수 있도록 하였다. 제안된 방법은 실제 치과 

진단에서 촬영한 파노라마 치아 X-ray 데이터 세트에서 검증하였다. 

실험 결과는 여러 치과 이미지 데이터 세트에서 제안된 치아 분할 

아키텍처의 성능을 검증하였고 객관적인 분할 성능 수치 및 시각적 

검사에서 기존 치아 분할 방법을 크게 능가하는 것을 실험적으로 

검증하였다.  
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1. Introduction 

1.1 Overview 

Dental imaging is essential for oral healthcare because it helps in the diagnosis 

and treatment of various dental conditions [1]. For example, dentists can 

recognize jaw-related conditions and identify anatomical characteristics such 

as teeth, maxillary sinus, and alveolar bone using panoramic dental X-ray 

images [2]. Furthermore, the precise measurements offered by this technique 

provide technical assistance in the preoperative diagnosis, surgical planning, 

and postoperative evaluation [3]. 

 

Figure 1-1.  An example of panoramic dental X-ray image 

 

Teeth image segmentation is a vital process in computer-assisted dentistry 

diagnostics and serves as an initial step in analyzing the tooth status. Dentists 
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can use panoramic radiographs to assess a range of dental conditions, including 

missing teeth, dental development, impacted teeth, and adjacent relationships 

[2]. This is achieved through image segmentation. Current technology 

employs a ground-truth identification mechanism for panoramic X-ray images 

as shown in Fig. 1-1 and utilizes a segmentation architecture to generate 

precise segmentation outcomes that can potentially facilitate clinical diagnosis. 

Panoramic dental X-ray scans and tooth image segmentation technology are 

essential components of computer-assisted dentistry diagnostics because they 

enable accurate measurements and provide a comprehensive view of the jaw 

and teeth. For example, accurate teeth segmentation from panoramic images 

is essential for diagnosing serious dental conditions like periodontitis, which 

is a severe gum infection leading to potential tooth loss. Through detailed 

segmentation, dentists can identify anomalies in the tooth and surrounding 

structures, such as enlarged periodontal ligament spaces or bone loss. However, 

while segmentation is crucial for initial evaluations, more specific imaging 

techniques, like bitewing X-rays or CBCT, are often required for a thorough 

diagnosis and treatment plan. As a result, teeth segmentation remains a 

cornerstone in dental diagnostic tools. 

The precise categorization of teeth into distinct groups poses a significant 

challenge in dental image analysis despite its critical importance in various 

applications such as orthodontic treatment planning, dental implant surgery, 

and forensic odontology. Manual, semiautomatic, and automatic approaches 
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have been devised to segment teeth in dental images [3]. Despite the progress 

made in this field, dental restorations, malocclusions, and pathological 

conditions can affect the segmentation performance. 

Artificial intelligence applications in dentistry are growing, as they help 

practitioners increase patient safety while simplifying complicated procedures 

and offering predictable outcomes [5]. Medical image analysis uses deep 

learning techniques that provide several benefits, including anomaly detection, 

image segmentation, and classification [3]. Hence, AI systems can potentially 

improve health data outcomes, lower healthcare costs, and advance medical 

research [6]. For example, in dental image analysis, deep learning techniques 

have shown promising results in segmenting and classifying teeth and dental 

structures, resulting in enhanced diagnosis and treatment planning for various 

dental conditions [3], [6]. 

Convolutional neural networks (CNNs) have emerged as the primary 

technique for image segmentation in dental imaging because of their ability to 

collect local spatial data and learn feature representation [7]. However, recent 

advancements in deep learning architectures, such as transformers, have 

demonstrated their potential to outperform CNNs in several computer vision 

tasks by effectively modelling long-range dependencies and global context [9]. 

The progress of CNN-based segmentation models in accurately segmenting 

teeth and other dental structures from background noise enables the precise 

analysis and diagnosis of dental conditions. With the increasing availability of 
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large-scale dental image datasets and the ongoing advancements in deep 

learning techniques, CNN-based models are expected to play an even more 

significant role in dental imaging by facilitating rapid, accurate, and automated 

image analysis. 

Boundary box filters, also known as region proposal methods, have been 

extensively used in medical image segmentation tasks to improve the 

performance of deep learning models by focusing on specific areas of interest. 

Boundary box filters were used to identify nodules on CT scans in [11, 14] 

when segmenting lung nodules accurately. Similarly, Oktay et al. [12] used 

boundary box filters to increase the pancreatic segmentation accuracy. Fan et 

al. [13] successfully segmented lesions in colonoscopy images using boundary 

box filters. By focusing on specific areas of interest in medical images, Nader 

et al. [10] demonstrated that boundary box techniques can enhance 

segmentation precision. In dental imaging, boundary box techniques have been 

used to segment teeth and other dental structures by identifying the regions of 

interest on panoramic radiography and dental cone-beam computed 

tomography (CBCT) [2]. These studies suggest that boundary box filters have 

the potential to considerably enhance the accuracy and efficiency of dental and 

medical image segmentation, thereby improving diagnosis and treatment 

planning for a variety of conditions. 

Transformers have recently emerged as solid deep-learning architectures with 

excellent results in various computer vision applications, including image 
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segmentation [9]. Transformers successfully represent long-term 

dependencies and the global environment using self-attention processes, 

enabling them to record connections between pixels or features in an input 

image regardless of their geographical distance. This characteristic makes 

transformers a potentially suitable choice for dental image segmentation tasks 

where accurately capturing the context and relationships between teeth and 

their surrounding structures is crucial. 

