

2024년 2월 석사학위 논문

1,2-Diphenyl-o-carborane 및 Chromium 유도체: 합성, 특성, X-ray 구조 연구 및 생물학적 평가

조선대학교 대학원

화 학 과

하 태 진

1,2-Diphenyl-o-carborane 및 Chromium 유도체: 합성, 특성, X-ray 구조 연구 및 생물학적 평가

1,2-Diphenyl-o-carborane and Its Chromium Derivatives: Synthesis, Characterization, X-ray Structural Studies, and Biological Evaluations

2024년 2월 23일

조선대학교 대학원

화 학 과

하 태 진

1,2-Diphenyl-o-carborane 및 Chromium 유도체: 합성, 특성, X-ray 구조 연구 및 생물학적 평가

지도교수 이 종 대

이 논문을 이학석사학위신청 논문으로 제출함

2023년 10월

조선대학교 대학원

화 학 과

하 태 진

조선대학교 대학원

2023년 12월

하태진의 석사학위논문을 인준함

목 차

목 차	i
LIST OF FIGURES	iii
LIST OF TABLES	iv
ABSTRACT	v

1,2-Diphenyl-o-carborane 및 Chromium 유도체: 합성, 특성, X-ray 구조 연구 및 생물학적 평가

1. 서 론	1
2. 결과 및 고찰	2
2.1. 1,2-Diphenyl-o-carborane 및 크롬 금속 착물의 합성	2
2.2. IR 및 NMR 분광학	3
2.3. 1,2-Diphenyl-o-carborane 및 크롬 착물의 X-ray 구조 연구	4
2.4. IC ₅₀ 측정 및 B16과 CT26 세포의 붕소 결합	9
3. 자료 및 방법	11
3.1. 실험 방법	11
3.2. 결정구조 결정	11

3.3. 세포 생존율 분석	11
3.4. 시험관 내 B16과 CT26 암세포의 붕소 결합	12
3.5. 1,2-Diphenyl-o-carborane (1)의 합성	12
3.6. 1-(Phenyl-η ⁶ -chromium(0) tricarbonyl)-2-phenyl-o-carborane (2)의 합성	13
3.7. 1,2-Bis(phenyl-η ⁶ -chromium(0) tricarbonyl)-o-carborane (3)의 합성	13
4. 결 론	14
5. 참고 문헌	15
6. 보충 자료	19

- Scheme 1 1,2-Diphenyl-o-carborane (1)의 제조.
- Scheme 2 Mono- 및 bis- chromium 착물의 제조.
- Figure 1 1,2,3-Triphenyl-o-carborane와 chromium(0) tricarbonyl 착물 Ph3C2B, Ph3C2BCr2, Ph3C2BCr3의 분자구조.
- Figure 2 1번 화합물의 ORTEP.
- Figure 3 2번 화합물의 ORTEP.
- Figure 4 3번 화합물의 ORTEP.

- Table 1Crystal data and structure refinement of 1-3.
- Table 2Comparison of selected bond lengths (Å), angles (°), and torsion
angles (°) for 1-3.
- Table 3Cytotoxicity (IC_{50}) and boron accumulation of B16 melanoma
and CT26 colon carcinoma cells.

ABSTRACT

1,2-Diphenyl-o-carborane and Its Chromium Derivatives: Synthesis, Characterization, X-ray Structural Studies, and Biological Evaluations

Ha Tae Jin Advisor : Prof. Lee Jong Dae , Ph.D Department of Chemistry, Graduate School of Chosun University

The objective of this study is to design and synthesize substituted η^6 -chromium(0) tricarbonyl metal complexes carrying o-carborane units as potential boron neutron capture therapy (BNCT) agents. In this study, 1,2-diphenyl-o-carborane (1) units were used as starting materials to generate biologically active species. We investigated how the structural changes of 1 substituted with chromium(0) tricarbonyl affect the biological 1-(Phenyl-n⁶-chromium(0) tricarbonyl)-2-phenyl-o-carborane properties. and (2) and 1,2-bis(phenyl- η^6 -chromium(0) tricarbonyl)-o-carborane (3) species were produced in moderate yields. The molecular structures of compounds 1-3 were identified and established by infrared (IR); ¹H, ¹¹B, and ¹³C nuclear magnetic resonance (NMR) and X-ray crystallography analyses. Crystal structures of 1,2-diphenyl-o-carborane and the corresponding chromium complexes 1, 2, and 3 were obtained. In an in vitro study using B16 and CT26 cancer cells containing the triphenyl-o-carboranyl chromium(0) complexes Ph3C2BCr2 and Ph3C2BCr3, which we reported previously, compounds 2 and 3 accumulated at higher levels than compounds Ph3C2BCr2 and Ph3C2BCr3. However, the phenvlated o-carboranyl chromium complexes have been found to be more cytotoxic than p-boronophenylalanine (BPA).

1. 서 론

봉소 중성자 포획 요법은 (BNCT) 다양한 중추신경계 (CNS) 장애, 특히 뇌종양에 대 한 유망한 치료법이다. 현재 BNCT는 다형성 교모세포종 치료를 위한 수술의 보조제로 사용되고 있다.¹ BNCT의 효과는 수술로 치료할 수 없거나 다른 치료법이 없는 뇌 미 세전이를 억제하는 것이다.² BNCT는 암 세포에 전달된 붕소 동위원소를 중성자와 반 응시켜 표적 방사선 폭발의 에너지로 암세포를 파괴한다. 세포에 흡수되면, ¹⁰B는 외부 에서 중성자로 조사되어 불안정해지며 [¹¹B]*, 리튬 (⁷Li³⁺)과 고에너지 입자 (⁴He²⁺)로 붕괴된다. B₁₀H₁₀²⁻, B₁₂H₁₂²⁻와 같이 ¹⁰B 원자가 많은 붕소의 장점은 다면체 클러스터를 형성해 분자 내에 고농도의 붕소가 존재할 수 있어 만족스러운 치료 효과를 기대할 수 있다. 붕소 원자에 의한 중성자 포획의 높은 선택성과 이를 이용한 치료 효과는 높은 독성 수준의 암세포를 파괴하는 다른 화학 치료에 대체할 수 있는 방안이 된다.

화합물 o-carborane, 1,2-dicarba-closo-dodecaborane, C₂B₁₀H₁₂는 정이십면체 구조로 붕소 가 풍부한 화합물이며, 회전하는 벤젠 고리의 지름과 1nm 이내로 비슷한 구조를 이루 는 특징으로 다양한 조건에서 높은 대칭성을 유지하고 안정성을 제공한다.³ 이 클러스 터에는 10개의 붕소와 2개의 탄소 원자가 포함되어 있어 BNCT 제제로 매우 적합하 며,^{4,5} 약물 발견, 분자 영상과 표적 방사성 핵종 치료 등 다른 분야에서도 잠재력을 가 지고 있다.⁶ 그러나 이러한 이점에도 불구하고 붕소 제제의 높은 독성과 물에 대한 낮 은 용해도는 추가 임상 치료를 저해하는 심각한 문제로 남아 있다.⁷

Figure 1에서 볼 수 있듯이 1,2,3-triphenyl-o-carborane과 크롬 착물 (Ph3C2B, Ph3C2BCr2 및 Ph3C2BCr3)의 합성과 구조적인 특성을 보고하였다.^{8,9} 전이 금속 π-복합 체 중에서 η⁶-arene chromium(0) tricarbonyl 착물은 유기 합성에서의 중요한 응용으로 인 해 광범위한 개발의 대상이 되어 왔다.^{10,11} 또한, 크롬 착물의 잠재력을 향상하기 위해 생체 유기 금속 화학에서 금속 카보닐의 사용이 점점 더 개발되고 있다.¹²⁻¹⁵

Figure 1. 1,2,3-triphenyl-o-carborane와 chromium(0) tricarbonyl 착물 Ph3C2B, Ph3C2BCr2, Ph3C2BCr3 의 분자구조.

이 연구는 η⁶-arene chromium(0) tricarbonyl-substituted o-carborane 화합물을 BNCT에 적용한 첫 번째 예시다. 지금까지, 소수의 η⁶-arene chromium(0) tricarbonyl-substituted o-carborane 착물이 구조적으로 확인되었다.¹⁶⁻¹⁸ 또한, o-carborane에 탄소 또는 붕소의 다양한 aryl groups의 도입이 보고되었다. 그러나 지금까지 생물학적 특성을 보고한 자 료는 없다. 이 연구는 η⁶-arene chromium(0) tricarbonyl groups을 가진 phenylated o-carboranes이 BNCT 제제로서 가능성을 보여준다.

2. 결과 및 고찰

2.1. 1,2-Diphenyl-o-carborane 및 크롬 금속 착물의 합성

이전 연구에서 Ph3C2B, Ph3C2BCr2, 및 Ph3C2BCr3의 자세한 합성을 보고하였다.^{8,9} 1 번 화합물은 이전에 보고된 방법으로 합성되었다.^{19,20} 1,2-Diphenyl-o-carborane (1)은 N,N-dimethylaniline을 염기로 사용하여 toluene에서 decaborane (B₁₀H₁₄)과 diphenylacetylene으로 제조되었다. 그 결과, 두 개의 탄소에 phenyl 치환기가 있는 정이 십면체 o-carborane을 합성하였다. (Scheme 1)

Scheme 1. 1,2-Diphenyl-o-carborane (1)의 제조.

이전 결과와 비교를 위해 chromium(0) hexacarbonyl [Cr(CO)₆]과 o-carborane에 두 개의 phenyl groups을 반응하여 o-carborane의 전자 흡인 능력을 확인하였다.²¹ 1번 화합물과 Cr(CO)₆의 반응은 Scheme 2에서 나타난 것과 같이, η⁶-phenyl-coordinated mono- 와 bis-chromium 착물 (2와 3번 화합물)을 화학 양론적으로 생성하였다. 따라서, 1,2-diphenyl-o-carborane (1)은 1,2,3-triphenyl-o-carborane보다 화학 양론적 반응을 선호한 다는 것을 보여준다.

Scheme 2. Mono- 와 bis- chromium 착물의 제조. (2와 3)

2.2. IR 및 NMR 분광학

1,2-Diphenyl-o-carborane (1)의 구조는 X-ray diffraction (XRD)로 확인하기 전에 ¹H, ¹¹B 및 ¹³C NMR을 확인하였다. 1번 화합물이 가지고 있는 두 개의 phenyl 고리에서의 ¹H NMR spectrum은 약 δ 7.45~7.15에서 나왔다. ¹¹B NMR spectrum은 약 δ -11.38~-2.40 에서 나왔다. ¹³C NMR spectrum은 약 δ 130.55~85.16에서 나왔다. 2와 3번 화합물의 적 외선 (IR) spectrum은 1965, 1890 (2), 1965, 1892 cm⁻¹ (3)에서 C≡O 단위의 흡수 밴드 를 보여줬다. IR spectrum 값은 (C₆H₆)Cr(CO)₃의 값보다 낮았다.²²⁻²⁶ IR 및 NMR spectrum은 **2**와 **3**번 화합물의 phenyl과 Cr에서 명확하게 나타내며, ¹H 와 ¹³C NMR spectrum에서 각각 δ 7.715-7.250 및 137.55-130.06의 downfield 영역으로의 화학적 이동 을 나타낸다. (Figures S1-S9 참조)

2.3. 1,2-Diphenyl-o-carborane 및 크롬 착물의 X-ray 구조 연구

The selected crystallographic data와 a summary of the intensity data collection parameters 이 각각 Table 1과 2에 표기하였다. 1, 2, 3번 화합물의 구조 결정 및 구조적 특징에 대한 자세한 정보는 보충 자료 및 부록 A에 제공하였다. 또한 Ph3C2B, Ph3C2BCr2 및 Ph3C2BCr3의 분자구조 및 구조적 특성도 포함되어 있다 (그림 S1-S3 및 표 S10 및 S11). 단결정 X-ray 구조 결정은 각 화합물의 구조를 정확하게 밝혀냈고 o-carborane 의 C-C 거리 변화를 기반으로 전자 구조에 대한 변경을 제안하였다.²⁷ 1번 화합물의 C1-C2 결합 거리는 1.726(2)Å으로 치환되지 않은 o-carborane의 C1-C2 결합 거리보다 [1.629(6) 및 1.630(6) Å] 상당히 긴 것 볼 수 있다. 또한 1번 화합물과 Ph3C2B (표 S11)의 C-C 거리를 비교하면 Ph3C2B의 결합이 1번 화합물의 결합보다 더 긴 것으로 나타났다. 화합물 Ph3C2B는 1번 화합물 형태를 유지하며 봉소 원자에 phenyl groups을 추가하였다.^{28,29}

Table 1. Crystal data and structure refinement of 1-3.

	1	2	3	
Indentification code	K120504	K130805	K131105	
Empirical formula	$C_{14}H_{20}B_{10}$	$C_{17}H_{20}B_{10}Cr_1O_3$	$C_{20}H_{20}B_{10}Cr_2O_6$	
Formula weight	296.40	432.43	568.46	
Temperature	293(2) К	293(2) K	293(2) К	
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	
Crystal system, space group	Monoclinic, P2 ₁ /n	Monoclinic, $P2_1/n$	Triclinic, Pi	

Unit cell dimensions	$\begin{array}{l} a \ = \ 10.859(1) \ \ \mathring{A} \\ b \ = \ 24.953(3) \ \ \mathring{A}, \\ \beta \ = \ 111.854(2)^\circ \\ c \ = \ 13.938(2) \ \ \mathring{A} \end{array}$	$\begin{array}{l} a = \ 10.621(3) \ \ {\rm \AA}, \\ b = \ 17.056(5) \ \ {\rm \AA}, \\ \beta = \ 106.622(5)^{\circ} \\ c = \ 12.174(4) \ \ {\rm \AA} \end{array}$	$\begin{array}{l} a = 17.540(2) \ \text{\AA}, \\ a = 105.746(2)^{\circ} \\ b = 18.060(2) \ \text{\AA}, \\ \beta = 110.226(2)^{\circ} \\ c = 19.484(3) \ \text{\AA}, \\ \gamma = 91.256(2)^{\circ} \end{array}$
Volume	3505.3(8)	2113.2(1)	5528.0(1)
Z, D_{calc}	8, 1.123	4, 1.359	2, 0.342
F(000)	1232.0	880.0	572
Crystal size	0.15, 0.13, 0.12	0.17, 0.15, 0.13	0.20, 0.20, 0.15
θ range for data collection	1.63 to 28.37	2.12 to 28.46	1.17 to 28.38
Limiting indices	$\begin{array}{rrrr} -14 &\leq h \leq 14, \\ -33 &\leq k \leq 32, \\ -18 &\leq l \leq 18 \end{array}$	$\begin{array}{rrrr} -14 &\leq h \leq 14, \\ -22 &\leq k \leq 22, \\ -16 &\leq l \leq 16 \end{array}$	$\begin{array}{rrrr} -23 \leq h \leq 23, \\ -24 \leq k \leq 24, \\ -26 \leq l \leq 25 \end{array}$
Reflections collected/unique	35826/8726 [R(int) = 0.0421]	$\frac{28490}{5305}$ [R(int) = 0.0238]	44259/18014 [R(int) = 0.0398]
Completeness to $\theta = 28.38$	99.3%	99.2%	65.0%
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data/restraints/ parameters	8726/0/581	5305/0/360	18014/0/1409
Goodness-of-fit on F ²	1.008	1.053	0.902
Final R indices $[I > 2\theta(I)]$	${}^{a}R_{1} = 0.0616,$ ${}^{b}\omega R_{2} = 0.1545$	${}^{a}R_{1} = 0.0332,$ ${}^{b}\omega R_{2} = 0.0958$	${}^{a}R_{1} = 0.0563,$ ${}^{b}\omega R_{2} = 0.1505$
R indices (all data)	${}^{a}R_{1} = 0.1037,$ ${}^{b}\omega R_{2} = 0.1897$	${}^{a}R_{1} = 0.0388,$ ${}^{b}\omega R_{2} = 0.1018$	${}^{a}R_{1} = 0.0877,$ ${}^{b}\omega R_{2} = 0.1612$
Largest diff. peak and hole	0.220 and -0.355 e.Å ⁻³	$\begin{array}{c} 0.364 \ \text{and} \\ -0.242 \ \text{e.} \text{\AA}^{-3} \end{array}$	$\begin{array}{c} 0.687 \;\; \text{and} \\ -0.375 \;\; e.\text{\AA}^{-3} \end{array}$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||$ (based on reflections with $F_{o}^{2} > 2\sigma F^{2}$), ${}^{b}\omega R_{2} = [\Sigma[\omega(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[\omega(F_{o}^{2})^{2}]]^{1/2}$; $\omega = 1/[\sigma 2(F_{o}^{2}) + (0.095P)^{2}]$; $P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3$ (also with $F_{o}^{2} > 2\sigma F^{2}$).

