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초    록

생체신호 기반 커프리스 혈압 추정을 위한 AI 알고리즘 연구

                           

장경가

지도교수 : 최현식 교수, Ph. D. 

조선대학교 대학원 IT 융합학과

혈압 측정은 개인의 심혈관 건강에 대한 정보을 제공하는 의료의 필수 구성 요소로 

정확한 측정과 지속적인 관찰이 필요하다. 특히, 고령화 시대가 도래함에 따라 혈압 

관리의 중요성은 꾸준히 증가하고 있다. 그 중, 고혈압은 동맥의 혈압이 지속적으로 

높은 상태로써 뇌졸증, 심부전증, 심장마비 및 신장 질환 등 여러 질병을 유발할 수 

있다. 혈압을 측정하기 위해, 병원에서는 커프를 이용하여 환자의 팔을 압박한 뒤 혈

관의 압력을 측정하는 방식을 사용하고 있다. 이 방식은 정확도가 높기 때문에 널리 

사용되고 있으나, 신체 압박으로 인해 노약자를 위태롭게 할 수 있으며, 부피가 크고 

의료 지식이 필요하기 때문에 사용이 불편하고 일상생활에서 장시간 동안 측정이 불

가능하다. 본 논문에서는 생체 신호를 통해　커프리스 혈압 예측이 가능한 두 가지 

방법의 인공지능　 알고리즘을 제안한다. 첫 번째 알고리즘은 Cascaded forest 

regression (CFR)으로 광혈류측정(PPG) 신호를 이용하여 수축기 혈압(SBP)과 이완기 

혈압(DBP)을 추정한다. 제안한 CFR알고리즘은 SBP와 DBP에 대해 각각 1.760mmHg

와 2.896mmHg의 절대 평균 오차와 0.948과 0.926의 R² 점수를 각각 달성하였다. 두 

번째 알고리즘은 1차원 SENet과 LSTM을 결합한 앙상블 네트워크로, PPG와 심전도

(ECG) 신호를 통해 혈압을 예측하였다. SBP를 이용한 정상혈압, 고혈압 전단계, 고혈

압 분류의 경우 94%의 전체 정확도와 0.94, 0.85, 0.92의 F1 점수를 달성하였다. DBP

를 이용한 분류의 경우 91%의 전체 정확도와 0.98, 0.78, 0.85의 F1 점수를 달성하였
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다. 다른 선행 연구에 비해 1-D SENet-LSTM 방법 기반의 SBP와 DBP 분류기는 정확

도가 각각 2%, 11% 향상되었다. 예측 결과인 SBP와 DBP에 대한 표준 편차와 평균 

오차를 미국　의료기기협회(AAMI) 및 영국 고혈압학회 (BHS） 표준에 적용하여 제

안된 알고리즘의 성능을 분석하였다． 
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I. Introduction

1.1. Research background

1.1.1. Hazards of hypertension

Hypertension is the cause of various cardiovascular and cerebrovascular diseases, such as 

stroke, myocardial infarction, heart failure, and chronic renal failure, and is the leading 

cause of death [1,2]. Despite being diagnosed with hypertension, most individuals believe 

that it does not require specific treatment[3,4]. However, hypertension can lead to various 

health problems such as angina pectoris and myocardial infarction to middle-aged and 

elderly people [5].　 Hypertension is considered to be the most important factor in 

cardiovascular disease and mortality in most parts of the world. Blood pressure management 

is increasingly important [6]. Effectively lowering blood pressure can reduce the risk of 

cardiovascular diseases (CVD) [7]. Blood pressure waveforms contain rich and clinically 

important cardiovascular physiological information that can reflect the characteristics of 

cardiac contractility, vascular elasticity, human blood volume, and blood physical state [8, 

9]. Therefore, if blood pressure characteristics or trends in body blood pressure at certain 

times can be measured and acquired, more physiological information can be obtained for 

the effective prevention and treatment of CVD.

The World Health Organization (WHO) estimates that 1.13 billion people worldwide are 

at risk of high blood pressure and that this condition will worsen[10]. However, various 

traditional methods exist for the daily management blood pressure methods. The blood 

pressure measurements were performed using an invasive catheter-based direct method or 

non-invasive indirect technique based on cuff inflation. 

However, equipment based on the oscillometric principle is generally used for real-life 

blood pressure measurements, where blood pressure is determined using the pressure around 
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the cuff of the user's arm [11]．Currently, the majority of blood pressure measurement 

methods used at home are based on strap-cuffed sleeves; This method imposes a burden on 

elderly patients and is ineffective for patients with difficult access to medical care, thus 

making it unsuitable for blood pressure management. Cuff sphygmomanometers are 

commonly used for self-measurement of blood pressure at home. However, because the 

position of the blood pressure measurement may be incorrect, it has a large impact on the 

measurement results [12]. It can cause physical discomfort by applying pressure on the 

body, and it cannot be used by users to measure their own blood pressure. A break of at 

least 1 min is required for repeated measurements; therefore, continuous measurements are 

not possible in daily life. The most accurate blood pressure measurement was achieved by 

inserting an arterial catheter into the aorta of the subject and transmitting the pressure 

value to an external blood pressure monitoring device through a pressure collection device 

in the anterior segment of the catheter. Although the measurement data of this method is 

accurate, only during surgery or in patients in the intensive care unit can the invasive 

alternate technique be used, which will cause trauma to the human body, easily cause 

bleeding, and may increase the possibility of infection [13-15], and the equipment is 

complex. The cuff-based method can be applied in any environment, they do not allow 

continuous measurements owing to the inflation and deflation of the cuff, and repeated 

measurements over a short period can be troublesome for some practical applications.

1.1.2. The purpose of study

Studies have proposed machine learning for cuffless BP estimation and feature-engineering 

methods based on PPG or ECG signals. The estimation of these parameters is critical for 

model accuracy. However, the relationship between the physiological parameters extracted 

from PPG signals is unclear and may be nonlinear [16-19]. When nonlinear data is applied 

to a linear model, the results are often poor. Layer-by-layer propagation and highly 

complex integrated networking can improve the accuracy of models that fit complex data. 