A cutting-edge deep neural network model is designed to segment teeth into 

32 distinct categories based on panoramic dental radiography images. The 

proposed model achieved an accuracy rate of 97.26%, a Dice Similarity 

Coefficient of 0.9102, and a Jaccard Index of 0.8501, all of which represent 

significant improvements over previous methodologies, showing significant 

advancements in dental 2D X-ray image segmentation. These enhancements 

are the result of a novel methodology integrating CNNs and transformers, 

combined with TAB, as a novel addition. Utilizing these blocks facilitates the 

model's ability to focus on regions of interest, thereby effectively capturing 

both local and global contexts. TABs address significant challenges associated 

with dental image segmentation such as overlapping structures and varied 

tooth shapes, thereby enhancing the overall performance and accuracy of the 

model. 
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1.2 Research Objective 

The proposed tooth segmentation model offers significant contributions to 

dental diagnostics and treatment planning. By providing precise tooth 

segmentation, the proposed architecture enables early detection and diagnosis 

of various dental diseases. For instance, it can facilitate the detection of 

periodontal diseases or dental caries by identifying changes in tooth shape or 

the appearance of lesions. Moreover, the accuracy achieved in tooth 

segmentation can greatly assist in creating detailed treatment plans. 

Orthodontists, for example, can use the segmentation results to plan braces 

placement or determine the necessity of tooth extraction in overcrowded 

mouths. These applications underscore the clinical relevance and potential 

impact of the proposed segmentation model in the field of dental medicine. 

1.3 Thesis Layout 

This paper is organized as follows. An overview of related works on dental 

picture segmentation is presented in Section 2, emphasizing deep learning-

based methods. Section 3 describes the proposed deep learning architecture. 

The experimental setup, including the dataset, assessment criteria, and 

implementation information, is presented in Section 4. Section 5 presents 

experimental results and comparisons with other state-of-the-art models. 

Finally, Section 6 concludes the paper by addressing possible future research 

directions in this field. 
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2. Related Works 

Medical image segmentation has witnessed significant advancements with the 

advent of deep learning-based approaches. Yamanakkanavar and Lee [14] 

presented a novel M-SegNet architecture that used a global attention CNN 

model for automated brain MRI segmentation. The base architecture, M-Net 

[41], is also used for brain image segmentation. Badrinarayanan et al. [15] 

developed SegNet, a deep convolutional encoder–decoder architecture, with 

significant success in medical imaging applications. Gu et al. [16] proposed 

CE-Net, a situation-encoding network for 2D medical-picture segmentation. 

Lin et al. [17] presented an efficient piecewise training approach for deep-

structure models in semantic segmentation. Slic-Seg, a minimally interactive 

segmentation approach for the placenta using fetal MRI, was proposed by 

Wang et al. [18]. Lee et al. [19] proposed a patchwise U-Net structure for 

automated brain MRI segmentation. Deep learning-based techniques have 

demonstrated exceptional efficacy in various medical image-related 

assignments, underscoring their potential. 

Dental image segmentation has recently emerged as a popular research area. 

In this regard, deep learning-based algorithms have exhibited encouraging 

results. This section provides a comprehensive review of the literature on 

dental image segmentation, focusing on deep learning-based techniques. The 

intricate nature and proximity to adjacent anatomical structures render dental 

image segmentation a formidable task. Nevertheless, deep learning 
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methodologies have been demonstrated to overcome these obstacles and 

exhibit encouraging outcomes. Various deep-learning architectures and 

techniques have been utilized in numerous studies on dental image 

segmentation. These include U-Net [20], Mask R-CNN [21], and ResNet [22]. 

The results of these studies suggest that deep learning-based methodologies 

can yield positive results in terms of precision and expediency in the dental 

segmentation of image tasks. 

Researchers have employed several methods to enhance dental segmentation. 

Tekin et al. [23] segmented and numbered teeth in dental imaging panoramic 

images using a Mask R-CNN, yielding high-quality segmentation masks. 

Similarly, Yang et al. [24] developed an automated system for dental image 

analysis that included dental image diagnostic knowledge, drastically reducing 

the amount of human labor necessary for data preparation. Xia et al. [25] 

presented a method that successfully separated individual teeth from CT 

images of the upper and lower natural contact-scanned teeth. 

CNNs have been extensively used in various medical image segmentation 

applications because of their ability to gather local spatial inputs and generate 

hierarchical representations [7]. Several CNN-based algorithms for tooth 

segmentation have been introduced for dental image analysis. Hou et al. [2] 

introduced Teeth U-Net, a segmentation approach for tooth panoramic X-ray 

images that uses a U-Net structure to capture contextual semantics and 

improve image contrast. Similarly, Tekin et al. [6] developed an improved 
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tooth segmentation and numbering technique for bitewing radiographs using a 

machine-learning algorithm based on the U-Net architecture. These studies 

showed that CNNs efficiently segment teeth and dental structures using 

different dental images. 

Recent advancements in deep learning architectures, such as transformers, 

have shown their potential to outperform CNNs in several computer vision 

tasks by effectively modelling long-range dependencies and global context [8]. 

Although Transformers have mainly been used for natural language processing 

applications, their use in medical-picture analysis is gaining popularity. 

