

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

August 2023
Master’s Degree Thesis

Hardware Acceleration of

Fused-Layer Convolutional Neural

Networks via Most-Significant-Digit

First Arithmetic

Graduate School of Chosun University

Department of Computer Engineering

Mohammadhosein Gholamrezaei

Hardware Acceleration of

Fused-Layer Convolutional Neural

Networks via Most-Significant-Digit

First Arithmetic

MSDF (Most-Significant-Digit First

Arithmetic)연산기법을적용한

Fused-layer CNN

하드웨어가속기연구

August 25, 2023

Graduate School of Chosun University

Department of Computer Engineering

Mohammadhosein Gholamrezaei

Hardware Acceleration of

Fused-Layer Convolutional Neural

Networks via Most-Significant-Digit

First Arithmetic

Advisor: Prof. Jeong-A, Lee

This Thesis is submitted to Graduate School of Chosun
University in partial fulfillment of the requirements for a

Master’s degree

April 2023

Graduate School of Chosun University

Department of Computer Engineering

Mohammadhosein Gholamrezaei

Contents

Abstract [Korean] i

Abstract [English] ii

Acronyms iv

List of Figures v

List of Tables vii

I. Introduction 1

A. Research Motivation . 1

B. Research Objectives . 3

C. Contributions . 4

D. Thesis Organization . 5

II. Background 6

A. Deep Neural Networks . 6

B. Convolutional Neural Networks 8

C. Deep Neural Network Hardware Accelerators 10

1. Temporal and Spatial Hardware Architectures 11

2. Co-Design of Hardware Architecture and Compression

Algorithm . 12

D. Most Significant Digit First (MSDF) Arithmetic 13

1. Serial-Serial Multiplication 14

2. Serial-Parallel Multiplication 18

3. Inner Product . 20

4. Application of Online Arithmetic in CNN Accelerators . 21

E. Fused-Layer CNN . 22

III.The Proposed Early Termination Scheme 25

A. Rectified Linear Unit Activation Function 25

B. MaxPool Function . 26

C. Fused-layer Early Termination 28

IV. Hardware Implementation 29

A. The proposed Multiplier . 29

B. The proposed Inner Product Unit 31

V. Evaluation 36

A. Experimental Setup . 36

B. Bit-level Analysis . 37

C. Hardware Evaluation . 38

VI.Conclusion 43

Biblography 43

한글요약

MSDF (Most-Significant-Digit First Arithmetic)연산기법을적용한
Fused-layer CNN하드웨어가속기연구

골람레자이모함마도세인

지도교수: 이정아
컴퓨터공학과

조선대학교대학원

DNN(심층신경망)은데이터내에서복잡한패턴과관계를학습할수있는
기능으로 인해 최근 몇 년 동안 점점 인기를 얻고 있습니다. 합성곱 신경망
(CNN)은 복잡한 이미지 및 비디오 데이터를 효과적으로 분석하고 분류하는
기능으로인해최근몇년동안인기를얻은일종의심층신경망입니다.
융합계층데이터흐름은네트워크내에서데이터처리를최적화하기위해

CNN에서 사용되는 기술입니다. 여러 계층을 단일 작업으로 결합하면 계층
간에 전송해야 하는 데이터 양이 줄어들어 네트워크의 계산 효율성과 메모리

요구사항이모두크게향상될수있습니다.
MSDF(Most-Significant-Digit First)산술은자릿수수준의파이프라이닝과

고유한가변정밀도기능이있어 CNN을위한유망한산술기술입니다. 기존의
비트병렬및비트직렬산술과달리MSDF는다음종속작업으로이동하기전
에작업이완료될때까지기다리지않고연결을통해연속작업의중첩실행을

허용합니다. ReLU 계층에서는 음수 출력이 감지되는 즉시 계산을 종료할 수
있는반면MaxPool계층에서는최대값이감지되는즉시종료될수있습니다.
이논문에서는MSDF산술을사용하고연속레이어에걸쳐숫자수준파이

프라이닝을 가능하게 하는 동시에 비효율적인 계산을 조기에 종료하는 CNN
용하드웨어가속기를제안합니다. CNN에서연속레이어를융합하면 MSDF
산술에서조기종료비율을높일수있습니다. 우리의평가는 LeNet-5의처음
두계층이함께융합될때최대 58.2%의계산을건너뛸수있음을보여줍니다.

i

Abstract

Hardware Acceleration of Fused-Layer Convolutional Neural
Networks via Most-Significant-Digit First Arithmetic

Mohammadhosein Gholamrezaei
Advisor: Prof. Jeong-A, Lee
Department of Computer Engineering
Graduate School of Chosun University

Deep neural networks (DNNs) have become increasingly popular in recent
years due to their ability to learn complex patterns and relationships within data.
Convolutional neural networks (CNNs) are a type of deep neural network that
have gained popularity in recent years due to their ability to effectively analyze
and classify the complex image and video data.

Fused-layer dataflow is a technique used in CNNs to optimize the processing
of data within the network. By fusing multiple layers together into a single oper-
ation, the amount of data that needs to be transferred between layers is reduced,
which can lead to significant improvements in both the computational efficiency
and memory requirements of the network.

Most-Significant-Digit First (MSDF) arithmetic, with its digit-level pipelin-
ing and inherent variable precision capabilities, is a promising arithmetic tech-
nique for CNNs. Unlike traditional bit parallel and bit serial arithmetic, MSDF al-
lows for overlapping execution of successive operations through chaining, rather
than waiting for an operation to finish before moving on to the next dependent
operation. In ReLU layers, the computation can be terminated as soon as a nega-
tive output is detected, while in MaxPool layers, it can be terminated as soon as
the maximum is detected.

In this thesis, we propose a hardware accelerator for CNNs that uses MSDF
arithmetic and enables digit-level pipelining across successive layers, while also
terminating ineffective computations early. By fusing successive layers in CNNs,

ii

the rate of early termination in MSDF arithmetic can be increased. Our evalua-
tions demonstrate that up to 56.3% of computations can be skipped when the first
two layers of LeNet-5 are fused together.

Index Terms: Convolutional Neural Networks, Fused-layer Dataflow, Most-
Significant-Digit First Arithmetic, Run-time Pruning, Early Termination, Hard-
ware Accelerator.

iii

Acronyms

ASIC Application-Specific Integrated Chip
BSD Binary Signed-Digit
CA Conversion/Append
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
CPU Central Processing Unit
CS Carry-Save
CV Computer Vision
DNN Deep Neural Network
DRAM Dynamic Random-Access Memory
FA FA
FPGAs Field Programmable Gate Array
FSM Finite-State Machine
GPU Graphics Processing Unit
HA Half Adder
IEN Inverted Encoding for Negabit
LR Left-to-Right
LSD Least Significant Digit
MAC Multiply-accumulate
MSD Most Significant Digit
MSDF Most Significant Digit First
NoC Network-On-Chip
PE Processing Element
PIM Processing-in-Memory
PPR Partial Product Row
ReLU Rectified Linear Unit
SD Signed-digit
SIMD Single-Instruction Multiple-Data
SIMT Single-Instruction Multiple-Thread
TPU Tensor Processing Unit

iv

List of Figures

Figure 1 Popular CNN Models: Top-1 accuracy vs GFLOPs. . . . 2

Figure 2 Showing a comparison between a biological neuron and
its artificial counterpart (adapted from [11]). 6

Figure 3 Feed-forward artificial neural network (adapted from [12]). 7
Figure 4 Fully connected layers vs. Convolutional layers (adapted

from [13]). 9
Figure 5 Timing diagram of Online operations [38]. 14
Figure 6 Timing diagram of a chain of Online operations adapted

from [36]. 15
Figure 7 Functionality of FA and HA on different Posibit-Negabit

mixes. 15
Figure 8 Required logic for complementing v0 and generating the

product. 16
Figure 9 Conventional serial-serial Online multiplier [36]. 17
Figure 10 Traversal order of partial product terms in the serial-serial

Online multiplier for n = 3. 18
Figure 11 Digit slices underutilization in the serial-serial multiplier

for n = 3. 19
Figure 12 Traversal order of partial product terms in the serial-parallel

Online multiplier for n = 3. 20
Figure 13 Conventional serial-parallel Online multiplier. 21
Figure 14 Online inner product unit. 22
Figure 15 Online arithmetic for digit-level pipelining in CNN [8]. . 22
Figure 16 Example of fusing two convolutional layers [43]. 23

Figure 17 State-flow Diagram of Online ReLU function. 26
Figure 18 Block Diagram of Online MaxPool function. 27

v

Figure 19 The traversal orders for the partial product terms in a
serial-serial (a) and serial-parallel Online multiplier. . . . 30