	C18 C17 C18 C15 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C14 C19 C19 C19 C19 C19 C19 C19 C19 C19 C19	C16 C17 C18 C14 C18 C18 C18 C18 C18 C18 C18 C24 C19 C19 C19 C22 C22 C22 C22 C22 C22 C22 C22 C22 C2	C16 C17 C15 C14 C14 C14 C14 C14 C14 C14 C14 C14 C14
Ph_{C-C} (av)	1.376	1.400	1.406
Ph _{C-C} (av)-Cr		2.210	2.212
Cab_{C-C}	1.726(2)	1.740(2)	1.724(4)
Cent-Cr		1.702	1.696(av)
Cr-CO		1.499(2)	1.851(av)
C1-C13	1.507(2)	1.499(2)	1.502(4)
C2-C19	1.501(2)	1.500(2)	1.510(4)
C13-C1-C2	118.3(1)	116.6(1)	116.4(2)
C19-C2-C1	119.0(1)	119.6(1)	116.1(2)
C1-C2-C19-C20	84.1(2)	86.1(2)	105.8(3)
C2-C1-C13-C14	81.7(2)	102.3(1)	112.4(3)

Table 2. Comparison of selected bond lengths (Å), angles (°), and torsion angles (°) for 1–3.

X-ray crystallography에 적합한 1번 화합물의 단결정과 chromium(0) tricarbonyl 착물인 2와 3번 화합물은 dichloromethane 용액에서 느린 증발을 통해 얻어졌다. 1번 화합물과 크롬 착물의 일반적인 구조적 특성은 Table 2에 나와 있다. 1, 2, 3번 화합물의 분자구 조는 Figures 2~4에 나와 있다. 1번 화합물은 1993년 Lewis와 Welch에 의해 보고되었 다. (C₁₄H₂₀B₁₀, Mw = 296.41, monoclinic, *P*2₁/c, *a* = 10.832(4), *b* = 24.890(13), *c* = 13.9243(21) Å, *β* = 111.881(21)°, *V* = 3483.6Å³, *Z* = 8).³⁰ 데이터를 비교하면 결합 길이, 각도, 양면 각도가 거의 같다는 것을 알 수 있다 (Figure 2).

Figure 2. 1번 화합물의 ORTEP (열 타원체의 확률 30%, 명확성을 위해 수소 원자는 생 략됨, 검은색 = 탄소, 녹색 = 붕소).

Figure 3을 보았을 때, 2번 화합물의 크롬 원자는 이전 결과와 유사하게 π-결합을 통 해 o-carborane 탄소 원자의 phenyl 고리에 배위 결합하여 있는 것을 볼 수 있다.^{8,9} 크 롬 금속은 3개의 다리가 있는 "피아노 의자" 구조를 보여주었다. 크롬 금속은 phenyl 고리 위의 중심에 위치하여 Cr1-C₆H₅ 면 (중심)거리가 1.702Å이었다. 배위된 phenyl 고 리의 평균 C-C 결합 길이는 1.410Å으로, 배위되지 않은 phenyl 고리 내의 C-C 결합의 평균 결합 길이인 1.382Å보다 0.028Å 더 긴 것을 확인하였다. Cr-C_{Ph} 와 Cr-CO 결합의 평균값은 각각 2.210Å와 1.856Å으로 정상 범위에 속한다.³¹ 크롬에 배위된 카보닐 리간 드의 평균 C-O 결합 길이는 1.143Å이며, η⁶-arene chromium(0) tricarbonyl 착물보다 약 간 짧다.³²⁻³⁶ 또한, C1-C2 결합 거리는 1.740(2)Å으로 1번 화합물보다 약간 더 크며 비 결합 특성 범위에 존재한다.^{37.40} 또한, Table 2와 S6에 표시된 것처럼 1과 2번 화합물 두 phenyl 고리의 비틀림 각도는 크롬 원자와의 배위결합 시 변화하였다.

Figure 3. 2번 화합물의 ORTEP (열 타원체의 확률 30%, 명확성을 위해 수소 원자는 생 략됨, 검은색 = 탄소, 녹색 = 붕소).

3(Figure 4)의 X-ray crystal 구조는 dichromium 원자가 두 개의 phenyl 고리와 η⁶ 배위 를 채택했음을 보여준다. 3번 화합물의 단결정 X-ray 회절 연구에서의 결정구조는 Triclinic space group P-1으로 밝혀졌다. 3번 화합물은 triclinic space group 임에도 APEX3 프로그램에서는 Z값을 8로 식별해 풀지 못하였다. 결과를 얻기 위해 결정계와 공간군을 변경하여 보았지만, 만족스러운 결과를 얻지 못하였다. 단위 셀 내에서 4개의 분자를 하나의 분자로 인식되는 것으로 간주하여 Z값을 2로 조정하여 구조를 해석하 였고, 3번 화합물의 기하학적 매개변수는 예상 범위 내에서 확인하였다 (Table 2). 크롬 배위 phenyl 고리의 평균 C-C 결합 길이는 1.406 Å로 1번 화합물의 C-C 결합의 평균 결합 길이 1.376 Å보다 0.03 Å 길었다. Cr-Cph 및 Cr-CO 결합 길이의 평균값은 각각 2.212Å과 1.851Å으로 정상 범위 내에서 확인 할 수 있었다.³¹ 크롬에 배위된 카보닐 리 간드의 평균 C-O 결합 길이는 보고된 η⁶-arene chromium(0) tricarbonyl 착물의 길이보다 1.138Å 상당히 짧았다.³²⁻³⁶ 크롬 금속은 phenyl 고리 위의 대략 중심에 위치하여 각각 1.687 및 1.705Å의 Cr1/Cr2-C₆H₅면 (중심)거리를 형성하였다. 그러나 **3**번 화합물의 C1-C2 결합 길이는 1과 2번 화합물의 길이보다 짧았다. 3번 화합물의 C1-C2 결합의 수축 은 phenyl 고리 π^* 에 의한 것이며, 3번 화합물에서는 carboranyl σ^* 궤도 상호 작용이 발생하지 않는 것으로 나타났다. 이전 결과에서 관찰된 바와 같다.⁸⁹ Table 2와 S9에 나타난 바와 같이, 1과 3번 화합물 또는 2와 3번 화합물의 phenyl 고리의 비틀림 각도 는 크롬 원자와의 배위시 변화하였다.

Figure 4. 3번 화합물의 ORTEP (열 타원체의 확률 30%, 명확성을 위해 수소 원자는 생 략됨, 검은색 = 탄소, 녹색 = 붕소).

2.4. IC50 측정 및 B16과 CT26 세포의 붕소 결합

B16 실험용 생쥐 흑색종과 CT26 결장암 세포를 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3 로 72시간 동안 처리한 후 MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra zolium bromide]를 사용하여 세포 생존율을 확인하였다. 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3은 0.091-0.736 μM 범위의 IC₅₀ (최대 억제 농도의 절반) 값으로 BPA보다 더 높은 세포독성을 나타냈다 (Table 3). 1,2,3-triphenyl-o-carboranyl chromium(0) tricarbonyl 착물 (Ph3C2BCr2 및 Ph3C2BCr3)은 2와 3번 화합물보다 B16과 CT26 세포에 대해 더 높은 세포독성을 나타냈다. B16 세포에 대한 Ph3C2BCr2 및 Ph3C2BCr3 화합물의 세포 독성이 더 높은 것은 phenyl groups와 chromium(0) tricarbonyl 부분이 세포독성을 유도 하는 메커니즘의 차이로 보인다. 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3은 CT26 및 B16 세포에서 유사한 활성을 나타냈으며 ICso값은 0.089-0.833 μM 범위로 나타났다. ICP-OES를 사용하여 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3 의 세포 내 붕소 축 적 농도를 측정하였다. B16과 CT26 세포에서 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3 의 세포 내 붕소 흡수는 BPA보다 높았다 (Table 3). 1,2,3-triphenyl-o-carboranyl chromium tricarbonyl 착물 (즉, Ph3C2BCr2 and Ph3C2BCr3)을 포함하는 bis- 와 tris-chromium(0) tricarbonyl- 치환 화합물 모두에서 붕소 흡수가 더 낮

은 것으로 나왔다. Carborane 골격에 phenyl groups 또는 chromium 금속을 도입하면 암 세포에서 붕소 축적을 증가시키기보다는 세포독성을 증가시킨다는 것을 보여준다.

	B16		СТ26	
Compounds	Cytotoxicity IC ₅₀ (M) ^a	Boron Accumulation (ppm) ^b	Cytotoxicity IC ₅₀ (M) ^a	Boron Accumulation (ppm) ^b
2	$\begin{array}{c} 0.736 \times 10^{-6} \\ (\pm 0.01) \end{array}$	0.825 ± 0.003	$\begin{array}{c} 0.833 \ \times \ 10^{-6} \\ (\pm \ 0.03) \end{array}$	0.755 ± 0.009
3	$\begin{array}{c} 0.681 \ \times \ 10^{-6} \\ (\pm \ 0.04) \end{array}$	$0.620 ~\pm~ 0.002$	$\begin{array}{c} 0.314 \ \times \ 10^{-6} \\ (\pm \ 0.07) \end{array}$	0.694 ± 0.002
Ph3C2BCr2	$\begin{array}{c} 0.411 \ \times \ 10^{-6} \\ (\pm \ 0.06) \end{array}$	0.384 ± 0.006	$\begin{array}{r} 0.164 \ \times \ 10^{-6} \\ (\pm \ 0.05) \end{array}$	$0.402 ~\pm~ 0.002$
Ph3C2BCr3	$\begin{array}{c} 0.091 \ \times \ 10^{-6} \\ (\pm \ 0.03) \end{array}$	0.221 ± 0.001	$\begin{array}{r} 0.089 \ \times \ 10^{-6} \\ (\pm \ 0.08) \end{array}$	0.247 ± 0.001
BPA	$\begin{array}{rrr} 4.871 \ \times \ 10^{-5} \\ (\pm \ 0.03) \end{array}$	0.103 ± 0.002	$\begin{array}{rrr} 3.862 \ \times \ 10^{-3} \\ (\pm \ 0.04) \end{array}$	0.514 ± 0.001

Table 3. Cytotoxicity (IC_{50}) and boron accumulation of B16 melanoma and CT26 colon carcinoma cells.

^a B16 흑색종과 CT26 결장 암종 암세포 (5 × 10³ cells)를 화합물 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3 의 존재 하에 72시간 동안 배양한 후 MTT 분석을 통해 생존 세포의 백분율을 결정하였 다. 세포 생존율을 50% (IC₅₀) 억제하는 데 필요한 약물 농도는 반대수 농도-반응 플롯에서 결정되었 으며 결과는 3중 샘플의 평균 ± sd를 나타낸다.

^b B16과 CT26 세포 (5 × 10⁵ cells)를 화합물 2와 3번 화합물, Ph3C2BCr2 및 Ph3C2BCr3 또는 BPA (10.8 ppm) 의 존재 하에서 3시간 동안 배양하였다. 3회 세척 후 inductively coupled plasma optical emission spectroscopy (ICP-OES) 을 통해 축적된 붕소 농도를 측정하였다. 표시된 값은 세 샘플의 평 균 ± sd 값이다.

3. 자료 및 방법

3.1. 실험 과정

모든 실험은 standard Schlenk techniques를 사용하여 건조된 질소 또는 아르곤 대기 하에서 수행되었다. Tetrahydrofuran (THF) 은 질소 대기 하에서 sodium과 benzophenone 으로부터 증류되었다. Carlo Erba Instruments CHNS-O EA 1108 analyzer를 사용하여 연 소 분석하였다. High-resolution tandem mass spectrometry (JMS-HX 110/110A, Jeol Ltd.) 자료는 Korean Basic Science Institute에서 수집하였다. ¹H, ¹¹B, and ¹³C NMR spectrum은 각각 600.1, 150.9, 192.6 MHz에서 작동하는 Bruker 600 spectrometer를 사용하여 기록하 였다. ¹¹B 화학적 이동은 BF₃·O(C₂H₅)₂ (0.0 ppm)에 대해 언급되었으며, 음수 부호는 upfield 이동을 나타낸다. 양성자와 탄소 화학적 이동은 잠금 용매 (99.9% CDCl₃)의 내 부 잔류 CHCl₃에 대해 측정하였다. Decaborane은 Katchem에서 구입하였다. N,N-dimethylaniline, 1,2-diphenylacetylene, n-BuLi (2.5 M in hexane) 및 chromium hexacarbonyl [Cr(CO)₆]은 Aldrich Chemicals에서 구입하였다.

3.2. 결정구조 결정

1, 2, 3번 화합물의 결정은 toluene 또는 CH₂Cl₂로부터 얻어 아르곤 대기 하에서 유리 모세관에 밀봉되어 회절계에 장착되었다. 예비 검사 및 자료수집은 흑연-단색 Mo-Kα radiation (λ = 0.71073 Å)을 사용하여 sealed-tube X-ray source (40 kV × 50 mA)가 장착 된 Bruker SMART CCD detector system singlecrystal X-ray diffractometer를 사용하였다. 예비 셀 상수는 45개의 좁은 프레임 (0.3° in ω) 스캔을 사용하여 결정되었다. 소음을 배제하기 위해 Double-pass scanning이 사용되었다. 좁은 프레임 스캔에서 결정된 방향 매트릭스를 사용하여 통합하였다. SMART software package는 자료수집에 사용되었으 며, SAINT는 프레임 통합에 사용되었다.⁴¹ 최종 셀 상수는 전체 데이터시트에서 수집 된 반사의 *xyz* 중심으로 개선하여 결정되었다. 구조 해결책 및 개선은 SHELXTL-PLUS software package를 사용하여 수행되었다.

3.3. 세포 생존율 분석 (MTT 분석)

B16과 CT26 세포는 한국생명공학연구원에서 입수하였다. B16과 CT26 세포를 10% 소태아혈청 (FBS; Welgene)이 Dulbecco's modified Eagle's medium (DMEM; 대한민국 경 산시 웰진)에서 배양하였다. 세포를 5% CO₂가 있는 인큐베이터에서 37°C에서 배양하 였다. 붕소 화합물을 dimethyl sulfoxide (DMSO)에 녹이고, 용액을 Dulbecco's Modified Eagle's Medium (DMEM) (10% FBS)으로 희석하거나, p-boronophenylalanine (BPA)을 동 일한 배지에 직접 녹였다. 96-Well culture plate (Falcon 3072)에서 B16 마우스 흑색종 및 CT26 결장 암종 세포 (5 × 10³ cells/well)을 다양한 농도의 붕소 화합물을 함유하는 배지와 함께 5개의 wells에서 배양하였다. CO2 인큐베이터에서 37°C에서 72시간 동안 배양하였다. DMSO는 0.5% 미만의 농도에서 무독성이며, 대조 실험을 통해 본 실험에 사용된 농도에서 DMSO의 무독성을 확인하였다. 배지를 제거하고 세포를 phosphate-buffered saline [PBS (-)]로 3회 세척한 후, CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay (MTT)를 사용하여 microplate reader에서 세포 수를 측정하였다. 해당 미처리군 세포 수의 50%에 해당하는 세포 배양 농도 (IC₅₀)을 Table 3에 정리하였다.

3.4. 시험관 내 B16과 CT26 암세포의 붕소 결합

B16과 CT26 암세포를 Falcon 3025 dishes (150 mmφ)에서 배양하였다. 세포 집단이 접시를 채울 정도로 증가했을 때 (5 × 10⁵ cells/dish), 붕소 화합물과 BPA (10 μM)를 첨가하였다. 세포를 DMEM (20 mL의 10% FBS)에서 37°C에서 3시간 동안 배양하였다. 세포를 Ca/Mg가 없는 PBS (-)로 3회 세척 후 rubber policeman으로 수집하고 60% HClO₄⁻ 30% H₂O₂ (1:2) solution (2 mL) 혼합물로 75°C에서 1시간 동안 분해하였다. Membrane filter (Millipore, 0.22 mm)를 통해 여과한 후 inductively coupled plasma optical emission spectroscopy (ICP-OES) 기기 (Avio 220 Max, PerkinElmer, Waltham, MA, USA) 를 사용하여 붕소 농도를 측정하였다. 각 실험은 세 번씩 수행되었다.

3.5. 1,2-Diphenyl-o-carborane (1)의 합성

1,2-Diphenylethyne (2.2 g, 12.0 mmol)와 B₁₀H₁₄ (decaborane) (1.22 g, 10.0 mmol)을 아 르곤 대기 하 실온에서 건조 toluene (100 mL)에 용해하였다. N,N-dimethylaniline (2.78 mL, 24.0 mmol)을 반응 혼합물에 첨가하고, 혼합물을 110°C에서 24시간 동안 reflux 하 였다. 냉각 후, 고체 잔류물을 filtered 하여 제거하고 용매를 rotary evaporator를 이용하 여 제거하였다. 혼합물을 silica gel column chromatography (hexane as the eluent, R_f = 0.15)를 사용하여 정제하였다. CH₂Cl₂로부터 재결정하여 1번 화합물을 무색 결정으로 얻었다 (2.31g, 78%). HRMS:[¹²Cl₄¹H₂₀¹¹B₁₀]⁺ calc. 296.2568. Found: 296.2571. IR spectrum (KBr pellet, cm⁻¹): v(C_{Ar}-H) 3024, v(B-H) 2589, v(C=C_{Ar}) 1601, 1500. ¹H NMR (CDCl₃, 600 MHz) δ 7.45 (d, 4H, J = 7.8 Hz, Ph-H), 7.24 (t, 2H, J = 7.2 Hz, Ph-H), 7.15 (t, 4H, J = 7.8 Hz, Ph-H). ¹¹B{¹H} NMR (CDCl₃, 192.6 MHz) δ -2.40, -9.09, -10.37, -11.38. ¹³C NMR (CDCl₃, 150.9 MHz) δ 130.55, 130.10, 128.21 (Ph), 85.16 (C_{cab}).