Transformers have been used for image segmentation, classification, and 

anomaly detection tasks and have shown promising results in various medical 

domains. The utilization of bounding box techniques to concentrate on regions 

of interest has been observed in medical imaging. This approach serves to 

decrease the intricacy of segmentation tasks. Nader et al. [12] proposed an 

automatic tooth segmentation method for panoramic X-rays using deep neural 

networks with bounding boxes to enhance the accuracy of the segmentation 

process. El Jurdi et al. [11] presented BB-Unet, a U-Net design that includes 

bounding box priors to improve segmentation results for medical imaging 

tasks. The aforementioned studies demonstrated the capacity of bounding box 

methodologies to enhance the segmentation outcomes and augment the overall 

efficacy of deep-learning models. 
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U-Net [20] has been widely used for dental segmentation tasks. Koch et al. 

[26] employed a U-Net architecture to segment panoramic images of teeth, 

resulting in enhanced sample segmentation using a more compact and less 

complex network design. Similarly, Kong et al. [27] proposed an efficient 

encoder–decoder network (EED-Net) for the fast and accurate segmentation 

of maxillofacial images. Zhao et al. [28] developed a two-stage attention 

segmentation network (TSASNet) to locate and segment teeth in dental 

panoramic X-ray images that can combine pixel-level contextual information 

and identify fuzzy tooth areas. Cui et al. [29] proposed a tooth segmentation 

network (TsegNet) for 3D scanning of dental structures. Some researchers 

have also improved the U-Net architecture by enhancing the encoder and 

decoder, modifying the convolutional layers, and improving skip connections. 

Attention techniques play a crucial role in boosting the performance of CNNs 

in medical image analysis tasks. These techniques allow the rescaling of 

extracted features through skip connections, thereby enhancing high-level 

representation learning. For example, Jin et al. [30] proposed residual attention 

U-Net (RAUNet) for liver tumor segmentation, which includes a backbone 

branch for learning original features and a soft mask branch to reduce noise 

and enhance positive features. Similarly, Liu et al. [31] introduced the deep 

residual attention network (DRANet), which improved the feature processing 

between the encoder and decoder, leading to more accurate lesion-type 

classification. Moreover, establishing extensive connections between encoders 
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and decoders can enhance the links between different modules. To address 

this, Jose et al. [32] proposed the intervertebral disc network (IVD-Net), which 

utilized a dense technique to link encoders layer by layer, with each encoder 

processing a distinct image pattern. In addition, Zhang et al. [33] proposed a 

multiscale densely connected U-Net (MDU-Net) that fuses neighboring 

feature maps of multiple sizes at high and low levels to improve the encoder, 

decoder, skip connection performance, and segmentation accuracy. The 

related works explained above are mentioned in Table I for easy comparison. 

By merging these related work sections, it can be observed the evolution of 

dental image segmentation using deep learning techniques, from the early use 

of the Mask R-CNN to the more recent incorporation of transformers, 

bounding box techniques, and improvements to the U-Net structure. These 

advancements provide a strong foundation for the proposed method and 

exciting possibilities for future research in this field. 

This diverse range of methods demonstrates the ongoing advancements and 

potential for further improvements in dental image segmentation using deep 

learning techniques. A novel deep-learning architecture is introduced for tooth 

segmentation based on panoramic images to address the weaknesses of 

existing approaches. The advantages of CNNs and transformers are combined 

with a unique tooth-bounding box technique that improves the accuracy of 

tooth segmentation while resolving the challenges that currently exist in dental 

image analysis, going beyond the integration of existing tools. 
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The critical contribution of the proposed methodology is the strategic 

integration of CNNs, Transformers, and the novel TAB. CNNs are used to 

extract features from dental images and to capture specific local 

characteristics. When encapsulating the global context, a domain in which 

CNNs fall short, transformers are utilized. Additionally, the proposed model 

incorporates novel TAB, allowing for a focused understanding of the overall 

dental arch structure, a factor in previous approaches. 

The significant contribution, TAB, is intended to improve segmentation 

outcomes. This technique addresses the sensitivity issues encountered in 

previous models by sharpening the focus on the teeth, thereby reducing the 

impact of noise and irrelevant regions. 

The proposed approach makes several significant contributions to the field of 

dental image analysis. 

1. This study proposes a cutting-edge multiclass teeth segmentation 

architecture that combines an M-Net-like structure with Swin 

Transformers. This architecture integrates various components to 

efficiently capture local and global contextual information, enabling the 

accurate delineation of teeth and their adjacent structures. 

2. This study introduces an innovative component called TAB, which plays a 

crucial role in the proposed architecture. TAB enhances the segmentation 
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performance by selectively attending to teeth-related features, further 

improving the accuracy of tooth segmentation. 

3. This study incorporates a multiscale supervision strategy by utilizing the 

left and right legs of a U-Net structure. This strategy aids in precise feature 

representation and boosts segmentation performance by providing 

supervision at different scales. 