The cascade forest regression (CFR) model is the foundation for the proposed model, 
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which was improved in the gcForest framework [20], to estimate BP using fingertip PPG 

signals. The goal was to use the feature information processed in the previous step of the 

CFR model, output the processing result to the next step, use a feature combination for 

regression analysis, and adopt an adaptive method to achieve higher accuracy than those in 

existing studies. The performance of the entire cascade was estimated from the validation 

set; if no performance improvement was detected during training, the process was 

terminated. The significance of this study is that comparable results can be obtained using 

only the CFR model. In addition to achieving rapid performance, the proposed method 

increases accuracy and reduces training complexity. In addition, it can process various sizes 

of data and provide more stable and better learning performance. Deep neural networks 

require abundant training data, whereas gcForest models perform sufficiently well with 

limited data.

In the training process of the CNN-LSTM model, the original feature values become less 

distinct and the accuracy of BP estimation declines as  number of CNN layers rises, and 

simply increasing the number of layers cannot solve the accuracy problem. Therefore, our 

objective is to design a network structure that can enlarge a certain part of the features, 

while ignoring some irrelevant features, and optimally utilize the existing convolutional 

layers without increasing the depth of the network. To further improve this architecture, I 

apply an SE block that learns the global information of the input ECG and PPG signals, 

which can emphasize useful features while suppressing others, and reducing the output 

dimension of the network. The model's predictive ability on blood pressure improved after 

it was improved.

1.1.3. Related work

Over the past few decades, non-invasive, continuous, and cuffless alternative methods for 

estimating BP have received increasing attention [21- 24]. Some of the proposed methods 

for estimation of BP using PPG are based on machine learning (ML) algorithms and the 

extraction of PPG and ECG features that may reflect BP-related changes in PPG signals. 
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BP estimation based on this analysis appears to be a promising alternative for the 

ubiquitous, continuous measurement of BP values and identification of hypertensive and 

hypotensive events. In contrast to classical machine learning models, deep learning models 

can rapidly and accurately process large amounts of data. Note that not all deep learning 

models are suitable for processing time-series data and providing long-term estimations of 

BP characteristics.

With the latest advances in sensing technology, ECG and PPG signals collected from 

wearable devices can be used to analyze human physiological parameters, which can 

intuitively show the condition of the body. For example, pulse wave velocity (PWV) [25, 

26] is used to examine vessel stiffness and occlusion to monitor vascular health by 

measuring pulses at two different locations to obtain the pulse propagation distance and 

PAT and calculating the time required for the transmitted pulse to propagate [27, 28]. 

However, because these methods require calibration and are therefore very complex to 

operate from the user's perspective, they are not suitable for regular and frequent 

examinations of vascular health.

In addition, a method for extracting the heart rate variability (HRV) from an 

electrocardiogram (ECG) signal exists. However, ECG measurement systems are bulky, 

consist of wires, and require at least three surface electrodes to be placed on the skin [29, 

30]. Moreover, movement is limited during measurement, and the interpretation of 

measurement results may be prolonged. To monitor blood pressure, studies have proposed 

estimating blood pressure through physiological parameters using non-invasive wearable 

solutions. 

The smartwatch, a palm-sized wearable device, is a representative device that measures 

photoplethysmography (PPG) signals, which the user can continuously monitor through 

exercises such as walking or running. It is possible to estimate parameters such as the 

HRV and heart rate (HR) using the RR interval in the PPG signal and analyze blood 
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pressure using the algorithm [31]. The implementation of wearable devices facilitates 

continuous blood pressure monitoring with relatively easy and proper handling. Accurate 

blood pressure prediction of this type can help diagnose and treat patients with 

cardiovascular diseases. Studies have considered estimating BP with features such as pulse 

transition time (PTT) [32-34] using machine learning and deep learning. PPG and ECG 

signals were used to measure the time required for a pulse to travel from the heart. 

However, at least two sensors are required to simultaneously obtain these two signals [35]. 

Although blood pressure can be accurately estimated, the procedure for calculating the 

physiological eigenvalues is complicated. To facilitate the processing of eigenvalues, a 

previous study adopted a deep-learning end-to-end approach to achieve an automatic feature 

extraction layer [36]. By combining PPG and ECG signals, a multilevel deep neural 

network model was proposed to estimate systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). The proposed model consists of the following two successive stages: the 

first stage involves two convolutional neural networks for extracting features from PPG and 

ECG signals, and the second stage uses long short-term memory (LSTM) to effectively 

capture the nonlinear dynamic properties of the time series [37]. 

Tanveer and Hasan [38] implemented a deep neural network architecture based on LSTM 

networks, where the lower hierarchy level used fully connected layers to extract features, 

whereas the upper hierarchy level applied LSTM layers to estimate the BP. El-Hajj C, 

Kyriacou P A [39] proposed cuffless and continuous SBP and DBP estimation from PPG 

signals using Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated 

Recurrent Units (Bi-GRU) with attention mechanisms. Esmaelpoor et al. [40] proposed a 

model consisting of convolutional neural networks (CNN) and long short-term memory 

(LSTM) to extract morphological features from each PPG segment and then estimate 

systolic and diastolic BP. Although neural network models can rapidly and more accurately 

use large amounts of data. However, as the number of network layers increases, the output 

dimension of the model network also increases, and a large number of weight values are 

produced.
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1.1.4. Contributions of this study

The contributions of the proposed CRF algorithm are as follows: 1. To the best of our 

knowledge, this study is the first to use the cascade forest regression algorithm to 

automatically estimate blood pressure, which resolves the challenge of fitting the nonlinear 

relationship between blood pressure and physiological parameters affecting HRV. 2. This 

technique can reduce the negative effects of relying on deep learning algorithms and human 

error in hyperparameter configurations. The estimation of blood pressure can be improved 

in terms of accuracy even with deep forest regression using the default configuration 

parameters, and the experimental findings demonstrate that non-invasive blood pressure 

estimation using the regression cascade forest can achieve grade A even without tuning, 

and can be used in other fields.