Figure 20 Proposed Online multiplier trace at each cycle for n = 3. 31
Figure 21 Proposed Online Multiplier. 32
Figure 22 Proposed technique for merging k multiplications. 33
Figure 23 Transposition of activations and weights to avoid serial-

parallel conversion. 33
Figure 24 Proposed inner product unit. 34

Figure 25 Comparison of the area between the proposed and con-
ventional inner product units. 39

Figure 26 Comparison of the area between the proposed and con-
ventional inner product units. 40

Figure 27 Comparison of the throughput per area between the pro-
posed and conventional inner product units. 41

Figure 28 Comparison of the throughput per power between the pro-
posed and conventional inner product units. 42

vi

List of Tables

Table 1 MaxPool Early Termination Example. 28

Table 2 LeNet-5 architecture. 36
Table 3 Early termination rate in LeNet-5 for ReLU. 37
Table 4 Early termination bit-level profile for LeNet-5 for ReLU. . 37
Table 5 Early termination rate for inter-layer fusing. 38
Table 6 Early termination rate for intra-layer fusing. 38
Table 7 Comparison between exact and approximate MaxPool func-

tion. 38
Table 8 Comparison of the area between the proposed and conven-

tional inner product units. 39
Table 9 Comparison of the power consumption between the pro-

posed and conventional inner product units. 39
Table 10 Comparison of the timing between the proposed and con-

ventional inner product units. 40
Table 11 Comparison of the computation cycles between the pro-

posed and conventional inner product units. 41
Table 12 Comparison of the computation time between the proposed

and conventional inner product units. 41
Table 13 Comparison of the throughput between the proposed and

conventional inner product units. 41
Table 14 Comparison of the throughput per area between the pro-

posed and conventional inner product units. 42
Table 15 Comparison of the throughput per power between the pro-

posed and conventional inner product units. 42

vii

Chapter I.

Introduction

A. Research Motivation

Deep Neural Networks (DNNs) have garnered considerable attention in recent
times owing to their impressive achievements across a wide range of applica-
tions, including image and speech recognition, natural language processing, and
autonomous vehicles, among others [1]. Convolutional Neural Networks (CNNs)
are a specific type of DNNs widely used in image and video processing tasks.
They have a hierarchical structure that learns complex features from raw data and
performs convolution operations to extract spatial information [2].

Currently, in Computer Vision (CV) systems, CNNs are considered the most
promising method for image understanding. These algorithms are inspired by the
human brain and are composed of several layers of feature detectors and clas-
sifiers, which are optimized using machine learning techniques [3]. Although
the concept of neural networks has existed for almost 80 years [4], it is only
with the latest high-performance computing hardware that it has become possi-
ble to effectively evaluate and train CNNs with sufficient depth and breadth to
achieve good performance in image understanding applications. However, in re-
cent years, progress has been remarkable, and the state-of-the-art CNNs can now
compete with human accuracy in image classification tasks [5].

However, CNN inference on large datasets and real-time applications can
pose significant challenges due to their computational complexity and memory
requirements. CNN inference involves a large number of multiply-accumulate
(MAC) operations that consume a significant amount of power and time. Addi-
tionally, the large size of CNN models requires a significant amount of memory,
which can lead to memory access and storage challenges. Figure 1. demonstrates
popular CNN architectures required MAC operations and their model size [6].

Therefore, there is a growing demand for hardware acceleration techniques
that can efficiently execute CNNs on specialized hardware platforms. These tech-
niques aim to reduce the computational time and energy consumption of CNN
inference while maintaining the accuracy of the results.

1

Figure 1: Popular CNN Models: Top-1 accuracy vs GFLOPs.

2

Implementing CNNs on hardware accelerators poses several challenges that
need to be addressed. One of the most significant challenges is memory access,
as CNNs require a lot of memory to store weights, activations, and feature maps.
This can lead to memory bandwidth and storage challenges. Another challenge
is the computational intensity of CNNs, which involve a large number of MAC
operations that consume a significant amount of power and time. Hardware accel-
erators need to be designed to perform these operations efficiently. Additionally,
hardware accelerators need to be scalable to the number of layers and size of
the CNN model while maintaining accuracy and flexibility to adapt to changes
in CNN architectures and parameters. Addressing these challenges is crucial for
developing efficient and accurate hardware accelerators for CNNs to meet the
demands of real-time applications.

B. Research Objectives

CNN hardware accelerators employ various optimization techniques to improve
performance and efficiency, such as weight pruning, quantization, data compres-
sion, and dataflow optimation.

Fused-layer dataflow is a technique used in CNNs to optimize their computa-
tional efficiency [7]. It involves merging multiple layers of a CNN into a single
fused layer so that the output of one layer is directly passed as input to the next
layer without intermediate storage. In the fused-layer dataflow, the convolution
operation is fused with the activation function and other operations such as batch
normalization, resulting in a single fused layer. In fused-layer dataflow, even dif-
ferent convolutional layers can be fused. This reduces the number of memory
accesses required during the computation, as intermediate results are not stored
in memory.

Quantization is a technique that can improve the performance of CNN ac-
celerators by reducing the precision of the weights and activations from 32-bit
floating point to 8-bit or even lower. This reduces the memory bandwidth and
storage requirements, allowing more data to fit into on-chip memory and reduc-
ing off-chip memory accesses.

3

To employ the opportunities (i.e., variable bit precision computations) pro-
vided by quantization, Most-Significant-Digit First (MSDF) arithmetic is a po-
tential arithmetic technique that uses digit-level pipelining [8]. In contrast to
conventional bit parallel and bit serial arithmetic, MSDF allows for the overlap-
ping execution of successive operations through chaining, eliminating the need
to wait for a dependent operation to finish. This technique allows for early termi-
nation of computations in ReLU layers as soon as a negative output is detected,
and in MaxPool layers as soon as the maximum value is detected.

To increase the rate of early termination in MSDF arithmetic, fused-layer
dataflow can play an important role and reduce memory bandwidth and improv-
ing the energy efficiency of CNN hardware accelerators.

C. Contributions

In this research, a hardware accelerator for CNNs is proposed that leverages
MSDF arithmetic for fusing successive layers of CNNs to terminate ineffective
computations introduced by ReLU and MaxPool. The main contributions of this
thesis are as follows:

• A MaxPool unit has been proposed, and as far as our knowledge goes, no
previous proposals for early termination opportunities in the MaxPool layer
have been made.

• A Processing Element (PE) has been designed and implemented for the
proposed technique.

• An analysis of the potential speedup and memory bandwidth savings has
been conducted using an in-house emulator.

• The area, power, and throughput of the proposed design have been eval-
uated, and a comparison with state-of-the-art Online arithmetic hardware
accelerators has been conducted.

4

D. Thesis Organization

This thesis is structured as follows. Chapter II. provides an overview of the topic
and a review of previous research. Chapter III. describes the proposed early ter-
mination schemes. Chapter IV. describes the proposed multiplication and inner
product unit architecture. Finally, Chapter VI. concludes the research and out-
lines potential future enhancements.

5

Chapter II.

Background

A. Deep Neural Networks

DNNs in artificial intelligence attempt to mimic this biological system by using
nodes (or artificial neurons) and connections (or artificial synapses) to perform
computations [9]. These nodes receive input signals, which are then weighted
and combined before being passed on to other nodes in the network. This process
continues until an output signal is produced.

Neural networks possess a significant benefit in their capacity to acquire knowl-
edge and accommodate fresh information. This is accomplished via a train-
ing procedure wherein the weights of node connections are modified according
to input-output pairs. Through successive weight adjustments, the network be-
comes proficient in identifying patterns and making predictions using novel input
data [10].

Figure 2: Showing a comparison between a biological neuron and its artificial counterpart (adapted from [11]).

Artificial neurons serve as the fundamental components of artificial neural
networks (depicted in Figure 2). They are modeled after the biological neurons
in the human brain, which receive input signals from other neurons, process the
information, and produce output signals [12].

The artificial neuron receives a set of input signals that are multiplied by re-
spective weights. The weights govern the magnitude of the connection between
the input signal and the neuron. The weighed input signals are then summed up
and passed through a non-linear activation function. The activation function de-

6

termines whether the neuron should fire or not based on the weighted inputs. If
the input signal is strong enough, the neuron will fire, producing an output signal.
The weights of the artificial neuron can be adjusted during the training process to
optimize the neuron’s response to certain inputs. The functionality of an artificial
neuron can be represented by Equation (A..1), where the activation function is
denoted by F , bias by b, and N represents the number of input activations.

y = F(
N

∑
i=1

xiwi +b) (A..1)

The organization of a neural network typically involves arranging artificial
neurons into layers and connecting them in a specific way. Within a feed-forward
neural network architecture, the neurons are organized in a directed acyclic graph,
permitting connections solely between neurons in contiguous layers. The neurons
are organized into layers according to their location within the network. The ini-
tial layer, known as the input layer, receives the input data into the network. The
output layer is the final layer in the network, where the output signals are pro-
duced. Any layers between the input and output layers are referred to as hidden
layers, as they do not directly interact with the input or output data.