4. A thorough examination was conducted, and it was demonstrated that 

proposed model outperforms state-of-the-art techniques in several 

important metrics. 
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3. Proposed Network 

3.1 Overall Architecture 

A tooth segmentation architecture that integrates an M-Net-like structure with 

an encoder and decoder, Swin Transformer [34] and TAB is proposed to 

accurately segment dental images. The proposed architecture aims to capture 

both local and global contextual information effectively, resulting in the 

precise delineation of teeth and surrounding structures. The U-Net-like 

structure consists of an encoder that extracts feature representations through 

downsampling and a decoder that reconstructs the segmentation mask through 

upsampling. The skip connections between the encoder and decoder layers 

preserve spatial information. Additionally, left- and right-leg supervision is 

employed for the encoder and decoder to facilitate accurate feature 

representation learning and improve segmentation performance. 

Swin Transformer blocks, placed at the bottleneck, effectively capture long-

range dependencies using the self-attention mechanism, which models 

nonlocal information and relationships between distant regions in dental 

images. This enhanced the model’s understanding of complex structures and 

relationships. Furthermore, TAB in skip connections refine segmentation by 

focusing on object boundaries, leading to more precise delineations between 

different teeth and structures. This architecture effectively captures both local 

and global contextual information, resulting in accurate tooth segmentation. 
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3.2 Pre-Processing 

In the proposed approach, pre-processing steps are performed to enhance the 

overall quality of panoramic images before training and testing the model. 

Figure 3-1 shows the block diagram of the pre-processing steps. 

 

Figure 3-1. Block diagram of pre-processing 

 

As shown in Figure 3-1, the pre-processing steps perform image resizing, 

normalization of pixel intensities to a range of [0, 255], and multiscale 

morphology in sequence. Multiscale morphology [38] employs a range of 

morphological operations at different image scales to reduce noise, improve 

contrast, and highlight the salient features of dental imagery. Such pre-

processing is essentially required in refining the input data for the model, 

ensuring enhanced performance during the training and testing stages. 

Pre-Processing

Input image
Resizing/

Normalization

Multiscale 
morphology 
operations

Output image
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Figure 3-2. Overall architecture of the proposed teeth segmentation network. 

(TAB: Teeth Attention Blocks) 
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3.3 Encoder and Decoder 

Hierarchical dental image features are extracted in the encoder, where multiple 

convolutional layers are utilized with a 3×3 kernel size in each layer, which is 

the same size used in U-Net-like architectures. The encoder utilizes these 

layers to learn varying levels of features from the input dental images, from 

basic to complex. Batch normalization is performed after each convolution to 

improve the stability of the model and speed up learning. The activation 

function known as the Rectified Linear Unit (ReLU) is responsible for 

introducing non-linearity into the model, enhancing its ability to learn intricate 

patterns. The inclusion of max-pooling layers is implemented to decrease the 

spatial dimensions of the feature maps and increase the receptive field. The 

features retrieved by the encoder substantially impact the overall performance 

of tooth segmentation. They are responsible for identifying different forms and 

patterns, hence facilitating accurate tooth segmentation. 

 The decoder recovers the spatial resolution of the feature maps and 

reconstructs the segmented teeth. This upsampling is achieved through 

transposed convolutions, effectively increasing the height and width of the 

feature maps while preserving their depth. Segmentation masks are 

reconstructed from these up-sampled feature maps simultaneously, resulting 

in pixel-wise class predictions for the input dental image. 

Moreover, skip connections play a pivotal role in the decoder by bridging the 

gap between the encoder and decoder layers. These connections send the 
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feature maps from the encoder to their corresponding decoder layers through 

the intermediate layers. This process allows for the incorporation of high-

resolution details from the encoder's earlier layers with the abstract, lower-

resolution features from the deeper layers. This fusion of features aids in the 

more accurate reconstruction of segmentation masks, as it captures both local 

details and global context, thereby enhancing the precision of the tooth. 

3.4 Swin Transformer Blocks  

Swin Transformer [34] is employed in deep learning architectures to 

effectively capture local and global contextual information using a self-

attention mechanism. They divided the input feature maps into non-

overlapping local windows, enabling efficient processing and utilizing 

multihead self-attention layers to learn multiple relationships simultaneously. 

Swin Transformers merge and shift windows after each self-attention layer to 

capture long-range dependencies, whereas position-wise feed-forward layers 

help learn complex nonlinear relationships The multihead self-attention layers 

in the Swin Transformer are followed by position-wise feed-forward layers 

and layer normalization, which allow the Swin Transformer to successfully 

manage the multiclass tooth segmentation task. Specifically, the multihead 

self-attention mechanism helps to capture intricate spatial relationships across 

different parts of the dental image, while the position-wise feed-forward layers 

enhance the local representations with non-overlapping local windows within 

input feature maps. 
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Following each self-attention phase, the Swin Transformer highlights its 

adaptability by merging and shifting windows, which is for capturing long-

range dependencies. Additionally, the inclusion of position-wise feed-forward 

layers enhances the model's ability to identify complex nonlinear relationships. 

In aggregate, these methods enhance the effectiveness of the Swin 

Transformer in addressing dental image segmentation challenges. Since teeth 

exhibit diverse morphologies, it is essential to recognize subtle patterns and 

distant relationships in dental images. The Swin Transformers are specifically 

positioned to address the issues of tooth segmentation in the proposed method. 

The Swin Transformer blocks are strategically placed in the bottleneck of the 

proposed design to effectively capture long-range dependencies. The 

utilization of nonlocal information management is of utmost importance, as it 

allows the model to effectively analyze complex connections between teeth 

and different dental diseases. 