The contributions of the proposed enhanced 1-D SENet–LSTM algorithm are as follows: 

1. The proposed a 1-D SENet-LSTM model, which can be used for blood pressure 

estimation and hypertension classification. The ensemble model structure that is being 

proposed makes use of 1-D convolution to learn representations of the time dimension and 

the spatial data of SE blocks;  2. I introduced  SE block into blood pressure estimation 

for the first time to adaptively solve the interdependence between different channels. By 

explicitly modeling the interdependence between the channels, the SE model block 

adaptively enhances feature maps useful for blood pressure estimation and suppresses 

redundant features, allowing for better extraction of discriminative information from ECG 

and PPG signals; and 3. The experimental results show that improving the 1-D 

SENet-LSTM can significantly improve the prediction ability of a simple CNN for 

time-series data, as well as the network prediction accuracy.
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II. Materials and Methodology

2.1. Dataset description

In this study, the cuff-less blood pressure estimation dataset from the UCI Machine 

Learning Repository was used, which is a cleaned and handled version of the MIMIC-II 

waveform database. These databases contain physiological signals and vital sign time series 

captured from patient monitors and comprehensive clinical data obtained from hospital 

medical information systems for tens of thousands of intensive care unit patients. The 

dataset available online in PhysioNet contains multiple waveforms simultaneously measured 

from thousands of patients in intensive care units (ICU) [41,42]. The dataset contains PPG, 

invasive ambulatory blood pressure (ABP), ECG, and other signals recorded using the 

fingertip. The PPG and ABP signals were sampled at 125 Hz.

The database was processed and stored in the mat. file format, which consists of an 

array matrix of cells, where each cell represents 4000 instances. To prevent duplication 

when collecting data, each instance had a unique ID. In the experiments, randomly selected 

the first 300 instances in each file. The data was preprocessed for 1200 experimental 

instances. Certain signal interference and noisy recordings, such as no peaks, pulsus 

bisferiens, and no signals, were obtained during data collection. The preprocessed dataset 

was the training set (70% of the dataset,17,893 segments) and the independent test set 

(30% of the total data set of 7,669 segments). During the process training, a random 20% 

of the training set (3,579 segments) was utilized for validation.

The datasets in this study included a training set (16,484 segments), and an independent 

test set included the preprocessed dataset (1,649 segments). During training, a validation set 

consisting of 20% (3,297 segments) of the training data was used for model validation.
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2.2. Signal preprocessing

The pre-processing was performed using the Python-based SciPy 1.7.3 Library [43]. The 

raw ECG and PPG signals were filtered with the 2nd Butterworth band filter with a 

cut-off frequency of 10 Hz to remove high-frequency noise, and via a 0.9 Hz cut-off 

frequency to remove the baseline. Figure 2.2.1 shows the results of the filter application.

Figure 2.2.1. PPG Signal used in the experiment: (a) Original PPG signal; (b) PPG signal 
after noise removal.
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Figure 2.2.2 The process of splitting a PPG signal using a sliding window of 5 s.

Figure 2.2.2 shows the process of splitting the PPG signal. In the process of splitting the 

PPG signal, used a 5 s sliding window to align the PPG and ABP signals at 125 Hz. 

Each group was split into PPG, and the ABP signal length was 625. The peak in the PPG 

signal was found to ensure that each sequence was divided into two heartbeat intervals. 

The two heartbeat intervals were set by the distance interval between the beats, meaning 

that there was little overlap between samples that differed from zero between the two 

beats.

After alignment of the clean PPG, ECG, and ABP signals, various signals sampled at 

125 Hz were split into 8-sec segments. Reduce the number of channels input to the 

training model by converting the processed ECG and PPG signals to (1, 2000) matrix form 

[44]. This method combined the features of ECG and PPG signals to improve the accuracy 

of the model.
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2.3. Feature extraction

In this study, the MIMIC II database was used to extract the HRV using 5 s segments 

of the PPG signal. The parameters were extracted from the PPG and ABP signals to train 

the model for estimating blood pressure. All the parameters were extracted from the time 

domain, and 12 parameters were used, including the BPM, SDNN, and RMSSD [45]. Table 

2.1 lists the parameters used for model training, which were entered into the CFR model 

along with the SBP and DBP. Figure 2.3.1 presents the HRV calculated from the PPG 

signal using the inter-beat interval (IBI) derivation.

Figure 2.3.1 All the R-peaks, the intervals between them, and the differences between 
adjacent intervals.
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Table 2.1. Selected PPG features for extraction

where is the mean of the  series,  indicates the  intervals,  　is the number of　

 , indicates the  differences,   is the mean　 , and  is 

the number of  differences.

Features Description Definition

BPM

The HR is calculated by 

measuring the peak-to-peak 

interval of a PPG or ECG signal

    RR



SDNN
Standard deviation of the 

inter-beat intervals 


n  

 
i  

n

RRi  RR


RMSSD
Root mean squared value of 

successive differences of NN 


 

 
  




 

IBI
Time intervals between adjacent 

heartbeats n  



i  

n

RRi 

SDSD

Standard deviation of successive 

differences between adjacent R-R 

intervals



 

 
  



 

SD1, SD2

Dispersion of the Poincaré plot 

points along or perpendicular to 

the line of identity






  

  


 

S, SD

Area of the ellipse formed in the 

Poincaré plot Ratio between SD1 

and SD2 


 

pNN20, 

pNN50

Proportion of successive 

differences between RR intervals 

greater than x ms was extracted



 

HR mad

The function computes the 

median absolute deviation of R-R 

intervals
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2.4. SBP and DBP calculation

To reduce the large error between the actual and extracted SBP and DBP values, the 

detection peak function was used to detect each peak. To extract peaks greater than 80, the 

maximum (SBP) and minimum (DBP) values were set to extract peaks greater than 65. 

The SBP and DBP corresponded to the mean values of the peaks and valleys detected in 

the 5s sequence, respectively. Figure 2.4.1  illustrates the process of extracting the feature 

points.

Fig. 2.4.1 Extracting ABP signal feature points: (a) systolic blood pressure; (b) diastolic 
blood pressure.