Figure 3: Feed-forward artificial neural network (adapted from [12]).

In a fully connected layer, each neuron in one layer is connected to every neu-
ron in the adjacent layer. This allows for a high degree of connectivity between

7

the neurons and enables the network to process complex data sets. The number of
layers and neurons in each layer can vary depending on the specific task the net-
work is designed to perform. In general, deeper neural networks with more lay-
ers tend to perform better on complex tasks, but may require more computational
resources and longer training times. Figure 3 illustrates a basic feed-forward ar-
tificial neural network consisting of multiple layers, which is used for analytical
description and described by sets of equations (A..2), and (A..3).

n1 = F1(w1x1 +b1)

n2 = F2(w2x2 +b2)

n3 = F2(w2x2 +b2)

n4 = F3(w3x3 +b3)

(A..2)

m1 = F4(q1x1 +q2x2 +b4)

m2 = F5(q3x3 +q4x4 +b5)

y = F6(r1m1 + r2m2 +b6)

(A..3)

B. Convolutional Neural Networks

CNNs are a type of deep learning algorithm that are specifically designed to work
with images and other multidimensional data. CNNs are inspired by the organiza-
tion of the visual cortex in animals, where neurons are arranged in a hierarchical
manner and respond to increasingly complex visual patterns. CNNs have become
a popular tool for image recognition, object detection, and many other applica-
tions in CV.

The key difference between CNN and DNNs is that CNNs are specifically
designed for image and other multidimensional data, whereas DNNs can work
with any type of data. DNNs consist of multiple layers of neurons that are fully
connected, meaning that each neuron in one layer is connected to every neuron
in the next layer. In contrast, CNNs consist of multiple layers of neurons that are

8

Figure 4: Fully connected layers vs. Convolutional layers (adapted from [13]).

only partially connected, with each neuron in a layer only connected to a small
subset of neurons in the next layer. Figure 4 demonstrates the difference between
the convolutional layer and the fully connected layer. This is accomplished by
employing convolutional layers that employ a collection of filters to process the
input image and extract distinctive features.

CNNs excel in image processing due to their ability to leverage local correla-
tions within image data, enabling them to learn effectively from limited training
examples. This is made possible by employing convolutional layers that employ
a series of filters to extract distinctive characteristics from the input image. These
filters are specifically designed to detect particular patterns like edges, corners,
and textures present in the image data. By utilizing these filters across the entire
image, CNNs significantly decrease the number of parameters that necessitate
learning, thereby surpassing fully connected DNNs in efficiency.

The basic components of a CNN are as follows:
Convolutional Layers: Within these layers, a collection of adjustable filters

is implemented to process the input image, resulting in a set of activation maps.
Each filter operates on a specific local region of the input image, generating a
scalar value that quantifies the resemblance between the filter and the given local
region.

Pooling Layers: These layers perform downsampling on the activation maps
generated by the convolutional layers. By employing operations like maximum
or average pooling on a region of activations, they effectively decrease the spatial
dimensions of the activation maps. This reduction in dimensionality serves to

9

minimize the number of parameters in the network, enhancing computational
efficiency, while simultaneously preserving crucial spatial details.

Activation Function: At the output of every neuron in the network, an activa-
tion function is employed to convert the input into a nonlinear output. Typical ac-
tivation functions employed in CNNs encompass Rectified Linear Unit (ReLU),
sigmoid, and tanh.

Fully Connected Layers: After receiving the output from the convolutional
and pooling layers, these layers transform it into a one-dimensional vector by flat-
tening the data. Subsequently, a set of weights is applied to this vector to generate
the ultimate output of the network. Fully connected layers are typically employed
in the concluding stages of the network, as they are responsible for mapping the
learned high-level features from the preceding layers to precise outputs or classi-
fications.

Dropout: A regularization technique applied to reduce overfitting in deep
learning networks, dropout randomly "turns off" some neurons in the network
during training to force the remaining neurons to learn more robust features.

Batch Normalization: A technique applied to normalize the output of each
layer to accelerate training, improve generalization and reduce overfitting.

C. Deep Neural Network Hardware Accelerators

In recent years, there has been a significant surge in the progress of DNN solu-
tions across a wide range of applications. This progress has been made possible
by the introduction of fast Graphic Processing Units (GPUs), which effectively
handle the increasing memory requirements and computational complexity re-
sulting from the growing size of DNNs. As a result, the deployment of DNNs on
edge devices with constrained hardware resources and limited energy availability
has become increasingly appealing, expanding the reach of deep learning solu-
tions beyond high-performance computing machines. The hardware options for
developing and deploying DNNs encompass general-purpose architectures such
as Central Processing Units (CPUs) and GPUs, as well as spatial architectures
like Field Programmabel Gate Arrays (FPGAs) and Application-Specific Inte-

10

grated Chips (ASICs).
The MAC operation plays a fundamental role in both the fully connected

and convolutional layers of DNNs. It can be parallelized to achieve rapid in-
ference speeds in both of these layer types. Hardware accelerators can take the
form of conventional hardware optimizations that improve compute parallelism,
or they can be contemporary accelerators that integrate hardware and software
design capabilities. The latest progress in software-based DNN solutions have
also demonstrated promising performance improvements by reducing memory
usage and computational operations. The prevailing direction in the development
of efficient DNN applications involves hardware-software co-design for DNN ac-
celeration.

Subsequently, we will delve into the subsequent sections to review the suit-
ability of various temporal and spatial hardware architectures for DNNs. Further-
more, our emphasis will be on the co-design of DNN accelerators that harness
the advantages of both compression algorithms and hardware architecture.

1. Temporal and Spatial Hardware Architectures

Temporal and spatial hardware architectures are the two main types of architec-
tures used in DNN accelerators. Temporal architectures, such as CPUs and GPUs,
utilize a large number of ALUs without local memory, while spatial architectures,
like ASICs and FPGAs, employ Processing Elements (PEs) with their own local
memory and control logic.

In terms of parallelism, CPUs use the Single-Instruction Multiple-Data (SIMD)
model, while GPUs use the Single-Instruction Multiple-Thread (SIMT) execu-
tion model. Temporal architectures map DNN layers, like fully connected and
convolution layers, to matrix multiplication operations. Software libraries such
as OpenBLAS and cuBLAS are commonly used for optimizing matrix multipli-
cations on CPUs and GPUs, respectively. However, these architectures are not
specifically designed for DNN applications.

DNN accelerators, implemented on ASICs or FPGAs, face memory access as
a bottleneck. These architectures utilize an array of PEs that incorporate local and
global buffers, thereby minimizing data access from the DRAM. The PE array op-

11

erates as a two-dimensional Network-On-Chip (NoC) where dataflow processing
takes place, allowing direct message passing between PEs. Different DNN ac-
celerator designs can exploit data reuse, such as convolution, filter weight, and
input feature map, by leveraging local memory hierarchy. These designs can be
classified into four categories: row-stationary, output-stationary, input-stationary,
and weight-stationary. Each category utilizes different dataflow characteristics to
optimize computation and memory access.

2. Co-Design of Hardware Architecture and Compression Al-
gorithm

CNN compression algorithms, such as pruning and quantization, are commonly
employed to achieve efficient CNN structures. To further optimize hardware
acceleration for compressed CNN structures, specialized hardware accelerators
can be designed. Unstructured pruning removes unimportant weights or activa-
tions, significantly reducing off-chip memory access [14–16]. Quantization oper-
ates with low-bit precision, reducing computation and memory storage [17–20].
Hardware-aware NAS techniques aim to automatically enhance CNN perfor-
mance on specific hardware targets, considering factors like inference latency,
energy consumption, and memory usage [21–24].

Pruned CNNs often exhibit a high level of sparsity, where many weights or
connections can be pruned to zero without significant accuracy loss. Sparse hard-
ware accelerators can be designed to leverage this sparsity, resulting in energy and
storage savings. Examples include Cambricon-X [25], which skips MAC opera-
tions for zero weights and accesses required weights using index-based storage.
Cambricon-S [26] improves weight indexing overhead by employing a coopera-
tive hardware-software approach. SCNN [27] supports convolutional layer pro-
cessing in a compressed domain, utilizing zero-valued weights and activations.
Eyeriss-v2 [28] utilizes the Eyeriss-like row stationary dataflow [29] to process
nonzero weights and activations in a compressed domain, reducing memory ac-
cess overhead. SNAP [30] employs associative index-matching search to find
matching non-zero input activations and weight kernels, supporting various layer
types with reduced write-back traffic and memory access through two-level par-

12

tial sum reduction.
These hardware accelerators optimize the performance of compressed CNNs,

providing energy efficiency and memory savings through techniques like sparsity
exploitation and compressed domain processing.