3.5 Teeth Attention Block 

TABs, a key contribution of this study, act as boundary-aware or boundary 

refinement filters, playing a critical role in segmentation tasks to improve the 

recognition of boundaries between different objects or structures in an image. 

TABs enhance the focus of the tooth segmentation model on a dental image 

by observing a local receptive field around each pixel. The implementation of 

a filtering operation in this receptive field emphasizes the boundaries of the 

objects, specifically the edges of single teeth and their adjacent structures. 
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The attention mechanism employed by TAB plays a crucial role in enhancing 

the accuracy and precision of the segmentation masks. Specifically, this is 

achieved by effectively refining the differentiation between the individual and 

surrounding teeth. In simple terms, TAB reduces the effect of noise and 

meaningless information in dental images by selectively optimizing the 

features of teeth and their boundaries while minimizing irrelevant features or 

noise that are not beneficial to the teeth segmentation task. This improved 

attention helps achieve more precise and consistent segmentation results, 

providing a cleaner and clearer illustration of the individual teeth and their  

Figure 3-3. Teeth Attention Block in the proposed teeth segmentation 

network 

boundaries in dental panoramic images. The proposed TAB using a self-

attention mechanism enables the model to assess the significance of various 

tooth parts within the image by leveraging acquired contextual knowledge. In 

the training stage, the TAB assigns increased attention scores to boundary 

pixels around separate teeth. This indicates that greater attention is given to 
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the boundary regions while generating feature maps, hence improving the 

capability of the model to distinguish between individual teeth. 

The improvement of the overall segmentation performance is facilitated by the 

attention capability of the TAB on these boundary regions. Specifically, it aids 

in enhancing the demarcation of tooth boundaries inside the segmentation 

masks, minimizing the occurrence of overlapping between neighboring teeth 

and improving the precision and accuracy of the segmentation process. The 

integration of the TAB method into proposed model yields a notable 

advantage, particularly in complex dental images characterized by densely 

arranged or slightly overlapping teeth, therefore mitigating the limitations of 

conventional segmentation techniques.  

The TABs were incorporated into the skip connections in the tooth 

segmentation architecture between the encoder and decoder layers which can 

be seen in Figure 3-3. RPN detects boundary boxes that indicate potential 

regions containing dental structures. Then, the boundary boxes pass through 

the Channel Attention Block (CAB), fine-tuning the feature's attention. The 

utilization of specific filters in TABs significantly improves the segmentation 

accuracy of the model in accurately delineating complex object boundaries, 

particularly those pertaining to individual teeth and neighboring structures. 

The upgraded feature maps are subsequently multiplied with the features from 

the encoder via the skip connections. After the combination, the merged 

entities undergo processing by the decoder to achieve final segmentation. 



 

22  

 

TABs operate by considering a local neighboring receptive field around each 

pixel and implementing a filtering operation to highlight the boundaries of the 

teeth. The filtering operation of the TAB, which is one of the novel 

contributions, can utilize techniques such as convolutional layers and attention 

mechanisms to learn and target object boundaries. The incorporation of TAB 

within skip connections confers multiple benefits to the architecture of tooth 

segmentation, as follows: 

• Improved segmentation accuracy: The model can distinguish between each 

tooth and its surrounding structures by concentrating on object boundaries, 

thereby producing more precise segmentation masks. 

• Smoother and sharper object boundaries: The utilization of TAB has the 

potential to reduce the presence of unusual or uneven edges within the 

segmentation masks, thereby resulting in more refined and distinct object 

boundaries. 

• Better handling of overlapping or adjacent objects: Teeth are frequently 

shown in proximity as well as overlapping in dental images. The 

implementation of TAB can enhance the model's ability to differentiate 

between teeth that are adjacent or overlapping with enhanced performance. 

In summary, the proposed TAB plays a crucial role in enhancing the precision 

of tooth segmentation outcomes in the dental image segmentation framework. 
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This is achieved by highlighting object boundaries and enhancing the 

differentiation between various teeth and structures. 

3.6 Loss Functions and Supervision 

The left and right legs of the U-Net structure were employed for supervision 

during the multiclass tooth segmentation task. Incorporating the multiscale 

supervision within both the downsampling (encoding) and upsampling 

(decoding) components of the U-Net, the model is supervised at multiple 

scales. Such a technique helps to capture and recognize the objects well and 

accurately segment the different classes of teeth found in dental images. This 

approach not only facilitates feature representation across various scales but 

also boosts the differentiation capacity of the model to distinguish between 

distinct teeth categories. 

The proposed model is trained using a custom square Dice loss function. Dice 

loss, which is commonly employed in medical image segmentation tasks, 

calculates the overlap between the predicted and ground-truth images, 

making it ideal for addressing the class imbalance frequently observed in 

such tasks. 

In the conventional Dice loss function, a score is calculated as twice the 

region of intersection between the predicted and true segmentation maps 

divided by the total number of pixels in both maps. The Dice loss was 
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calculated as one minus the Dice score to obtain the best overlap between the 

predicted and actual segmentations. 

Before formulating the loss, the Dice loss function was changed by squaring 

the pixel values. The following modification, described as square Dice loss, 

gives greater emphasis to every pixel, which makes the model more sensitive 

to segmentation boundary changes. The significance of precise segmentation 

boundaries in dental imaging cannot be overstated, because even minor 

deviations can significantly affect the quality of the resulting output. 

