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Abstract

Design and Implementation of Closed-Loop Supply Chain Model Considering
Supplier Disruption Risk

Tserengotov Nomin Erdene
Advisor: Prof. YoungSu Yun, Ph.D.
Department of Business Administration,

Graduate School of Chosun University

A multi-stage closed-loop supply chain (CLSC) model is generally composed of facilities at each
stage of forward logistics (FL) and reverse logistics (RL). The CLSC model may be disrupted by
various factors. For instance, the conflict between Ukraine and Russia could affect the supply routes
of certain products and components. When such unpredictable situation occurs in the CLSC model,
it can create a risk to global supply chain (SC). Therefore, the CLSC model that can manage various
disruption risks effectively is imperative.

In this paper, the CLSC with supplier disruption risk (CLSC-DR) model is proposed. In the
CLSC-DR model, the disruption risks of main part suppliers and main routes are considered. Since
most conventional studies have focused on part supplier disruption and route disruption in simple SC
networks, the consideration of part supplier disruption and route disruption in the CLSC-DR model
can make it more realistic and effective. To this purpose, the CLSC-DR model considers backup part
suppliers and backup routes to cope with the disruption risks of main part suppliers and main routes.

In recent years, peoples have become more interested in online shopping than in stores, which
has the advantage of saving more time and being safer. Therefore, in this study, normal delivery
(NDL) as well as direct delivery (DDL) are also considered in the CLSC-DR model.

The CLSC-DR model proposed in this paper is expressed as a mathematical formulation and is
implemented using a hybrid meta-heuristic approach, called the GA-VNS-TLBO approach. The GA-
VNS-TLBO approach is a combination of genetic algorithms (GA), variable neighborhood search
(VNS), and teaching and learning-based optimization (TLBO).

After setting up the CLSC-DR models with various sizes in numerical experiment, the GA-VNS-
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TLBO approach is applied to solve the CLSC-DR models. The performance of the GA-VNS-TLBO
approach is compared to that of some existing meta-heuristic approaches (GA, VNS and TLBO as a
single meta-heuristic approach, and various GA-VNS and GA-TLBO as a hybrid meta-heuristic
approach). The results of the numerical experiment show that the GA-VNS-TLBO approach better
than conventional meta-heuristic approaches in terms of resilience and efficiency.

However, since the data used in numerical experiment are randomly generated, a study using

more realistic data obtained by real world will be carried out, which will be left to my future study.
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1. Introduction

1.1 Background and Objective of This Study

In a time when technology and internet environment are rapidly developing, it is more effective
for enterprises to use supply chain (SC) model. The SC model consists of forward logistics (FL),
which is responsible for the production and delivery of products. However, closed-loop supply chain
(CLSC) is required in consideration of reverse logistics (RL) including the process of recycled
products due to environmental pollution and lack of raw materials.

The various facilities utilized in the CLSC model are divided into two categories: FL and RL. In
the FL, the finished goods are supplied to the customers by various facilities, such as manufacturers,
distributors, and retailers. Whereas, in the RL, returned products from customers are recovered at
recovery centers after collecting and checking at collection center, and the rests are handled at
disposal centers. But, there exists a disruption risk in the SC and CLSC models for various reasons.

There are many conventional studies (Tang, 2006; Chopra and Sodhi, 2004; Waters, 2007;
Baghalian et al., 2013; Chuluunsukh et al., 2021) that describe various disruption risks occurred in
the SC and CLSC models. In general, there are two types of disruption risks: human-made disruption
risk and natural-made disruption risk. Labor dispute, supplier bankruptcy, war and terrorism are
considered as human-made disruption risk (Chopra and Sodhi., 2004). The most recent example was
when Coronavirus broke out in China in 2020. Because of the pandemic, the production at the
countries that buy raw materials from China suffered. Conversely, natural factors can create a
disruption risk without relying on humans. Baghalian et al. (2013) and Chuluunsukh et al. (2021)
mentioned real-world examples on natural-made disruption risks. In 1999, an earthquake in Taiwan
caused Apple to cancel customer orders, and in 2001, an earthquake in Japan caused severe
production losses for Toyota (Baghalian et al., 2013).

In a competitive business environment, it is more effective to consider disruption risks as well as
various distribution channels. The distribution channel is the path that products are delivered to

facilities or customers in an efficient and organized manners. In several conventional studies (Lin et
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al., 2009; Yun etal., 2018; Yun et al., 2020), distribution channels were classified into three types:
Normal delivery (NDL), Direct delivery (DDL), and Direct shipping (DSP), which are considered in
the SC and CLSC models. The NDL is the general distribution channel for distributing products from
a facility to the next. The DSP is a distribution channel that products are directly delivered from
manufacturers to customers without intermediate stages. The DDL delivers products from
distribution centers (DCs) to customers without going through retailers.

However, some conventional studies (Jabbarzadeh et al., 2018; Chuluunsukh et al., 2021;
Subramanian et al., 2013) did not consider the various distribution channels under the situation that
disruption risks occur in the SC or CLSC models. Therefore, in this paper, a CLSC with supplier
disruption risk (CLSC-DR) model is proposed. For various distribution channels, NDL and DDL are
used in it.

Conventional studies on the SC or CLSC models with disruption risks are summarized as follows.
Chuluunsukh et al. (2021) suggested a SC model which consists of supplier groups and manufacturer.
The supplier groups have one main supplier and multiple backup suppliers. One backup supplier
among the multiple ones will deliver parts to the manufacturer when main supplier is disrupted. The
parts are supplied by the backup route of the main supplier when the main route of the main supplier
is disrupted. Experimental results showed that increasing the number of the backup routes of the
main supplier and the number of suppliers can reduce the overall cost for operating the SC model.
Jabbarzadeh et al. (2018) designed a CLSC model with the FL consisting of suppliers, production
centers, and first customers, as well as the RL consisting of collection centers, disposal centers, and
secondary markets. They considered the disruption risks at suppliers, production center and
collection centers, and shown that considering disruption risks when planning a CLSC model can
save significant costs.

Complicated network problems including the SC or CLSC models are known as NP-complete
(Savaskan, 2004; Gen et al., 2018; Yun et al., 2020). There have been many studies using meta-
heuristic approaches to solve these complicated network problems and ensured the efficiency of the
SC or CLSC models. Single meta-heuristic approaches such as Genetic algorithm (GA), Cuckoo
search (CS), Variable neighborhood search (VNS), Particle swarm optimization (PSO) and Tabu
search (TS) have shown to be more effective than other conventional approaches (Savaskan, 2004;
Gen and Cheng, 2000; Gen et al., 2018; Yun et al., 2018, 2020). Recently, hybrid meta-heuristics
approaches which combine two or more single meta-heuristic approaches have been developed and

applied to the complicated network problems. Many conventional studies have proved that applying
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single or hybrid meta-heuristic approaches to the complicated network problems is an efficient
approach (Lin etal., 2009; Zhang et al., 2012; Soleimani and Kannan, 2015; Xinyu and Liang, 2016).

Conventional studies with hybrid meta-heuristic approaches for the CLSC models are briefly
summarized as follows. Soleimani and Kannan (2015) proposed a CLSC model which considers
various distribution channels. They used a hybrid meta-heuristic approach that combines the GA and
PSO and proved that the approach is more effective than other conventional approaches. Yun (2020)
suggested a sustainable CLSC model for mobile phone. The sustainable CLSC model can be
considered as a multi-objective optimization problem, and a hybrid GA (HGA) approach which
combines the GA and CS was used to solve the sustainable CLSC models with various scales in
numerical experiments. He demonstrates that the HGA approach outperforms conventional
approaches and that the sustainable CLSC model using various distribution channels is more
effective than the sustainable CLSC model using a single distribution channel.

In general, each meta-heuristic approach has its advantages and weaknesses, so it is imperative
to use a combination of meta-heuristic approaches that can overcome these weaknesses. For example,
the GA creates population diversity and elite populations due to the randomness in the GA
implementation, but some poor individuals can be generated in the population. These poor
individuals can be eliminated, and the more respective individuals can be maintained in the
population by applying the teaching and learning based-optimization (TLBO) to the GA loop (Rabeh
etal., 2019). Rabeh et al. (2019) demonstrated that the combination of the GA and TLBO approaches
is more effective than the GA alone or the TLBO alone. As another meta-heuristic approach, the
variable neighborhood search (VNS) approach is to seek global optimal solution by identifying the
optimality of its descent stage. It can also be used to get rid of a valley and transform a neighborhood
(Chen et al., 2020). Qiuhua et al. (2015) considered a hybrid meta-heuristic approach combining the
VNS with TLBO. In this approach, the TLBO is used for global search, whereas the VNS is used for
local search and strengthens the solution obtained by the global search, which can achieve the
appropriate balance between exploitation and exploration. By combining the TLBO with VNS, the
opportunity to find optimal or near-optimal solutions can be increased. As described above, many
studies (Chen et al., 2020; Qiuhua et al., 2015; Dib et al., 2015; Gen et al., 2018; Yun et al., 2020)
showed that using a hybrid meta-heuristic approach is more efficient than using a single-meta-
heuristic approach.

Therefore, in this paper, the GA-VNS-TLBO approach as a hybrid meta-heuristic one is proposed.
The proposed GA-VNS-TLBO approach is composed of the learning capability of the TLBO
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approach, the global search capability of the GA approach, and the local search capability of the VNS
approach. The proposed GA-VNS-TLBO approach is applied to the CLSC-DR model with various
scales and its performance is compared with those of conventional single and hybrid meta-heuristic

approaches.