3.6. 1-(Phenyl-n⁶-chromium(0) tricarbonyl)-2-phenyl-o-carborane (2)의 합성

1번 화합물 (0.3 g, 1.0 mmol) 및 1.2 당량의 [Cr(CO)₆] (0.26 g, 1.2 mmol)을 THF (5 mL)와 di-n-butyl ether (50 mL)의 혼합물에 녹였다. 혼합물을 72시간 동안 reflux 하였다. 생성된 암적색 용액을 실온으로 냉각시키고 Celite를 통해 여과하였다. 용매를 rotary evaporator를 이용하여 제거하였다. 반응 혼합물을 column chromatography [CH₂Cl₂:hexane (1:1) as the eluent, R_f = 0.3~0.35] 로 정제하여 **2**번 화합물을 얻은 다음 toluene에서 재결정하여 적색 결정을 얻었다. Yield: 88% (0.38 g, 0.88 mmol). HRMS: [¹²C₁₇¹H₂₀¹¹B₁₀⁵²Cr₁¹⁶O₃]⁺ calc. 432.1821. Found: 432.1824. IR spectrum (KBr pellet, cm⁻¹): v(C_{Ar}-H) 3023, 3020, v(B-H) 2588, v(C=O) 1965,1890. ¹H NMR (CDCl₃, 600.1 MHz) δ 7.627 (d, 3H, J = 7.2 Hz, Ph-H), 7.512 (t, 2H, J = 7.2 Hz, Ph-H), 7.454 (t, 1H, J = 7.2 H, Ph-H), 7.346 (t, 2H, J = 7.2 Hz, Ph-H), 7.250 (t, 2H, J = 7.8 Hz, Ph-H). ¹¹B NMR (CDCl₃, 192.6 MHz) δ -0.82, -2.88, -4.75, -9.77, -11.05, -14.04. ¹³C NMR (CDCl₃, 150.9 MHz) δ 221.54 (Cr-CO), 137.34, 133.50, 132.19, 131.60, 131.51, 130.16, 130.06 (Ph), 87.54 (C_{cab})

3.7. 1,2-bis(phenyl-n⁶-chromium(0) tricarbonyl)-o-carborane (3)의 합성

I-(Phenyl-η⁶-chromium(0) tricarbonyl)-2-phenyl-o-carborane (2)와 유사한 절차를 사용하 여 적색 결정을 얻었다. Yield: 57% (0.32 g, 0.57 mmol). HRMS: [¹²C₂₀¹H₂₀¹¹B₁₀⁵²Cr₂¹⁶O₆]⁺ calc. 568.1073. Found: 568.1077. IR spectrum (KBr pellet, cm⁻¹): $v(C_{Ar}$ -H) 3021, v(B-H) 2583, 2589; v(C≡O) 1965, 1892. ¹H NMR (CDCl₃, 600.1 MHz) δ 7.715 (d, 4H, J = 7.8 Hz, Ph-H), 7.497 (t, 2H, J = 7.2 Hz, Ph-H), 7.406 (t, 4H, J = 7.8 Hz, Ph-H). ¹¹B NMR (CDCl₃, 192.6 MHz) δ -2.50, -9.49, -11.07, -11.83. ¹³C NMR (CDCl₃, 150.9 MHz) δ 228.85 (Cr−CO), 137.55, 136.15, 134.31 (Ph), 87.17 (C_{cab}).

4. 결론

이 연구는 1,2-diphenyl- 과 1,2,3-triphenyl-o-carborane 화합물과 이에 대응하는 chromium(0) tricarbonyl 전이 금속 착물의 합성, X-ray 구조 및 생물학적 활성을 설명하 였다. 이 금속 착물은 화학 양론적으로 전이 금속으로 쉽게 치환되어 BNCT에 대해 활 성이 높은 생물학적 분자를 생성할 수 있었다. chromium(0) hexacarbonyl을 사용하여 o-carborane 및 화학 양론적으로 배위된 전이 금속 착물로 차례로 도입하는 일반적이고 다양한 방법을 제시하였다. C1-C2 결합 길이는 2번 화합물에서 가장 길고 3번 화합물 에서 가장 짧은 것으로 확인되었다. 이는 phenyl group의 π^* orbital과 carborane 탄소의 σ* orbital이 강한 π-receptor 역할을 함으로써 금속 (Cr)에서 리간드 (Ph) back-bonding 상호작용을 통해 안정적인 새로운 유형의 유기 금속 착물 (2와 3)을 형성하는 데 영향 을 미친다는 것을 발견하였다. 또한, 두 개의 phenyl groups이 서로 마주 보게 배치될 o-carborane의 전자 회수 특성을 명확하게 보여주었다. Diphenyl- or CCH triphenyl-o-carborane 및 상응하는 chromium 착물은 B16과 CT26 암 세포주에서 p-boronophenylalanine (BPA)보다 더 높은 세포독성을 나타냈다. 그러나 붕소 축적은 p-boronophenylalanine (BPA)의 축적보다 높았다. O-carborane 골격에 chromium 금속 원 자 및/또는 phenyl groups이 많이 치환될수록 세포독성은 증가하지만, 붕소 축적은 감소 하는 것을 확인하였다.

5. 참고 문헌

1. Yamamoto, T.; Nakai, K.; Matsumura, A. Boron neutron capture therapy for glioblastoma. *Cancer Lett.* **2008**, 262, 143–152.

2. Pisarev, M.A.; Dagrosa, M.A.; Juvenal, G.J. Boron neutron capture therapy in cancer: past, present and future. *Arg Bras Endocrinol Metab.* **2007**, 51, 852–856.

3. Lesnikowski, Z.J. Boron units as pharmacophores—New applications and opportunities of boron cluster chemistry. *Collect. Czech. Chem. Commun.* **2007**, 72, 1646-1658.

4. Tjarks, W.; Tiwari, R.; Byun, Y.; Narayanasamy, S.; Barth, R.F. Carboranyl thymidine analogues for neutron capture therapy. *Chem. Commun.* **2007**, 4978-4991.

5. Bregadze, V.I.; Sivaev, I.B. Polyhedral Boron Compounds for BNCT in Boron Science: New Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2011; Chapter 9; pp. 187-207.

6. Armstrong, A.F.; Valliant, J.F. The bioinorganic and medicinal chemistry of carboranes: from new drug discovery to molecular imaging and therapy. *Dalton Trans.* **2007**, 38, 4240-4251.

7. Korbe, S.; Schreiber, P.J.; Michl, J. Chemistry of the Carba-closo-dodecaborate(-) Anion, CB₁₁H₁₂⁻. *Chem. Rev.* **2006**, *106*, 5208- 5249.

8. Jin, G.F.; Hwang, J.-H.; Lee, J.-D.; Wee, K.-R.; Suh, I.-H.; Kang, S.O. A three-dimensional π -electron acceptor, tri-phenyl-*o*-carborane, bearing a rigid conformation with end-on phenyl units. *Chem. Commun.* **2013**, *49*, 9398–9400.

9. Kim, S.-Y.; Ma, S.-Y.; Kang, S.O.; Lee, J.-D. B-phenylated *o*-carboranes and its chromium derivatives: Synthesis, electrochemical properties, and X-ray structural studies. *J. Organomet. Chem.* **2018**, *865*, 100-108.

 Semmelhack, M.F. Transition Metal Arene Complexes: Nucleophilic Addition, Comprehensive Organometallic Chemistry II; Abel, E.W., Stone, F.G.A., Wilkinson, G., Eds.; Pergamon Press: Oxford, UK, 1995; Volume 12, pp. 979-1013.

11. Rose-Munch, F.; Rose, E. Arenetricarbonylchromium Complexes: Ipso, Cine, Tele Nucleophilic Aromatic Substitutions. In *Modern Arene Chemistry*; Astruc, D., Ed.; Wiley: Hoboken, NJ, USA, 2002; Chapter 11; pp. 368-397.

12. Jonson, T.R.; Mann, B.E.; Clark, J.E.; Foresti, R.; Green, C.J.; Motterlini, R. Metal Carbonyls: A New Class of Pharmaceuticals? *Angew. Chem. Int. Ed.* **2003**, *42*, 3722-3729.

13. Jaouen, G.; Vessières, A.; Butler, I. Bioorganometallic Chemistry: A Future Direction for Transition Metal Organometallic Chemistry? *Acc. Chem. Res.* **1993**, *26*, 361-369.

14. Hess, A.; Metzler-Nolte, N. Transition metal labels on peptide nucleic acid (PNA) monomers. *Chem. Commun.* **1999**, 885-886.

15. Baldoli, C.; Maiorana, S.; Licandro, E.; Zinzalla, G.; Perdicchia, D. Synthesis of Chiral Chromium Tricarbonyl Labeled Thymine PNA Monomers via the Ugi Reaction. *Org. Lett.* **2002**, *4*, 4341-4344.

16. Zakharkin, L.I.; Zhigareva, G.G. Synthesis of o- and m-carboranylbenzenechromotricarbonyls by the reaction of lithium o- and m-carboranes with chlorobenzenechromotricarbonyl. *Zhurnal Obshchei Khimii* **1983**, *53*, 953–954.

17. Vasyukova, N.I.; Nekrasov, Y.S.; Sukharev, Y.N.; Magomedov, G.K.; Frenkel, A.S. Mass spectrometry of π -complexes of transition metals. 33. Carboranyl derivatives of benzenechromium tricarbonyl. *Izvestiya Akademii Nauk SSSR Seriya Khimicheskaya* **1985**, 1548–1549.

18. Magomedov, G.K.; Frenkel, A.S.; Kalinin, V.N.; Zakharkin, L.I. Synthesis of arylcarboranechromiumtricarbonyls. *Izvestiya Akademii Nauk SSSR Seriya Khimicheskaya* **1977**, 949–952.

19. Ohta, K.; Goto, T.; Endo, Y. 1,2-Dicarba-closo-dodecaboran-1-yl Naphthalene Derivatives. Inorg. Chem. **2005**, 44, 8569-8573.

20. Kokado, K.; Nagai, A.; Chujo, Y. Poly(γ -glutamic acid) Hydrogels with Water-Sensitive Luminescence Derived from Aggregation-Induced Emission of *o*-Carborane. *Macromolecules* **2010**, *43*, 6463-6468.

 Henly, T.J.; Knobler, C.B.; Hawthorne, M.F. Reactions of Anionic Carborane Nucleophiles with Chromium-Coordinated Haloarenes. *Organometallics* 1992, *11*, 2313-2316.
Mahaffy, C.A.L.; Pauson, P.L. (η⁶-Arene)tricarbonylchromium Complexes. *Inorg. Synth.* 1979, *19*, 154-158.

 Fischer, R.D. IR-spektroskopische Untersuchungen der v-CO-Banden an Metallcarbonylkomplexen mit zentrisch-x-gebundenen organischen Ringsystemen. *Chem. Ber.* 1960, 93, 165-175. 24. Brown, D.A.; Sloan, H. Molecular-orbital Theory of Organometallic Compounds. Part I V.1 Substitution Reactions of Tricarbonylbenzenechromium. *J. Chem. Soc.* **1963**, 4389–4394. 25. Brown, D.A.; Raju, J.R. Infrared and Proton Magnetic Resonance Spectra of π -Complexes of Substituted Condensed Hydrocarbons. *J. Chem. Soc. A.* **1966**, 1617–1620.

26. Adams, D.M.; Squire, A. Vibrational Spectra of Some Monosubstituted- π -arene Tricarbonylchromium Complexes and of Methyl Benzoate. *J. Chem. Soc., Dalton Trans.* **1974**, *6*, 558–565.

27. Fox, M.A.; Nervi, C.; Crivello, A.; Low, P.J. Carborane radical anions: spectroscopic and electronic properties of a carborane radical anion with a 2n + 3 skeletal electron count. *Chem. Commun.* **2007**, *23*, 2372-2374.

28. Boyd, L.A.; Clegg, W.; Copley, R.C.B.; Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Peace, R.J.; Wade, K. Exo- π -bonding to an ortho-carborane hypercarbon atom: systematic icosahedral cage distortions reflected in the structures of the fluoro-, hydroxy- and amino-carboranes, 1-X-2-Ph-1,2-C₂B₁₀H₁₀ (X = F, OH or NH₂) and related anions. *Dalton Trans.* **2004**, *17*, 2786-2799.

29. Fox, M.A.; Peace, R.J.; Clegg, W.; Elsegood, M.R.J.; Wade, K. Trends in *ortho*-carboranes $1-X-2-R-1,2-C_2B_{10}H_{10}$ (R = Ph, Me) bearing an exo-CN-bonded substituent group (X = NO, N=NR' or NHR"). *Polyhedron* **2009**, *28*, 2359-2370.

30. Lewis, Z.G.; Welch, A.J. Structure of 1,2-Diphenylcarbaborane, 1,2-Ph₂-1,2-closo-C₂B₁₀H₁₀. *Acta Crystallogr. Sect.* C. **1993**, *49*, 705–710.

31. Calhorda, M.J.; Frazão, C.F.; Martinho-Simões, J.A. Metal-Carbon "Bond Strengths" in $Cr(CO)_6$, $Cr(\eta-C_6H_6)_2$, and $Cr(CO)_3(\eta C_6H_6)$. J. Organomet. Chem. **1984**, 262, 305-314.

32. Rees, B.; Coppens, P. Electronic Structure of Benzene Chromium Tricarbonyl by X-ray and Neutron Diffraction at 78 °K. *Acta Crystallogr. Sect. B* **1973**, *29*, 2516–2528.

33. Bailey, M.F.; Dahl, L.F. Three-Dimensional Crystal Structure of Benzenechromium Tricarbonyl with Further Comments on the Dibenzenechromium Structure. *Inorg. Chem.* **1965**, *4*, 1314–1319.

34. Wang, Y.; Angermund, K.; Goddard, R.; Kruger, C. Redetermination of the Experimental Electron Deformation Density of Benzenetricarbonylchromium. *J. Am. Chem. Soc.* **1987**, *109*, 587-589.

35. Czerwinski, C.J.; Guzei, I.A.; Riggle, K.M.; Schroeder, J.R.; Spencer, L.C. Haptotropic

rearrangement in tricarbonylchromium complexes of 2-aminobiphenyl and 4-aminobiphenyl. *Dalton Trans.* **2011**, *40*, 9439-9446.

36. Guzei, I.A.; Spencer, L.C.; Buechel, S.C.; Kaufmann, L.B.; Czerwinski, C.J. Intricacies of ligand coordination in tricarbonylchromium(0) complexes with *ortho-* and *para-*fluorobiphenyls. *Acta Crystallogr. Sect. C* **2017**, *73*, 638-644.

37. Davidson, M.G.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Wade, K. Definitive crystal structures of *ortho-*, *meta-* and *para-*carboranes: supramolecular structures directed solely by C-H···O hydrogen bonding to hmpa (hmpa = hexamethylphosporamide). *Chem. Commun.* **1996**, 2285-2286.

38. Llop, J.; Viñas, C.; Oliva, J.M.; Teixidor, F.; Flores, M.A.; Kivekäs, R.; Sillanpää, R. Modulation of the C-C distance in disubstituted 1,2-R₂-o-carboranes. Crystal structure of closo 1,2-(SPh)2-1,2-C₂B₁₀H₁₀. *J. Organomet. Chem.* **2002**, *657*, 232-238.

39. Oliva, J.M.; Allan, N.L.; Schleyer, P. v. R.; Viñas, C.; Teixidor, F. Strikingly Long C···C Distances in 1,2-Disubstituted *ortho*-Carboranes and Their Dianions. *J. Am. Chem. Soc.* 2005, *127*, 13538-13547.

40. Hutton, B.W.; MacIntosh, F.; Ellis, D.; Herisse, F.; Macgregor, S.A.; McKay, D.; Petrie-Armstrong, V.; Rosair, G.M.; Perekalin, D.S.; Tricas, H.; et al. Unprecedented steric deformation of *ortho*-carborane. *Chem. Commun.* **2008**, *42*, 5345-5347.

41. Bruker Analytical X-ray Division, SMART and SAINT; Bruker: Madison, WI, USA, 2002.

42. Sheldrick, G.M. Bruker Analytical X-Ray Division, SHELXTL-PLUS Software Package; Bruker: Madison, WI, USA, 2002.

Figure S1. ¹H NMR spectrum of 1.

Figure S2. ¹¹B NMR spectrum of 1.

Figure S3. ¹³C NMR spectrum of 1.

Figure S4. ¹H NMR spectrum of 2.

Figure S5. ¹¹B NMR spectrum of 2.

Figure S6. ¹³C NMR spectrum of 2.

Figure S7. ¹H NMR spectrum of 3.

Figure S8. ¹¹B NMR spectrum of 3.

Figure S9. ¹³C NMR spectrum of 3.

Table S1. Bond lengths (\AA) of 2.

Cr1 C26	1.8537(16)	Cr1 C15	2.2162(15)
Cr1 C27	1.8566(17)	Cr1 C17	2.2184(15)
Cr1 C25	1.8578(18)	Cr1 C13	2.2252(13)
Cr1 C18	2.1963(15)	O1 C25	1.143(2)
Cr1 C14	2.1970(15)	O2 C26	1.144(2)
Cr1 C16	2.2046(15)	O3 C27	1.143(2)

Table S2. Bond angles (°) of 2.