Quantized architectures aggressively reduce the bit width of weights and ac-
tivations, even down to 1-bit, to achieve ultra-high inference speeds at the cost of
some accuracy loss. Specialized hardware accelerators have been developed to
support quantized neural networks using both variable-bitwidth arithmetic (e.g.,
Stripes [31], BitFusion [32], UNPU [33], BitBlade [34]) and fixed-bitwidth arith-
metic (e.g., YodaNN [35]). When weights and activations are binarized or ternar-
ized, MAC operations can be simplified to XNOR and pop-count operations.
Fixed-bitwidth architectures replace complex MAC operations with lower-bit logic,
while variable bitwidth architectures, like Stripes and UNPU, use bit-serial com-
putations with fixed or variable bitwidths for different components. BitFusion
dynamically fuses bit-level processing elements to match the bitwidth of different
network layers, while BitBlade further improves on BitFusion by using bitwise
summation.

D. Most Significant Digit First (MSDF) Arithmetic

Online arithmetic, also known as Most Significant Digit First (MSDF) arithmetic,
is a computational approach where the processing of digits starts from the most
significant position. This method is introduced by Ercegovac in [36]. In fact,
the results of addition and multiplication are produced from the right to the left
in conventional arithmetic [37]. However, we can generate the result from left
to right i.e., the most-significant digit first via Online arithmetic. In this manner
of computation, after receiving a few most significant digits of the operands (i.e.,
Online delay δ) the result digits are produced, as shown in Fig. 5 [38]. Therefore,
the execution of the operations that are dependent on a producing-consuming
arrangement can be overlapped as illustrated in Fig. 6. It provides digit-level
massive parallelism in a long sequence of arithmetic operations [36].

The aforementioned capability stems from the utilization of a redundant num-

13

ber representation, which enables multiple representations of a given value. The
value of a radix-r redundant signed-digit number X is

X =
n

∑
i=1

xir−i (D..1)

where the digit set of D= {−b, ...,−1,0,1, ...,a} and a+b+1> r. In a redundant
number representation, redundancy factor ρ is defined as ρ = a

r−1 [36]. In this
paper, we use binary symmetric digit set, where a = b, r = 2, and ρ = 1. This
number system, called Binary Signed-Digit (BSD), is represented by two same
weight bits, namely a Posibit and a Negabit, to define the value of each position.
It is noteworthy to mention that we use Inverted Encoding for Negabit (IEN)
where a Posibit (Negabit) is represented by ◦(•), x(x−), 0(1−), and 1(0−) as a dot
notation, a variable, a constant zero, and a constant one (minus one), respectively.
By taking advantage of IEN, standard components such as Full Adder (FA) and
Half Adder (HA) can be used without any consideration about the polarity of the
input/output bits that are Negabit or Posibit, as shown in Fig. 7 [37].

1. Serial-Serial Multiplication

Ercegovac et al. [36] devised an Online multiplication algorithm using radix-r for
n-digit operands x, y, and product p within the range of (−1,1). The operands
are represented by n signed digits selected from the set−a, ...,a, where a≤ r−1.

Consider the operands and the result at cycle j to be

x[j] =
j+δ

∑
i=1

xir−i,y[j] =
j+δ

∑
i=1

yir−i, p[j] =
j

∑
i=1

pir−i (D..2)

MSD LSD

3

Inputs

Compute

Output

Figure 5: Timing diagram of Online operations [38].

14

1

2

3

4

Operation 1

Operation 2

Operation 3

Operation 4

Figure 6: Timing diagram of a chain of Online operations adapted from [36].

a) Full adder b) Half adder

Figure 7: Functionality of FA and HA on different Posibit-Negabit mixes.

In order to form the recurrence, the residual value w[j] is defined as

w[j] = r j (x[j]y[j]− p[j]) (D..3)

and w[j+1] is

w[j+1] = rw[j]+
(
x[j]y j+1+δ + y[j+1]x j+1+δ

)
r−δ − p j+1 (D..4)

This is decomposed into

v[j] = rw[j]+
(
x[j]y j+1+δ + y[j+1]x j+1+δ

)
r−δ

w[j+1] = v[j]− p j+1
(D..5)

In order to employ the carry-save representation of w[j] and v[j] using L̂k and
Ûk as the interval for grid selection, the selection constants mk are derived

L̂k ≤ mk ≤ Ûk−1 (D..6)

15

where
Ûk =

⌊
ρ(1−2r−δ)+ k−2−t

⌋
t

L̂k =
⌈
−ρ(1−2r−δ)+ k

⌉
t

(D..7)

For a radix-2 Online multiplier with an Online delay of δ = 3, t = 2 fractional
bits, and a value of ρ = 1

2−1 = 1 being taken into account.

Ûk =
⌊
1−2×2−3 + k−2−2⌋

2 = k+2−1

L̂k =
⌈
−1+2×2−3 + k

⌉
2 = k−3×2−2

(D..8)

Consequently, the selection constants can be determined as follows:

m0 =−2−1,m1 = 2−1 (D..9)

The range of v̂[j] is

−2≤ v̂[j]≤ 7
4

(D..10)

The selection function can be expressed using the following equation, as docu-
mented in [36].

p j+1 =

1 0.5 ≤ v̂[j]≤ 1.75
0 −0.5 ≤ v̂[j]≤ 0.25
−1 −2 ≤ v̂[j]≤ −0.75

(D..11)

Figure 8: Required logic for complementing v0 and generating the product.

Fig. 9 depicts the schematics of the conventional serial-serial multiplier, in
which LX and LY registers are the output of the predecessor Online units. Since
w[j + 1] has (n+ 2) bit length, a sign extension for both selected operands are

16

Figure 9: Conventional serial-serial Online multiplier [36].

required (i.e., for accumulation via 4:2 Compressor) [39]. The input carries of
the 4:2 Compressor are associated with the signs of x j+4 and y j+4. The module V
produces the estimate of v[j]. Moreover, the product result (i.e., p−j+1 and p+j+1)
is also generated based on the estimate of v[j], via a simple logic as illustrated
in Fig. 8. The critical path of conventional serial-serial multiplier (See Fig. 9)
consists of a Selector, a 4:2 Compressor, a 4-bit Carry Propagate Adder (i.e., V
module), and 5 levels of two-input logic (one AND gate, two OR gates, and one
XOR gate), which is shown in Fig. 8, for generating v∗0. Fig. 10 depicts the
order of traversal of partial product terms in the serial-serial Online multiplier.
Due to the difference in the number of generated at each cycle in this design,
several digit slices are not utilized. The timing diagram of the utilization of digits
in this design is depicted in Fig. 11. The rate of underutilization in this design
is about 50%. In the proposed computation element, we attempt to avoid this
underutilization.

17

Figure 10: Traversal order of partial product terms in the serial-serial Online multiplier for n = 3.

2. Serial-Parallel Multiplication

An algorithm for radix-r serial-parallel Online multiplication for multiplying an
n-digit radix-r signed digit operand x with a radix complement n-digit operand
Y . This algorithm generates the 2n-digit product p within the range of (−1,1) is
presented. Each digit of x and p is represented using signed digits selected from
the set −a, ...,a, where a≤ r−1. The values of x and p at cycle j are illustrated
in Equation (D..2). The residual value is provided by Ercegovac in [36].

w[j] = r j (x[j]Y − p[j]) (D..12)

Therefore, the recurrence is

w[j+1] = rw[j]+
(
x j+1+δY

)
r−δ − p j+1 (D..13)

18

.
ib MSD 1MSD LSDcycle

.

.

2

1

3

0 .
.
.

1

2

.3

4 .
.
.

5

6

n

...

Figure 11: Digit slices underutilization in the serial-serial multiplier for n = 3.

This is decomposed into

v[j] = rw[j]+
(
x j+1+δY

)
r−δ

w[j+1] = v[j]− p j+1
(D..14)

Consider a radix-2 Online multiplier featuring an Online delay of δ = 2, t = 2
fractional bits, and ρ = 1. Derived from Eq. (D..7), the value of L̂k and Ûk is

Ûk =
⌊
1−2−2 + k−2−2⌋

2 = k+2−1

L̂k =
⌈
−1+2−2 + k

⌉
2 = k−3×2−2

(D..15)

the value of L̂k and Ûk are the same as the values computed for its serial-serial
counterpart. Therefore, the selection function is the same as Eq. (D..11). It
should be noted that the value of δ is 2 for the serial-parallel multiplier, while

19

this value is 3 for the serial-serial Online multiplier. The architecture of this
multiplier is illustrated in Fig. 13. In this architecture, the conversion/appending
unit is not used; instead, a simple register for keeping the value of Y is required.
Moreover, it has only one selector unit, and in the place of a 4:2 Compressor, a
3:2 adder is utilized. The other components remain as same as the serial-serial
multiplier. Fig. 12 depicts the order of traversal of partial product terms in the
serial-parallel Online multiplier.

Figure 12: Traversal order of partial product terms in the serial-parallel Online multiplier for n = 3.