1.2 Implementation Procedure of This Study

The purpose of this study is to propose an efficient CLSC model, called the CLSC-DR model,
where disruption risk in supplier and two distribution channels (NDL and DDL) are considered. The
proposed CLSC-DR model is represented as a mathematical formulation and implemented using the
GA-VNS-TLBO approach.

First, after examining the conventional studies that consider the CLSC model, the characteristics
of these studies are analyzed. However, most of the existing conventional CLSC models do not
consider both disruption risks and distribution channels. To cope with these weaknesses, the CLSC-
DR model with various distribution channels is proposed in this paper.

Second, the material flow of the proposed CLSC-DR model is presented in the form of a network.
The proposed CLSC-DR maodel is represented as a mathematical formulation. In the mathematical
formulation, the total cost which is consisted of transportation cost, fixed cost and handling cost is
minimized for objective function. Various constraints such as transportation amount constraint,
facility usage constraints, etc. are used for optimizing the objective function.

Third, as a hybrid meta-heuristic approach for implementing CLSC-DR models, a GA-VNS-
TLBO approach for implementing mathematical formulation of CLSC-DR models is proposed.

Fourth, in numerical experiments, the CLSC-DR model with various scales is used to compare
the performance of the GA-VNS-TLBO approach with those of conventional single and hybrid meta-
heuristic approaches.

Fifth, through the above research purpose and methodology, the following results can be
concluded.

a) Most of conventional CLSC models do not consider disruption risk and various distribution
channels. Therefore, this study proves the superiority of the CLSC-DR model by considering
various distribution channels.

b) By the comparative analysis between the GA-VNS-TLBO approach and conventional meta-
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heuristic approaches and, the former’s superiority is proved.
c) Infuture study, more realistic data are collected to improve the practical applicability of the
GA-VNS-TLBO approach.
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2. Conventional Studies on CLSC Model with Disruption
Risk

Many conventional studies (Xiao and Yu, 2006; Trkman et al., 2009; Wilson, 2007; Wang et al.,
2012; Gedik et al., 2014; Jabbarzadeh et al., 2018; Ma et al., 2016; Badejo et al., 2022) which
consider the CLSC model including SC ones have concentrated either on the disruption of facility or
on the disruption of route. In reality, various scenarios that both the facilities and routes are disrupted
occur in the CLSC model simultaneously. In general, a CLSC model has various facilities (suppliers,
manufacturers, DCs, retailers, etc.) in its each stage, and if one of these entities is unavailable due to
a supplier disruption, the other route connecting the manufacturers is also disrupted, resulting in the
whole network being disrupted. Therefore, the efficiency of the CLSC model can be improved by
considering the supplier and route disruptions simultaneously. Some literatures (Oke et al., 2009;
Tang, 2006; Kleindorfer et al., 2005; Azaron et al., 2021; Baghalian et al., 2013; Poudel et al., 2016;
Ramshani et al., 2019; An et al., 2015; Aghamohamadi-Bosjin et al., 2022; Chuluunsukh et al., 2021)
have considered these two factors in their SC or CLSC models.

As mentioned above, simultaneous disruption of supplier and route can disrupt the entire CLSC
model, so alternative (or backup) suppliers or routes should be considered to avoid them. Wang et al.
(2012) and Gedik et al. (2014) considered backup routes to cope with main route disruption, but they
excluded the probabilistic disruptions for the main route. On the other hand, Jabbarzadeh et al. (2018)
and Badejo et al. (2022) considered backup suppliers to cope with main suppliers, but only Badejo
et al (2022) considered probabilistic disruptions to main suppliers. Differing from above mentioned
studies, Aghamohamadi et al. (2022) and Chuluunsukh et al. (2021) considered a backup supplier
and route as a result of the main supplier and route disruptions. They also offered a mathematical
model to represent the CLSC models with probabilistic disruptions in the main supplier and route.

Looking at existing studies, various approaches have been used. For example, it can be divided
as conventional approaches and meta-heuristic approaches. Conventional studies (Azaron et al., 2021;
Wilson, 2007; Wang et al., 2012; Gedik et al., 2014; Baghalian et al., 2013; Poudel et al., 2016;
Jabbarzadeh et al., 2018; Ma et al., 2016; An et al., 2015) used various conventional approaches such
as a multi-objective two stage stochastic, simulation, heuristics-NPM (Nested Partition Approach),
piecewise linearization, lagrangian relaxation. On the other hand, Ramshani et al. (2019),

Aghamohamadi et al. (2022) and Chuluunsukh et al. (2021) used the meta-heuristic approaches such
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as Tabu search (TS), Route subset selector (RSS), population-based multi objective particle swarm
optimization - social engineering optimizer (HPSO-SEO), GA-VNS.
The major chracteristics of conventional studies including our proposed study are summarized in

Table 2.1.

Table 2.1 Summary of Conventional Studies on Disruption Risk in SC or CLSC Models

. ) . Probabilistic Math Distribution channel ~ Reversze Approach
Disruption Alternative . ) -
Digruption Model logistic
Main Backup Facilite Rout Normal Direct
Facility Route  Facility Route 0 0 delivery _ delivery
Olee et al (2009) n n Conceptual Study
Tang (2004) ] ] Conceptual Study
Kleindorfer et al :
(2005) ] ] Conceptual Study
A multi-objective
Azaron et al
2021) ] ] two stage
@ stochastic
XKiao and Yu a1 Stud
- Cone .
(2006) eptual Study
Trlman et al a1 Stucl
(2009) " Conceptual Stady
Wilson (2007) ] Simulation
Wang etal. Heuristics- NPM
2012) n n n euristics-1
Gedik et al.
] ] ] MIP
(2014)
Baghalian et al. Piecewize
(2013) " " " " linearisation
Poudel et al
2016) ] ] ] ] ] BDA
Jabbarzadeh et Lagrangian
L] n n ] -
al (2018) relaxation
Famshani et al Metaheuristics-
(2019) " " " " " " TS, RSS
Ruimin et al LP-metrics
n n L]
(2016) approach
Lagrangian
Anetal (2015) = . . . grang
relaxation
Badejo et al Two-stage
(2022) " " " " stochastic model
Aghamohamadi Metaheuristics-
etal (2022) " " " " " " " - HPSO-SEQ
Chuluwunsukh et Metaheuristics-
n n n n n n n
al. (2021) GA+VNS
Thi Metaheuristics-
is paper n n n n n n n n n GA+VNS:TLBO

* RS5: Route Subset Selector

* BDA: Benders decomposition algorithm
# WPM: nested partition approach

* HPS0-SEQ: Population-based Multi Objective Particle Swarm Optimization (PMOPSQ) + Social Engineering Optimizer (SEQ)
* MIP: two-stage mixed integer programming
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Among the conventional studies mentioned in Table 2.1, some featured studies are detailly
analyzed. Chuluunsukh et al. (2021) proposed a SC model, which considers the various risks
associated with the operation of facilities and routes. The SC model is composed of supplier groups
and manufacturer. Each supplier group has its own main and backup routes. These routes are utilized
by one main supplier and two backup suppliers. The material flows for the SC model is shown in
Figure 2.1. The four types of parts (i.e., part type 1, 2, 3, and 4) that are sent to the manufacturer are
prepared in four supplier groups, that is, part type 1 is prepared at the main supplier of supplier group
1, the part type 2 at the main supplier of supplier group 2, the part type 3 at the main supplier of
supplier group 3, and the part type 4 at the main supplier of supplier group 4. Each of these groups
has its main supplier and two backup suppliers. If the main supplier or main route in supplier group
1 gets completely disrupted with a 100% probability, then one of the two backup suppliers will send
the part type 1 to the manufacturer. On the other hand, if the main supplier or main route gets partially
disrupted with a 50% probability, then one of the two backup suppliers will send the remaining half
of the order to the manufacturer. This SC model was represented using a mathematical formulation,
where the objective function is to minimize the total cost which is consist of the sum of fixed cost,
transportation cost, and handling cost. The hybrid meta-heuristic (0GA-VNS) approach using the
VNS and GA was applied for implementing the mathematical formulation. In numerical experiments,
the pGA-VNS approach showed to be more efficient than some conventional meta-heuristic

approaches such as GA and VNS.

North Korea

Pyongyang

“47 Supplier
Group 2{¢

Zhengzhou
x5

Wuhan
EiBat

ngsha
P

@ Main Supplier :";g_f". Backup Supplier — Main Route - —Backup Route h Manufacturer

Fig 2.1 Material Flow of the SC model (Chuluunsukh et al., 2021)
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Azaron et al. (2021) constructed a small SC model including one supplier base, four
manufacturing sites, three markets and four potential locations where warehouses could be built. The
conceptual material flow is shown in Figure 2.2. It was assumed that two types of products are
distributed at the markets. There were three limited resources that are used to produce these products.
The objective of this study was to minimize the travel times and maximize the expected value of the
SC model under uncertainty situation by applying a multi-objective two stage programming approach.

In the SC model, the optimal locations of retailers and warehouses as well as the production levels

and shipping quantities at various manufacturing sites and warehouses were determined.