C26 Cr1 C27	86.73(7)	C16 Cr1 C17	36.91(6)
C26 Cr1 C25	88.02(8)	C15 Cr1 C17	66.57(6)
C27 Cr1 C25	88.96(8)	C26 Cr1 C13	166.49(6)
C26 Cr1 C18	134.38(7)	C27 Cr1 C13	101.87(6)
C27 Cr1 C18	87.41(6)	C25 Cr1 C13	102.40(7)
C25 Cr1 C18	137.05(7)	C18 Cr1 C13	37.44(5)
C26 Cr1 C14	136.72(6)	C14 Cr1 C13	37.41(5)
C27 Cr1 C14	136.06(6)	C16 Cr1 C13	79.64(5)
C25 Cr1 C14	86.97(7)	C15 Cr1 C13	67.38(5)
C18 Cr1 C14	67.17(5)	C17 Cr1 C13	67.16(5)
C26 Cr1 C16	86.92(7)	C18 C13 Cr1	70.18(8)
C27 Cr1 C16	135.89(7)	C1 C13 Cr1	130.99(9)
C25 Cr1 C16	134.34(8)	C15 C14 C13	121.30(13)
C18 Cr1 C16	67.03(6)	C15 C14 Cr1	72.14(8)
C14 Cr1 C16	67.02(6)	C13 C14 Cr1	72.37(7)
C26 Cr1 C15	102.48(6)	C16 C15 C14	119.48(13)
C27 Cr1 C15	166.63(6)	C16 C15 Cr1	71.01(9)
C25 Cr1 C15	100.90(7)	C14 C15 Cr1	70.66(8)
C18 Cr1 C15	79.22(6)	C17 C16 Cr1	72.08(9)
C14 Cr1 C15	37.20(5)	C15 C16 Cr1	71.91(9)
C16 Cr1 C15	37.08(6)	C17 C18 Cr1	72.29(8)
C26 Cr1 C17	101.01(7)	C13 C18 Cr1	72.39(7)
C27 Cr1 C17	102.43(7)	O1 C25 Cr1	179.6(2)
C25 Cr1 C17	165.76(7)	O2 C26 Cr1	178.97(15)
C18 Cr1 C17	37.12(5)	O3 C27 Cr1	178.73(15)
C14 Cr1 C17	78.90(5)	C14 C13 Cr1	70.21(8)

Table S3. Torsional angles (°) of 2.

B4 C1 C13 Cr1	51.85(16)	C13 Cr1 C16 C17	-65.57(9)
B5 C1 C13 Cr1	-25.21(17)	C26 Cr1 C16 C15	-115.47(10)
B6 C1 C13 Cr1	-99.82(13)	C27 Cr1 C16 C15	162.43(10)
B3 C1 C13 Cr1	124.30(11)	C25 Cr1 C16 C15	-31.27(13)
C2 C1 C13 Cr1	-168.42(8)	C18 Cr1 C16 C15	102.94(9)
C26 Cr1 C13 C14	-71.8(3)	C14 Cr1 C16 C15	29.08(8)
C27 Cr1 C13 C14	159.44(9)	C17 Cr1 C16 C15	131.57(13)
C25 Cr1 C13 C14	67.89(10)	C13 Cr1 C16 C15	66.00(9)
C18 Cr1 C13 C14	-131.08(12)	Cr1 C16 C17 C18	52.78(13)
C16 Cr1 C13 C14	-65.53(8)	C15 C16 C17 Cr1	-55.46(13)
C15 Cr1 C13 C14	-28.90(8)	C26 Cr1 C17 C16	-69.51(10)
C17 Cr1 C13 C14	-101.92(9)	C27 Cr1 C17 C16	-158.56(9)
C26 Cr1 C13 C18	59.2(3)	C25 Cr1 C17 C16	59.0(3)
C27 Cr1 C13 C18	-69.48(10)	C18 Cr1 C17 C16	133.03(13)
C25 Cr1 C13 C18	-161.03(10)	C14 Cr1 C17 C16	66.35(9)
C14 Cr1 C13 C18	131.08(12)	C15 Cr1 C17 C16	29.45(9)
C16 Cr1 C13 C18	65.55(9)	C13 Cr1 C17 C16	103.64(10)
C15 Cr1 C13 C18	102.18(9)	C26 Cr1 C17 C18	157.46(9)
C17 Cr1 C13 C18	29.15(8)	C27 Cr1 C17 C18	68.41(10)
C26 Cr1 C13 C1	174.8(2)	C25 Cr1 C17 C18	-74.0(3)
C27 Cr1 C13 C1	46.13(12)	C14 Cr1 C17 C18	-66.67(9)
C25 Cr1 C13 C1	-45.43(13)	C16 Cr1 C17 C18	-133.03(13)
C18 Cr1 C13 C1	115.61(14)	C15 Cr1 C17 C18	-103.58(10)
C14 Cr1 C13 C1	-113.31(14)	C13 Cr1 C17 C18	-29.39(8)
C16 Cr1 C13 C1	-178.84(12)	Cr1 C17 C18 C13	55.80(12)
C15 Cr1 C13 C1	-142.21(12)	C16 C17 C18 Cr1	-52.98(13)
C17 Cr1 C13 C1	144.76(13)	Cr1 C13 C18 C17	-55.76(12)
Cr1 C13 C14 C15	55.26(12)	C14 C13 C18 Cr1	53.33(11)
C18 C13 C14 Cr1	-53.31(11)	C1 C13 C18 Cr1	-126.65(11)
C1 C13 C14 Cr1	126.67(11)	C26 Cr1 C18 C17	-31.76(13)
C26 Cr1 C14 C15	28.64(13)	C27 Cr1 C18 C17	-114.63(10)
C27 Cr1 C14 C15	-162.15(10)	C25 Cr1 C18 C17	159.69(11)
C25 Cr1 C14 C15	112.51(10)	C14 Cr1 C18 C17	102.13(10)
C18 Cr1 C14 C15	-102.65(9)	C16 Cr1 C18 C17	28.48(9)
C16 Cr1 C14 C15	-28.99(9)	C15 Cr1 C18 C17	65.22(9)
C17 Cr1 C14 C15	-65.69(9)	C13 Cr1 C18 C17	131.92(13)
C13 Cr1 C14 C15	-132.46(12)	C26 Cr1 C18 C13	-163.68(9)
C26 Cr1 C14 C13	161.10(10)	C27 Cr1 C18 C13	113.45(9)
C27 Cr1 C14 C13	-29.69(13)	C25 Cr1 C18 C13	27.77(14)
C25 Cr1 C14 C13	-115.03(10)	C14 Cr1 C18 C13	-29.79(8)
	× /		. /

C18 Cr1 C14 C1	13 29.	81(8) C16	Cr1 C18	C13	-103.44(9)
C16 Cr1 C14 C1	13 103	3.47(9) C15	Cr1 C18	C13	-66.70(9)
C15 Cr1 C14 C1	13 132	2.46(12) C17	Cr1 C18	C13	-131.92(13)
C17 Cr1 C14 C1	13 66.	77(8) C26	Cr1 C25	01	74(37)
Cr1 C14 C15 C1	16 53.	52(12) C27	Cr1 C25	01	161(100)
C13 C14 C15 C	rl -55	.37(12) C18	Cr1 C25	01	-114(37)
C26 Cr1 C15 C1	16 67	41(10) C14	Cr1 C25	01	-63(37)
C27 Cr1 C15 C1	16 -65	.3(3) C16	Cr1 C25	01	-10(37)
C25 Cr1 C15 C1	16 157	7.79(10) C15	Cr1 C25	01	-28(37)
C18 Cr1 C15 C1	-65	.98(9) C17	Cr1 C25	01	-56(37)
C14 Cr1 C15 C1	-13	2.25(13) C13	Cr1 C25	01	-97(37)
C17 Cr1 C15 C1	16 -29	.32(8) C27	Cr1 C26	O2	12(10)
C13 Cr1 C15 C1	-10	3.20(9) C25	Cr1 C26	O2	101(10)
C26 Cr1 C15 C1	-16	0.33(9) C18	Cr1 C26	O2	-71(10)
C27 Cr1 C15 C1	14 66.	9(3) C14	Cr1 C26	O2	-175(100)
C25 Cr1 C15 C1	14 -69	.96(10) C16	Cr1 C26	O2	-124(10)
C18 Cr1 C15 C1	14 66.	27(8) C15	Cr1 C26	O2	-158(10)
C16 Cr1 C15 C1	14 132	2.25(13) C17	Cr1 C26	O2	-90(10)
C17 Cr1 C15 C1	14 102	2.93(9) C13	Cr1 C26	O2	-118(10)
C13 Cr1 C15 C1	14 29.	05(8) C26	Cr1 C27	O3	-28(8)
Cr1 C15 C16 C1	17 55.	54(13) C25	Cr1 C27	O3	-116(8)
C14 C15 C16 C	rl -53	.35(12) C18	Cr1 C27	O3	106(8)
C26 Cr1 C16 C1	17 112	2.96(10) C14	Cr1 C27	O3	159(8)
C27 Cr1 C16 C1	17 30.	86(13) C16	Cr1 C27	O3	54(8)
C25 Cr1 C16 C1	17 -16	2.84(11) C15	Cr1 C27	O3	106(8)
C18 Cr1 C16 C1	17 -28	.63(8) C17	Cr1 C27	O3	72(8)
C14 Cr1 C16 C1	17 -10	2.49(9) C13	Cr1 C27	O3	141(8)
C15 Cr1 C16 C1	17 -13	1.57(13)			

Table S4. Bond lengths (Å) of 3.

Crl	C25	1.858(4)	O6A C30A	1.148(7)
Crl	C26	1.837(4)	C21A Cr7	2.214(5)
Crl	C27	1.858(5)	C22A Cr7	2.180(5)
Crl	C16	2.199(4)	C23A Cr7	2.202(4)
Crl	C14	2.201(3)	C24A Cr7	2.185(4)
Crl	C13	2.212(3)	C28A Cr7	1.851(4)
Crl	C18	2.216(3)	C29A Cr7	1.866(5)
Crl	C15	2.224(4)	C30A Cr7	1.858(6)
Crl	C17	2.220(4)	Cr5 C30B	1.827(5)
Cr2	C28	1.852(6)	Cr5 C28B	1.851(4)
Cr2	C29	1.852(4)	Cr5 C29B	1.855(4)

Cr2 C30	1.850(4)	Cr5 C24B	2.195(4)
Cr2 C24	2.187(4)	Cr5 C20B	2.196(4)
Cr2 C20	2.204(3)	Cr5 C23B	2.201(4)
Cr2 C21	2.216(4)	Cr5 C22B	2.206(4)
Cr2 C23	2.209(4)	Cr5 C21B	2.204(5)
Cr2 C22	2.208(4)	Cr5 C19B	2.223(3)
Cr2 C19	2.221(3)	Cr6 C26B	1.830(6)
O1 C25	1.133(6)	Cr6 C25B	1.847(6)
O2 C26	1.154(5)	Cr6 C27B	1.866(7)
O3 C27	1.124(6)	Cr6 C14B	2.170(6)
O4 C28	1.143(7)	Cr6 C15B	2.190(6)
O5 C29	1.140(5)	Cr6 C18B	2.197(5)
O6 C30	1.134(5)	Cr6 C16B	2.203(7)
Cr1A C27A	1.818(5)	Cr6 C17B	2.205(6)
Cr1A C25A	1.826(5)	Cr6 C13B	2.222(4)
Cr1A C26A	1.853(4)	O1B C25B	1.159(7)
Cr1A C14A	2.178(3)	O2B C26B	1.160(8)
Cr1A C18A	2.176(3)	O3B C27B	1.165(9)
Cr1A C17A	2.197(4)	O4B C28B	1.126(6)
Cr1A C16A	2.199(4)	O5B C29B	1.143(6)
Cr1A C15A	2.216(4)	O6B C30B	1.137(6)
Cr1A C13A	2.219(3)	Cr8 C30C	1.826(5)
Cr2A C25C	1.845(5)	Cr8 C29C	1.843(4)
Cr2A C27C	1.831(5)	Cr8 C28C	1.862(5)
Cr2A C26C	1.846(4)	Cr8 C24C	2.202(4)
Cr2A C14C	2.193(4)	Cr8 C20C	2.210(4)
Cr2A C15C	2.204(4)	Cr8 C22C	2.206(4)
Cr2A C18C	2.204(3)	Cr8 C23C	2.223(5)
Cr2A C16C	2.208(4)	Cr8 C19C	2.225(4)
Cr2A C17C	2.211(3)	Cr8 C21C	2.227(5)
Cr2A C13C	2.233(3)	O1C C25C	1.126(6)
O1A C25A	1.152(6)	O2C C26C	1.155(5)
O2A C26A	1.134(5)	O3C C27C	1.170(7)
O3A C27A	1.159(6)	O4C C28C	1.118(6)
O4A C28A	1.137(5)	O5C C29C	1.153(5)
O5A C29A	1.114(6)	O6C C30C	1.161(7)

Table S5. Bond angles (°) of 3.

C25 Cr1 C27	88.2(2)	C30B Cr5 C28B	87.0(3)
C26 Cr1 C27	87.3(2)	C30B Cr5 C29B	89.9(2)
C25 Cr1 C16	129.9(2)	C28B Cr5 C29B	86.4(2)

C26 Cr1 C16	86.35(16)	C30B Cr5 C24B	86.74(18)
C27 Cr1 C16	141.2(2)	C28B Cr5 C24B	128.61(17)
C25 Cr1 C14	87.16(17)	C29B Cr5 C24B	144.43(17)
C26 Cr1 C14	140.41(17)	C30B Cr5 C20B	145.2(2)
C27 Cr1 C14	131.77(17)	C28B Cr5 C20B	91.79(19)
C16 Cr1 C14	67.03(13)	C29B Cr5 C20B	124.86(19)
C25 Cr1 C13	105.22(16)	C24B Cr5 C20B	67.10(15)
C26 Cr1 C13	164.57(14)	C30B Cr5 C23B	94.2(2)
C27 Cr1 C13	99.80(16)	C28B Cr5 C23B	165.99(18)
C16 Cr1 C13	79.50(12)	C29B Cr5 C23B	107.50(19)
C14 Cr1 C13	36.73(12)	C24B Cr5 C23B	37.74(16)
C25 Cr1 C18	141.20(17)	C20B Cr5 C23B	79.30(17)
C26 Cr1 C18	129.89(15)	C30B Cr5 C22B	124.6(3)
C27 Cr1 C18	88.58(18)	C28B Cr5 C22B	147.5(2)
C16 Cr1 C18	67.03(14)	C29B Cr5 C22B	86.3(2)
C14 Cr1 C18	66.91(14)	C24B Cr5 C22B	67.10(17)
C13 Cr1 C18	37.75(11)	C20B Cr5 C22B	67.00(17)
C25 Cr1 C15	98.4(2)	C23B Cr5 C22B	36.7(2)
C26 Cr1 C15	104.68(17)	C30B Cr5 C21B	160.9(2)
C27 Cr1 C15	166.34(18)	C28B Cr5 C21B	111.9(2)
C16 Cr1 C15	36.45(16)	C29B Cr5 C21B	94.08(19)
C14 Cr1 C15	37.61(12)	C24B Cr5 C21B	79.20(18)
C13 Cr1 C15	66.98(12)	C20B Cr5 C21B	36.93(15)
C18 Cr1 C15	78.78(15)	C23B Cr5 C21B	66.8(2)
C25 Cr1 C17	163.73(19)	C22B Cr5 C21B	37.3(2)
C26 Cr1 C17	97.56(15)	C30B Cr5 C19B	108.29(18)
C27 Cr1 C17	107.1(2)	C28B Cr5 C19B	99.34(16)
C16 Cr1 C17	36.46(17)	C29B Cr5 C19B	161.12(18)
C14 Cr1 C17	78.51(14)	C24B Cr5 C19B	36.69(12)
C13 Cr1 C17	67.34(12)	C20B Cr5 C19B	37.64(13)
C18 Cr1 C17	37.38(12)	C23B Cr5 C19B	67.04(14)
C15 Cr1 C17	65.50(17)	C22B Cr5 C19B	79.13(15)
C28 Cr2 C29	88.8(2)	C21B Cr5 C19B	67.07(15)
C28 Cr2 C30	86.4(3)	C26B Cr6 C25B	87.9(3)
C29 Cr2 C30	88.00(19)	C26B Cr6 C27B	90.2(4)
C28 Cr2 C24	143.0(2)	C25B Cr6 C27B	88.8(3)
C29 Cr2 C24	127.72(18)	C26B Cr6 C14B	132.5(3)
C30 Cr2 C24	89.05(18)	C25B Cr6 C14B	87.4(3)
C28 Cr2 C20	88.2(2)	C27B Cr6 C14B	136.9(3)
C29 Cr2 C20	142.29(16)	C26B Cr6 C15B	97.9(4)
C30 Cr2 C20	129.26(16)	C25B Cr6 C15B	103.1(4)
C24 Cr2 C20	66.84(15)	C27B Cr6 C15B	165.7(3)
C28 Cr2 C21	97.6(3)	C14B Cr6 C15B	38.2(3)