The peaks and valleys of ABP signals in the filtered segments were detected and used to 

calculate the mean values of the SBP and DBP values. After determining the DBP and 

SBP values, the following formula was used to calculate MAP:

    

  
    (1)
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Ⅲ. Blood pressure estimation using AI algorithms

3.1. Blood pressure estimation using cascade forest regression

3.1.1. Add number of training data using HRV 

The BP estimation using HRV signals is appreciable; however, it remains a complex task. 

The main challenge associated with this approach is accuracy, which is due to a lack of 

clear understanding of the nature of the relationship between HRV functions and BP. 

However, recent studies have demonstrated that these relationships are inherently nonlinear. 

There is no significant correlation between blood pressure and HRV [46, 47]. It is unclear 

whether there is a linear relationship between bio-signals and blood pressure. Therefore, a 

nonlinear relationship between the BP and HRV should be considered.

The motivation for considering the CFR model in the proposed BP prediction method is 

that each hidden layer in the cascade structure produces a new feature vector during the 

training of existing feature vectors. These new feature vectors are combined with the 

original input features as enhanced features, and then transmitted to the next layer. After 

several iterations, the model sufficiently fits the data.
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Fig. 3.1.1. General structure of the CFR model. The feature vector is input into the 
regression estimation of the cascaded layer, and the new feature vector is       
output and combined with the original feature vector as the input of the next 
layer.

Figure 3.1.1 shows the architecture of the CFR model. Cascaded forests consist of multiple 

cascading forest layers, each consisting of four regression estimators including two random 

forest regressors and two extra-tree regressors. Each estimator outputs a predicted value to form 

a vector, which is spliced together with the original input features as enhanced features and 

then transmitted to the next layer. Because each new layer is added to the cascading forest, the 

performance of the entire cascading forest can be estimated using cross-validation. 

A 12-dimensional feature vector was used as the initial input for the cascade forest. After 

each layer, the 4-dimensional feature vector with the most important features generated by 

combining the old 12-dimensional features was used as the input to the next layer. The details 

of this process are presented below. First, the model was trained using two types of classifiers: 

random forests and extra trees. Second, a 4-dimensional special eigenvector was chosen and 

concatenated with the original 12-dimensional eigenvector to generate a 16-dimensional feature 

vector. Third, a 16-dimensional class vector was used as the input to the second layer. 

Similarly, the second layer produces a 4-dimensional feature vector, which is concatenated with 

the 12-dimensional original feature vector. Another 16-dimensional class vector is used as the 

input to the third layer. The last layer generates a 4-dimensional feature vector, obtains the 

average value of the four regression estimators as the output of the model, and uses a grid 

search (GridSearchCV) to perform a 5-fold cross-validation to obtain the optimized random 

forest at each level. The hyperparameters were obtained, and layer-by-layer fitting was 
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performed. The validation set was used to evaluate performance, and the training process was 

terminated when there was no significant improvement in performance.

Fig 3.1.2. Diagram of the proposed algorithm. The CFR model accurately estimates blood 
pressure by repeating training until accuracy improves.

Figure 3.1.2. presents the workflow diagram and process of the proposed model. First,  

removed the noise of the PPG signal and divided the PPG and ABP signal into 5 s 

intervals. Thereafter, the feature points for estimating blood pressure were extracted, which 

served as the training features for the model. The CFR model estimates the blood pressure 

by referring to several feature vectors. The CFR model continued to be trained until the 

error was sufficiently small. Subsequently, the CFR model performance was evaluated using 

various parameters, such as the MAE, ME, and STD. The cascaded deep forest learns 

features for class distributions based on two random regression forests and two extreme 

regression forests by simultaneously assembling them with supervised inputs. In this study, 

implemented RFR and ETR using a Python library called scikit-learn [48]. Table 2 presents 

the parameters that are optimized in the CFR model. The following is an introduction to 

the regressor:

A. Regression based on random forests
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A random forest is an ensemble machine-learning model that uses a randomly sampled 

bootstrap to select the sampling set as the training set for each decision tree. It forms a 

collection of multiple randomly generated independent decision trees, simultaneously 

transmits the feature vector to each tree, sums the regression results of each decision tree, 

and calculates the average result of each decision tree as the final regression result [49].

B. Regression Based on extra-trees 

This algorithm is similar to the random forest algorithm, which builds a large number of 

decision-tree models. However, extra trees generally do not use random sampling, that is, 

each decision tree uses the original training set. A completely random splitting of 

descriptors occurs at the nodes of the extra-tree regression algorithm. Extra trees are built 

faster, and their predictions have a higher variance than those of regular decision trees 

[50].

Table 3.1. Descriptions and values of the CFR model parameters

In this study, a deep forest with a CFR model structure was used to generate new 

feature vectors. In this model, the CFR model structure performs layer-by-layer propagation 

and feature transformations. Compared with a single classifier, an ensemble learning-based 

model consisting of multiple regressors is more effective in predicting blood pressure. To 

ensure diversity, two different types of regressors, random regression forest and extreme 

regression tree, were used to learn the model.

Parameter Description Values

n_estimators Number of trees in the forest 100

min_samples_splitz Minimum number of samples for each split 20

max_features
Number of features to consider when 

searching for the best split
Sqrt or log2

criterion Function to measure the quality of a split True

n_jobs Number of jobs to run in parallel -1

bootstrap
Bootstrap samples are used when building 

trees
True
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3.2. Blood pressure estimation using　enhanced 1-D SENet–LSTM 

First, the nature of neural networks can be explained as follows: convolutional neural 

networks extract spatial features from signals [51,52], whereas recurrent neural networks 

extract that ECG and PPG signals themselves are time series. By combining the keypoint 

QRS band of the ECG signal and the morphological characteristics of the PPG, such as 

the R peak. However, in the training process of the 1-D CNN-LSTM model, with an 

increase in the number of CNN layers, the final effect of blood pressure prediction does 

not increase but decreases, and even the decline in accuracy on the training set is not 

caused by overfitting. With an increase in the number of convolutional layers, the original 

feature values become less evident, and simply increasing the number of layers cannot 

solve the accuracy problem. Therefore, to design a network structure, enlarge a certain part 

of the features, ignore some irrelevant features, and make full use of the existing 

convolutional layers without increasing the depth of the network, with the purpose of 

reducing the blood pressure estimation error and improving the accuracy of hypertension 

classification.