3. Inner Product

The inner product between two vectors, also known as the dot product, can be
defined as:

p =
K

∑
k=1

AkBk (D..16)

In the conventional implementation of the inner product operation in Online
arithmetic, the values of Ak and Bk are multiplied using k discrete multipliers.
The results of these multiplications are then added together using an Online adder
tree. The multiplication operation has an Online delay of 3, while the addition
operation has an Online delay of 2. The Online delay of the inner product unit

20

Figure 13: Conventional serial-parallel Online multiplier.

is determined by the delay of the Online multiplier plus the total delay of the
Online adders in the reduction tree. Fig. 14 demonstrates the block diagram of
the Online inner product unit.

4. Application of Online Arithmetic in CNN Accelerators

The reduced hardware complexity achieved through the serial nature of com-
putation can be advantageous, and overlapping dependent operations can help
offset the increased computation cycles [36, 40]. Online arithmetic is particu-
larly suitable for variable precision computations. These characteristics make it
an excellent choice for computation-intensive applications like machine learn-
ing algorithms [41, 42]. For example, online arithmetic can enable digit-level
pipelining for CNN inference, as illustrated in Fig. 15. In a CNN utilizing on-
line arithmetic, MaxPool and ReLU functions can be executed incrementally as
soon as sufficient information becomes available, enabling early termination of
computations for subsequent digits. This can significantly reduce the required

21

Online
Multiplier

Online
Multiplier

Online
Multiplier

...

Online Addition Tree

3Multiplication

2Addition

2logk

Total Multiplication Addition

1A 1B 2A 2B

p

1

K

k k

k

p A B

KA KB

Figure 14: Online inner product unit.

Figure 15: Online arithmetic for digit-level pipelining in CNN [8].

computation, resulting in improved processing efficiency [8].

E. Fused-Layer CNN

Fused-layer dataflow is a technique that combines the computations of multiple
layers in a CNN into a single operation, which is then executed using highly
optimized hardware [43]. This approach allows for significant performance gains,

22

as it reduces the amount of data movement required between different layers in
the network, and enables highly optimized computations to be performed using
specialized hardware such as GPUs and Tensor Processing Units (TPUs).

Figure 16: Example of fusing two convolutional layers [43].

The traditional approach to designing CNN accelerators focuses on process-
ing each layer to completion, which requires off-chip memory to store interme-
diate data between layers. The researchers introduce a novel aspect in the design
realm of CNN accelerators, concentrating on the dataflow between convolutional
layers. Through altering the sequence in which input data is brought onto the
chip, they showcase the capability to merge the processing of multiple CNN lay-
ers. This fusion enables the caching of intermediate data between the evaluation

23

of adjacent layers, leading to a significant reduction in off-chip memory band-
width demands and minimizing data movement.

24

Chapter III.

The Proposed Early Termination Scheme
To avoid ineffective computations in Online arithmetic, the concept of early ter-
mination is introduced [44]. Since the digits are generated from the most sig-
nificant towards the least significant, as soon as a certain condition is detected
the computations for the rest of the digits can be skipped. For example, in the
ReLU as soon as the negative output is detected the computations for the rest
least-significant digits can be skipped.

A. Rectified Linear Unit Activation Function

The ReLU activation function can be expressed as follows:

ReLU(x) = max(0,x) =

{
x i f x > 0
0 i f x≤ 0

(A..1)

Early Termination in ReLU occurs when the negative output is detected. In other
words, when the first non-zero digit is 1̄ the rest of the computations can be
skipped.

To clarify this concept two examples are provided.
Example#1 (negative output in ReLU):
x = .001̄11111
In this example, after visiting the third digit, 1̄, we can say that the output is

definitely negative, therefore the 5 remained digits can be skipped.
Example#2 (positive output in ReLU):
x = .01000000
In this example, after visiting the second digit, 1, we can say that the output

is definitely positive, therefore the rest of the digits should be computed.
Fig. 17 demonstrates the fuctionality of the Finite-State Machine (FSM) re-

quired for the detection of Early Termination in ReLU. The initial state is S0

where FSM is waiting to get the first non-zero input. In this state, if the input is
0 the output ouput would be 0. If 1̄ is detected the FSM transits to state 1 where
negative oupuput is detected and the rest of the computations can be skipped. If

25

S0: Looking for
the first non-

zero digit

S2: Positive
output is

detected (echo
the input)

S1: Negative
output is

detected (lock
on 0)

Early Termination is
detected

0

0

1

1

1

0

#

0

#

x

Figure 17: State-flow Diagram of Online ReLU function.

1 is detected the FSM transits to state 2 where positive oupuput is detected and
the rest of the computations should be performed.

B. MaxPool Function

In CNN, the MaxPool function is described as follows:

y = max(X) (B..1)

where X is a vector of m n-digit signed digit numbers.
Algorithm III..1 describes the early termination algorithm in the Online Max-

Pool function. In this algorithm, a boolean vector called Effective is assigned to
indicate whether subsequent digits need to be computed. It is initialized to zero at
the beginning of the algorithm. During each iteration of the algorithm, the maxi-
mum digit from all incoming digits is calculated. Each digit in each element of X

is compared to the maximum digit, and if a discrepancy is found, that element of

26

Algorithm III..1: Online MaxPool Function
Algorithm.
Data: X [1..m][1..n]
Result: E f f ective[1..n][1..m]

1 E f f ective[0][1..m]← True;
2 for j← 1 to n do
3 for i← 1 to m do
4 maxdigit← max(X [:][j]);
5 if E f f ective[j][i] then
6 if maxdigit = x[i][j] then
7 E f f ective[j+1][i]← True;
8 else
9 E f f ective[j+1][i]← False;

maximum...

Detector #1

Detector #2

...

Detector #2

[1][]x j

[2][]x j

[][]x m j

max digit

[1][]x j

[2][]x j

[][]x m j

[1][]Effective j

[][]Effective m j
[][1]Effective m j

[1][1]Effective j

[2][1]Effective j
[2][]Effective j

Figure 18: Block Diagram of Online MaxPool function.

X is marked as ineffective. If E f f ective[i] becomes True in every cycle, the com-
putations for the succeeding digits of x[i] can be omitted. Fig. 18 demonstrates
the hardware implementation of the proposed algorithm.

Example: Consider m = 4 and n = 8 and the vector x is as following:

27

x[1] = 0.11̄00′0000
x[2] = 0.1001′0101
x[3] = 0.1000′1̄1̄00
x[4] = 0.0011̄′0000

(B..2)

Table 1 shows the trace of signals for this example in the Online MaxPool
function.

Table 1: MaxPool Early Termination Example.

j E f f ective[j+1] maxdigit
1 {True, True, True, False} 1
2 {False, True, True, False} 0
3 {False, True, True, False} 0
4 {False, True, False, False} 1
.

As shown in this Table, after receiving 4 digits of the inputs, computations
for three of them are detected as ineffective. The amount of ineffective-detected
digits depends on the value of pixels at run-time. In the best case, 3×7= 21 digits
can be detected as ineffective and in the worst case, the number of ineffective
digits is 0. Early termination in the MaxPool function is evaluated in Chapter V.

C. Fused-layer Early Termination

By combining two layers of CNN, it becomes feasible to halt the computations of
preceding layers once the output of the current layer is determined to be ineffec-
tual. For instance, consider the sequence of layers Conv1, ReLU1, Conv2, and
ReLU2. If a negative output is identified in ReLU2, all computations pertaining
to the previous layers, including Conv1, ReLU1, and Conv2, can be terminated
immediately.

28

Chapter IV.

Hardware Implementation
A. The proposed Multiplier

Modern hardware accelerators for CNNs offer the flexibility of using variable
precision for both weights and activations, which helps in reducing unneces-
sary computations [32]. However, Online arithmetic, which is well-suited for
CNN computations due to its variable-precision nature, suffers from a significant
amount of hardware underutilization in the Online multipliers.

To address this issue, serial-parallel multipliers can be employed [45]. How-
ever, these multipliers have one input connected in parallel, which is not com-
patible with the nature of convolutional layers in CNNs. This limitation leads
to inefficient computations. For instance, if a hardware accelerator has one of
its input operands fixed at 16 bits but only a 5-bit operand is required for the
computation, 11 bits are wasted on ineffective computations.

In our proposed implementation of the Online multiplication algorithm, our
goal is to optimize hardware utilization. To achieve this, we make adjustments to
the generation of partial product terms by ensuring a constant bit width for each
term to be added to the residual in every cycle. This approach helps avoid the
underutilization of hardware resources. When it comes to iterating through the
partial product terms, there are two options to consider: the order of generation
in a serial-serial multiplier or a serial-parallel multiplier. Figure 19(a) and 19(b)
illustrate the possible traversal orders for the partial product terms in a serial-
serial and serial-parallel multiplier, respectively.