C29 Cr2 C21	106.47(17)	C26B Cr6 C18B	135.0(3)
C30 Cr2 C21	164.99(17)	C25B Cr6 C18B	137.0(2)
C24 Cr2 C21	79.03(16)	C27B Cr6 C18B	88.1(3)
C20 Cr2 C21	37.07(15)	C14B Cr6 C18B	66.8(3)
C28 Cr2 C23	164.3(2)	C15B Cr6 C18B	77.8(3)
C29 Cr2 C23	95.95(18)	C26B Cr6 C16B	84.5(3)
C30 Cr2 C23	108.6(2)	C25B Cr6 C16B	134.5(5)
C24 Cr2 C23	37.21(15)	C27B Cr6 C16B	135.9(6)
C20 Cr2 C23	78.88(17)	C14B Cr6 C16B	66.4(4)
C21 Cr2 C23	66.71(19)	C15B Cr6 C16B	34.8(5)
C28 Cr2 C22	129.4(3)	C18B Cr6 C16B	66.6(4)
C29 Cr2 C22	86.88(17)	C26B Cr6 C17B	100.2(3)
C30 Cr2 C22	143.7(2)	C25B Cr6 C17B	166.7(4)
C24 Cr2 C22	66.46(16)	C27B Cr6 C17B	101.7(5)
C20 Cr2 C22	66.66(16)	C14B Cr6 C17B	79.3(4)
C21 Cr2 C22	37.1(2)	C15B Cr6 C17B	65.4(5)
C23 Cr2 C22	36.58(19)	C18B Cr6 C17B	37.0(3)
C28 Cr2 C19	107.2(2)	C16B Cr6 C17B	37.5(5)
C29 Cr2 C19	163.24(17)	C26B Cr6 C13B	163.3(3)
C30 Cr2 C19	97.75(15)	C25B Cr6 C13B	102.6(2)
C24 Cr2 C19	37.32(14)	C27B Cr6 C13B	102.8(2)
C20 Cr2 C19	37.26(12)	C14B Cr6 C13B	37.23(18)
C21 Cr2 C19	67.24(13)	C15B Cr6 C13B	67.2(2)
C23 Cr2 C19	67.30(14)	C18B Cr6 C13B	37.18(19)
C22 Cr2 C19	79.15(13)	C16B Cr6 C13B	78.9(2)
C14 C13 Cr1	71.18(18)	C17B Cr6 C13B	67.2(2)
C18 C13 Cr1	71.26(18)	C14B C13B Cr6	69.4(3)
C1 C13 Cr1	131.6(2)	C18B C13B Cr6	70.4(3)
C13 C14 Cr1	72.09(18)	C1B C13B Cr6	133.5(3)
C15 C14 Cr1	72.1(2)	C13B C14B Cr6	73.4(3)
C16 C15 Cr1	70.8(2)	C15B C14B Cr6	71.7(4)
C14 C15 Cr1	70.3(2)	C16B C15B Cr6	73.1(6)
C15 C16 Cr1	72.8(2)	C15B C16B Cr6	72.1(4)
C17 C16 Cr1	72.6(2)	C17B C16B Cr6	71.3(5)
C16 C17 Cr1	70.9(2)	C18B C17B Cr6	71.2(3)
C18 C17 Cr1	71.1(2)	C16B C17B Cr6	71.2(4)
C17 C18 Cr1	71.5(2)	C17B C18B Cr6	71.8(4)
C13 C18 Cr1	70.99(18)	C13B C18B Cr6	72.4(3)
C20 C19 Cr2	70.71(19)	C24B C19B Cr5	70.5(2)
C24 C19 Cr2	70.02(19)	C20B C19B Cr5	70.2(2)
C2 C19 Cr2	131.4(2)	C2B C19B Cr5	132.8(2)
C21 C20 Cr2	71.9(2)	C21B C20B Cr5	71.8(3)
C19 C20 Cr2	72.02(18)	C19B C20B Cr5	72.2(2)

C22 C21 Cr2	71.1(2)	C22B C21B Cr5	71.4(3)
C20 C21 Cr2	71.0(2)	C20B C21B Cr5	71.2(2)
C23 C22 Cr2	71.8(2)	C21B C22B Cr5	71.3(3)
C21 C22 Cr2	71.7(3)	C23B C22B Cr5	71.5(3)
C22 C23 Cr2	71.6(3)	C22B C23B Cr5	71.8(3)
C24 C23 Cr2	70.5(2)	C24B C23B Cr5	70.9(2)
C23 C24 Cr2	72.3(2)	C19B C24B Cr5	72.8(2)
C19 C24 Cr2	72.7(2)	C23B C24B Cr5	71.4(2)
O1 C25 Cr1	178.1(6)	O1B C25B Cr6	177.5(4)
O2 C26 Cr1	178.8(4)	O2B C26B Cr6	177.6(8)
O3 C27 Cr1	178.4(6)	O3B C27B Cr6	176.1(9)
O4 C28 Cr2	177.1(7)	O4B C28B Cr5	178.2(5)
O5 C29 Cr2	178.3(4)	O5B C29B Cr5	178.6(5)
O6 C30 Cr2	177.7(5)	O6B C30B Cr5	177.4(6)
C27A Cr1A C25A	85.9(3)	C30A Cr7 C28A	86.7(2)
C27A Cr1A C26A	90.59(19)	C30A Cr7 C29A	87.1(3)
C25A Cr1A C26A	86.9(2)	C28A Cr7 C29A	90.3(2)
C27A Cr1A C14A	133.86(15)	C30A Cr7 C24A	89.4(2)
C25A Cr1A C14A	88.0(2)	C28A Cr7 C24A	134.13(18)
C26A Cr1A C14A	134.68(18)	C29A Cr7 C24A	135.15(19)
C27A Cr1A C18A	87.24(19)	C30A Cr7 C22A	135.9(3)
C25A Cr1A C18A	137.05(17)	C28A Cr7 C22A	136.4(3)
C26A Cr1A C18A	135.6(2)	C29A Cr7 C22A	84.5(2)
C14A Cr1A C18A	67.24(14)	C24A Cr7 C22A	67.8(2)
C27A Cr1A C17A	103.7(2)	C30A Cr7 C23A	103.3(3)
C25A Cr1A C17A	167.0(2)	C28A Cr7 C23A	166.1(2)
C26A Cr1A C17A	101.5(2)	C29A Cr7 C23A	99.74(19)
C14A Cr1A C17A	79.05(15)	C24A Cr7 C23A	38.26(19)
C18A Cr1A C17A	37.23(14)	C22A Cr7 C23A	36.9(2)
C27A Cr1A C16A	137.7(2)	C30A Cr7 C20A	139.7(2)
C25A Cr1A C16A	135.9(2)	C28A Cr7 C20A	87.66(19)
C26A Cr1A C16A	86.11(19)	C29A Cr7 C20A	132.8(2)
C14A Cr1A C16A	67.26(15)	C24A Cr7 C20A	66.94(17)
C18A Cr1A C16A	67.04(15)	C22A Cr7 C20A	65.9(2)
C17A Cr1A C16A	36.78(17)	C23A Cr7 C20A	78.4(2)
C27A Cr1A C15A	166.31(18)	C30A Cr7 C21A	168.7(2)
C25A Cr1A C15A	102.8(2)	C28A Cr7 C21A	103.0(2)
C26A Cr1A C15A	100.32(18)	C29A Cr7 C21A	98.6(2)
C14A Cr1A C15A	37.82(14)	C24A Cr7 C21A	79.7(2)
C18A Cr1A C15A	79.19(16)	C22A Cr7 C21A	36.2(2)
C17A Cr1A C15A	66.16(18)	C23A Cr7 C21A	66.2(2)
C16A Cr1A C15A	36.64(17)	C20A Cr7 C21A	37.06(18)
C27A Cr1A C13A	100.33(14)	C30A Cr7 C19A	105.1(2)

C25A Cr1	A C13A	102.58(16)	C28A Cr7 C19A	101.13(17)
C26A Cr1	A C13A	165.95(18)	C29A Cr7 C19A	163.63(18)
C14A Cr1	A C13A	37.27(12)	C24A Cr7 C19A	36.76(15)
C18A Cr1	A C13A	37.71(12)	C22A Cr7 C19A	79.17(17)
C17A Cr1	A C13A	67.51(13)	C23A Cr7 C19A	67.18(16)
C16A Cr1	A C13A	79.87(13)	C20A Cr7 C19A	37.64(14)
C15A Cr1	A C13A	67.69(12)	C21A Cr7 C19A	67.62(16)
C25C Cr2	A C27C	89.4(3)	C30C Cr8 C29C	87.5(2)
C25C Cr2	A C26C	89.54(19)	C30C Cr8 C28C	87.9(3)
C27C Cr2	A C26C	84.9(2)	C29C Cr8 C28C	89.0(2)
C25C Cr2	A C14C	87.2(2)	C30C Cr8 C24C	87.0(2)
C27C Cr2	A C14C	125.59(19)	C29C Cr8 C24C	134.55(18)
C26C Cr2	A C14C	149.21(16)	C28C Cr8 C24C	135.79(19)
C25C Cr2	A C15C	90.7(2)	C30C Cr8 C20C	137.3(2)
C27C Cr2	A C15C	163.20(19)	C29C Cr8 C20C	134.77(16)
C26C Cr2	A C15C	111.85(16)	C28C Cr8 C20C	87.5(2)
C14C Cr2	A C15C	37.68(14)	C24C Cr8 C20C	67.82(15)
C25C Cr2	A C18C	150.14(17)	C30C Cr8 C22C	135.4(3)
C27C Cr2	A C18C	92.41(19)	C29C Cr8 C22C	86.28(19)
C26C Cr2	A C18C	120.31(14)	C28C Cr8 C22C	136.0(2)
C14C Cr2	A C18C	67.71(13)	C24C Cr8 C22C	67.24(18)
C15C Cr2	A C18C	79.33(15)	C20C Cr8 C22C	66.29(17)
C25C Cr2	A C16C	118.2(3)	C30C Cr8 C23C	101.9(3)
C27C Cr2	A C16C	151.5(2)	C29C Cr8 C23C	100.38(19)
C26C Cr2	A C16C	88.06(17)	C28C Cr8 C23C	166.7(2)
C14C Cr2	A C16C	66.91(15)	C24C Cr8 C23C	37.68(15)
C15C Cr2	A C16C	36.05(17)	C20C Cr8 C23C	79.13(18)
C18C Cr2	A C16C	67.56(15)	C22C Cr8 C23C	36.8(2)
C25C Cr2	A C17C	155.5(3)	C30C Cr8 C19C	102.9(2)
C27C Cr2	A C17C	115.1(2)	C29C Cr8 C19C	165.13(18)
C26C Cr2	A C17C	91.91(16)	C28C Cr8 C19C	101.84(19)
C14C Cr2	A C17C	79.18(15)	C24C Cr8 C19C	37.71(13)
C15C Cr2	A C17C	66.17(17)	C20C Cr8 C19C	37.43(12)
C18C Cr2	A C17C	37.08(13)	C22C Cr8 C19C	78.85(15)
C16C Cr2	A C17C	37.50(17)	C23C Cr8 C19C	67.37(14)
C25C Cr2	A C13C	112.60(17)	C30C Cr8 C21C	166.4(2)
C27C Cr2	A C13C	97.11(16)	C29C Cr8 C21C	100.41(18)
C26C Cr2	A C13C	157.73(14)	C28C Cr8 C21C	103.2(2)
C14C Cr2	A C13C	37.49(12)	C24C Cr8 C21C	79.62(17)
C15C Cr2	A C13C	67.44(13)	C20C Cr8 C21C	37.59(16)
C18C Cr2	A C13C	37.62(11)	C22C Cr8 C21C	35.8(2)
C16C Cr2	A C13C	79.56(13)	C23C Cr8 C21C	66.0(2)
C17C Cr2	A C13C	67.05(12)	C19C Cr8 C21C	67.39(14)

C14A C13A Cr1A	69.78(17)	C14C C13C Cr2A	69.72(19)
C18A C13A Cr1A	69.52(18)	C18C C13C Cr2A	70.08(17)
C1A C13A Cr1A	129.8(2)	C1C C13C Cr2A	133.6(2)
C13A C14A Cr1A	72.95(18)	C13C C14C Cr2A	72.79(19)
C15A C14A Cr1A	72.5(2)	C15C C14C Cr2A	71.6(2)
C16A C15A Cr1A	71.0(2)	C16C C15C Cr2A	72.2(2)
C14A C15A Cr1A	69.7(2)	C14C C15C Cr2A	70.7(2)
Cr1A C15A H15A	131.6	C15C C16C Cr2A	71.8(2)
C15A C16A Cr1A	72.3(2)	C17C C16C Cr2A	71.3(2)
C17A C16A Cr1A	71.5(2)	C18C C17C Cr2A	71.20(18)
C18A C17A Cr1A	70.6(2)	C16C C17C Cr2A	71.2(2)
C16A C17A Cr1A	71.7(2)	C17C C18C Cr2A	71.7(2)
C17A C18A Cr1A	72.2(2)	C13C C18C Cr2A	72.30(17)
C13A C18A Cr1A	72.78(18)	C24C C19C Cr8	70.3(2)
C24A C19A Cr7	69.9(2)	C20C C19C Cr8	70.7(2)
C20A C19A Cr7	70.1(2)	C2C C19C Cr8	133.5(2)
C2A C19A Cr7	132.5(2)	C21C C20C Cr8	71.9(3)
C21A C20A Cr7	72.0(3)	C19C C20C Cr8	71.9(2)
C19A C20A Cr7	72.2(2)	C20C C21C Cr8	70.6(2)
C22A C21A Cr7	70.5(3)	C22C C21C Cr8	71.2(3)
C20A C21A Cr7	71.0(3)	C23C C22C Cr8	72.3(3)
C23A C22A Cr7	72.4(3)	C21C C22C Cr8	72.9(3)
C21A C22A Cr7	73.3(3)	C22C C23C Cr8	70.9(3)
C22A C23A Cr7	70.7(3)	C24C C23C Cr8	70.4(2)
C24A C23A Cr7	70.2(2)	C23C C24C Cr8	72.0(2)
C19A C24A Cr7	73.3(2)	C19C C24C Cr8	72.0(2)
C23A C24A Cr7	71.5(2)	O1C C25C Cr2A	178.2(5)
O1A C25A Cr1A	178.6(5)	O2C C26C Cr2A	178.8(4)
O2A C26A Cr1A	177.4(5)	O3C C27C Cr2A	176.4(6)
O3A C27A Cr1A	178.9(4)	O4C C28C Cr8	179.7(6)
O4A C28A Cr7	177.7(5)	O5C C29C Cr8	179.1(5)
O5A C29A Cr7	176.9(5)	O6C C30C Cr8	178.1(8)

Table S6. Torsional angles (°) of 3.

B4 C1 C13	Cr1	-63.3(4)	C14B	Cr6	C18B	C17B	103.6(7)
B6 C1 C13	Crl	88.5(3)	C15B	Cr6	C18B	C17B	65.1(7)
B5 C1 C13	Crl	13.8(5)	C16B	Cr6	C18B	C17B	30.4(8)
C2 C1 C13	Crl	157.7(2)	C13B	Cr6	C18B	C17B	133.4(8)
B3 C1 C13	Crl	-135.3(3)	C26B	Cr6	C18B	C13B	-157.3(5)
C25 Cr1 C1	3 C14	63.2(3)	C25B	Cr6	C18B	C13B	28.0(6)

C26 Cr1 C13 C14	-89.3(7)	C27B Cr6 C18B C13B	114.2(4)
C27 Cr1 C13 C14	154.0(2)	C14B Cr6 C18B C13B	-29.8(3)
C16 Cr1 C13 C14	-65.5(2)	C15B Cr6 C18B C13B	-68.3(4)
C18 Cr1 C13 C14	-131.3(3)	C16B Cr6 C18B C13B	-102.9(6)
C15 Cr1 C13 C14	-29.6(2)	C17B Cr6 C18B C13B	-133.4(8)
C17 Cr1 C13 C14	-101.5(2)	B7B C2B C19B Cr5	-16.5(5)
C25 Cr1 C13 C18	-165.5(2)	B6B C2B C19B Cr5	-92.3(4)
C26 Cr1 C13 C18	42.0(7)	B8B C2B C19B Cr5	60.6(5)
C27 Cr1 C13 C18	-74.7(3)	B3B C2B C19B Cr5	132.7(3)
C16 Cr1 C13 C18	65.9(2)	C1B C2B C19B Cr5	-160.8(2)
C14 Cr1 C13 C18	131.3(3)	C30B Cr5 C19B C24B	-57.0(3)
C15 Cr1 C13 C18	101.7(2)	C28B Cr5 C19B C24B	-146.9(3)
C17 Cr1 C13 C18	29.9(2)	C29B Cr5 C19B C24B	106.4(5)
C25 Cr1 C13 C1	-53.3(3)	C20B Cr5 C19B C24B	132.4(3)
C26 Cr1 C13 C1	154.2(6)	C23B Cr5 C19B C24B	29.7(3)
C27 Cr1 C13 C1	37.5(3)	C22B Cr5 C19B C24B	66.1(3)
C16 Cr1 C13 C1	178.0(3)	C21B Cr5 C19B C24B	103.1(3)
C14 Cr1 C13 C1	-116.5(4)	C30B Cr5 C19B C20B	170.6(3)
C18 Cr1 C13 C1	112.1(4)	C28B Cr5 C19B C20B	80.7(3)
C15 Cr1 C13 C1	-146.1(3)	C29B Cr5 C19B C20B	-25.9(6)
C17 Cr1 C13 C1	142.0(3)	C24B Cr5 C19B C20B	-132.4(3)
Cr1 C13 C14 C15	55.4(3)	C23B Cr5 C19B C20B	-102.7(3)
C1 C13 C14 Cr1	127.9(3)	C22B Cr5 C19B C20B	-66.3(3)
C25 Cr1 C14 C13	-120.4(2)	C21B Cr5 C19B C20B	-29.2(3)
C26 Cr1 C14 C13	155.3(2)	C30B Cr5 C19B C2B	59.1(4)
C27 Cr1 C14 C13	-35.4(3)	C28B Cr5 C19B C2B	-30.8(4)
C16 Cr1 C14 C13	103.7(2)	C29B Cr5 C19B C2B	-137.5(5)
C18 Cr1 C14 C13	29.99(18)	C24B Cr5 C19B C2B	116.1(4)
C15 Cr1 C14 C13	131.9(3)	C20B Cr5 C19B C2B	-111.5(4)
C17 Cr1 C14 C13	67.4(2)	C23B Cr5 C19B C2B	145.8(4)
C25 Cr1 C14 C15	107.7(3)	C22B Cr5 C19B C2B	-177.8(4)
C26 Cr1 C14 C15	23.4(4)	C21B Cr5 C19B C2B	-140.8(4)
C27 Cr1 C14 C15	-167.3(3)	Cr5 C19B C20B C21B	55.5(4)
C16 Cr1 C14 C15	-28.2(3)	C24B C19B C20B Cr5	-52.8(3)
C13 Cr1 C14 C15	-131.9(3)	C2B C19B C20B Cr5	128.8(3)
C18 Cr1 C14 C15	-101.9(3)	C30B Cr5 C20B C21B	-147.3(4)
C17 Cr1 C14 C15	-64.6(3)	C28B Cr5 C20B C21B	125.4(3)
Cr1 C14 C15 C16	52.7(3)	C29B Cr5 C20B C21B	38.5(4)
C25 Cr1 C15 C16	153.0(3)	C24B Cr5 C20B C21B	-102.9(3)