Suppliers Man. Sites Warehouses Markets

Fig 2.2 Material Flow of the SC model (Azaron et al., 2021)

Jabbarzadeh et al. (2018) presented a stochastic robust optimization model that can be used to
design a CLSC model with disruption risks. The CLSC model is consist of suppliers, production
centers, and first customers in the FL and collection centers, disposal centers, and secondary markets
in the RL. They considered a disruption risk at suppliers, production center and collection centers,
and proved that considering disruption risk when planning a CLSC model can save significant costs.
The use of a stochastic robust optimization model can help minimizing the total cost of the CLSC
model in different scenarios. It can also help the implementation of the CLSC model in coping with
the effects of disruptions. The conceptual material flow for the CLSC model is shown in Figure 2.3.
The CLSC model was represented a mathematical formulation and implemented using a stochastic
robust optimization model. The Lagrangian relaxation approach as a stochastic robust optimization

model was used to improve the efficiency of the CLSC model. Real-world data was used in the CLSC
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model for glass industry and then the efficiency of the use of Lagrangian relaxation approach was
analyzed. The experimental results showed that use of lateral transshipment in the CLSC model can

help reducing the overall cost.

Secondary
Markets

Production

Suppliers Centers

P
= mTD
Conters: m T

Collection ®

Centers
First Markets

Fig 2.3 Material Flow of the CLSC model (Jabbarzadeh et al., 2018)

Ma et al. (2016) developed a CLSC model which includes plants, collection centers, demand
zones and disposal facilities. New products can be manufactured and returned products can be
remanufactured at the plants. Products are shipped from the plants to the demand zones, while the
returned products from demand zones are sent to the collection centers. The conceptual material flow
for the CLSC model is shown in Figure 2.4. The assumptions used in the CLSC model are as follows:
(1) It is designed to provide a single period, (2) All of the products returned from the demand zones
are collected at the collection centers, and (3) The locations of the demand zones with fixed capacities
are fixed and plants being known in advance. Two objective functions were used for the
implementation of the CLSC model. First objective function as an economic factor is to minimize
the total cost which is the sum of the fixed costs, transportation costs, and production costs. Second
one as an environmental factor is to minimize the environmental cost. These two objective functions
including some constraints was represented as a multi-objective mixed integer programming model.

A LP- metrics approach was used to solve the model.
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Fig 2.4 Material Flow of the CLSC model (Ma et al., 2016)

As conventional studies mentioned and analysed above, we can summarize some weakness as

follows:

The studies (Oke et al., 2009; Tang, 2006; Kleindorfer et al., 2005; Xiao and Yu, 2006;
Trkman et al., 2009) does not provided a comprehensive analysis such as the efficiency
analysis of the SC model. Instead, their studies ware merely conceptual ones.

Some studies (Oke et al., 2009; Tang, 2006; Kleindorfer et al., 2005; Azaron et al., 2021,
Xiao and Yu, 2006; Trkman et al., 2009; Wilson, 2007; Ma et al., 2016) did not consider
backup suppliers or backup routes that can replace the main supplier or main routes, if there
was a disruption risk. In addition, most studies (Oke et al., 2009; Tang, 2006; Kleindorfer et
al., 2005; Azaron et al., 2021; Xiao and Yu, 2006; Trkman et al., 2009; Wilson, 2007; Wang
et al., 2012; Ma et al., 2016; Gedik et al., 2014; Baghalian et al., 2013; Jabbarzadeh et al.,
2018) did not consider probabilistic disruption risk.

All studies did not use various distribution channels in their SC or CLSC models.

Many studies (Azaron et al., 2021; Wilson, 2007; Wang et al., 2012; Gedik et al., 2014;
Baghalian et al., 2013; Poudel et al., 2016; Jabbarzadeh et al., 2018; Ma et al., 2016; An et
al., 2015) did not consider the use of meta-heuristic approaches, although the use of various

meta-heuristic approaches is more efficient then the use of conventional approaches.

To cope with these weakness summrized above, the following two solutions should be considered.

11
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First, additional or backup suppliers and routes are needed, if a main supplier or route is disrupted
with a probabilistic disruption risk. Second, the consideration of various distribution channels can
ensure that products are delivered to customer as quickly as possible. We will use the hybrid meta-
heuristic approach to solve these complex problems. In this paper, we present CLSC model that
consider the two solutions mentioned earlier. Our proposed model efficiently incorporates both of
these approaches to enhance the effectiveness.

12

Collection @ chosun



3. Design of the Proposed CLSC-DR Model

The network structure of the proposed CLSC-DR model is shown in Figure 3.1. Part supplier
groups, module manufacturers, manufacturers, DCs, retailers, and costumers are all included in the
FL.

Each part supplier group has one main supplier and two backup suppliers, where main and backup
suppliers can send a part type to module manufacturer or manufacturer using the main route of main
supplier and the backup routes of backup suppliers. For example, the main supplier at part supplier
group 1 sends a part type 1 to module manufacturer using its main route. However, if the main
supplier or its main route is disrupted, then one of the backup suppliers will send the part type 1 to
the module manufacturer using its backup route. A similar situation is also shown in the part supplier
group 2, that is, the main supplier at part supplier group 2 sends a part type 2 to module manufacturer
using its main route. However, if the main supplier or its main route is disrupted, then one of the
backup suppliers will send the part type 2 to the module manufacturer using its backup route. For
part supplier group 3, the main supplier sends a part type 3 to the manufacturer using its main route.
However, if the main supplier or its main route is disrupted, then one of the two backup suppliers
sends the part type 3 to the manufacturer using its backup route.

The module manufacturer uses part type 1 and 2 to produce a module and send it to the
manufacturer. The manufacturer uses the module and part type 3 to produce a product. The product
is delivered to customers through DCs and retailers.

The RL consists of collection center, recovery center, secondary customer and disposal center.
The product returned by customer is collected and sorted at the collection center. Unrecoverable and
recoverable parts are obtained after collecting and sorting the returned product. The unrecoverable
parts are sent to the disposal center, and the recoverable parts are sent to the recovery center. At the
recovery center, the quality and function of the recoverable parts are recovered and then they are
classified into three types (recovered products, modules, and parts). The recovered products are sent
to the secondary customer, the recovered modules to the manufacturer, and the recovered parts to the
module manufacturer.

As already mentioned in Section 1, various distribution channels such as the NDL and DDL can
be used in the CLSC models to improve their transportation efficiency. Therefore, both the NDL and
the DDL are used in the proposed CLSC-DR model. The NDL in the proposed CLSC-DR model

13
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begins with the supplier. The products produced by the manufacturer are then transported to the
retailer through the DC before being delivered to the customers. And the collection center, recovery
center, secondary customer, and disposal center are also connected with the NDL. The DDL means
that products at the DC are delivered directly to the customers without involving any retailers in the

process.

Part supplier grou
PPlier group Module f Manuf: Distribution center Retailer Customer