In a serial-serial Online multiplication algorithm, the Online delay (δ) is 3,
whereas the Online delay of a serial-parallel multiplication algorithm is 2. As
shown in Figure 19, once 9 partial product terms are generated in the serial-serial
multiplication algorithm and 6 partial product terms are generated in the serial-
parallel multiplication algorithm, the first digit of the output is generated.

To generate the weights of the partial product terms in the proposed multi-
plier, a variable shifter (i.e., barrel shifter) is necessary. However, if the serial-
parallel multiplication algorithm is adapted for the proposed multiplier with a
constant left shift, the weights of the partial product terms can be generated ef-

29

Figure 19: The traversal orders for the partial product terms in a serial-serial (a) and serial-parallel Online multiplier.

ficiently. Therefore, to design the proposed multiplier, we choose to adapt the
serial-parallel multiplication algorithm.

To generate each row of partial product terms, represented by different colors
in Figure 19(b), a register called Partial Product Row (PPR) is utilized. Addition-
ally, an additional register is required to store the residual in the online algorithm.
The micro-operations for each cycle are illustrated in Figure 20.

In the proposed implementation, every n cycles correspond to one iteration of
the Online multiplication algorithm. During the remaining cycles, each row of
the partial product array is generated by shifting the previous value stored in the

30

PPR register and adding a new partial product term denoted as Pi, j.

Figure 20: Proposed Online multiplier trace at each cycle for n = 3.

The block diagram of the proposed multiplier is depicted in Fig. 21. To
perform the addition of the residual register and PPR register with the new partial
product term, a 6:2 compressor is employed.

Both the residual register and PPR register require a bit width of 2×W since
their values are stored in carry-save format to prevent carry propagation during
addition. As the residual register is updated every n cycles, its value should not
be added in those cycles. Thus, a multiplexer is incorporated into the path of the
residual value.

Similarly, the PPR register needs to be reset every n cycles. To achieve this, a
multiplexer is used to input a zero value instead of the previous PPR value.

Additionally, the residual and PPR registers have enabled signals to ensure
that the output of the 6:2 compressor is loaded only at the correct time.

B. The proposed Inner Product Unit

The inner product function is expressed as:

31

5:2 Compressor

iA jB

Negation & Sign Extension
,i jPP

WWW W W

2W

2W

W W

Neg_en

PPR RegisterResidual Register

Selection
Function1jp

3

8

2
(

4
)

W

00

Residual <<1 PPR <<1

Residual_load_en PPR_load_en

PPR_mux_selResidual_mux_sel

Figure 21: Proposed Online Multiplier.

p =
K

∑
k=1

AkBk (B..1)

Since performing k discrete multiplications and accumulating their results in
a Online reduction tree impose a high cost for the residual and PPR registers, all
of the multiplications are merged in a single inner product unit. By expanding Ak

and Bk in Eq. B..1:

p =
K

∑
k=1

n

∑
i=1

Ak,i2−i
n

∑
j=1

Bk, j2− j (B..2)

By rearranging the order of the summation operators, we obtain:

p =
n

∑
i=1

n

∑
j=1

K

∑
k=1

Ak,iBk, j2−(j+i) (B..3)

In a single cycle, each partial product term of k multiplications (Ak,iBk, j) is

32

generated. This means that k multiplication operations are combined together, as
illustrated in Fig. 22. If the input data (i.e., Ak’s and Bk’s) is stored in the conven-
tional format in the memory, it needs to be converted into the bit-serial format.
To eliminate the need for parallel-to-serial converters, the inputs are stored in a
transposed manner, as depicted in Fig. 23.

Figure 22: Proposed technique for merging k multiplications.

Figure 23: Transposition of activations and weights to avoid serial-parallel conversion.

The Online inner product unit, proposed alongside the Online multiplier, op-
erates in a similar manner. However, there is a distinction in how they function.
Rather than producing a single partial product term for each multiplication op-
eration, the Online inner product unit simultaneously generates k partial product
terms for k multiplications. These terms are then accumulated using the popcount
circuit, as depicted in Fig. 24. The control signals and their timing schedule align
with those of the proposed multiplier, as illustrated in Fig. 20.

33

Figure 24: Proposed inner product unit.

The proposed Online inner product unit (Fig. 24) and the conventional Online
inner product unit (Fig. 14) can be compared based on several key factors.

In the proposed Online inner product unit:

• The inputs are stored in the buffer and accessed multiple times.

• It utilizes smaller hardware but requires more cycles for computations.

• This design aims for nearly 100% utilization of hardware resources.

• It employs a complex control unit using micro-code.

• As a result, it achieves higher throughput within the same area.

On the other hand, the conventional Online inner product unit has different
characteristics:

• The inputs are converted to 2’s complement numbers, which imposes high
hardware cost.

34

• It requires larger hardware but completes computations in fewer cycles.

• The utilization of hardware resources is approximately 50%.

• The control unit in this unit is simpler compared to the proposed design.

• It offers better latency performance.

These distinctions highlight the trade-offs between the two units. The pro-
posed design utilizes smaller hardware efficiently and achieves higher through-
put but at the cost of more cycles for computations and a complex control unit.
On the other hand, the conventional design requires larger hardware but provides
better latency performance with a simpler control unit.

35

Chapter V.

Evaluation
In this chapter, firstly, the impact of the proposed early termination scheme on the
throughput of the computation units is evaluated. Then, the proposed inner prod-
uct unit is compared with its conventional counterpart in terms of area, power,
throughput, throughput per area, and throughput per power.

A. Experimental Setup

The architecture of the evaluated neural network (LeNet-5) is indicated in Table 2.
Pytorch library in Python is used to implement LeNet-5. The network’s weights
are trained and quantized using Pytorch quantization library. C++ programming
language is used to model the functionality of online components. Lastly, the
feed-forward call of the network is implemented using online arithmetic compo-
nents.

Table 2: LeNet-5 architecture.
Layer Input Size Output Size Kernel
1 1x32x32 6x28x28 Convolution(kernel_size = 5x5, in_channels = 1, out_channels = 6)
1 6x28x28 6x28x28 ReLU
1 6x28x28 6x14x14 MaxPool(kernel_size = 2)
2 6x14x14 16x10x10 Convolution(kernel_size = 5x5, in_channels = 6, out_channels = 16)
2 16x10x10 16x10x10 ReLU
2 16x10x10 16x4x4 MaxPool(kernel_size = 2)
- 16x4x4 256 Flatten
3 256 120 FullyConnected
3 120 120 ReLU
4 120 84 FullyConnected
4 84 84 ReLU
5 84 10 FullyConnected
5 10 10 Softmax

To evaluate the hardware performance, both inner product units are imple-
mented in SystemVerilog, subjected to exhaustive testing, and synthesized using
the Synopsys Design Compiler with the 45nm FreePDK gate library. To better
study the impact of the size of the problem on its performance metrics, differ-
ent number of input operands (i.e., 8, 16, 32, 64, 128, 256, 512, and 1024) are
evaluated. In our synthesis experimental setup, we swept the constrained clock
period from 2.4 (ns) down to 0.5 (ns) by 0.1 (ns) intervals for better analysis of

36

Table 3: Early termination rate in LeNet-5 for ReLU.

Layer
Skipped Bits Computed Bits Total
% # % # %

Layer #0 21053 7.61 255427 92.39 276480 100.00
Layer #1 23555 28.75 58365 71.25 81920 100.00

Table 4: Early termination bit-level profile for LeNet-5 for ReLU.
Layer Layer #1 Layer #2

Zero
16755 222
% 48.48 2.17

Positive
12217 4338
% 35.35 42.36

Negative(ET at bit 0)
184 29
% 0.53 0.28

Negative(ET at bit 1)
825 630
% 2.39 6.15

Negative(ET at bit 2)
1193 1909
% 3.45 18.64

Negative(ET at bit 3)
1104 1655
% 3.19 16.16

Negative(ET at bit 4)
906 847
% 2.62 8.27

Negative(ET at bit 5)
645 348
% 1.87 3.40

Negative(ET at bit 6)
426 170
% 1.23 1.66

Negative(ET at bit 7)
305 92
% 0.88 0.90

Total
34560 10240
% 100.00 100.00

the effect of the input dimension on the critical path delay. The area and power
reports are based on the synthesis results of the fastest designs. Other parameters
(i.e., throughput, throughput per area, and throughput per power) are computed
based on the new area and power values. In addition, a switching activity (α) of
0.5 is taken into account to measure power consumption.

B. Bit-level Analysis

Table 3 reports the rate of skipped bits in the computation when using the pro-
posed technique in ReLU. The bit-level profile of early termination is demon-
strated in Table 4. This information is demonstrated in Table 5 for the fused
ReLU and MaxPool layers together, which is called inter-layer fusing. Table 6

37

Table 5: Early termination rate for inter-layer fusing.
Skipped Bits Computed Bits Total

Layer
% # % # %

Layer #0 62289 22.53 214191 77.47 276480 100.00
Layer #1 34135 41.67 47785 58.33 81920 100.00

depicts the rate of skipped bits and possible speedup when fusing two first convo-
lutional layers of LeNet-5, which is called intra-layer fusing, as demonstrated in
Table 2. Also, the bit-level profile of early termination is demonstrated in Table
4. This information is demonstrated in Table 5 for the inter-layer fusing.