C26 Cr1 C15 C16	62.3(3)	C23B Cr5 C20B C21B	-65.4(3)
C27 Cr1 C15 C16	-88.9(8)	C22B Cr5 C20B C21B	-29.1(3)
C14 Cr1 C15 C16	-132.9(4)	C19B Cr5 C20B C21B	-131.5(4)
C13 Cr1 C15 C16	-104.0(3)	C30B Cr5 C20B C19B	-15.7(5)
C18 Cr1 C15 C16	-66.3(2)	C28B Cr5 C20B C19B	-103.0(3)
C17 Cr1 C15 C16	-29.5(2)	C29B Cr5 C20B C19B	170.1(2)
C25 Cr1 C15 C14	-74.1(3)	C24B Cr5 C20B C19B	28.6(2)
C26 Cr1 C15 C14	-164.8(2)	C23B Cr5 C20B C19B	66.1(2)
C27 Cr1 C15 C14	44.0(9)	C22B Cr5 C20B C19B	102.4(3)
C16 Cr1 C15 C14	132.9(4)	C21B Cr5 C20B C19B	131.5(4)
C13 Cr1 C15 C14	28.9(2)	Cr5 C20B C21B C22B	54.1(4)
C18 Cr1 C15 C14	66.6(2)	C19B C20B C21B Cr5	-55.6(4)
C17 Cr1 C15 C14	103.5(3)	C30B Cr5 C21B C22B	-22.9(8)
Cr1 C15 C16 C17	56.7(4)	C28B Cr5 C21B C22B	166.3(3)
C14 C15 C16 Cr1	-52.5(3)	C29B Cr5 C21B C22B	78.5(3)
C25 Cr1 C16 C15	-35.9(3)	C24B Cr5 C21B C22B	-66.2(3)
C26 Cr1 C16 C15	-120.9(3)	C20B Cr5 C21B C22B	-132.3(4)
C27 Cr1 C16 C15	157.9(3)	C23B Cr5 C21B C22B	-28.8(3)
C14 Cr1 C16 C15	29.0(2)	C19B Cr5 C21B C22B	-102.5(3)
C13 Cr1 C16 C15	65.3(2)	C30B Cr5 C21B C20B	109.4(7)
C18 Cr1 C16 C15	102.6(2)	C28B Cr5 C21B C20B	-61.4(3)
C17 Cr1 C16 C15	131.1(3)	C29B Cr5 C21B C20B	-149.2(3)
C25 Cr1 C16 C17	-167.0(2)	C24B Cr5 C21B C20B	66.1(3)
C26 Cr1 C16 C17	107.9(2)	C23B Cr5 C21B C20B	103.5(3)
C27 Cr1 C16 C17	26.8(4)	C22B Cr5 C21B C20B	132.3(4)
C14 Cr1 C16 C17	-102.1(2)	C19B Cr5 C21B C20B	29.8(2)
C13 Cr1 C16 C17	-65.9(2)	Cr5 C21B C22B C23B	54.2(4)
C18 Cr1 C16 C17	-28.5(2)	C20B C21B C22B Cr5	-54.0(4)
C15 Cr1 C16 C17	-131.1(3)	C30B Cr5 C22B C21B	171.1(3)
Cr1 C16 C17 C18	52.9(3)	C28B Cr5 C22B C21B	-24.1(5)
C15 C16 C17 Cr1	-56.8(4)	C29B Cr5 C22B C21B	-101.6(3)
C25 Cr1 C17 C16	38.0(7)	C24B Cr5 C22B C21B	102.6(3)
C26 Cr1 C17 C16	-73.3(3)	C20B Cr5 C22B C21B	28.9(3)
C27 Cr1 C17 C16	-162.8(2)	C23B Cr5 C22B C21B	132.3(4)
C14 Cr1 C17 C16	66.7(2)	C19B Cr5 C22B C21B	66.3(3)
C13 Cr1 C17 C16	103.5(2)	C30B Cr5 C22B C23B	38.8(4)
C18 Cr1 C17 C16	133.6(3)	C28B Cr5 C22B C23B	-156.3(3)
C15 Cr1 C17 C16	29.5(2)	C29B Cr5 C22B C23B	126.1(3)
C25 Cr1 C17 C18	-95.6(7)	C24B Cr5 C22B C23B	-29.6(3)

C26 Cr1 C17 C18	153.1(3)	C20B Cr5 C22B C23B	-103.4(3)
C27 Cr1 C17 C18	63.6(3)	C21B Cr5 C22B C23B	-132.3(4)
C16 Cr1 C17 C18	-133.6(3)	C19B Cr5 C22B C23B	-66.0(3)
C14 Cr1 C17 C18	-66.9(2)	Cr5 C22B C23B C24B	54.1(4)
C13 Cr1 C17 C18	-30.1(2)	C21B C22B C23B Cr5	-54.2(4)
C15 Cr1 C17 C18	-104.1(2)	C30B Cr5 C23B C22B	-148.9(3)
C16 C17 C18 Cr1	-52.8(3)	C28B Cr5 C23B C22B	117.0(10)
Cr1 C13 C18 C17	-55.0(3)	C29B Cr5 C23B C22B	-57.7(3)
C14 C13 C18 Cr1	54.6(3)	C24B Cr5 C23B C22B	131.9(4)
C1 C13 C18 Cr1	-127.8(3)	C20B Cr5 C23B C22B	65.7(3)
C25 Cr1 C18 C17	153.6(3)	C21B Cr5 C23B C22B	29.2(3)
C26 Cr1 C18 C17	-35.7(3)	C19B Cr5 C23B C22B	103.0(3)
C27 Cr1 C18 C17	-121.1(3)	C30B Cr5 C23B C24B	79.2(3)
C16 Cr1 C18 C17	27.9(2)	C28B Cr5 C23B C24B	-15.0(11)
C14 Cr1 C18 C17	101.6(3)	C29B Cr5 C23B C24B	170.4(3)
C13 Cr1 C18 C17	130.8(3)	C20B Cr5 C23B C24B	-66.2(3)
C15 Cr1 C18 C17	64.1(2)	C22B Cr5 C23B C24B	-131.9(4)
C25 Cr1 C18 C13	22.7(4)	C21B Cr5 C23B C24B	-102.7(3)
C26 Cr1 C18 C13	-166.6(2)	C19B Cr5 C23B C24B	-28.9(2)
C27 Cr1 C18 C13	108.1(2)	Cr5 C19B C24B C23B	-55.1(3)
C16 Cr1 C18 C13	-103.0(2)	C20B C19B C24B Cr5	52.6(3)
C14 Cr1 C18 C13	-29.23(18)	C2B C19B C24B Cr5	-129.0(3)
C15 Cr1 C18 C13	-66.7(2)	Cr5 C23B C24B C19B	55.8(3)
C17 Cr1 C18 C13	-130.8(3)	C22B C23B C24B Cr5	-54.6(4)
B7 C2 C19 Cr2	-56.0(4)	C30B Cr5 C24B C19B	127.1(3)
B8 C2 C19 Cr2	21.2(4)	C28B Cr5 C24B C19B	43.6(3)
B3 C2 C19 Cr2	96.1(3)	C29B Cr5 C24B C19B	-147.8(3)
C1 C2 C19 Cr2	165.0(2)	C20B Cr5 C24B C19B	-29.3(2)
B6 C2 C19 Cr2	-128.1(3)	C23B Cr5 C24B C19B	-131.8(4)
C28 Cr2 C19 C20	62.5(3)	C22B Cr5 C24B C19B	-103.0(3)
C29 Cr2 C19 C20	-99.6(6)	C21B Cr5 C24B C19B	-65.9(2)
C30 Cr2 C19 C20	151.2(3)	C30B Cr5 C24B C23B	-101.1(3)
C24 Cr2 C19 C20	-130.7(3)	C28B Cr5 C24B C23B	175.4(3)
C21 Cr2 C19 C20	-28.6(3)	C29B Cr5 C24B C23B	-15.9(5)
C23 Cr2 C19 C20	-101.8(3)	C20B Cr5 C24B C23B	102.5(3)
C22 Cr2 C19 C20	-65.5(3)	C22B Cr5 C24B C23B	28.9(3)
C28 Cr2 C19 C24	-166.7(3)	C21B Cr5 C24B C23B	65.9(3)
C29 Cr2 C19 C24	31.2(6)	C19B Cr5 C24B C23B	131.8(4)
C30 Cr2 C19 C24	-78.1(3)	C26B Cr6 C25B O1B	-151(12)

C20 Cr2 C19 C24	130.7(3)	C27B Cr6 C25B O1B	-61(12)
C21 Cr2 C19 C24	102.1(3)	C14B Cr6 C25B O1B	76(12)
C23 Cr2 C19 C24	28.9(2)	C15B Cr6 C25B O1B	111(12)
C22 Cr2 C19 C24	65.2(2)	C18B Cr6 C25B O1B	25(12)
C28 Cr2 C19 C2	-53.4(4)	C16B Cr6 C25B O1B	128(12)
C29 Cr2 C19 C2	144.5(5)	C17B Cr6 C25B O1B	81(12)
C30 Cr2 C19 C2	35.2(3)	C13B Cr6 C25B O1B	42(12)
C24 Cr2 C19 C2	113.3(3)	C25B Cr6 C26B O2B	152(21)
C20 Cr2 C19 C2	-115.9(4)	C27B Cr6 C26B O2B	63(21)
C21 Cr2 C19 C2	-144.6(3)	C14B Cr6 C26B O2B	-124(21)
C23 Cr2 C19 C2	142.3(3)	C15B Cr6 C26B O2B	-105(21)
C22 Cr2 C19 C2	178.6(3)	C18B Cr6 C26B O2B	-25(22)
Cr2 C19 C20 C21	54.6(3)	C16B Cr6 C26B O2B	-73(21)
C24 C19 C20 Cr2	-53.6(3)	C17B Cr6 C26B O2B	-39(22)
C2 C19 C20 Cr2	127.4(3)	C13B Cr6 C26B O2B	-79(22)
C28 Cr2 C20 C21	105.2(3)	C26B Cr6 C27B O3B	110(9)
C29 Cr2 C20 C21	19.4(5)	C25B Cr6 C27B O3B	22(9)
C30 Cr2 C20 C21	-171.0(3)	C14B Cr6 C27B O3B	-62(9)
C24 Cr2 C20 C21	-102.9(3)	C15B Cr6 C27B O3B	-125(8)
C23 Cr2 C20 C21	-65.9(3)	C18B Cr6 C27B O3B	-115(9)
C22 Cr2 C20 C21	-29.6(3)	C16B Cr6 C27B O3B	-167(9)
C19 Cr2 C20 C21	-132.8(4)	C17B Cr6 C27B O3B	-149(9)
C28 Cr2 C20 C19	-122.0(3)	C13B Cr6 C27B O3B	-80(9)
C29 Cr2 C20 C19	152.3(3)	C30B Cr5 C28B O4B	39(19)
C30 Cr2 C20 C19	-38.1(4)	C29B Cr5 C28B O4B	-51(19)
C24 Cr2 C20 C19	30.0(2)	C24B Cr5 C28B O4B	122(19)
C21 Cr2 C20 C19	132.8(4)	C20B Cr5 C28B O4B	-176(100)
C23 Cr2 C20 C19	67.0(2)	C23B Cr5 C28B O4B	134(19)
C22 Cr2 C20 C19	103.2(3)	C22B Cr5 C28B O4B	-129(19)
Cr2 C20 C21 C22	54.4(4)	C21B Cr5 C28B O4B	-144(19)
C19 C20 C21 Cr2	-54.7(3)	C19B Cr5 C28B O4B	147(19)
C28 Cr2 C21 C22	152.1(3)	C30B Cr5 C29B O5B	-168(100)
C29 Cr2 C21 C22	61.0(3)	C28B Cr5 C29B O5B	-81(19)
C30 Cr2 C21 C22	-103.3(8)	C24B Cr5 C29B O5B	108(19)
C24 Cr2 C21 C22	-65.3(3)	C20B Cr5 C29B O5B	9(19)
C20 Cr2 C21 C22	-131.2(4)	C23B Cr5 C29B O5B	98(19)
C23 Cr2 C21 C22	-28.4(3)	C22B Cr5 C29B O5B	67(19)
C19 Cr2 C21 C22	-102.4(3)	C21B Cr5 C29B O5B	31(19)
C28 Cr2 C21 C20	-76.7(3)	C19B Cr5 C29B O5B	28(19)

C29 Cr2 C21 C20	-167.7(3)	C28B Cr5 C30B O6B	158(17)
C30 Cr2 C21 C20	28.0(10)	C29B Cr5 C30B O6B	-115(17)
C24 Cr2 C21 C20	65.9(3)	C24B Cr5 C30B O6B	29(17)
C23 Cr2 C21 C20	102.8(3)	C20B Cr5 C30B O6B	69(17)
C22 Cr2 C21 C20	131.2(4)	C23B Cr5 C30B O6B	-8(17)
C19 Cr2 C21 C20	28.8(2)	C22B Cr5 C30B O6B	-30(17)
Cr2 C21 C22 C23	54.4(4)	C21B Cr5 C30B O6B	-13(17)
C20 C21 C22 Cr2	-54.4(4)	C19B Cr5 C30B O6B	59(17)
C28 Cr2 C22 C23	-169.8(3)	O6A C30A Cr7 C28A	-17(27)
C29 Cr2 C22 C23	104.3(3)	O6A C30A Cr7 C29A	74(27)
C30 Cr2 C22 C23	22.0(4)	O6A C30A Cr7 C24A	-151(27)
C24 Cr2 C22 C23	-29.5(2)	O6A C30A Cr7 C22A	153(27)
C20 Cr2 C22 C23	-103.2(3)	O6A C30A Cr7 C23A	173(100)
C21 Cr2 C22 C23	-132.8(4)	O6A C30A Cr7 C20A	-99(27)
C19 Cr2 C22 C23	-66.4(2)	O6A C30A Cr7 C21A	-166(26)
C28 Cr2 C22 C21	-36.9(4)	O6A C30A Cr7 C19A	-117(27)
C29 Cr2 C22 C21	-122.8(3)	O4A C28A Cr7 C30A	-36(12)
C30 Cr2 C22 C21	154.8(3)	O4A C28A Cr7 C29A	-123(12)
C24 Cr2 C22 C21	103.4(3)	O4A C28A Cr7 C24A	50(12)
C20 Cr2 C22 C21	29.6(2)	O4A C28A Cr7 C22A	155(12)
C23 Cr2 C22 C21	132.8(4)	O4A C28A Cr7 C23A	101(12)
C19 Cr2 C22 C21	66.5(3)	O4A C28A Cr7 C20A	104(12)
Cr2 C22 C23 C24	53.8(3)	O4A C28A Cr7 C21A	138(12)
C21 C22 C23 Cr2	-54.4(4)	O4A C28A Cr7 C19A	69(12)
C28 Cr2 C23 C22	30.6(9)	O5A C29A Cr7 C30A	82(11)
C29 Cr2 C23 C22	-76.6(3)	O5A C29A Cr7 C28A	169(11)
C30 Cr2 C23 C22	-166.5(3)	O5A C29A Cr7 C24A	-4(11)
C24 Cr2 C23 C22	131.8(4)	O5A C29A Cr7 C22A	-55(11)
C20 Cr2 C23 C22	65.6(2)	O5A C29A Cr7 C23A	-21(11)
C21 Cr2 C23 C22	28.8(2)	O5A C29A Cr7 C20A	-104(11)
C19 Cr2 C23 C22	102.8(3)	O5A C29A Cr7 C21A	-88(11)
C28 Cr2 C23 C24	-101.2(8)	O5A C29A Cr7 C19A	-57(11)
C29 Cr2 C23 C24	151.6(3)	C19A C24A Cr7 C30A	116.7(3)
C30 Cr2 C23 C24	61.7(3)	C23A C24A Cr7 C30A	-112.7(4)
C20 Cr2 C23 C24	-66.2(2)	C19A C24A Cr7 C28A	31.9(4)
C21 Cr2 C23 C24	-103.0(3)	C23A C24A Cr7 C28A	162.5(4)
C22 Cr2 C23 C24	-131.8(4)	C19A C24A Cr7 C29A	-158.0(3)
C19 Cr2 C23 C24	-29.0(2)	C23A C24A Cr7 C29A	-27.4(5)
Cr2 C23 C24 C19	55.7(3)	C19A C24A Cr7 C22A	-102.0(3)