Part supplier

— ) N— - — A
e - —— — EE— E—
v
Recovery center Collection center

PR
m Recovered product

Second customer

Disposal center

==
Forward logistic M

— Main route/ Normal delivery

----# Backup route

"]
-IE_ Main supplier

P Backup supplier

Reverse logistic

~~~~* Normal delivery

‘ Direct delivery

Fig 3.1 A conceptual flow of the proposed CLSC-DR model

The differences between conventional studies and the proposed CLSC-DR model are as follows.

= In the proposed CLSC-DR model, backup suppliers and their routes can be used, when a

main supplier or its route is disrupted. These alternative considerations using main or backup
supplier and main or backup route have not been treated in most of conventional studies.

=  For various transportation types, the proposed CLSC-DR model uses the NDL and DDL

simultaneously, which can improve the efficiency in operating or managing the proposed

CLSC-DR model. However, most of conventional studies have not considered various

transportation types.
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4. Mathematical Formulation

The following assumptions are used for representing the proposed CLSC-DR model.

e  The production of a single product is only considered.

e  The numbers of facility at each stage are already known. Among them, only one facility of
the part suppliers, module manufacturers, manufacturers, distribution centers, retailers,
collection centers and recovery centers should be opened at each stage, whereas, all
facilities of the customers, second customers, and disposal centers are always opened.

e  One main supplier and more than one backup supplier at each part supplier group are
considered.

e  One main supplier at each part supplier group is opened, when there is no disruption at each
part supplier group, while, one of the backup suppliers is opened, when the main supplier
at a randomly selected supplier group is disrupted. As a same meaning, the main route of
one main supplier at each part supplier group is opened, when there is no disruption at each
part supplier group, while, the backup route of one of the backup suppliers is opened, when
the main route of the main supplier at a randomly selected supplier group is disrupted.

e Fixed costs for operating the facilities which can be opened at each stage are different and
already known.

e Unit handling costs of the facilities which can be opened at each stage are already known
and are identical at the same stage.

e  Unit transportation costs between each facility of each stage are already known and are
different.

e Eighty percent (80%) of the products returned from customer are collected at collection
center.

e The quality of the recovered products, recoverable modules, and recoverable parts at the

recovery center are identical with those of new products, modules and parts.

The following defines index set, parameters, and decision variables.

® |Index Set
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s :index of main supplier, s € S

s': index of backup supplier, s" € S’

g : index of part supplier group, g € G
t :index of mainroute, t €T

t' : index of backup route, t' € T’

o : index of module manufacturer, o € O
m : index of manufacturer, m € M

d : index of distribution center, d € D

r : index of retailer, r € R

¢ : index of customer, ¢ € C

o~

: index of collection center, [l € L
w : index of disposal center, w € W
e : index of recovery center, e € E

u : index of second customer, u € U

® Parameters

F,: fixed cost at main supplier s of part supplier group g

F g fixed cost at backup supplier s” of part supplier group g
F,: fixed cost at module manufacturer o

E,,: fixed cost at manufacturer m

F,: fixed cost at distribution center d

E,.: fixed cost at retailer r

F;: fixed cost at collection center |

F,: fixed cost at recovery center e

H

45+ unit handling cost at main supplier s of supplier group g

Hgg: unit handling cost at backup supplier s” of supplier group g
H,: unit handling at module manufacturer o

H,,: unit handling at manufacturer m

Hy: unit handling at distribution center d

H,: unit handling at retailer r

H,: unit handling at collection center |
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H,: unit handling at recovery center e
Tys0¢- Unit transportation cost from main supplier s of part supplier group g to module manufacturer

0 using main route t

Tgso¢' - Unit transportation cost from backup supplier s’ of part supplier group g to module
manufacturer o using backup route ¢’

Tysme- Unit transportation cost from main supplier s of part supplier group g to manufacturer m using
main route t

T g5'me’: UNIt transportation cost from backup supplier s” of part supplier group g to manufacturer m

using backup route t’

T,m: Unit transportation cost from module manufacturer o to manufacturer m

Tma: unit transportation cost from manufacturer m to distribution center d

T4 unit transportation cost from distribution center d to retailer r

T4.: unit transportation cost from distribution center d to customer ¢

T, unit transportation cost from retailer r to customer ¢

T,;: unit transportation cost from customer c to collection center |

Ty, Unit transportation cost from collection center | to disposal center w

Tye: unit transportation cost from collection center | to recovery center e

T.,: unit transportation cost from recovery center e to module manufacturer o

T, Unit transportation cost from recovery center e to manufacturer m

T.,.: unit transportation cost from recovery center e to second customer u

qgsot- transporting quantity from main supplier s of part supplier g to module manufacturer o using
main route t

qgs'oe’ - transporting quantity from backup supplier s’ of part supplier group g to module
manufacturer o using backup route t’

qgsme- transporting quantity from main supplier s of part supplier group g to manufacturer m using
main route t

qgs'me'- transporting quantity from backup supplier s’ of part supplier group g to manufacturer m
using backup route t’

qom: transporting quantity from module manufacturer o to manufacturer m

Qma- transporting quantity from manufacturer m to distribution center d

q4r- transporting quantity from distribution center d to retailer r
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qac: transporting quantity from distribution center d to customer ¢

q.;: transporting quantity from customer c to collection center |

quw- transporting quantity from collection center | to disposal center w
q..: transporting quantity from collection center | to recovery center e
qeo: transporting quantity from recovery center e to module manufacturer o
qem: transporting quantity from recovery center e to manufacturer m
gy transporting quantity from recovery center e to second customer u
cap,: capacity of module manufacturer o

capy,: capacity of manufacturer m

capg: capacity of distribution center d

cap,-: capacity of retailer r

cap,.: capacity of customer ¢

cap,: capacity of collection center /

cap,: capacity of recovery center e

cap,,: capacity of disposal center w

cap,,: capacity of second customer u

® Decision variable

Jgs: takes the value 1 if main supplier s at part supplier group g is available and 0 otherwise.

Jgs': takes the value 1 if backup supplier s’ at part supplier group g is available and 0 otherwise.
kgs¢: takes the value 1 if main route ¢ of main supplier s at part group g is available and 0 otherwise.

k

gs'¢': takes the value 1 if backup route t’ of backup supplier s’ at part supplier group g is opened

and 0 otherwise.

Jo: takes the value of 1 if module manufacturer o is opened and 0 otherwise
Jm: takes the value of 1 if manufacturer m is opened and 0 otherwise

Jq: takes the value of 1 if distribution center d is opened and 0 otherwise
Jjr: takes the value of 1 if retailer 7 is opened and 0 otherwise

Ji: takes the value of 1 if collection center / is opened and 0 otherwise

Je: takes the value of 1 if recovery center e is opened and 0 otherwise

The objective function is to minimize the total cost (TC) which consists of total transportation
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cost (TT), total handling cost (TH) and total fixed cost (TF) as follows:

MinTC=TF+TH+TT (1)

The TF consists of the sum of the costs of establishing and opening part supplier groups, module
manufacturers, manufacturers, distribution centers, retailers, collection centers, recovery centers. For
example, the fixed cost of the main supplier at part supplier groups is calculated by the fixed cost

(Fys) of the main supplier and whether it is opened (j45). This is expressed in the following formula.

TF = Zng Egs *jgs"'Zg X’ ng’ *jgs’+
ZO(FO *jo)+2m(Fm *jm)"'Zd(Fd *jd)+
X (B * Jr )+ 20 (Fy * j)+ e (Fe * Je) )

The TH is determined by the handling capacity generated by each stage including part supplier
groups, module manufacturers, manufacturers, distribution centers, retailers, collection centers and
recovery centers, as well as whether each one is opened or not. For example, the handling cost
incurred by the main supplier is calculated as the handling cost per part unit in the main supplier
(Hygs), the handling quantity (q4s0¢), and whether the main supplier is opened or not (j,). This is

expressed as the following formula.

TH =25 Xs(Hgs * Qgsot * Jgs)F g Ls'(Hgs' * Qgs'or’ * Jgs' )+
2o(Ho * capy * o)+ X (Hm * capm * jm)+
2a(Hg * capg * ja)+ X, (Hy * capy * j)+
Xi(Hy * capy * j)+2e(He * cape * je) 3

The TT is incurred when all products or parts are transported or delivered between the facilities
at each stage. For example, the cost of supplying a part from the main supplier to the module
manufacturer is expressed in terms of the unit transportation cost (T,,,), transporting quantity
supplied from the main supplier to the module manufacturer (qg4s,:), Whether j,, jgs , and kg, is

opened or not. This is expressed as the following formula.
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TT =Yg 2s o Xt Tgsot * Agsot * Jgs * Jo * Kgst™
2gLsi Dot Tgs'ot’ * Qgsot’ * Jgs' * Jo * Kgs'er+
Yg Ls Lom Xt Tgsme * Qgsme * Jgs * Jm * Kgse+
2g2s' Zmut' Tgsime’ * Ags'me’ * Jgs' * Jm * kgs'er +