Table 6: Early termination rate for intra-layer fusing.

Layer
Skipped Bits Computed Bits Total
% # % # %

Layer #0 2.34E+07 56.92 1.77E+07 43.08 4.11E+07 100.00
Layer #1 6.23E+04 22.53 2.14E+05 77.47 2.76E+05 100.00
Layer #0 + Layer #1 2.35E+07 56.69 1.79E+07 43.31 4.14E+07 100.00

Table 6 depicts the rate of skipped bits and possible speedup of intra-layer
fusing as demonstrated in Table 2.

Due to the nature of the redundant number system, the proposed MaxPool
function has an approximation property. Table 7 shows the rate of mismatch
between the exact and approximate MaxPool function which is about 1% and can
be neglected.

Table 7: Comparison between exact and approximate MaxPool function.

Layer
Matched Outputs Different Outputs Total

% # % # %
Layer #0 8547 98.92 93 1.08 8640 100.00
Layer #1 2532 98.91 28 1.09 2560 100.00

C. Hardware Evaluation

The proposed inner product unit and its conventional counterpart are implemented
with the bit precision of 8 and the number of input operands (k in Eq. B..1 in the
chapter IV.) of 8, 16, 32, 64, 128, 256, 512, and 1024. The area, power, and
critical path delay of these two designs are compared and shown in Table 8 (Fig.
25), Table 9 (Fig. 26), and Table 10, respectively.

38

Figure 25: Comparison of the area between the proposed and conventional inner product units.

Table 8: Comparison of the area between the proposed and conventional inner product units.

Design
Area(um2)

8 16 32 64 128 256 512 1024
Conventional 8229.94 16038.48 31217.16 60873.47 118703.27 233845.44 463013.96 907507.38
Proposed 1571.13 2191.13 3167.39 4873.94 8005.66 16179.64 30171.11 57325.12

The conventional design achieves a consistent delay of 0.7 ns as the optimal
clock period. This is because the online multipliers in the conventional inner
product unit have a fixed critical path delay. Even if the inner product unit size
(i.e., k in Eq. B..1 in the chapter IV.) increases, the number of multipliers in-
creases but the critical path delay remains unaffected. On the other hand, the
critical path delay of the proposed design depends on the design size (i.e., k in
Eq. B..1 in the chapter IV.).

Table 9: Comparison of the power consumption between the proposed and conventional inner product units.

Design
Power(mWatt)

8 16 32 64 128 256 512 1024
Conventional 13.96 28.09 56.13 110.57 215.61 424.75 841.00 1648.35
Proposed 1.29 1.39 1.77 2.34 4.23 5.66 9.43 16.03

The size of the conventional design exhibits a linear correlation with the num-
ber of inputs due to the increase in the number of multipliers, which account for
the majority of the design’s area. As the number of input operands increases, the
number of multipliers grows linearly, thereby impacting the overall area. On the
other hand, in the proposed inner product unit, the utilization of shared registers
and 6:2 compressors for all multipliers results in a lower rate of area increase

39

Figure 26: Comparison of the area between the proposed and conventional inner product units.

compared to the conventional design.
The power of each designs are proportional to the area of each of them. Since,

the conventional design has higher clock frequency for input count of 32, 64, 128,
256, 512, and 1024, the dynamic power of the proposed design is lower than the
conventional deign in the same area. This difference can be seen in the Fig 27 and
28, where the ratio of throughput per power of the proposed design to throughput
per power of the conventional design is higher than the ratio of the throughput per
area of the proposed design to the throughput per area of the conventional design.

Table 10: Comparison of the timing between the proposed and conventional inner product units.

Design
Clock Period(ns)

8 16 32 64 128 256 512 1024
Conventional 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Proposed 0.6 0.7 0.8 0.9 1.0 1.4 1.8 2.2

The number of computation cycles is computed using Eq. C..1 and Eq. C..2
and reported in Table 11.

δConventional = n+δMultiplication + ⌈logk2⌉×δAddition (C..1)

δProposed = n2 +δMultiplication (C..2)

The computation time of each design is computed using Eq. C..3 and reported

40

Table 11: Comparison of the computation cycles between the proposed and conventional inner product units.

Design
Cycles (#)

8 16 32 64 128 256 512 1024
Conventional 17 19 21 23 25 27 29 31
Proposed 66 66 66 66 66 66 66 66

in Table 12.

Time =Cycles×Tclock (C..3)

The throughput of inner product units is computed using Eq. C..4 and shown
in Table 13.

T hroughput(GOp/s) =
1(Op)

Time(ns)
(C..4)

Table 12: Comparison of the computation time between the proposed and conventional inner product units.

Design
Time (ns)

8 16 32 64 128 256 512 1024
Conventional 1.19E+01 1.33E+01 1.47E+01 1.61E+01 1.75E+01 1.89E+01 2.03E+01 2.17E+01
Proposed 3.96E+01 4.62E+01 5.28E+01 5.94E+01 6.60E+01 9.24E+01 1.19E+02 1.45E+02

Table 13: Comparison of the throughput between the proposed and conventional inner product units.

Design
Throughput (GOp/s)

8 16 32 64 128 256 512 1024
Conventional 8.40E-02 7.52E-02 6.80E-02 6.21E-02 5.71E-02 5.29E-02 4.93E-02 4.61E-02
Proposed 2.53E-02 2.16E-02 1.89E-02 1.68E-02 1.52E-02 1.08E-02 8.42E-03 6.89E-03

Figure 27: Comparison of the throughput per area between the proposed and conventional inner product units.

41

Table 14: Comparison of the throughput per area between the proposed and conventional inner product units.

Design
Throughput per Area (GOp/s.um2)

8 16 32 64 128 256 512 1024
Conventional 1.02E-05 4.69E-06 2.18E-06 1.02E-06 4.81E-07 2.26E-07 1.06E-07 5.08E-08
Proposed 1.61E-05 9.88E-06 5.98E-06 3.45E-06 1.89E-06 6.69E-07 2.79E-07 1.20E-07

In order to have a fair comparison between the proposed and conventional
designs, the throughput of them are normalized based on the area and power and
reported in Table 14 and Table 15, respectively. The ratio of the throughput per
area of the proposed design to the throughput per area of the conventional design
is shown in Fig. 27. As the input dimension (i.e., k) increases, the proposed
design experiences an increase in the critical path delay. However, the throughput
per area of the design does not grow proportionally across all dimensions.

The relationship between the throughput per power and the throughput per
area in the proposed design follows a similar pattern. The ratio between the
throughput per power of the proposed design and that of the conventional design
is depicted in Fig. 28. As the input dimension (i.e., k) expands, the proposed
design encounters an upsurge in the critical path delay.

Figure 28: Comparison of the throughput per power between the proposed and conventional inner product units.

Table 15: Comparison of the throughput per power between the proposed and conventional inner product units.

Design
Throughput per Power (GOp/s.mWatt)

8 16 32 64 128 256 512 1024
Conventional 6.02E-03 2.68E-03 1.21E-03 5.62E-04 2.65E-04 1.25E-04 5.86E-05 2.80E-05
Proposed 1.96E-02 1.56E-02 1.07E-02 7.21E-03 3.58E-03 1.91E-03 8.93E-04 4.30E-04

42

Chapter VI.

Conclusion
This thesis proposed a hardware accelerator for Convolutional Neural Networks
(CNNs) using Most-Significant-Digit First (MSDF) arithmetic and fused-layer
dataflow techniques. The proposed accelerator enables digit-level pipelining across
successive layers while terminating ineffective computations early, resulting in
significant improvements in both computational efficiency and memory require-
ments. The evaluation results demonstrate that up to 56.3% of computations can
be skipped when the first two layers of LeNet-5 are fused together.

The conclusions drawn from this thesis have noteworthy implications for the
fields of deep learning hardware accelerator design. The proposed accelerator
can be used in a wide range of applications, from image and video processing to
natural language processing and speech recognition. It can also potentially reduce
the cost and energy consumption of deep learning systems, which can make them
more accessible and affordable.

Future work could focus on optimizing the hardware implementation of the
proposed accelerator to further improve its performance and efficiency. More-
over, the proposed techniques could be extended to other types of neural networks
and arithmetic operations, opening up new possibilities for hardware acceleration
in the field of deep learning.

43

Bibliography
[1] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller,

“Explaining deep neural networks and beyond: A review of methods and
applications,” Proceedings of the IEEE, vol. 109, no. 3, pp. 247–278, 2021.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[3] F. Conti and L. Benini, “A ultra-low-energy convolution engine for fast
brain-inspired vision in multicore clusters,” in 2015 Design, Automation

& Test in Europe Conference & Exhibition (DATE). IEEE, 2015, pp. 683–
688.