C22 C23 C24 Cr2	-54.3(3)	C23A C24A Cr7 C22A	28.6(4)
Cr2 C19 C24 C23	-55.5(3)	C19A C24A Cr7 C23A	-130.6(5)
C20 C19 C24 Cr2	53.9(3)	C19A C24A Cr7 C20A	-29.8(2)
C2 C19 C24 Cr2	-127.0(3)	C23A C24A Cr7 C20A	100.8(4)
C28 Cr2 C24 C23	153.9(4)	C19A C24A Cr7 C21A	-66.2(3)
C29 Cr2 C24 C23	-36.7(3)	C23A C24A Cr7 C21A	64.4(4)
C30 Cr2 C24 C23	-123.4(3)	C23A C24A Cr7 C19A	130.6(5)
C20 Cr2 C24 C23	102.5(3)	C23A C22A Cr7 C30A	34.4(5)
C21 Cr2 C24 C23	65.7(3)	C21A C22A Cr7 C30A	167.4(3)
C22 Cr2 C24 C23	29.0(3)	C23A C22A Cr7 C28A	-161.1(3)
C19 Cr2 C24 C23	132.4(3)	C21A C22A Cr7 C28A	-28.1(4)
C28 Cr2 C24 C19	21.4(4)	C23A C22A Cr7 C29A	114.4(4)
C29 Cr2 C24 C19	-169.1(2)	C21A C22A Cr7 C29A	-112.7(3)
C30 Cr2 C24 C19	104.1(2)	C23A C22A Cr7 C24A	-29.6(3)
C20 Cr2 C24 C19	-29.93(19)	C21A C22A Cr7 C24A	103.3(3)
C21 Cr2 C24 C19	-66.7(2)	C21A C22A Cr7 C23A	133.0(5)
C23 Cr2 C24 C19	-132.4(3)	C23A C22A Cr7 C20A	-103.3(4)
C22 Cr2 C24 C19	-103.5(2)	C21A C22A Cr7 C20A	29.6(3)
C26 Cr1 C25 O1	61(13)	C23A C22A Cr7 C21A	-133.0(5)
C27 Cr1 C25 O1	148(13)	C23A C22A Cr7 C19A	-66.2(3)
C16 Cr1 C25 O1	-23(13)	C21A C22A Cr7 C19A	66.7(3)
C14 Cr1 C25 O1	-80(13)	C22A C23A Cr7 C30A	-156.2(4)
C13 Cr1 C25 O1	-112(13)	C24A C23A Cr7 C30A	71.5(4)
C18 Cr1 C25 O1	-126(13)	C22A C23A Cr7 C28A	68.5(10)
C15 Cr1 C25 O1	-44(13)	C24A C23A Cr7 C28A	-63.8(11)
C17 Cr1 C25 O1	-52(13)	C22A C23A Cr7 C29A	-66.9(4)
C25 Cr1 C26 O2	-134(24)	C24A C23A Cr7 C29A	160.8(4)
C27 Cr1 C26 O2	138(24)	C22A C23A Cr7 C24A	132.3(5)
C16 Cr1 C26 O2	-4(24)	C24A C23A Cr7 C22A	-132.3(5)
C14 Cr1 C26 O2	-50(24)	C22A C23A Cr7 C20A	65.1(4)
C13 Cr1 C26 O2	20(25)	C24A C23A Cr7 C20A	-67.3(3)
C18 Cr1 C26 O2	52(24)	C22A C23A Cr7 C21A	28.2(4)
C15 Cr1 C26 O2	-35(24)	C24A C23A Cr7 C21A	-104.1(4)
C17 Cr1 C26 O2	31(24)	C22A C23A Cr7 C19A	102.8(4)
C25 Cr1 C27 O3	-19(19)	C24A C23A Cr7 C19A	-29.5(3)
C26 Cr1 C27 O3	70(19)	C21A C20A Cr7 C30A	-162.6(4)
C16 Cr1 C27 O3	151(19)	C19A C20A Cr7 C30A	-29.5(4)
C14 Cr1 C27 O3	-103(19)	C21A C20A Cr7 C28A	115.3(3)
C13 Cr1 C27 O3	-124(19)	C19A C20A Cr7 C28A	-111.7(3)

C18 Cr1 C27 O3	-160(19)	C21A C20A Cr7 C29A	27.0(4)
C15 Cr1 C27 O3	-138(19)	C19A C20A Cr7 C29A	160.1(2)
C17 Cr1 C27 O3	167(19)	C21A C20A Cr7 C24A	-104.0(3)
C29 Cr2 C28 O4	-99(13)	C19A C20A Cr7 C24A	29.1(2)
C30 Cr2 C28 O4	-11(13)	C21A C20A Cr7 C22A	-29.0(3)
C24 Cr2 C28 O4	73(13)	C19A C20A Cr7 C22A	104.0(3)
C20 Cr2 C28 O4	119(13)	C21A C20A Cr7 C23A	-65.6(3)
C21 Cr2 C28 O4	155(13)	C19A C20A Cr7 C23A	67.5(3)
C23 Cr2 C28 O4	153(12)	C19A C20A Cr7 C21A	133.1(4)
C22 Cr2 C28 O4	176(100)	C21A C20A Cr7 C19A	-133.1(4)
C19 Cr2 C28 O4	86(13)	C22A C21A Cr7 C30A	-50.9(14)
C28 Cr2 C29 O5	79(18)	C20A C21A Cr7 C30A	80.5(14)
C30 Cr2 C29 O5	-7(18)	C22A C21A Cr7 C28A	160.5(3)
C24 Cr2 C29 O5	-94(18)	C20A C21A Cr7 C28A	-68.0(3)
C20 Cr2 C29 O5	165(18)	C22A C21A Cr7 C29A	68.2(3)
C21 Cr2 C29 O5	177(100)	C20A C21A Cr7 C29A	-160.3(3)
C23 Cr2 C29 O5	-116(18)	C22A C21A Cr7 C24A	-66.3(3)
C22 Cr2 C29 O5	-151(18)	C20A C21A Cr7 C24A	65.2(3)
C19 Cr2 C29 O5	-118(18)	C20A C21A Cr7 C22A	131.5(4)
C28 Cr2 C30 O6	-19(11)	C22A C21A Cr7 C23A	-28.7(3)
C29 Cr2 C30 O6	70(11)	C20A C21A Cr7 C23A	102.8(3)
C24 Cr2 C30 O6	-162(11)	C22A C21A Cr7 C20A	-131.5(4)
C20 Cr2 C30 O6	-104(11)	C22A C21A Cr7 C19A	-102.6(3)
C21 Cr2 C30 O6	-125(11)	C20A C21A Cr7 C19A	28.8(2)
C23 Cr2 C30 O6	166(11)	C24A C19A Cr7 C30A	-67.7(3)
C22 Cr2 C30 O6	152(11)	C20A C19A Cr7 C30A	160.7(3)
C19 Cr2 C30 O6	-126(11)	C2A C19A Cr7 C30A	48.9(4)
B4A C1A C13A Cr1A	-48.7(4)	C24A C19A Cr7 C28A	-157.3(3)
B5A C1A C13A Cr1A	29.4(5)	C20A C19A Cr7 C28A	71.1(3)
B3A C1A C13A Cr1A	-121.6(3)	C2A C19A Cr7 C28A	-40.7(4)
B6A C1A C13A Cr1A	103.1(3)	C24A C19A Cr7 C29A	69.3(8)
C27ACr1AC13AC14A	157.5(3)	C2A C19A Cr7 C29A	-174.1(6)
C25ACr1AC13AC14A	69.4(3)	C20A C19A Cr7 C24A	-131.6(4)
C26ACr1AC13AC14A	-62.1(8)	C2A C19A Cr7 C24A	116.5(5)
C18ACr1AC13AC14A	-130.9(3)	C24A C19A Cr7 C22A	67.2(3)
C17ACr1AC13AC14A	-101.8(3)	C20A C19A Cr7 C22A	-64.4(3)
C16ACr1AC13AC14A	-65.6(2)	C2A C19A Cr7 C22A	-176.2(4)
C15ACr1AC13AC14A	-29.4(2)	C24A C19A Cr7 C23A	30.7(3)
C27ACr1AC13AC18A	-71.6(3)	C20A C19A Cr7 C23A	-100.9(3)

C25ACr1AC13AC18A	-159.6(3)	C2A C19A Cr7 C23A	147.2(4)
C26ACr1AC13AC18A	68.9(8)	C24A C19A Cr7 C20A	131.6(4)
C14ACr1AC13AC18A	130.9(3)	C2A C19A Cr7 C20A	-111.8(4)
C17ACr1AC13AC18A	29.1(2)	C24A C19A Cr7 C21A	103.2(3)
C16ACr1AC13AC18A	65.4(2)	C20A C19A Cr7 C21A	-28.4(3)
C27A Cr1A C13A C1A	40.6(3)	C18CC13CC14C Cr2A	-52.4(3)
C25A Cr1A C13A C1A	-47.5(3)	C1C C13C C14C Cr2A	129.5(3)
C26A Cr1A C13A C1A	-178.9(7)	C25CCr2AC14C C13C	-134.2(3)
C14A Cr1A C13A C1A	-116.9(4)	C27CCr2AC14C C13C	-46.9(3)
C18A Cr1A C13A C1A	112.2(4)	C26CCr2AC14C C13C	141.5(3)
C17A Cr1A C13A C1A	141.3(3)	C15CCr2AC14C C13C	131.1(3)
C16A Cr1A C13A C1A	177.6(3)	C18CCr2AC14C C13C	29.31(18)
C15A Cr1A C13A C1A	-146.3(3)	C16CCr2AC14C C13C	103.4(2)
C18AC13AC14A Cr1A	-52.6(3)	C17CCr2AC14C C13C	66.2(2)
C1A C13A C14A Cr1A	125.0(3)	C25CCr2AC14C C15C	94.8(3)
C27ACr1AC14A C13A	-31.5(4)	C27CCr2AC14C C15C	-178.0(3)
C25ACr1AC14A C13A	-113.9(2)	C26CCr2AC14C C15C	10.4(4)
C26ACr1AC14A C13A	162.4(3)	C18CCr2AC14C C15C	-101.7(2)
C18ACr1AC14A C13A	30.1(2)	C16CCr2AC14C C15C	-27.6(2)
C17ACr1AC14A C13A	67.1(2)	C17CCr2AC14C C15C	-64.8(2)
C16ACr1AC14A C13A	103.6(2)	C13CCr2AC14C C15C	-131.1(3)
C15ACr1AC14A C13A	132.1(3)	Cr2AC14CC15C C16C	53.8(4)
C27ACr1AC14A C15A	-163.6(3)	C13CC14CC15C Cr2A	-56.4(3)
C25ACr1AC14A C15A	114.0(3)	C25CCr2AC15C C16C	142.0(3)
C26ACr1AC14A C15A	30.3(4)	C27CCr2AC15C C16C	-127.9(8)
C18ACr1AC14A C15A	-102.1(3)	C26CCr2AC15C C16C	52.2(3)
C17ACr1AC14A C15A	-65.0(3)	C14CCr2AC15C C16C	-133.5(4)
C16ACr1AC14A C15A	-28.5(3)	C18CCr2AC15C C16C	-66.3(3)
C13ACr1AC14A C15A	-132.1(3)	C17CCr2AC15C C16C	-29.9(2)
C13AC14AC15A Cr1A	-56.3(3)	C25CCr2AC15C C14C	-84.5(3)
C27ACr1AC15A C16A	-73.4(9)	C27CCr2AC15C C14C	5.6(9)
C25ACr1AC15A C16A	158.0(3)	C26CCr2AC15C C14C	-174.3(2)
C26ACr1AC15A C16A	68.9(3)	C18CCr2AC15C C14C	67.2(2)
C14ACr1AC15A C16A	-132.5(4)	C16CCr2AC15C C14C	133.5(4)
C18ACr1AC15A C16A	-65.9(2)	C17CCr2AC15C C14C	103.7(2)
C17ACr1AC15A C16A	-29.2(2)	C13CCr2AC15C C14C	29.8(2)
C13ACr1AC15A C16A	-103.5(3)	Cr2AC15CC16C C17C	54.8(4)
C27ACr1AC15A C14A	59.1(10)	C14CC15CC16C Cr2A	-53.1(4)
C25ACr1AC15A C14A	-69.5(3)	C25CCr2AC16C C15C	-44.3(3)

C26ACr1AC15A C14	A -158.6(3)	C27CCr2AC16C C15C	151.5(4)
C18ACr1AC15A C14	A 66.6(2)	C26CCr2AC16C C15C	-132.8(3)
C17ACr1AC15A C14	A 103.3(3)	C14CCr2AC16C C15C	28.8(2)
C16ACr1AC15A C14	A 132.5(4)	C18CCr2AC16C C15C	103.1(3)
C13ACr1AC15A C14	A 29.0(2)	C17CCr2AC16C C15C	131.5(4)
Cr1AC15AC16A C17	A 55.0(4)	C13CCr2AC16C C15C	65.8(2)
C14AC15AC16A Cr1	A -52.3(3)	C25CCr2AC16C C17C	-175.9(3)
C27ACr1AC16A C15	A 160.3(2)	C27CCr2AC16C C17C	20.0(5)
C25ACr1AC16A C15	A -31.6(3)	C26CCr2AC16C C17C	95.7(3)
C26ACr1AC16A C15	A -113.1(3)	C14CCr2AC16C C17C	-102.7(3)
C14ACr1AC16A C15	A 29.3(2)	C15CCr2AC16C C17C	-131.5(4)
C18ACr1AC16A C15	A 103.2(3)	C18CCr2AC16C C17C	-28.4(2)
C17ACr1AC16A C15	A 131.8(3)	C13CCr2AC16C C17C	-65.7(2)
C13ACr1AC16A C15	A 66.0(2)	Cr2AC16CC17C C18C	53.3(3)
C27ACr1AC16A C17	A 28.5(3)	C15CC16CC17C Cr2A	-55.0(4)
C25ACr1AC16A C17	A -163.5(3)	C25CCr2AC17C C18C	-124.4(4)
C26ACr1AC16A C17	A 115.1(3)	C27CCr2AC17C C18C	57.2(3)
C14ACr1AC16A C17	A -102.5(2)	C26CCr2AC17C C18C	142.5(3)
C18ACr1AC16A C17	A -28.7(2)	C14CCr2AC17C C18C	-67.2(2)
C15ACr1AC16A C17	A -131.8(3)	C15CCr2AC17C C18C	-104.4(3)
C13ACr1AC16A C17	A -65.8(2)	C16CCr2AC17C C18C	-133.2(4)
Cr1AC16AC17A C18	A 53.0(4)	C13CCr2AC17C C18C	-30.0(2)
C15AC16AC17A Cr1	A -55.4(4)	C25CCr2AC17C C16C	8.8(6)
C27ACr1AC17A C18	A 66.2(3)	C27CCr2AC17C C16C	-169.6(3)
C25ACr1AC17A C18	A -71.1(9)	C26CCr2AC17C C16C	-84.3(3)
C26ACr1AC17A C18	A 159.6(3)	C14CCr2AC17C C16C	66.0(3)
C14ACr1AC17A C18	A -66.6(2)	C15CCr2AC17C C16C	28.8(3)
C16ACr1AC17A C18	A -133.1(4)	C18CCr2AC17C C16C	133.2(4)
C15ACr1AC17A C18	A -104.0(3)	C13CCr2AC17C C16C	103.2(3)
C13ACr1AC17A C18	A -29.5(2)	Cr2AC17CC18C C13C	56.0(3)
C27ACr1AC17A C16	A -160.7(2)	C16CC17CC18C Cr2A	-53.3(4)
C25ACr1AC17A C16	A 62.1(9)	Cr2AC13CC18C C17C	-55.7(3)
C26ACr1AC17A C16	A -67.2(3)	C14CC13CC18C Cr2A	52.2(3)
C14ACr1AC17A C16	A 66.5(2)	C1C C13C C18C Cr2A	-129.7(3)
C18ACr1AC17A C16	A 133.1(4)	C25CCr2AC18C C17C	136.7(5)
C15ACr1AC17A C16	A 29.1(2)	C27CCr2AC18C C17C	-130.4(3)
C13ACr1AC17A C16	A 103.6(3)	C26CCr2AC18C C17C	-44.8(3)
Cr1AC17AC18A C13	A 56.1(3)	C14CCr2AC18C C17C	101.9(3)
C16AC17AC18A Cr1	A -53.5(4)	C15CCr2AC18C C17C	64.4(3)