20 Zm(Tom * Gom * Jo * Jm)+2m 2d(Tma * Gma * Jm * Ja)+
Ya 2r(Tar * qar * ja * jr)+2a Xc(Tac * Qac * ja)*
2 2c(Tre * Qre * Jr) + L Zi(Ter * e * J1) + 20 2w (Tiw * Quw * J1) +
21 2e(Tie * que * Ji * Je) + Xe Xo(Teo * eo * Je * Jo) +
Ye Xm(Tem * dem * Je * jm) + Xe Xu(Teu * Gew * Je) (4)

Constraints for optimizing the objective function are as follows.

(Xg X520 Xt Agsot * Jgs * Jo * Kgs +

Dg Xs' Yo Xt' Ags'ot’ * Jgs' * Jo * Kgs' +

Ye Xm Gem * Je * Jm) = 2o €aPo * jo < 0 ()
(Xg Xs Xom Lt Agsme * Jgs * Jm * kgs +

g X' Xom Xt' dgs'me’ * Jgs' * Jm * Kgs' +

YeXmem * Je * jm) — Xom CPm * jm < 0 (6)
YmZdGma * Jm *Ja) — Xa €apa * ja < 0 ()
YaZrYar *Ja * jr) — Xrcapr * jr <0 (®)
QaZcYac *ja + Xr X Gre * Jr) — Lecape <0 9)
Yo *Ji— Xicapy*ji <0 (10)
212w Qw *Ji * Jw — Zw CaPw * jw < 0 (11
Yideqie *J1*Je = LeCaPe * jo <0 (12)
YeXuGeu * o= LuCapy *ju <0 (13)

In the equations (5) to (13), there is a quantity limitation for transportation between each stage.

For example, the total number of the parts sent by the main supplier (qgsm.), backup supplier (g m¢)
and recovery center (q.,,) must be less than or equal to the number of parts processed by the module

manufacturer (cap,).
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Yslgs T Xs'Jgs' =1, Vg
LsXekgse + XsXiekgsrer =1, Vg
Yoo =1

Lmjm =1

2aja=1

Yrjr=1

=1

YeJe=1

In the equations (14) to (21), only one facility should be opened at each stage.

Jjgs = 1{0,1}, Vs €S, Vg€EG

jgs ={0,1}, vs' €S§', VgeG

kgse = {0,1}, Vs €S, VgeG,VteT
kgsrer =1{0,1}, vs' €S, VgEG,Vt'ET’
Jo ={0,1}, Yo €0

Jm =1{0,1}, vm € M

ja =101} vd €D

Jr ={0,1}, vr €R

ji=1{01}, vl €L

Je ={0,1}, Ve €E

In the equations (22) to (31), each decision variable should take a value of 0 or 1.
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5. Proposed GA-VNS-TLBO Approach

5.1 Background of Meta-heuristic Approaches

Meta-heuristic approaches can help in solving optimization problems. Numerous meta-heuristic
approaches have been consistently developed since the 1960s. Most of meta-heuristic approaches
have been developed inspired by natural phenomena, and the information obtained from past
explorations is used for the next generation. They can be distinguished as several types as follows.

First, evolutionary algorithms, evolutionary strategies, and genetic algorithms (GA) are
developed to mimic the evolutionary processes of nature. Second, particle swarm optimization (PSO),
ant colony optimization (ACO), and cuckoo search (CS) algorithms are used to mimic the behavior
of living organisms. Third, Tabu search (TS) and simulated annealing (SA) algorithms mimics
natural and social phenomena. Fourth, hill climbing (HC), variable neighborhood search (VNS), and
iterated local search (ILS) algorithms are used to improve the solution by exploring its neighbors
through systematic iterations (Kim 2017). Including the algorithms mentioned above, the relationship

between various meta-heuristic approaches is explained in Figure 5.1.

‘Memory based methodsy

e -Sv-vu-'ln-all_eﬁlgace wfﬁ- bt \

Single solution based methods

\ Hybrid methods /

Fig 5.1 Relationship between meta-heuristic approaches
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5.2 Structure of the GA-VNS-TLBO Approach

The proposed GA-VNS-TLBO approach is a hybrid meta-heuristic approach that combines the
benefits of three different approaches. This means that the proposed GA-VNS-TLBO approach can
be constructed by combining the global search capabilities of the GA approach, the local search
capabilities of the VNS, and the learning capabilities of the TLBO approach. First, we explore the
features of GA, VNS, and TLBO concerning their suitability for hybridization.

5.2.1 GA Approach

The GA approach was first developed by the Holland (1975) and based on phenomena in the
course of natural evolution and stochastic optimization techniques. Since it has been improved by
the studies such as Goldberg (1985) and Gen (1997), it is still actively working. Most of meta-
heuristic approaches use approaches to obtain optimal solutions by initiating a search from one
solution and improving it. The GA approach differs from other approaches in that it uses a population
of different solutions and makes further improvements to find the best solution.

The procedure of the GA approach first uses the individual (or chromosome) to express the
problem considered, resulting in the production of an initial population (P). After genetic
manipulation by applying crossover and mutation to the initial population, the offspring (O) is
produced. Fitness evaluation is performed on the produced offspring to select a new population that
satisfies constraints. This process is repeated until the total number of generations is reached to a pre-
defined maximum number of generations. (Gen and Cheng, 1997). The general procedure for
implementing the GA is shown in Figure 5.2.

The GA approach with global search ability is one of the approaches to effectively solve large
NP-Hard problems that conventional approaches cannot solve. It is also an approach to explore global
optimization in a complex search space, and has been applied to a variety of applications to
demonstrate efficiency. Dehghanian (2009) study used a GA approach to optimize the Sustainable
Supply Chain Network problem. A study by Kannan (2010) designed a CLSC model for battery
recycling and optimized it using a GA approach. A study by Yun (2013) proposed a GA approach to

evaluate the reverse logistics network.
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procedure: GA-approach
input: GA parameters
begin
generation number t «0;
initialize population P(t);
evaluate P(t);
while (not termination condition) do
create offspring C(t) from P(t) by crossover operator;
create C(t) from P(t) by mutation operator;
evaluate C(t);
select P(t+1) from P(t) and C(t) by selection operator;
fe—t+1
end
output: a best solution

end

Fig 5.2 Pseudo code of the GA approach

However, GA shows a lack of proper memory and learning capability for superior individuals
generated during evolution and a relatively slow convergence process compared to other meta-
heuristics approaches. Depending on how to set the parameter used, the performance is greatly
affected. Due to the above disadvantages, it can be dropped into the local optimum. To address this
problem, recently, hybrid meta-heuristics approaches that combine two or more meta-heuristics
approaches have been developed and applied to complex network problems including the CLSC
model. Many conventional studies have demonstrated that applying a hybrid meta-heuristic approach
is more effective than applying a single meta-heuristic approach to complex network problems (Lin
et al., 2009; Zhang et al., 2012; Xinyu and Liang, 2016). Soleimani et al. (2015) proposed an HGA
approach that combines PSO and GA approaches as a way to solve large-scale CLSC models,
demonstrating that the HGA approach outperforms the general GA approaches. A study by Li, et al.
(2016) proposed an HGA approach that mixes TS and GA approaches for efficient work scheduling
problems. Therefore, in this study, a hybrid meta-heuristic approach for optimizing the CLSC-DR

model is proposed.

5.2.2 VNS Approach
Mladenovic and Hansen (1997) proposed the VNS approach. The concept of VNS approach is
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that it continuously seeks out a better solution by exploring a set of pre-defined areas. It can either
randomly or systematically explore these neighborhoods. The first step in creating set for
neighborhood structures is to define a set composed of related sets of neighborhoods. From there,
each iteration of the algorithm will perform three steps: movement, shaking, and local search. The
initial solution of each step is generated randomly. During the shaking step, a random neighbor
solution is generated. The local search step is applied to the neighbor's neighbor solution. If the
neighbor's neighbor solution is better than the initial solution, the neighbor's neighbor solution
becomes the current solution, and the search continues from the current solution. If the neighbor's
neighbor solution is not better than the initial solution, we will move to the next neighbor to create a
new solution for this neighbor and try to improve it. The general procedure for implementing the

VNS approach is as shown in Figure 5.3.

procedure: VNS-approach
input: a set of neighborhood structures N, =1,2,..., Iq,
begin
S= generate initial solution ();
repeat
I=1;
while (/< 1/,..)
5'=Shaking (S, N))
5§'#= Local search ()
if f{5"*) <A(S)
S5« 5%
I=1;
else
I=l+1;
end
until stopping condition are met ;
output : The best solution ;
end

Fig 5.3 Pseudo code of the VNS approach (Hosseinabadi et al., 2016)
The VNS approach possesses the capability to investigate and exploit diverse regions of the search
space across multiple neighborhoods. Angelo et al. (2015) designed a general variable neighborhood

search (GVNS) approach as a meta-heuristic approach for solving the multi-product dynamic lot

sizing problem in a CLSC model. They demonstrated that the GVNS approach can successfully solve
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large problems. However, as discussed earlier, it can be seen that optimization problem-solving
approach using single meta-heuristic approach has disadvantages. This proves that using hybrid
meta-heuristic approaches is more efficient than using single meta-heuristic approach to overcome
this weakness.

Zhai et al. (2016) designed hybrid heuristic algorithms by integrating GA, VNS, and fuzzy
simulations (FS) to solve the hub position problem. Along with convergence analysis, the calculation
results showed that VNS-based GA approach achieves better performance than standard GA
approach. Devika et al. (2014) developed new hybrid meta-heuristic approach based on adaptive
imperialist competitive algorithms and VNS to solve the CLSC models. In evaluating the
effectiveness and robustness of these algorithms, they were compared the proposed approach with
conventional algorithms. The outcomes revealed that the suggested approach outperforms other