The developed model architecture supports the concept of fast hypertension categorization 

and blood pressure value estimation, which is simple and can run in real time. A 1-D 

squeeze and excitation network (SENet)-LSTM architecture combines the 1-D SENet module 

for the extraction of important features from input data with LSTM for sequence prediction. 

The 1-D SENet-LSTM shared layer was used to extract the morphological and temporal 

features for signal differences between the ECG and PPG signals. A fully connected dense 

layer was added to the model as an output layer, outputting the predicted values of both 

DBP and SBP. 

A. Problem formulation

ECG and PPG signals were combined for blood pressure estimation and hypertension 

classification. Estimating blood pressure from ECG and PPG signals is essentially a 

time-series regression problem. The model takes ECG and PPG signals  as input and 
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outputs a value indicating the blood pressure value of the input signal. In the experiment, 

the epoch is 300 times, using MAE to calculate the loss error between the real value and 

the estimated value, and the program terminates when the loss value tends to be flat.

 

Σ 
   



Σⅈ  
 

    (2)

where is the absolute error between the actual blood pressure and estimated values,

is the prediction, and  is the true value. 

B. 1-D SENet-LSTM

The models were trained using the GPU version of TensorFlow [53] on a computer 

equipped with four NVIDIA TITAN RTX graphics cards. The developed model architecture 

supports fast hypertension categorization and blood pressure value estimation, which is 

simple and can run in real time. Figure 3.2.1 shows the 1-D SENet-LSTM overall 

structure, which combines the SENet module for extracting significant features from input 

data with LSTM for sequence prediction. The 1-D SENet-LSTM shared layer was used to 

extract the morphological, and representation of the time dimension for signal differences 

between the ECG and PPG signals. A fully connected dense layer was added to the model 

as an output layer, outputting the predicted values of both DBP and SBP. 
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Fig 3.2.1. Overview of the proposed 1-D SENet-LSTM architecture.

C. Squeeze-and-excitation block

We used the SE block [54] to amplify some features of the ECG and PPG, while 

ignoring the others. The blood pressure estimation feature channels were adaptively 

improved without increasing the network depth. The SE block receives regular convolution 

feature maps and performs convolutional transformations from 

 →  ∈  ′×  ′∈  ×  ,  The structure of the SE block to 1-D data in our model 

is shown in Fig. 3.2.2, which consists of a squeeze, excitation, and scale operation.
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Fig 3.2.2 A diagram of the SE block to ECG and PPG signals

Squeeze operation: The feature maps        uc  , where ∈, the input 

is first compressed along the time axis T dimension and then passed through a global 

average pooling layer to produce a channel descriptor, which summarizes the spatial 

information in each channel. The following formula represents the squeeze operation:

     




    　  (3)

where  is the feature map, and  is the channel-wise descriptor.

Excitation operation: To obtain a channel-wise attention weight, the channel-wise 

descriptor was passed through a fully connected layer (FC) with sigmoid activation. The 

following formula represents the excitation operation:

    σ     (4)

where FC is the fully connected layer, and w is the channel-wise attention weight.

Scale operation: The channel-wise attention weight was then applied to the feature map 

derived from the previous layers. The following formula represents the scale operation:

           ×             (5)

where  is the rescaled feature map.

LSTM is the lower layer of the 1-D SENet-LSTM, which stores the temporal information 

of important features of ECG and PPG signals extracted by the 1-D SENet. LSTMs offer a 
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solution for preserving long-term memory by incorporating memory cells that can update 

previous hidden states. It can solve the temporal relationship of a long-term series. The 

output value of the 1-D SENet-LSTM layer is passed to the gate unit of the LSTM. The 

gate unit is composed of an input gate  , output gate  , forget gate  , and an internal 

memory cell  .

The following formula represents the input gate  : 

  σ                  (6)

The following formula represents the forget gate  :

                    (7)


′  σ                 (8)

The following formula represents the output gate  : 

  σ
                (9)

          σ                (10)

The following formula represents the internal memory cell  : 

          
′               (11)  

where  and  are the gate unit weight matrices, b is the bias vector, and σ denotes 

the tanh activation function. The key feature of the SENet layer is the output of the 

pooling layer over time, denoted as  , which summarizes the spatial information in each 

channel. This output was then passed as input to the LSTM memory unit. A fully 

connected dense layer was added to the model as an output layer, outputting the predicted 

values of both DBP and SBP. 
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IV. Experiment result

4.1. Blood pressure estimation performance evaluation using 

cascade forest regression  

4.1.1. Ablation study 

To investigate the effectiveness of our proposed method, conducted ablation studies on all 

four dataset with different architectures and different numbers of features to demonstrate 

that (a) our proposed method improves the generalization ability and predicts a better 

performance of the single combination model in SBP and DBP estimation results by using 

different combinations of regressors; and (b) selecting features of different qualities can 

improve the accuracy of the model predictions.

The ablation study was conducted using four combinations of regression estimators for 

pretraining: i.e., Random Forest Regressor (RFR)01+ RFR02, ETR03+ ETR04, 

RFR01+ETR03 and Proposed method (RFR01+ RFR02+ETR03+ETR04). Figure 4.1.1 (a) 

shows the visualization of the results of the different regressors. The results revealed that 

the predictive power of using the same type of regressor combination was lower than that 

of different types of regressor combinations. Integrating different types of multiple 

regressors can improve the generalization ability of the model. Our proposed combination 

of four different classifiers predicted the BP with the highest accuracy. Figure 4.1.1 (b) 

shows a visualization of the results using different numbers of feature values. It can be 

seen from the results that, when the first five features were selected from the extracted 12 

physiological feature parameters, the R² scores of the SDB were as high as 0.941, while 

that of the DBP was 0.916.
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Fig. 4.1.1. Visualization of the structure of the ablation study: (a) Comparison of different 

combinations of regressors; (b) results that use different feature values.