The square Dice loss function includes a normalization factor that avoids 

division by a zero. The computation involves determining the intersection 

between the ground-truth segmentation map and the predicted segmentation 

map while considering the combined sum of the squares of both maps. This 

causes the neural network to prioritize accurate predictions for each pixel, 

which improves its precision and recall. 

𝐿 = 1 − (2∑(𝑦𝑡 ∙ 𝑦𝑝)
2
+ 𝜖) / (2∑(𝑦𝑡

2 + 𝑦𝑝
2) + 𝜖)    (1) 

where 𝐿 denotes the loss function. 𝑦𝑡 and 𝑦𝑝 represent the ground truth and 

predicted segmentation maps, respectively, 𝜖 is a smoothing factor for 

avoiding division by zero. The squared Dice loss is chosen for the proposed 

method due to its efficiency, leading to superior segmentation results. 

Several loss functions, such as soft Dice loss [44], Tversky loss [43], and 

Log-Cosh Dice loss [43] functions, which are popularly used in medical 
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segmentation tasks, were tried.  It was observed that the squared Dice loss 

function achieved significantly better segmentation performance in DSC and 

JI, etc.  
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4. Experimental Results 

The experimental results for the proposed tooth segmentation architecture are 

discussed in this section. The present study commenced by providing a 

detailed account of the dataset and the pre-processing procedures employed in 

the training and testing of the model. Subsequently, the evaluation metrics, 

experimental setup, and comparison with established methods are discussed. 

The results are evaluated while the performance of the proposed model is 

addressed. 

4.1 Implementation Details 

A dataset consisting of dental panoramic images has been compiled through a 

collaborative effort between a dental college and its students. These panoramic 

images were annotated meticulously using a supervisory platform, resulting in 

a detailed categorization of separate teeth across multiple classes. In total, the 

dataset comprises 540 annotated images. These images were resized to 

dimensions of 1024×512 pixels to ensure computational efficiency and reduce 

memory demands, with care taken to preserve critical anatomical landmarks. 

4.2 Experimental Setup 

Uniform settings were utilized to train and evaluate the proposed tooth 

segmentation network, ensuring a fair and consistent comparison with existing 

methodologies. The Keras framework and an NVIDIA GeForce RTX 3090 

graphics processing unit (GPU) were utilized for model training and 
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evaluation. The dataset was divided into training (70%), validation (15%), and 

testing (15%) datasets. The Swin Transformer model with 2×2 regions was 

applied and trained over 50 epochs. The initial learning rate was set to 10-4 

and subsequently adaptively decreased to 10-7 to address the potential 

overfitting issue. A batch size of two was maintained throughout the training 

process. Dropout layers are added after the encoder convolution layers to 

overcome overfitting. Furthermore, a strategy to decrease the learning rate by 

10% was employed if the validation loss did not decrease over five consecutive 

epochs. 

The effectiveness of the proposed teeth segmentation model was quantitatively 

evaluated using a total of five standard evaluation metrics, which are Accuracy 

(ACC), Jaccard Index (JI) [35], Precision [36], Recall [36], and Specificity 

[37]. These metrics are defined as follows: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                      (2) 

JI =
|𝑃∩𝐺|

|𝑃∪𝐺|
                                                (3) 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           (4) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           (5) 
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Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                       (6) 

where True Positive (TP) and True Negative (TN) represent the number of 

pixels accurately classified as teeth and non-teeth, respectively. Conversely, 

FP (False Positive) and False Negative (FN) refer to the number of pixels 

incorrectly categorized as teeth and non-teeth, respectively. 

These metrics offer a comparable scale from zero to one, with one indicating 

an exact match between the predicted and actual values. Higher scores across 

these parameters denoted better segmentation performance, indicating that the 

model was efficient in accurately segmenting teeth and distinguishing between 

them and other structures in the dental images. These evaluation metrics are 

applied to provide a comprehensive performance assessment of the proposed 

tooth segmentation model, facilitating its comparative analysis with other 

established methods in the field. 
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Table I 

Comparisons between the proposed method and conventional ones 

Models ACC DSC JI Precision Recall Specificity 

U-Net [20] 
 

0.9720 0.7602 0.6871 0.7458 0.8366 0.9725 

Attention_U-Net [12] 
 

0.9720 0.7846 0.7132 0.7557 0.8391 0.9725 

ResNet-50 Attention U-Net [39] 
 

0.9721 0.7875 0.7172 0.7487 0.8544 0.9726 

Swin U-Net [40] 
 

0.9712 0.6348 0.5296 0.6107 0.7192 0.9721 

Modified-U-Net [10] 
 

0.9726 0.9004 0.8489 0.7898 0.9366 0.9728 

Proposed 
 

0.9726 0.9102 0.8501 0.8046 0.9389 0.9730 
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Table II 

Comparisons of running times under the stopping criteria in experimental setup 

Models Run-times (in minutes) DSC JI 

U-Net [20]  61 0.7556 06815 

Attention_U-Net [12]  59 0.7796 0.7071 

ResNet-50 Attention U-Net [39]  61 0.7804 0.7096 

Swin U-Net [40]  60 0.5432 0.4302 

Modified-U-Net [10]  61 0.9003 0.8490 

Proposed  60 0.9102 0.8501 
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4.3 Results and Discussion 