methods, yielding superior solutions.

5.2.3 TLBO approach

The TLBO approach was first developed by Rao et al. (2011). It uses a population-based approach
to model a classroom environment and perform optimization on a given objective. It has two phases:
the learner phase and the teacher phase. The latter involves the teacher interacting with the students.
At this phase, teachers are committed to providing knowledge to learners and improving average
student outcomes. The learner phase simulates the learning process of a student through interaction.
Interacting and discussing with other students can help learners gain knowledge. A student will learn
new information, if the other student has more knowledge than him (or her). The general procedure
for implementing the TLBO approach is as shown in Figure 5.4.

The TLBO approach does not require any algorithm-specific parameters. That is the advantage
of using the TLBO approach in many fields of research. In a study by Rajesh (2020), the TLBO
approach was used to effectively solve the supply chain model. However, most studies (Babazadeh
et al. 2017; Rabeh et al. 2019) using the TLBO approach have been more effective when used in
conjunction with the GA approach than when using the TLBO approach alone.

GA approach can maintain group diversity due to its randomness in the process of generating
population and calculating evolution, but it can include inferior individuals within the generated
population. TLBO can be applied to these individuals to improve their fitness value, thereby

maintaining the best solution (Rabeh et al. 2019). Babazadeh et al. (2017) suggested a capacitated
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three-stage SC network using the GA-TLBO approach. The experimental outcomes demonstrated

that the hybrid approach combining GA and TLBO outperforms the alternative approaches.

procedure: TLBO-approach
input: control parameters: maxg., PopP;iz.
begin
randomly generate initial solution P(7);
calculate fitness value in P(f);
select Teacher value (X,.;) and calculate the mean of the class (X,.q,) in P(t);
while ( { > max,,; not stop condition) do
fori=1 to pop,.
Ty = round(1 + rand);
Xoew = X; + 1a00*(Xpeqt - TrXipean):
if flXoe,) <AX;) then
update X; € X, :
end
randomly select the other solution (X;) in all solutions;
iflX) <flX,) then
Xy = X+ rand(X, - X,)
else
X =X, - rand(X; - X,):
end
update X; € X,
select X, and calculate X _,;
next
r€<tr+1
end
output: X,
end

Fig. 5.4 Pseudo code of the TLBO approach (Rao et al., 2011)

5.3 Implementation of the Proposed GA-VNS-TLBO Approach

In this study, we propose a GA-VNS-TLBO approach as a combination strategy using the GA,
VNS, and TLBO approach to optimize the CLSC-DR model. The procedure for applying the GA-
VNS-TLBO approach is as follows.

First, the initial population is randomly generated. Secondly, for the GA loop, 50% sub-
populations with superior fitness values are used. On the other hand, for the VNS loop, 50% sub-

populations with inferior fitness are used. The TLBO loop utilizes 50% of the sub-populations with
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superior fitness values from the population generated through the VNS and GA loops. After applying
GA, VNS, and TLBO loop, a new population is produced, and then the elitist selection scheme (Gen
et al. 1997) is applied to this new population and parent one to produce new parent population for
next iterations. This procedure is repeated until a pre-defined maximum number of iterations is
reached.

Detailed implementation procedure of the GA-VNS-TLBO algorithm is showed in Figures 5.5
and 5.6.

Set parameters
Randomly generate initial solution

Sub-population(50%)with superior solutions  Sub-population(50%)fwith inferior solutions

¥

[ Apply Crossover Operator ]
[ Define Neighborhood Structure ]

¥
GA — [ Apply Mutation Operator ] * — VNS
2 [ New neighbourhood pop ion ]
[ Produce Offspring ]
T -
¥
Produce new Offspring using superior
solutions (50%) from offspring that
combining offspring of GA with a new
neighbourhood population of VNS
J Update solution in Teacher Phase }
TLBO — ¥

Update solution in Learner Phase ]

B

[ Produce new population using

elitist selection scheme

Reach stop
condition?

Yes

No

[ Output optimal solution ]

Fig 5.5 A conceptual flow chart of the GA-VNS-TLBO approach
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procedure: GA-VNS-TLBO approach
input: GA parameters, VNS parameters, TLBO parameters
begin:
1
randomly generate initial population I(f);
evaluate I(f) and keep the best solution Jtest in I(7):
while (not terminating condition) do
create P(f) using superior solutions (50%) from I(r);
create 7(7) using inferior solutions (50%) from I(7);
create O(1) from P(¢) by crossover routine and mutation routine: // GA loop
evaluate O(r) and keep the best solution Best GA in O(r);
running VNS procedure using Vit); // VNS loop
create N(t) from F(1);
take best solution Best FNS;
create offspring using O(r) and N(7):
create T(#) using superior solutions (50%) from offspring;
running TLEO procedureusing T(t); // TLBO loop
take best solution Besr X from T'(r):
Best_G =argmin{ltes. Best GA, Best VNS, Best X}
reproduce I(r+1) from O(r). N(r), and T(r) by elitist selection scheme:
t €+l
end while
output: Best G

end

Fig 5.6 Pseudo code of the GA-VNS-TLBO approach

The procedure for implementing the VNS approach and TLBO approach used for GA-VNS-TLBO

approach is as shown in Figures 5.7 and 5.8.
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procedure: VNS-approach
input: It} population
begin
Evaluate fitness Fiz);
while (not stop condition)
ke1
while (not stop condition)
generate random neighbor E(%) from the k™ neighborhood N{k) of F1):
take best solution Best VNS from E(k);
if flBest_VNS) < fiN(%)) then
update Nik) « Best VNS
produce new population N(#) from Fiz) and N(&}:
ke1
else
k=k+1
end
end
ter+l
end
output: Best VNS
end

Fig 5.7 Pseudo code of the VNS approach

procedure: TLBO-approach
input: T{#) population, pop_size: size of I(t) population
begin
evaluate fitness Ty7);
select Teacher value (X},..,) and calculate the mean of the class (X0 10 T12);
while (not stop condition)
for i=1 to pop _size
T; = round(1 + rand);
Koo = X; + 1and* (Xpos - TrXoen):
if AX,.)<AX) then
update X; « X,
end
randomly select the other solution (X,) in all solutions:
if AX;) < fX,) then
Ko =X+ rand(X; - X)) ;
else
Xy = X; - rand(¥X; - X,);
end
update X; « X,
select Best X and calculate X,
next
tet+l
end
output: Best X
end

Fig. 5.8 Pseudo code of the TLBO approach
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6. Numerical experiments

In numerical experiments, the mathematical formulation of the CLSC-DR model suggested in
Section 3 is implemented using five scales as shown in Table 6.1. For example, for the CLSC-DR
model, each supplier group has one main supplier and four backup suppliers, and three module
manufacturers, manufacturers, distribution centers, retailers, collection centers, and recovery centers
are considered for Scale 1, of which only one facility is opened at each stage and not all remaining
facilities. And only one facility is considered and opened for a customer, a second customer, and a
disposal center, respectively. Data on transportation cost per unit, fixed cost, and handling cost were

randomly generated through Excel. (Saffari et al., 2015; Talaei et al., 2016) as shown in Table 6.2.

Table 6.1 Five Scales for CLSC-DR Model

Scales No.of No.of No.of No.of No.of No.of No.of No.of No.of No.of No.of No.of No.of No.of
Supplier Main Baclup Main Backup Module Manufacturer Distribution  Retailer  Collectio  Recovery  Customer Second Disposal

Group  supplier supplier route route manufacturer center 1 center center customer center
1 3 1 4 1 4 3 3 3 3 3 3 1 1 1
2 4 1 9 1 9 6 6 6 6 6 6 1 1 1
3 5 1 14 1 14 9 9 9 9 9 9 1 1 1
4 6 1 19 1 19 12 12 12 12 12 12 1 1 1
5 7 1 24 1 24 15 15 15 15 15 15 1 1 1

Table 6.2 Setting for Parameter Values

Parameters Values Parameters Values
Fys UT1000,1500] Tysot U2, 4]
Fys U[1500,2000] Tysor! U[3. 5]
E, U2200,2500] Tysmt U[3. 5]
E, U[2000,2500] y U5, 7]
F, U11800,2000] - UL3. 5]
E. UT1300,1500] Tiz U[6, 8]
F UT1500,1900] Ty UT4, 6]
E, U]1800,2100] Tye U2, 4]
Hgs U[15, 20] T, U[1, 3]
Hyg U[20, 25] T UL, 3]
H, U[18, 20] Tiw U[1, 3]
Hy, U125, 30] T, Ul4, 6]
Hy U20, 25] Too U5, 7]
H, U]28, 35] Tom U4, 6]
H; U[25, 30] Teu U1, 3]
H, U]25, 30]
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6.1 Comparison of Proposed GA-VNS-TLBO Approach and

Conventional Approaches

The five conventional meta-heuristics approaches for comparing the GA-VNS-TLBO approach
comparison are shown in Table 6.3.

Table 6.3 Approaches used for Comparison

Approach Description

GA Single meta-heuristic approach by (Gen & Cheng, 2000)

VNS Single meta-heuristic approach by (Mladenovi¢ & Hansen, 1997)
TLBO Single meta-heuristic approach by (Rao, 2011)

GA-VNS Hybrid meta-heuristic approach by (Dib et al., 2015)

GA-TLBO Hybrid meta-heuristic approach by (Gucyetmez et al., 2016)
GA-VNS-TLBO Proposed Hybrid meta-heuristic approach in this study

In Table 6.3, the parameter settings for the GA, VNS, TLBO, GA-VNS, GA-TLBO and GA-
VNS-TLBO approaches are as follows: A total number of generations is 100, population size is 20,
crossover rate is 0.5, and mutation rate is 0.3. These parameter values were obtained after the fine-
tuning procedure of each approach. The 10 independent trials were used to eliminate the randomness
of each approach. The computer environment in which the numerical experiment was run is an IBM-
compatible PC 1.1 GHz Processor (Intel Celeron N4020 CPU), and 4GB RAM, which was
programmed using MATLAB R2022a.

As measures of performance, the best solution (BS), average solution (AS), and average CPU
time (CPU) were used to compare the performance of each approach as shown in Table 6.4. The
computation results of each approach are shown in Tables 6.5 to 6.9, when a part supplier group
among all ones is randomly selected, and then either the main supplier or its main route of the selected
part supplier group is disrupted for each scale shown in Table 6.1.