[4] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp.
115–133, 1943.

[5] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Re-
view of deep learning: Concepts, cnn architectures, challenges, applica-
tions, future directions,” Journal of big Data, vol. 8, pp. 1–74, 2021.

[6] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” Proceedings of machine learning and systems,
vol. 2, pp. 129–146, 2020.

[7] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accel-
erators,” in 2016 49th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[8] A. S. Hassan, T. Arifeen, and J.-A. Lee, “Data footprint reduction in dnn in-
ference by sensitivity-controlled approximations with online arithmetic,” in
2020 23rd Euromicro Conference on Digital System Design (DSD). IEEE,
2020, pp. 534–541.

[9] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up
primate brain,” Frontiers in human neuroscience, p. 31, 2009.

44

[10] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep net-
works,” Advances in neural information processing systems, vol. 28, 2015.

[11] V. G. Maltarollo, K. M. Honório, and A. B. F. da Silva, “Applications of
artificial neural networks in chemical problems,” Artificial neural networks-

architectures and applications, pp. 203–223, 2013.

[12] A. Krenker, J. Bešter, and A. Kos, “Introduction to the artificial neural net-
works,” Artificial Neural Networks: Methodological Advances and Biomed-

ical Applications. InTech, pp. 1–18, 2011.

[13] N. McClure, TensorFlow machine learning cookbook. PACKT publishing
Ltd, 2017.

[14] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural network,” Advances in neural information process-

ing systems, vol. 28, 2015.

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[16] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of
pruning for model compression,” arXiv preprint arXiv:1710.01878, 2017.

[17] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han,
“Apq: Joint search for network architecture, pruning and quantization pol-
icy,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 2078–2087.

[18] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and
C. Choi, “Learning to quantize deep networks by optimizing quantization
intervals with task loss,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp. 4350–4359.

[19] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of
network pruning,” arXiv preprint arXiv:1810.05270, 2018.

45

[20] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quantiza-
tion for deep learning inference: Principles and empirical evaluation,” arXiv

preprint arXiv:2004.09602, 2020.

[21] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint

arXiv:1908.09791, 2019.

[22] X. Xia, X. Xiao, X. Wang, and M. Zheng, “Progressive automatic design of
search space for one-shot neural architecture search,” in Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, 2022,
pp. 2455–2464.

[23] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le, “Mnasnet: Platform-aware neural architecture search for mobile,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2019, pp. 2820–2828.

[24] M. S. Abdelfattah, Ł. Dudziak, T. Chau, R. Lee, H. Kim, and N. D. Lane,
“Best of both worlds: Automl codesign of a cnn and its hardware accel-
erator,” in 2020 57th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2020, pp. 1–6.

[25] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchitec-

ture (MICRO). IEEE, 2016, pp. 1–12.

[26] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen,
and Y. Chen, “Cambricon-s: Addressing irregularity in sparse neural net-
works through a cooperative software/hardware approach,” in 2018 51st An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 15–28.

[27] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for

46

compressed-sparse convolutional neural networks,” ACM SIGARCH com-

puter architecture news, vol. 45, no. 2, pp. 27–40, 2017.

[28] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible acceler-
ator for emerging deep neural networks on mobile devices,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.
292–308, 2019.

[29] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks,”
IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016.

[30] J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W. Keckler, and Z. Zhang,
“Snap: An efficient sparse neural acceleration processor for unstructured
sparse deep neural network inference,” IEEE Journal of Solid-State Circuits,
vol. 56, no. 2, pp. 636–647, 2020.

[31] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–12.

[32] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-level dynamically composable architecture for
accelerating deep neural network,” in 2018 ACM/IEEE 45th Annual Inter-

national Symposium on Computer Architecture (ISCA). IEEE, 2018, pp.
764–775.

[33] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “Unpu: An energy-
efficient deep neural network accelerator with fully variable weight bit pre-
cision,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 173–185,
2018.

[34] S. Ryu, H. Kim, W. Yi, and J.-J. Kim, “Bitblade: Area and energy-efficient
precision-scalable neural network accelerator with bitwise summation,” in

47

Proceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[35] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture
for ultralow power binary-weight cnn acceleration,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 1,
pp. 48–60, 2017.

[36] M. D. Ercegovac and T. Lang, Digital arithmetic. Elsevier, 2004.

[37] B. Parhami, Computer arithmetic. Oxford university press, 2010, vol. 20,
no. 00.

[38] M. D. Ercegovac, “On left-to-right arithmetic,” in 2017 51st Asilomar Con-

ference on Signals, Systems, and Computers. IEEE, 2017, pp. 750–754.

[39] M. Ercegovac and T. Lang, “On-line scheme for normalizing a 3-d vector,”
in Conference Record of the Thirty-Third Asilomar Conference on Signals,

Systems, and Computers (Cat. No. CH37020), vol. 2. IEEE, 1999, pp.
1460–1464.

[40] A. M. Abdelhadi and L. Shannon, “Revisiting Deep Learning Parallelism:
Fine-Grained Inference Engine Utilizing Online Arithmetic,” in 2019 Inter-

national Conference on Field-Programmable Technology (ICFPT). IEEE,
2019, pp. 383–386.

[41] S. Gorgin, M. H. Gholamrezaei, D. Javaheri, and J.-A. Lee, “An efficient
fpga implementation of k-nearest neighbors via online arithmetic,” in 2022

IEEE 30th Annual International Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM). IEEE, 2022, pp. 1–2.

[42] S. Gorgin, M. Gholamrezaei, D. Javaheri, and J.-A. Lee, “knn-msdf: A hard-
ware accelerator for k-nearest neighbors using most significant digit first
computation,” in 2022 IEEE 35th International System-on-Chip Conference

(SOCC), 2022, pp. 1–6.

48

[43] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn accel-
erators,” in 2016 49th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO), 2016, pp. 1–12.

[44] J. Olivares, J. Hormigo, J. Villalba, I. Benavides, and E. L. Zapata, “Sad
computation based on online arithmetic for motion estimation,” Micropro-

cessors and Microsystems, vol. 30, no. 5, pp. 250–258, 2006.

[45] T. Arifeen, S. Gorgin, M. H. Gholamrezaei, A. S. Hassan, M. D. Ercegovac,
and J.-A. Lee, “Low latency and high throughput pipelined online adder for
streaming inner product,” Journal of Signal Processing Systems, pp. 1–15,
2023.

49

	I. Introduction
	A. Research Motivation
	B. Research Objectives
	C. Contributions
	D. Thesis Organization

	II. Background
	A. Deep Neural Networks
	B. Convolutional Neural Networks
	C. Deep Neural Network Hardware Accelerators
	1. Temporal and Spatial Hardware Architectures
	2. Processing-in-Memory (PIM) Architectures
	3. Co-Design of Hardware Architecture and Compression Algorithm

	D. MSDF Arithmetic
	1. Serial-Serial Multiplication
	2. Serial-Parallel Multiplication
	3. Inner Product
	4. Application of Online Arithmetic in CNN Accelerators

	E. Fused-Layer CNN

	III.The Proposed Early Termination Scheme
	A. Rectified Linear Unit Activation Function
	B. MaxPool Function
	C. Fused-layer Early Termination

	IV. Hardware Implementation
	A. The proposed Multiplier
	B. The proposed Inner Product Unit

	V. Evaluation
	A. Experimental Setup
	B. Bit-level Analysis
	C. Hardware Evaluation

	VI.Conclusion
	Biblography

<startpage>15
I. Introduction 1
 A. Research Motivation 1
 B. Research Objectives 3
 C. Contributions 4
 D. Thesis Organization 5
II. Background 6
 A. Deep Neural Networks 6
 B. Convolutional Neural Networks 8
 C. Deep Neural Network Hardware Accelerators 10
 1. Temporal and Spatial Hardware Architectures 11
 2. Processing-in-Memory (PIM) Architectures 12
 3. Co-Design of Hardware Architecture and Compression Algorithm 13
 D. MSDF Arithmetic 14
 1. Serial-Serial Multiplication 16
 2. Serial-Parallel Multiplication 18
 3. Inner Product 21
 4. Application of Online Arithmetic in CNN Accelerators 21
 E. Fused-Layer CNN 22
III.The Proposed Early Termination Scheme 25
 A. Rectified Linear Unit Activation Function 25
 B. MaxPool Function 26
 C. Fused-layer Early Termination 28
IV. Hardware Implementation 29
 A. The proposed Multiplier 29
 B. The proposed Inner Product Unit 31
V. Evaluation 36
 A. Experimental Setup 36
 B. Bit-level Analysis 37
 C. Hardware Evaluation 37
VI.Conclusion 43
Biblography 44
</body>