This section presents a comprehensive analysis and discussion of the 

performance of the proposed model for dental segmentation. Several well-

established segmentation models, including the traditional U-Net [20], 

Attention U-Net [12], ResNet-50 Attention U-Net [39], Swin U-Net [40], and 

a Modified U-Net [10], which is identical to BB-Unet [11], were compared to 

proposed segmentation model. The performance of the proposed model was 

evaluated using multiple critical metrics, including ACC, Dice Similarity 

Coefficient (DSC), JI, precision, recall, and specificity. Each tooth in an X-ray 

image is aimed to be segmented into 32 categories based on the World Dental 

Federation (FDI) notation [42], where each tooth is categorized into #11 to 

#18, #21 to #28, #31 to #38, and #41 to #48. Each pixel is classified into a 

specific number with multiclass 32-categorized pixels, and the True Positives 

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) are 

also measured to obtain objective evaluation metrics for segmentation. TP, 

TN, FP, and FN are computed for each tooth type, considering tooth number 

as one class and all other teeth as the other, and this process was repeated for 

each tooth type in each class. 

A computational cost analysis was performed, where the training times for 

each method were measured under identical experimental conditions. The 

proposed method required approximately 60 minutes for training to achieve 

the segmentation performance in Table II. Other methods achieve DSC values 
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of 0.7602, 0.7846, 0.7875, 0.6348, and 0.9004 and run-times of 45, 48-, 48-, 

68-, and 64-minute training times for [20], [12], [39], [40] and [10], 

respectively. These values are obtained from the above-mentioned 

experimental setup. Since the stopping criteria and learning rates are variable 

for each method during training, it is not difficult to judge the superiority of 

the complexity-performance trade-off.  The change in segmentation 

performance for each method was investigated by setting a similar run-time by 

adjusting the stopping criteria and learning rate values. Table III shows the 

comparison of segmentation performances, such as DSC and JI, under almost 

identical run times. As shown in Table III, the proposed method can achieve 

significantly higher segmentation performance under similar complexity. It 

also indicates that the proposed method requires much lower run times to 

achieve the same segmentation performance. 

The accuracy score of the proposed (0.9726) is comparable to that of the other 

models. However, based on the Dice Coefficient (0.9102) and JI (0.8501), the 

proposed model significantly outperformed the other models. These scores 

demonstrate that the proposed model distinguishes true positives while 

minimizing false positives and false negatives. In addition, the precision and 

recall scores of 0.8046 and 0.9389, respectively, provided further evidence. 

This table demonstrates the superior performance of the proposed model 

compared to the others. 
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Figure 3-4. Visual Comparison between the proposed model and the conventional method 
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Figure 3-5. Visual Comparison between the proposed model and the conventional method 
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The performance of each model was critically analyzed. In this study, the 

traditional U-Net model exhibited commendable performance in terms of 

ACC, Dice score, and other metrics. However, it does not surpass the 

performance of the proposed model. Similarly, although the Attention U-Net 

and ResNet-50 Attention U-Net demonstrated improvements over the 

traditional U-Net model, they still did not match the performance of the 

proposed model. The performance of the Swin U-Net model did not align with 

those of the other models, whereas the Modified U-Net showed a performance 

close to that of the proposed model. 

The superior performance of the proposed model can be attributed mainly to 

the incorporation of the Swin Transformer and boundary boxes and the 

application of a modified loss function utilizing the squared Dice loss. These 

design decisions enabled the proposed model to learn and segment dental 

structures in the input images, thereby improving the performance across all 

evaluation metrics. 

The segmentation results of all models were visually compared in addition to 

a quantitative comparison, which can be seen in Figure 4 and Figure 5. This 

visual comparison provides evidence that the proposed model accurately 

segments dental structures. Furthermore, it consistently produced more 

accurate and consistent segmentation outcomes, highlighting the benefits of 
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the Swin Transformer, boundary boxes, and modified loss function in the 

proposed dental segmentation model. 

Furthermore, the improved generalizability of the approach used for different 

dental images can be primarily attributed to the addition of TAB and the 

squared Dice loss function. The use of TABs in dental imaging improves the 

accuracy of boundary delineation and increases the level of detail in individual 

tooth analyses. This innovative approach has demonstrated effectiveness in 

decreasing the impact of noise and artifacts that are commonly found in dental 

images. A closer analysis of row 1 of Fig. 3, illustrates the effectiveness of the 

proposed approach. For example, in the case of tooth #48 (FDI notation), most 

existing models struggle to precisely define the boundaries. However, the 

approach exhibits exceptional precision, providing segmentation outcomes 

that closely match the ground truth. This is largely due to the ability of TAB 

to focus on the local receptive fields surrounding each pixel, thereby 

highlighting the boundaries of objects and significantly improving the 

differentiation between individual teeth and their neighboring teeth. 

This analysis highlights the potential advantages of the proposed approach 

over other approaches, particularly when dealing with complex dental 

structures and obtaining accurate and uniform segmentation results. The 

incorporation of TABs into the model demonstrated a marked improvement in 

the overall performance, indicating its potential as an asset in the progression 

of dental imaging analysis and diagnostics. 
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The results presented in the table and figures demonstrate that the proposed 

custom dental segmentation model outperformed several state-of-the-art 

models in terms of evaluation metrics and visual comparisons. This significant 

boost in performance can be primarily attributed to the unique TABs. The use 

of TAB as a boundary refinement filter significantly enhances the 

identification of each tooth and its adjacent structures. Although the Swin 

Transformer and the specific loss function play crucial roles, the use of TAB 

further propels the precision and efficiency of dental image analysis. This 

study provides a robust platform for future advances in dental image analysis 

and enhances the potential impact of dental procedures, including diagnosis, 

treatment planning, and patient monitoring.  