Table 6.5 summarizes the results of the Scale 1 and shows the significant differences between all
approaches. For instance, the differences among the GA, VNS, TLBO, GA-VNS, and GA-TLBO
approaches are 4.24%, 4.15%, 3.29%, 3.57%, and 1.78% respectively in terms of the BS, when
compared with the GA-VNS-TLBO approach, which means that the GA-VNS-TLBO approach has
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significantly better performance than the GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches.
A similar result is also evident in terms of the AS, with differences observed among the GA, VNS,
TLBO, GA-VNS, and GA-TLBO approaches of 3.37%, 3.00%, 1.88%, 2.53%, and 0.97%,
respectively, compared with the GA-VNS-TLBO approach. Notably, the GA-VNS-TLBO approach
exhibits slightly superior performance compared with the GA-TLBO approach, while significantly
outperforming the other approaches. However, it should be noted that the GA-VNS-TLBO approach
was the slowest in terms of CPU time, while the GA approach was the fastest.

Table 6.4 Measures for Comparing the Performances of Each Approach

Measure Description

BS Best solution in all trials

AS Values averaged over all trials
CPU CPU time averaged over all trials

Table 6.5 Experimental Result using Scale 1

Approach BS AS CPU Gap 1(%) Gap 2(%)
GA 318102 325190.3 11.1 4.24% 3.37%
VNS 317826 324008.9 11.2 4.15% 3.00%
TLBO 315179 320494.4 11.5 3.29% 1.88%
GA-VNS 316054 322541.9 12.6 3.57% 2.53%
GA-TLBO 310584 317643.2 12.4 1.78% 0.97%
GA-VNS-TLBO 305149 314584.5 12.8

* The best value at each performance are bold and underlined
#* Gap 1(%0): Difference when compared the performances of GA, VNS, TLBEO, GA-VNS and GA-TLBO with that of GA-VNS-TLBO in terms of
the BS

* Gap 2(%): Difference when compared the performances of GA, VNS, TLBO, GA-VNS and GA- TLBO with that of GA-VNS-TLBO in terms of
the AS

According to the results presented in Table 6.6 using Scale 2, the variation in terms of the BS
among the GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches is 3.10%, 4.23%, 2.95%, 4.86%,
and 0.56%, respectively, when compared with the GA-VNS-TLBO approach. Notably, the GA-
VNS-TLBO approach demonstrates significantly superior performance compared with the GA, VNS,
TLBO, and GA-VNS approaches. Furthermore, it slightly outperforms the GA-TLBO approach.
Similarly, the computation result in terms of the AS reveals that the performance, indicated by the
differences, among the GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches is 3.37%, 4.36%,
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2.70%, 4.11%, and 0.17%, respectively, in comparison to the GA-VNS-TLBO approach. The results
consistently demonstrate that the GA-VNS-TLBO approach generally outperforms the other
approaches. In terms of CPU time, the GA and GA-TLBO approaches achieve the fastest execution,

while the GA-VNS-TLBO approach exhibits slightly slower performance.

Table 6.6 Experimental result using Scale 2

Approach BS AS CPU Gap 1(%) Gap 2(%)
GA 332940 341219.3 15.5 3.10% 3.37%
VNS 336588 344504.1 16.2 4.23% 4.36%
TLBO 332461 339018.9 19.3 2.95% 2.70%
GA-VNS 338630 343660.2 18.8 4.86% 4.11%
GA-TLBO 324751 330659.9 15.5 0.56% 0.17%
GA-VNS-TLBO 322935 330096.2 15.6

* The best value at each performance are bold and underlined

* Gap 1(%): Difference when compared the performances of GA, VN5, TLBO, GA-VNS and GA-TLBO with that of GA-VNS-TLEO in terms
of the BS

* Gap 2(%): Difference when compared the performances of GA, VNS, TLBO, GA-VNS and GA- TLBO with that of GA-VNS-TLBO in terms

of the AS
Table 6.7 Experimental result using Scale 3

Approach BS AS CPU Gap 1(%) Gap 2(%)
GA 352743 359175.8 15.8 5.33% 4.45%
VNS 359800 364594.5 19.2 7.43% 6.02%
TLBO 351554 357223.8 18.2 4.97% 3.88%
GA-VNS 354792 361354.3 20.2 5.94% 5.08%
GA-TLBO 339794 345321.7 151 1.46% 0.42%
GA-VNS-
TLBO 334906 343882.7 15.6

* The best value at each performance are bold and underlined

* Gap 1(%0): Difference when compared the performances of GA, VNS, TLEO, GA-VNS and GA-TLEO with that of GA-VNS-TLEO in terms
of the BS

* Gap 2(%): Difference when compared the performances of GA, VNS, TLBO, GA-VNS and GA- TLBO with that of GA-VNS-TLBO in terms
of the AS

According to the results presented in Table 6.7 using Scale 3, the differences in terms of the BS
among the GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches are 5.33%, 7.43%, 4.97%, 5.94%,
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and 1.46%, respectively, when compared with the GA-VNS-TLBO approach. It is evident that the
GA-VNS-TLBO approach demonstrates better performance in terms of the BS compared with the
other approaches.

The computation result in terms of the AS also reveals the differences among the approaches.
Specifically, the differences among the GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches are
4.45%, 6.02%, 3.88%, 5.08%, and 0.42%, respectively, when compared with the GA-VNS-TLBO
approach. In comparison with the other approaches, the GA-VNS-TLBO approach exhibits slightly
better performance than the GA-TLBO approach, while significantly outperforming the other
approaches. However, it should be noted that the GA-TLBO approach achieves the fastest CPU time,
surpassing the GA-VNS-TLBO approach in terms of speed.

Table 6.8 Experimental result using Scale 4

Approach BS AS CPU Gap 1(%) Gap 2(%)
GA 374152 380951.1 16.2 5.08% 4.75%
VNS 383055 388119.3 23.6 7.58% 6.72%
TLBO 366358 376110.7 194 2.89% 3.42%
GA-VNS 372806 380167.3 19.9 4.70% 4.53%
GA-TLBO 358521 364284.5 16.0 0.69% 0.16%
GA-VNS-

TLBO 356066 363686.2 16.3

* The best value at each performance are bold and underlined

* Gap 1(%6): Difference when compared the performances of GA, VNS, TLBO, GA-VNS and GA-TLBO with that of GA-VNS-TLBO in terms of
the BS

* Gap 2(%): Difference when compared the performances of GA, VNS, TLEO, GA-VNS and GA- TLBO with that of GA-VNS-TLBO in terms of
the AS

As shown in Table 6.8, the differences in the GA, VNS, TLBO, GA-VNS, GA-TLBO approaches
compared with the GA-VNS-TLBO approach are 5.08%, 7.58%, 2.89%, 4.70%, and 0.69%,
respectively. In terms of the AS, the differences between the five different approaches compared with
the GA-VNS-TLBO approach are as follows: 4.75% for the GA approach, 6.72% for the VNS
approach, 3.42% for the TLBO approach, 4.53% for the VNS approach, and 0.16% for the GA-
TLBO approach, where the GA-VNS-TLBO approach shows to be slightly better performance than
the GA-TLBO approach, while it shows considerably better performance than the others. The GA-
TLBO approach exhibits the quickest CPU time, whereas the slowest CPU time is observed in the
GA-VNS-TLBO approach.
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Table 6.9 Experimental result using Scale 5

Approach BS AS CPU Gap 1(%) Gap 2(%)
GA 398508 402193.4 17.0 6.78% 6.09%
VNS 404080 409351.9 15.3 8.27% 7.98%
TLBO 391685 396819.1 20.5 4.95% 4.68%
GA-VNS 393456 402595.9 15.0 5.43% 6.20%
GA-TLBO 376683 382436.1 16.1 0.93% 0.88%
GA-VNS-

TLBO 373201 379090.5 19.2

* The best value at each performance are bold and underlined

* Gap 1(%): Difference when compared the performances of GA, VN5, TLBO, GA-VNS and GA-TLEO with that of GA-VNS-TLEO in terms of
the BS

* Gap 2(%): Difference when compared the performances of GA, VNS, TLEO, GA-VNS and GA- TLBO with that of GA-VNS-TLBO in terms of
the AS

The results obtained using Scale 5 demonstrate that the differences in terms of the BS among the
GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches are 6.78%, 8.27%, 4.95%, 5.43%, and
0.93%, respectively, when compared with the GA-VNS-TLBO approach. Especially, in the
difference between the GA-TLBO and GA-VNS-TLBO approaches, the former exhibits slightly
better performance than the latter, while significantly outperforming the other approaches.

Regarding in terms of the AS, the differences among the GA, VNS, TLBO, GA-VNS, and GA-
TLBO approaches are 6.09%, 7.98%, 4.68%, 6.20%, and 0.88%, respectively, when compared with
the GA-VNS-TLBO approach. The performance of the GA-VNS-TLBO approach surpasses that of
the GA, VNS, TLBO, GA-VNS, and GA-TLBO approaches significantly. Additionally, the GA-
VNS-TLBO approach performs slightly better than the GA-TLBO approach. In terms of CPU time,
the GA-VNS approach is faster than the GA-VNS-TLBO approach.

The convergence behaviors of various approaches are shown in Figures 6.1 to 6.5. They show
various changes in the behaviors of each approach as the number of iterations approaches to about
100. In Figure 6.1, it shows that the GA-VNS-TLBO approach is more effective than the other
approaches in the initial search processes, while the other approaches show different results, but
overall performances are lower than the GA-VNS-TLBO approach at all stages.

The GA-VNS-TLBO approach can quickly improve optimization in the early stages, while other
approaches (GA, VNS, TLBO, GA-VNS, and GA-TLBO) show different convergence behaviors in
the early stages, but are less powerful than the GA-VNS-TLBO approach in the later stages, as shown

in Figure 6.2. In Fig. 6.3, the various competing approaches show their convergence behaviors in the
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early stages. The GA-VNS-TLBO approach is more likely to exhibit rapid convergence than the
other approaches. The convergence behavior exhibited in Fig. 6.4 is similar to those of other
approaches, except that the VNS approach has the faster convergence rate. On the other hand, the

GA-VNS-TLBO approach has demonstrated good results during the later stages.
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The GA-VNS-TLBO approach in Fig 6.5 can improve optimization rapidly in the early stages,
whereas the other approaches (GA, GA-VNS, and GA-TLBO), except for the VNS and TLBO
approaches, show different convergence behaviors at the early stages, but are inferior to the GA-
VNS-TLBO approach over the entire optimization process.

The distributions of the best solution (i.e., the BS) obtained after 10 independent runs for each

scale are shown in Figure 6.6 to 6.10.