Cr1AC13AC18A C17A	-55.8(3)	C16CCr2AC18C C17C	28.7(3)
C14AC13AC18A Cr1A	52.8(3)	C13CCr2AC18C C17C	131.1(3)
CIA CI3A CI8A CrIA	-125.0(3)	C25CCr2AC18C C13C	5.6(6)
C27ACr1AC18A C17A	-117.2(3)	C27CCr2AC18C C13C	98.5(3)
C25ACr1AC18A C17A	161.9(4)	C26CCr2AC18C C13C	-175.9(2)
C26ACr1AC18A C17A	-29.2(4)	C14CCr2AC18C C13C	-29.22(19)
C14ACr1AC18A C17A	102.2(3)	C15CCr2AC18C C13C	-66.7(2)
C16ACr1AC18A C17A	28.3(3)	C16CCr2AC18C C13C	-102.4(2)
C15ACr1AC18A C17A	64.6(3)	C17CCr2AC18C C13C	-131.1(3)
C13ACr1AC18A C17A	132.0(4)	B8C C2C C19C Cr8	64.7(4)
C27ACr1AC18A C13A	110.8(3)	B7C C2C C19C Cr8	-13.7(5)
C25ACr1AC18A C13A	29.9(4)	B6C C2C C19C Cr8	-89.1(4)
C26ACr1AC18A C13A	-161.1(3)	B3C C2C C19C Cr8	135.3(3)
C14ACr1AC18A C13A	-29.7(2)	C1C C2C C19C Cr8	-158.4(2)
C17ACr1AC18A C13A	-132.0(4)	C30C Cr8 C19C C24C	-67.3(3)
C16ACr1AC18A C13A	-103.6(2)	C29C Cr8 C19C C24C	66.3(7)
C15ACr1AC18A C13A	-67.4(2)	C28C Cr8 C19C C24C	-157.9(3)
Cr7 C19A C20A C21A	54.7(3)	C29C Cr8 C19C C20C	-66.1(7)
C24A C19A C20A Cr7	-52.7(3)	C28C Cr8 C19C C20C	69.7(3)
C2A C19A C20A Cr7	128.3(3)	C24C Cr8 C19C C20C	-132.4(3)
Cr7 C20A C21A C22A	53.7(4)	C22C Cr8 C19C C20C	-65.4(3)
C19A C20A C21A Cr7	-54.8(3)	C23C Cr8 C19C C20C	-102.0(3)
Cr7 C21A C22A C23A	55.7(4)	C21C Cr8 C19C C20C	-29.7(3)
C20A C21A C22A Cr7	-53.9(4)	C30C Cr8 C19C C2C	48.6(4)
Cr7 C22A C23A C24A	52.8(4)	C29C Cr8 C19C C2C	-177.7(6)
C21A C22A C23A Cr7	-56.1(4)	C28C Cr8 C19C C2C	-41.9(4)
Cr7 C19A C24A C23A	-56.3(3)	C24C Cr8 C19C C2C	115.9(4)
C20A C19A C24A Cr7	52.8(3)	C20C Cr8 C19C C2C	-111.7(4)
C2A C19A C24A Cr7	-128.3(3)	C22C Cr8 C19C C2C	-177.0(4)
Cr7 C23A C24A C19A	57.2(3)	C23C Cr8 C19C C2C	146.3(4)
C22A C23A C24A Cr7	-53.0(4)	C21C Cr8 C19C C2C	-141.4(4)
C27A Cr1A C25A O1A	70(26)	Cr8 C19C C20C C21C	55.4(4)
C26A Cr1A C25A O1A	-21(26)	C24C C19C C20C Cr8	-52.8(3)
C14A Cr1A C25A O1A	-156(26)	C2C C19C C20C Cr8	129.7(3)
C18A Cr1A C25A O1A	151(26)	C30C Cr8 C20C C21C	-160.4(4)
C17A Cr1A C25A O1A	-152(25)	C29C Cr8 C20C C21C	29.4(4)
C16A Cr1A C25A O1A	-102(26)	C28C Cr8 C20C C21C	115.4(3)
C15A Cr1A C25A O1A	-121(26)	C24C Cr8 C20C C21C	-102.2(3)
C13A Cr1A C25A O1A	169(100)	C22C Cr8 C20C C21C	-28.3(3)

C27A Cr1A C26A O2A	-108(10)	C23C Cr8 C20C C21C	-64.5(3)
C25A Cr1A C26A O2A	-22(10)	C19C Cr8 C20C C21C	-131.3(4)
C14A Cr1A C26A O2A	62(10)	C30C Cr8 C20C C19C	-29.1(5)
C18A Cr1A C26A O2A	165(10)	C29C Cr8 C20C C19C	160.7(3)
C17A Cr1A C26A O2A	148(10)	C28C Cr8 C20C C19C	-113.2(3)
C16A Cr1A C26A O2A	114(10)	C24C Cr8 C20C C19C	29.2(2)
C15A Cr1A C26A O2A	80(10)	C22C Cr8 C20C C19C	103.1(3)
C13A Cr1A C26A O2A	111(10)	C23C Cr8 C20C C19C	66.8(2)
C25A Cr1A C27A O3A	76(35)	C21C Cr8 C20C C19C	131.3(4)
C26A Cr1A C27A O3A	163(35)	Cr8 C20C C21C C22C	53.7(4)
C14A Cr1A C27A O3A	-7(35)	C19C C20C C21C Cr8	-55.4(3)
C18A Cr1A C27A O3A	-61(35)	C30C Cr8 C21C C20C	75.8(12)
C17A Cr1A C27A O3A	-95(35)	C29C Cr8 C21C C20C	-159.3(3)
C16A Cr1A C27A O3A	-112(35)	C28C Cr8 C21C C20C	-67.9(3)
C15A Cr1A C27A O3A	-54(35)	C24C Cr8 C21C C20C	67.0(3)
C13A Cr1A C27A O3A	-26(35)	C22C Cr8 C21C C20C	132.3(4)
B5B C1B C13B Cr6	42.5(6)	C23C Cr8 C21C C20C	103.9(3)
B4B C1B C13B Cr6	-35.5(6)	C19C Cr8 C21C C20C	29.6(2)
B3B C1B C13B Cr6	-109.7(4)	C30C Cr8 C21C C22C	-56.5(12)
B6B C1B C13B Cr6	115.9(4)	C29C Cr8 C21C C22C	68.5(3)
C2B C1B C13B Cr6	-177.5(3)	C28C Cr8 C21C C22C	159.8(3)
C26B Cr6 C13B C14B	-59.8(12)	C24C Cr8 C21C C22C	-65.3(3)
C25B Cr6 C13B C14B	68.1(4)	C20C Cr8 C21C C22C	-132.3(4)
C27B Cr6 C13B C14B	159.8(4)	C23C Cr8 C21C C22C	-28.3(3)
C15B Cr6 C13B C14B	-31.0(5)	C19C Cr8 C21C C22C	-102.6(3)
C18B Cr6 C13B C14B	-131.0(5)	Cr8 C21C C22C C23C	54.9(4)
C16B Cr6 C13B C14B	-65.4(6)	C20C C21C C22C Cr8	-53.3(4)
C17B Cr6 C13B C14B	-102.8(5)	C30C Cr8 C22C C23C	30.2(4)
C26B Cr6 C13B C18B	71.3(12)	C29C Cr8 C22C C23C	112.8(3)
C25B Cr6 C13B C18B	-160.8(4)	C28C Cr8 C22C C23C	-162.5(3)
C27B Cr6 C13B C18B	-69.2(5)	C24C Cr8 C22C C23C	-29.3(3)
C14B Cr6 C13B C18B	131.0(5)	C20C Cr8 C22C C23C	-104.1(3)
C15B Cr6 C13B C18B	100.1(5)	C19C Cr8 C22C C23C	-67.0(3)
C16B Cr6 C13B C18B	65.7(6)	C21C Cr8 C22C C23C	-133.6(4)
C17B Cr6 C13B C18B	28.3(6)	C30C Cr8 C22C C21C	163.8(3)
C26B Cr6 C13B C1B	-173.2(10)	C29C Cr8 C22C C21C	-113.5(3)
C25B Cr6 C13B C1B	-45.3(5)	C28C Cr8 C22C C21C	-28.9(4)
C27B Cr6 C13B C1B	46.4(5)	C24C Cr8 C22C C21C	104.3(3)
C14B Cr6 C13B C1B	-113.4(6)	C20C Cr8 C22C C21C	29.5(3)

C15B Cr6 C13B C1B	-144.4(6)	C23C Cr8 C22C C21C	133.6(4)
C18B Cr6 C13B C1B	115.6(6)	C19C Cr8 C22C C21C	66.6(3)
C16B Cr6 C13B C1B	-178.8(7)	Cr8 C22C C23C C24C	53.0(4)
C17B Cr6 C13B C1B	143.9(6)	C21C C22C C23C Cr8	-55.2(4)
Cr6 C13B C14B C15B	56.9(5)	C30C Cr8 C23C C22C	-158.8(3)
C18B C13B C14B Cr6	-53.2(4)	C29C Cr8 C23C C22C	-69.2(3)
C1B C13B C14B Cr6	129.1(3)	C28C Cr8 C23C C22C	64.6(9)
C26B Cr6 C14B C13B	160.3(4)	C24C Cr8 C23C C22C	132.4(4)
C25B Cr6 C14B C13B	-115.0(3)	C20C Cr8 C23C C22C	64.7(3)
C27B Cr6 C14B C13B	-29.6(6)	C19C Cr8 C23C C22C	102.0(3)
C15B Cr6 C14B C13B	129.8(7)	C21C Cr8 C23C C22C	27.7(3)
C18B Cr6 C14B C13B	29.7(3)	C30C Cr8 C23C C24C	68.8(3)
C16B Cr6 C14B C13B	103.2(6)	C29C Cr8 C23C C24C	158.4(3)
C17B Cr6 C14B C13B	66.2(4)	C28C Cr8 C23C C24C	-67.8(10)
C26B Cr6 C14B C15B	30.5(7)	C20C Cr8 C23C C24C	-67.6(3)
C25B Cr6 C14B C15B	115.2(6)	C22C Cr8 C23C C24C	-132.4(4)
C27B Cr6 C14B C15B	-159.4(6)	C19C Cr8 C23C C24C	-30.4(2)
C18B Cr6 C14B C15B	-100.1(6)	C21C Cr8 C23C C24C	-104.7(3)
C16B Cr6 C14B C15B	-26.6(7)	Cr8 C23C C24C C19C	56.3(3)
C17B Cr6 C14B C15B	-63.6(6)	C22C C23C C24C Cr8	-53.2(4)
C13B Cr6 C14B C15B	-129.8(7)	Cr8 C19C C24C C23C	-56.3(3)
Cr6 C14B C15B C16B	54.1(7)	C20C C19C C24C Cr8	53.0(3)
C13B C14B C15B Cr6	-57.8(4)	C2C C19C C24C Cr8	-129.6(3)
C26B Cr6 C15B C16B	68.2(6)	C30C Cr8 C24C C23C	-114.0(4)
C25B Cr6 C15B C16B	157.9(6)	C29C Cr8 C24C C23C	-30.5(4)
C27B Cr6 C15B C16B	-56.1(16)	C28C Cr8 C24C C23C	162.2(3)
C14B Cr6 C15B C16B	-134.0(9)	C20C Cr8 C24C C23C	101.2(3)
C18B Cr6 C15B C16B	-66.2(6)	C22C Cr8 C24C C23C	28.7(3)
C17B Cr6 C15B C16B	-29.4(5)	C19C Cr8 C24C C23C	130.2(4)
C13B Cr6 C15B C16B	-103.7(6)	C21C Cr8 C24C C23C	63.9(3)
C26B Cr6 C15B C14B	-157.8(5)	C27C Cr2A C25C O1C	-70(23)
C25B Cr6 C15B C14B	-68.1(5)	C26C Cr2A C25C O1C	-155(23)
C27B Cr6 C15B C14B	77.9(17)	C14C Cr2A C25C O1C	55(23)
C18B Cr6 C15B C14B	67.8(5)	C15C Cr2A C25C O1C	93(23)
C16B Cr6 C15B C14B	134.0(9)	C18C Cr2A C25C O1C	23(23)
C17B Cr6 C15B C14B	104.6(5)	C16C Cr2A C25C O1C	117(23)
C13B Cr6 C15B C14B	30.3(4)	C17C Cr2A C25C O1C	111(23)
C14BC15BC16BC17B	1.3(13)	C13C Cr2A C25C O1C	27(23)
Cr6 C15B C16B C17B	54.1(8)	C25C Cr2A C26C O2C	115(18)
		-	

C14B C15B C16B Cr6	-52.8(6)	C27C Cr2A C26C O2C	26(18)
C26B Cr6 C16B C15B	-112.5(7)	C14C Cr2A C26C O2C	-161(18)
C25B Cr6 C16B C15B	-31.0(7)	C15C Cr2A C26C O2C	-154(18)
C27B Cr6 C16B C15B	162.9(5)	C18C Cr2A C26C O2C	-64(18)
C14B Cr6 C16B C15B	29.0(5)	C16C Cr2A C26C O2C	-126(18)
C18B Cr6 C16B C15B	102.8(5)	C17C Cr2A C26C O2C	-89(18)
C17B Cr6 C16B C15B	132.8(8)	C13C Cr2A C26C O2C	-70(18)
C13B Cr6 C16B C15B	65.9(5)	C25C Cr2A C27C O3C	-19(10)
C26B Cr6 C16B C17B	114.7(7)	C26C Cr2A C27C O3C	70(10)
C25B Cr6 C16B C17B	-163.8(5)	C14C Cr2A C27C O3C	-105(10)
C27B Cr6 C16B C17B	30.1(7)	C15C Cr2A C27C O3C	-110(9)
C14B Cr6 C16B C17B	-103.8(5)	C18C Cr2A C27C O3C	-170(10)
C15B Cr6 C16B C17B	-132.8(8)	C16C Cr2A C27C O3C	147(10)
C18B Cr6 C16B C17B	-30.0(5)	C17C Cr2A C27C O3C	160(10)
C13B Cr6 C16B C17B	-66.9(5)	C13C Cr2A C27C O3C	-132(10)
Cr6 C16B C17B C18B	55.2(6)	C30C Cr8 C28C O4C	28(100)
C15B C16B C17B Cr6	-54.5(8)	C29C Cr8 C28C O4C	-60(100)
C26B Cr6 C17B C18B	163.0(6)	C24C Cr8 C28C O4C	111(100)
C25B Cr6 C17B C18B	-70.5(18)	C20C Cr8 C28C O4C	165(100)
C27B Cr6 C17B C18B	70.7(7)	C22C Cr8 C28C O4C	-143(100)
C14B Cr6 C17B C18B	-65.4(6)	C23C Cr8 C28C O4C	165(100)
C15B Cr6 C17B C18B	-102.8(6)	C19C Cr8 C28C O4C	131(100)
C16B Cr6 C17B C18B	-130.2(10)	C21C Cr8 C28C O4C	-160(100)
C13B Cr6 C17B C18B	-28.5(5)	C30C Cr8 C29C O5C	-98(33)
C26B Cr6 C17B C16B	-66.7(7)	C28C Cr8 C29C O5C	-10(33)
C25B Cr6 C17B C16B	59.7(15)	C24C Cr8 C29C O5C	179(100)
C27B Cr6 C17B C16B	-159.1(6)	C20C Cr8 C29C O5C	75(34)
C14B Cr6 C17B C16B	64.9(6)	C22C Cr8 C29C O5C	126(33)
C15B Cr6 C17B C16B	27.4(5)	C23C Cr8 C29C O5C	160(33)
C18B Cr6 C17B C16B	130.2(10)	C19C Cr8 C29C O5C	127(33)
C13B Cr6 C17B C16B	101.8(7)	C21C Cr8 C29C O5C	93(33)
Cr6 C17B C18B C13B	54.7(6)	C29C Cr8 C30C O6C	-86(20)
C16B C17B C18B Cr6	-55.2(6)	C28C Cr8 C30C O6C	-175(100)
Cr6 C13B C18B C17B	-54.4(6)	C24C Cr8 C30C O6C	49(20)
C14B C13B C18B Cr6	52.7(4)	C20C Cr8 C30C O6C	101(20)
C1B C13B C18B Cr6	-129.7(3)	C22C Cr8 C30C O6C	-4(20)
C26B Cr6 C18B C17B	-24.0(9)	C23C Cr8 C30C O6C	14(20)
C25B Cr6 C18B C17B	161.4(7)	C19C Cr8 C30C O6C	83(20)
C27B Cr6 C18B C17B	-112.4(8)	C21C Cr8 C30C O6C	40(20)

Figure S10. ORTEP drawing (30% probability for thermal ellipsoids) of Ph3C2B (the hydrogen atoms are omitted for clarity).

Figure S11. ORTEP drawing (30% probability for thermal ellipsoids) of Ph3C2BCr2 (the hydrogen atoms are omitted for clarity).

Figure S12. ORTEP drawing (30% probability for thermal ellipsoids) of Ph3C2BCr3 (the hydrogen atoms are omitted for clarity).