4.4 Ablation Study 

An ablation study was performed to assess the contribution of each component 

to the proposed tooth segmentation network. Each variation in the network 

under similar training conditions successively included essential components 

of the basic U-Net model. The components investigated in this study include 

Deep Supervision, Swin Transformers, and TAB. The effectiveness of each 

model, named Variations A to D and the complete proposed network was 

examined using several important metrics, such as ACC, DSC, JI, precision, 

recall, and specificity. The performance results for each variable are presented 

in Tables III and IV. The effectiveness of each model, named Variations A to  
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Table III 

Components of the Variations in the Ablation Study 

Variations U-Net Deep Supervision Swin Transformer TAB 

Variation A ✔ ✖ ✖ ✖ 

Variation B ✔ ✔ ✖ ✖ 

Variation C ✔ ✖ ✔ ✖ 

Variation D ✔ ✖ ✖ ✔ 

Proposed ✔ ✔ ✔ ✔ 

 

D and the complete proposed network were examined using several important 

metrics, such as ACC, DSC, JI, precision, recall, and specificity. 

Table IV provides the details of the components of each variation. Variation 

A is the basic U-Net structure, and each variation includes an additional 

component, namely Deep Supervision (Variation B), Swin Transformers 

(Variation C), and TAB (Variation D). Table V shows the segmentation 

performances for the ablation study. As shown in Table V, the accuracy of the 

segmentation results gets higher over the variation number. Small gains were 

observed in DSC and JI in Variation B, where Deep Supervision is used. This 

improvement is due to better feature propagation throughout the network, 

enhancing the model's distinction between teeth classes. Swin Transformers 

yields a marginal enhancement in the DSC, as shown in the result of Variance 

C. It is because Swin Transformers, with the self-attention mechanism, enables 
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capturing local and global contextual information, which is a crucial factor for 

segmenting the complex structure of dental images where each tooth can 

influence the context of neighboring teeth. The improvement in the 

performance was notably observed in Variation D, where the proposed TAB 

is solely performed TAB enhances model performance by selectively focusing 

on teeth boundaries, enhancing the accuracy and precision of segmentation 

masks. TAB refines differentiation between teeth and surrounding structures 

by assigning higher attention scores to boundary pixels, resulting in more 

distinct edges of individual teeth. This enhances the model's overall 

performance, resulting in more accurate and detailed tooth segmentation 

results which can be observed from the performance metrics. 

Table IV lists the performance metrics associated with each variation in the 

ablation study. This demonstrates that each successive variant, with an 

additional component, results in a gradual increase in the performance metrics. 

The basic U-Net structure was set as a base. Features like Deep Supervision 

and Swin Transformers were added, and improved results are shown in the 

performance of models. Among the added featured tools, the most significant 

boost in performance is shown for the proposed TAB. 

Although this thesis work proposes a novel tooth segmentation approach, it 

has certain limitations that guide future works. The dental images used in this 
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Table IV 

Performance Metrics for Variations in the Ablation Study 

Variations Accuracy DSC JI Precision Recall Specificity 

Variation A 0.9720 0.7602 0.6871 0.7458 0.8366 0.9725 

Variation B 0.9722 0.7846 0.7132 0.7557 0.8391 0.9725 

Variation C 0.9721 0.7644 0.6905 0.7569 0.8477 0.9726 

Variation D 0.9725 0.9001 0.8476 0.7908 0.9312 0.9728 

Proposed 0.9726 0.9102 0.8501 0.8046 0.9389 0.9730 



 

41  

 

study contains complete teeth sets with relatively fewer images with dental 

diseases, which may restrict the learning capability of the proposed model. 

Although the proposed model achieves promising results in segmenting teeth 

into many classes, further studies can be feasible with a more extensive set of 

dental health issues. 
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5. Conclusion 

An innovative tooth segmentation model for dental panoramic images is 

introduced, aiming to enhance the accuracy and efficiency of the segmentation 

process. It incorporates an M-Net-like structure with Deep Supervision, Swin 

Transformers, and TAB. The proposed model efficiently leverages local and 

global contextual information, resulting in significantly more accurate tooth 

segmentation. In particular, the proposed TABs show remarkable proficiency 

in highlighting complex dental anatomy and finely delineating tooth borders. 

The novel attention mechanism embedded in the TAB precisely highlights 

complex tooth structures, resulting in highly accurate segmentation outcomes. 

Using multiscale supervision and the squared Dice loss, the proposed 

architecture effectively tackles class imbalances and enhances feature 

representation, ultimately achieving precise tooth delineation and surrounding 

structure definition. The proposed method demonstrated its effectiveness and 

reliability in dental diagnosis applications on a real-world panoramic teeth X-

ray dataset. Furthermore, the proposed method shows the feasibility of 

automated disease diagnosis and treatment planning owing to the precise 

segmentation performance. For example, it enables the early detection of 

periodontal diseases or dental caries by identifying changes in tooth shape or 

the appearance of lesions. However, although the proposed model achieves 

significantly better results over the state-of-the-art, the investigation of a more 

extensive set of dental health issues remains as further studies.  
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