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Figures 6.6 to 6.10 show that the GA-VNS-TLBO approach is a more compact distribution with
a lower average value compared with other approaches such as the GA, VNS, TLBO, GA-VNS, and
GA-TLBO. It also has better optimization potential.

The results of the Tables 6.5 to 6.9 and Figures 6.1 to 6.10 provide evidence that the GA-VNS-
TLBO approach exhibits superior performance compared with single meta-heuristics approaches
(GA, VNS, and TLBO) as well as hybrid meta-heuristics approaches (GA-VNS and GA-TLBO) in
terms of the BS and AS. These results highlight the significance of effectively combining single
meta-heuristic approaches to achieve successful hybrid meta-heuristic approaches, such as the GA-
VNS-TLBO approach. Through the computation results of Tables 6.5 to 6.9 and Figures 6.1 to 6.10,

the following conclusions can be reached.

¢ Among all meta-heuristic approaches using Scales 1 to 5, the GA-VNS-TLBO approach has
demonstrated superior performance in terms of the AS and BS compared with the
conventional GA, VNS, and TLBO approaches. This shows that the proposed hybrid meta-
heuristic approach is more efficient.

e When considering the comparison among all algorithms, it becomes evident that the GA-
VNS-TLBO approach outperforms not only the single meta-heuristic approaches (GA, VNS,
and TLBO) but also the hybrid meta-heuristic approaches (GA-VNS and GA-TLBO) in
terms of the BS and AS. The superiority of the GA-VNS-TLBO approach is clearly observed
in the comparison with all other algorithms. The results of the analysis have revealed that
the performance of hybrid meta-heuristic approach such as the GA-VNS and GA-TLBO

depends on the optimal combination of single meta-heuristic algorithms.

6.2 Sensitivity Analysis of the GA-VNS-TLBO Approach

The GA-VNS-TLBO approach employs the sub-population consisting of the best individuals
(50%) for the GA loop, while the remaining sub-population containing the worst individuals is used
for the VNS loop. Subsequently, the sub-population (50%) comprising the best individuals from the
offspring generated by the GA and VNS loops is utilized in the TLBO loop. Most conventional

studies use a whole population for hybrid meta-heuristic approaches. Thus, to compare the results of
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the studies using whole populations and those using some parts of the whole population in hybrid
meta-heuristic approaches, two approaches are used to compare the GA-VNS-TLBO approach.

The first approach, GA-VNS-TLBOL, involves utilizing the entire population (100%) that is
randomly generated in the initial stages for the GA and VNS loops. Furthermore, the complete
offspring (100%) obtained after the GA and VNS loops are employed in the TLBO loop. The second
approach, GA-VNS-TLBO2, adopts a different strategy. It selects a sub-population (50%) consisting
of the best individuals for the GA loops, while the remaining sub-population (50%) composed of the
worst individuals is utilized in the VNS loop. However, the entire offspring (100%) obtained after
the GA and VNS loops are employed in the TLBO loops. Table 6.10 showcases the performance of
the GA-VNS-TLBO1, GA-VNS-TLBO2, and GA-VNS-TLBO approaches, comparing their

respective outcomes.

Table 6.10 Performance Comparison among the GA-VNS-TLBO1, GA-VNS-TLBO?2, and GA-
VNS-TLBO approaches

GA-VNS-TLBO1 GA-VNS-TLBO2 GA-VNS-TLBO

Scale  BS AS CPU  Gapl Gap 2 BS AS CPU Gapl Gap2 BS as CPU
time (%) (%) time (%) (%) time

1 311959 318195 204 223% 1.15% 307600 3176383 180 0.80%% 0.97% 305149 314584.5 12.8

2 326338 320725 21 1.05% -0 11% 324041 327625.6 1835 0.34% 0.75% 322935 3300962 156

3 337568 346446 232 0.78% 0.75% 338654 346322 189 1.12% 0.71% 334906 343882.7 156

4 337350 362700 20.7 0.43% 0.25% 356085 3620743 1835 0.01% 044% 356066 3636862 16.3

5 376098 382283 21 0.78% 0.84% 376787 3817288 198 0.96% 0.70% 373201 379090.5 19.2

* The best value at each performance are bold and underlined
* Gap 1(%a): Difference when compared the performances of GA-VINS1 and GA-VNS2 with that of GA-VNS-TLBO in termz of the BS
* Gap 2(%): Difference when compared the performances of GA-VNS1 and GA-VINS2 with that of GA-VNS-TLBO in terms of the AS

Table 6.10 highlights the distinction between the GA-VNS-TLBO and GA-VNS-TLBO1
approaches. Especially, the GA-VNS-TLBO approach demonstrates superior performance in terms
of the BS and AS compared to GA-VNS-TLBO1. However, it is important to note that GA-VNS-
TLBO1 exhibits a slower search speed in terms of CPU time. A similar situation can be observed
when comparing the GA-VNS-TLBO and GA-VNS-TLBO2 approaches. Once again, the former
exhibits more efficient performance than the latter in terms of the BS, AS, and CPU time.

In summary, when integrating the GA, VNS, and TLBO loops in the GA-VNS-TLBO approach,
utilizing the sub-population (50%) generated in the initial stages for the GA and VNS loops, and
subsequently employing the sub-population (50%) obtained from the GA and VNS loops for the
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TLBO loop proves to be more effective in reducing the search speed compared with using the entire
population (100%) for all the loops or the entire offspring (100%) obtained after the GA and VNS
loops are employed in the TLBO loops.

Figs 6.11 to 6.15 show the convergence behaviors of three different approaches (GA-VNS-TLBO,
GA-VNS-TLBO1, and GA-VNS-TLBO2) when the number of iterations is reached to 100.
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In Figure 6.11, the GA-VNS-TLBO approach shows rapid convergence behaviors in the initial
stages, while the other approaches (GA-VNS-TLBO1 and GA-VNS-TLBO2) show different
convergence behavior in the initial stages, and overall performance is lower than that of the GA-
VNS-TLBO approach in all stages.

On the other hand, in the later stages, the GA-VNS-TLBO approach quickly converges and its
performance is better than the others.

Similar convergence behaviors are also shown in Fig 6.12 to 14, where all the competing
approaches show various convergence behaviors in their early stages, while the GA-VNS-TLBO
approach shows rapid convergence behaviors rather than the others in all stages.

In Fig 6.15, it can be shown that the GA-VNS-TLBO approach has rapid convergence behaviors
in the early stages, whereas the other approaches (GA-VNS-TLBO1 and GA-VNS-TLBO2) have
slow convergence behaviors at the early stages, and their performances are inferior to the GA-VNS-
TLBO approach over the whole iterations.
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7. Conclusion

In a rapid change of market environment, companies need to design a CLSC model effectively to
survive and gain a competitive advantage. When an unforeseen situation occurs in the CLSC model,
there exists a disruption risk in it. Therefore, the CLSC model is essential to effectively managing a
variety of disruption risks. In this paper, a closed-loop supply chain with supplier disruption risk
(CLSC-DR) model has been proposed. In the CLSC-DR model, considering supplier disruption and
route disruption is a more realistic and effective approach because most conventional studies have
focused on supplier disruptions and route disruptions in a simple SC model. For various distribution
channels, normal delivery and direct delivery have been considered in the CLSC-DR model. The
normal delivery is the general distribution channel for distributing products from a facility to the next.
The direct delivers products from DC to customers without going through retailers.

The CLSC-DR model has been mathematically formulated and implemented using the GA-VNS-
TLBO approach. The model aims to minimize the total cost, including transportation costs, fixed
costs, and handling costs, at each stage and various constraints to be considered, such as restrictions
on transportation quantity between stages and restrictions on centers (or facilities) to be opened, were
used together. Objective function is employed to achieve this minimization goal in the model.

The GA-VNS-TLBO approach combines three single meta-heuristic approaches such as GA,
VNS and TLBO, that is, the sub-population (50%) with superior fitness values and the sub-population
(50%) with inferior fitness values of whole population obtained in initial stage, and the sub-offspring
(50%) with superior fitness values in the whole offspring obtained after GA and VNS loops are used
for GA, VNS, and TLBO loop, respectively. To demonstrate the superiority of the CLSC-DR model,
the performance comparison has performed in following two ways:

First, the five scales of the CLSC-DR model have used to compare the performance of the GA-
VNS-TLBO approach with those of the conventional approaches (GA, VNS, TLBO, GA-VNS, and
GA-TLBO). The experimental results have shown that the GA-VNS-TLBO approach is more
efficient in terms of both BS and AS when compared with the single meta-heuristic approaches (GA,
VNS, and TLBO) and the hybrid meta-heuristic approaches (GA-VNS, and GA-TLBO). They have
also revealed that the success of hybrid meta-heuristic algorithms depends on their combinations
with various single meta-heuristic approaches.

Second, when implementing the GA-VNS-TLBO approach, using the sub-population (50%) with
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the best individuals for the GA loop, the other sub-population (50%) with the worst individuals for
the VNS loop, and the sub-population (50%) with the best individuals in the offspring resulting from
the GA and VNS loops is more efficient in locating best solution and average solution and in reducing
searching time than using the whole population (100%) or the sub-population (50%) for the GA,
VNS and TLBO loops.

In future research, enhancing the practical application of the methodology employed in this study
by collecting and using more realistic data is needed. Despite the significantly improved performance
in terms of best and average solutions compared to other competing approaches, there is a need to
make an effort to decrease the search speed of the GA-VNS-TLBO approach.
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