4.1.2. Hyperparameter configuration

The blood pressure estimation performances obtained by cascade forest regression using 

different parameters are shown in the Figure 13. Different parameter combinations were 

configured by cascading the forest. The R² and MAE scores were used to evaluate the 

model performance. In the experiment, with an order of magnitude increase in several main 

parameters (maximum depth of tree/number of estimators in each cascade layer/number of 
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trees in each estimator), the model consumes more computing resources; however, this does 

not imply more configurations. The performance of the model parameters significantly 

improved. Conversely, cascade forest regression can achieve a higher predictive performance 

with fewer configured parameters. Therefore, cascaded forest regression can alleviate the 

dependence on hyperparameter configuration.

Fig. 4.1.2. Cascade forest regression establishes blood pressure estimation performances for 

different parameters

4.1.3. Main results

To verify the superiority of the CFR model better, multidimensional comparisons were 

performed through the implementation of different algorithms. According to Table 3, for 

DBP, the MSE and MAE values of the CFR model were 3.033 and 1.760 mmHg, 

respectively. The R² score was as high as 0.926, indicating that the predictive effect of the 

DBP was very good. For the SBP, the values obtained were 4.625 mmHg and 2.896 

mmHg, respectively. The R² score was 0.948, indicating that the predictive value of the 

SBP was very good. Compared with the other methods, the CFR model yielded the best 
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prediction results. In particular, the CFR model demonstrated a high R² score for the SBP 

and DBP, which was greater than that shown in experiments using other algorithms.

Table 3.2 Comparison blood pressure estimation performance by different models

In all regression plots, the blue line indicates the best fit for the data, and the green line 

indicates the Pearson correlation coefficient. The predicted value of the model sufficiently 

fit the actual value, and the angle between the regression line and the Pearson correlation 

coefficient was relatively small.

Model R²
MSE MAE

TIME(s)
(mmHg) (mmHg)

gcForest
DBP 0.630 10.520 7.760 40 

SBP 0.570 11.420 10.560 35 
Gradient Boosting 

Regressor

DBP 0.752 5.564 4.115 3 

SBP 0.771 9.786 7.341 2 
Hist Gradient Boosting 

Regressor

DBP 0.836 4.528 2.941 2 

SBP 0.872 7.319 5.128 5 

Artificial neural network
DBP 0.610 6.030 5.300 60 

SBP 0.580 8.030 9.400 40 

CNN-LSTM with 

self-attention

DBP 0.759 6.686 6.63 - 

SBP 0.714 5.427 3.886 - 

GRU with self-attention
DBP 0.824 8.151 5.572 -

SBP 0.754 5.415 3.439 -

Cascade Forest Regressor
DBP 0.926 3.033 1.760 17 

SBP 0.948 4.625 2.896 18 
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Fig. 4.1.3 Correlation between the predicted blood pressure values and the true values in 
the cascade forest-based regression.

Figure 4.1.3 presents the regression plots and Pearson correlation coefficients between the 

estimated and reference SBP and DBP values for the best performing model. The 

evaluation demonstrated that the model-predicted values matched the actual values and were 

highly correlated, particularly for the SBP. The R² score was 0.942 for the SBP and 0.948 

for the DBP, indicating a significantly strong positive correlation between the actual blood 
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pressure and predicted values. Figure 4.1.5 presents the SBP and DBP between the 

predicted and true blood pressure values in cascade forest-based regression, which 

demonstrates the distribution between the estimated and reference values of the SBP and 

DBP. The distributions of the actual and model-predicted values are indicated by green and 

red lines, respectively. The two sufficiently overlapped initially, indicating that the error 

between the model-predicted and the actual values was small.

Fig. 4.1.4 Histogram comparing predicted and true values.

To analyze the generalization performance of the proposed model, used the train–test split 

method to split the training and test sets (8:2) on the training samples. The 

leave-one-group-out (LOGO) method was used to set the number of groups to five and size 

of the split data to 300. As shown in Table 3.3, the average performance obtained using 

the LOGO method and performance obtained using the standard training-test split method 

were used to analyze the generalization performance of the model. The results indicate that 

the performance of LOGO is comparable to that of the train–test split method. The CFR 

model does not overfit the training data and can generalize well to unseen data.
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Table 3.3. Analyze  model generalization capabilities using LOGO and train-test split 

Figure 4.1.6 presents the Bland–Altman plot, where the horizontal axis indicates the mean 

of the results for each sample, the vertical axis indicates the difference in the measurement 

results, and the upper and lower blue dotted lines indicate the upper and lower limits of 

the 95% confidence interval, which is 1.96 times the standard deviation. The gray 

horizontal lines represent the mean of the differences.

SBPMethod DBP

R² score MAE R² score MAE

Train-Test Split 
Train 0.955 2.21 0.932 2.01

Test 0.948 2.896 0.926 1.76

Leave-one-group-out
Train 0.972 2.3 0.955 1.31

Test 0.908 3.86 0.901 2.31
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Fig.4.1.5. Bland-Altman plots for the estimated BP.

4.2.4. Comparison with other works

To comprehensively evaluate our proposed method, compared the results of other research 

methods with the BHS and the Association for the AAMI [55] standards. A comparison of 

the results obtained with the proposed method for blood pressure and the BHS [56] 

grading scale and cumulative error percentage are summarized in Table 3.4. Based on the 

results, the SBP and DBP estimates obtained using our model performed well in the test 
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dataset, and our study results reached "grade A.“

Table 3.4. Comparison with BHS standards

The obtained results were compared with the margin of error of the AAMI standard. 

According to the AAMI standard, the mean and standard deviation must be less than or 

equal to 5 ± 8 mm Hg. For the SBP and DBP values, our model performed satisfactorily 

on the test set. A comparison with the AAMI standards is presented in Table 3.5, based 

on which the BP estimates for our model meet the AAMI standard, as the mean and 

standard deviation are well within the 5 ± 8 mm Hg range.

Table 3.5. Comparison with AAMI standards

Considering Tables 3.4 and 3.6, the proposed model provided the best performance, 

exceeding 98.55% and 99.57% for the test samples, respectively, with SBP and DBP 

estimation errors of < 15 mmHg. All proposed models were within the standard range 

based on the AAMI standard evaluation. By combining these two criteria, our proposed 

method outperformed the other methods.

≤ 5 mmHg ≤ 10 mmHg ≤15 mmHg Total

Proposed
DBP 93.71 % 98.88 % 99.57 % 7,669

SBP 83.49 % 95.48 % 98.55 % 7,669

BHS

Grade A 60% 85% 95% -

Grade B 50% 75% 90% -

Grade C 40% 65% 85% -

ME 

(mmHg)

STD

(mmHg)
Total

Proposed
DBP 1.800 2.529 7,669

SBP 2.903 3.526 7,669

AAMI SBP, DBP ≤ 5 ≤ 8 ≥85
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Table 3.6. Comparison with different advanced standards for blood pressure estimation

As shown in Table 6, to make the comparison of our results with those of other studies 

more credible, the other studies were based on comparisons with the MIMIC-II database. 

Because the various datasets used in other studies varied in size, ensuring complete fairness 

in the comparison results is difficult. The assessment results presented here for 

Study
Sour

ce
Method

SBP (mmHg) DBP (mmHg)

BHS(%)

AAMI

BHS(%)

AAMI
<5 

mmHg

<10 

mmHg

<15

mmHg

<5 

mmHg

<10

mmHg

<15 

mmHg

[57]
ECG, 

PPG
AdaBoost 34.1 56.5 72.7

Higher 

than

standard

62.7 87.1 95.7
Up to 

standard

[58]
ECG, 

PPG
LSTM 59.5 80.0 88.5

Higher 

than

standard

76.95 95.72 99.97
Up to 

standard

[59] ECG
RF 

Regression
40 55 68 - 60 81 93 -

[60] PPG GRU - - -
Up to 

standard
- - -

Up to 

standard

[61] ECG LSTM+FC 53.05 76.56 86.64
Up to 

standard
71.52 89.56 95.03

Up to 

standard

[62] PPG CNN-LSTM 68.15 82.58 90.11

Higher 

than

standard

68.41 90.78 95.10
Up to 

standard

[63] PPG AdaBoost 44.2 70.4 89.3

Higher 

than

standard

63.2 87.9 96.3
Up to 

standard

[64]
ECG,

PPG

LSTM-NN,

NARX-NN
- - -

Up to 

standard
- - -

Up to 

standard

[65]
ECG,

PPG

LSTM-Auto

encoder
70.6 94.1 98.6

Up to 

standard
91.1 99.1 99.8

Up to 

standard

Our 

Study
PPG

CFR 

method
83.49 95.48 98.55 

Up to 

standard
93.71 98.88 99.57 

Up to 

standard
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informational purposes only. In terms of BHS standard, I demonstrate that CFR model 

achieves the evaluation performance of grade A in estimating SBP and DBP. 

Simultaneously, it passed the standard test of the American AIMM Association. Our results 

are superior than those of the evaluation criteria.

In a study by Mohammad et al. [57], after denoising the PPG and ECG signals, 

informative features that finally served as input for a regression model were extracted, and 

the BP value was estimated. According to the BHS, the calibration-free method 

demonstrated a grade of A for the estimation of the DBP and a grade of B for estimation 

of the mean BP. Navid et al. [63] proposed a BP measurement algorithm that uses only 

the morphological features of the PPG signal, extracts the HRV signal from the PPG 

signal, and detects key points from the PPG pulses. For the SBP, the MAE of the 

estimated values was 8.22 mmHg, and the STD was 10.38 mmHg; for the DBP, the MAE 

of the estimated values was 4.17 mmHg, and the STD was 4.22 mmHg. The results 

obtained in this study using the CFR algorithm based only on HRV features were less 

error-prone than those reported in these studies. Obtained an ME (STD) value of 2.903 ± 

3.526 mmHg for SBP and 1.800 ± 2.529 mmHg for DBP as well as an MAE of 2.896 

mmHg for SBP and 1.760 mmHg for DBP. Upon a comparison with their results, the 

MAE value is 5.324 mmHg and 2.41 mmHg lower, respectively. These results suggest that 

HRV can be used to estimate BP.
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4.2. Blood pressure estimation performance evaluation using 1-D 

SENet-LSTM 

4.2.1. Evaluation using the BHS and AAMI standard

1-D SENet-LSTM, methods was presented based on the estimation of BP and classifying 

hypertension. Considering Tables 1 and 2, the proposed model provided the best 

performance. However, the more astounding success of 1-D SENet-LSTM turns out to be 

that the calculated values of DBP, Mean Arterial Pressure (MAP), and SBP from the 

restored ABP waveform outperform the existing works under several metrics (mean error of 

1.84 ± 2.83 mmHg, 2.04 ± 2.84 mmHg, and 3.71 ± 4.32 mmHg , respectively). Notably, 

both for DBP, SBP, and MAP. The model achieve Grade A in the BHS Standard and 

satisfy the AAMI standard. In the case of the improved model, the overall error of the 

SENet-LSTM model was significantly reduced compared with the CNN-LSTM model error, 

indicating that the accuracy of the model was significantly improved. 

Table 4.1. 1-D SENet-LSTM experimental results compared to BHS standards 

≤ 5

mmHg

≤ 10

mmHg

≤15

mmHg

1-D SENet-LSTM

DBP 94.85 % 98.73% 99.27%

MAP 89.11% 97.00 % 98.80%

SBP 86.06% 95.63% 98.39%

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%
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Table 4.2. 1-D SENet-LSTM experimental results compared to AAMI standards

4.2.2. Level of agreement between intra-arterial monitoring and our 1-D  

       SENet-LSTM networks

The Bland–Altman plot and regression plot were used to evaluate the performance of our 

proposed 1-D SENet-LSTM models. The Bland-Altman plot is an effective method for 

visualizing the agreement between two measurements and can be used to evaluate their 

clinical or research utility. Regression plots can be used to observe the relationship between 

the blood pressure estimation results and the input ECG and PPG signals.

In Figure 4.2.1, compare the SBP, DBP, and MAP predictions made using our 1-D 

SENet-LSTM models with the actual BP values. The resulting graph shows a dense cluster 

of points surrounding the mean difference line. The majority of high-range errors occurred 

near the center of the mean, and the difference between the true and predicted values was 

narrow. Consequently, there was a high level of agreement between the 1-D SENet-LSTM 

models.

ME

(mmHg)

STD

(mmHg)
Total

1-D SENet-LSTM

DBP 1.84 2.83 398

MAP 2.04 2.84 398

SBP 3.71 4.32 398

AAMI
SBP 

≤ 5 ≤ 8 ≥85DBP
MAP
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Fig. 4.2.1 The Bland-Altman plots was used to assess the performance of DBP, SBP, and 
MAP prediction results.

The dashed black line represents the theoretical "perfect" correlation in all the regression 
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plots, while the solid black line represents the actual correlation. Figures 4.2.2 shows the 

regression plots for SBP, DBP, and MAP, indicating a strong positive linear correlation 

between the actual values and the 1-D SENet-LSTM model predicted values (the R-Squared 

was 0.94 for DBP, MAP for 0.95, and 0.94 for SBP).

Fig. 4.2.2. The regression plot was used to assess the performance of DBP, SBP, and 

MAP prediction results.
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4.2.3. Blood Pressure Classification Performance

Blood pressure event classification is the process of classifying blood pressure readings 

into different categories. This aids in the diagnosis of various conditions related to blood 

pressure in several healthcare monitoring applications, in addition to being a key component 

in monitoring cardiovascular health. To assess the algorithm's performance in classifying BP 

values, three categories were defined for each SBP and DBP target: normotensive, 

prehypertensive, and hypertensive. Furthermore, by specifying a blood pressure range, the 

regression problem can be converted into a classification problem, with the percentage 

indicating the classification accuracy. 

Table 4.3 presents the overall classification performance of the proposed 1-D 

SENet-LSTM algorithm. The SBP classification resulted in F1-scores of 0.92, 0.94, and 

0.85, and an overall accuracy of 94%. The overall accuracy for DBP classification was 

91%, with F1-scores of 0.85, 0.98, and 0.78. The Classify blood pressure of the proposed 

1-D SENet-LSTM model is shown in Figure 4.2.3. The highest accuracy rate for normal 

blood pressure classification was achieved with DBP at 98%, while the highest accuracy 

rate for hypertension classification was achieved with SBP at 92%.

Table 4.3 Classification performance of 1-D SENet-LSTM

DBP　 SBP

　Classier
Precision 

(%)

Recall 

(%)

F1-score 

(%)

Precision 

(%)

Recall 

(%)

F1-score 

(%)
Hypertension 92.45 79.89 85.71 95.34 90.32 92.76

Normotension 85.71 97.77 98.68 95.34 93.88 94.60

Prehypertension 73.94 79.43 78.58 82.03 88.98 85.37

Accuracy 94.54 91.21
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Fig 4.2.3. 1-D SENET-LSTM performance evaluation for hypertension, normotension, and 

prehypertension classification: (1) DBP (2) SBP.

4.2.4. Reconstruction results 

To better observe the reliability of the prediction results, the ABP waveform of the 

prediction results was reconstructed using the original ABP signal. The predictive reliability 

of the model was demonstrated by comparing two waveforms. The reconstruction results in 

Figure 4.2.4 show that the 1-D SENet-LSTM model can achieve a relatively good 

reconstruction effect for normal blood pressure, hypotension, and hypertension.
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Fig 4.4.4. The reconstruction effect of 1-D SENet-LSTM on central arterial pressure.

4.2.5. Comparison with other works

When compared our findings to those of other studies, as shown in Table 4.4, the most 

studies used similar databases. Because of the size of the various datasets used in other 

studies, ensuring fairness in the comparison results is difficult. The evaluation results 

presented herein are provided solely for informational purposes. In the BHS standard, It 

showes that the proposed method achieves A-level evaluation performance for estimating 

SBP and DBP. Simultaneously, it passed test by the American Institute of AIMM standard.
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Table 4.4 Comparison of schemes based on the BHS and AAMI standard

V. Conclusion

In this study, a CFR model was proposed to accurately estimate blood pressure. Several 

physiological parameters were extracted from the PPG signals. These parameters   are highly 

interpretable and can be used to monitor the health of the body. by collecting physiological 

parameters from wearable devices, directly train models, and make predictions; the 

implementation model can be deployed in a wearable device. According to our study, the 

ME and STD values for DBP were 1.800 and 2.529 mmHg, respectively, and those for 

SBP were 2.903 and 3.526 mmHg, respectively. According to the BHS standard, the 

performance of the algorithm proposed in this study is grade A.

By analyzing the feasibility of HRV-extracted physiological parameters for blood pressure 

prediction, we found that the prediction results also meet the criteria used by the AAMI 

and BHS standards. Compared to current non-invasive BP prediction methods based on 

combined ECG and PPG, our proposed method is more accurate and reliable. We provide 

Study BHS standard AAMI standard

Kachuee, et al. 

[66]

SBP D Fail

DBP A Pass

Li, et al. 

[67]

SBP B Fail

DBP A Pass

Mousavi, et al. 

[68]

SBP C -

DBP B -

Fujita, et al. 

[69]

SBP D -

DBP - -

Fan, et al. 

[70]

SBP B Pass

DBP A Pass

Jiang, et al. 

[71]

SBP B Fail

DBP A Pass

H N, et al. 

[72]

SBP C Fail

DBP A Pass

Our Study
SBP A Fail

DBP A Pass
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a new method for noninvasive blood pressure prediction. In future research, the relationship 

between HRV and BP will be further investigated to improve model accuracy.

Reference

[1] Saiz L C, Gorricho J, Garjon J, et al. Blood pressure targets for the treatment of      

people with hypertension and cardiovascular disease. Cochrane Database of Systematic   

Reviews, 2020 (9).

[2] Ungprasert P, Crowson C S, Matteson E L. Risk of cardiovascular disease among      

patients with sarcoidosis: a population-based retrospective cohort study, 1976–2013.      

European Respiratory Journal, 2017, 49(2).

[3] M. Elgendi, R. Fletcher, Y. Liang, N. Howard, N. H. Lovell, D. Abbott, K. Lim, and  

R. Ward, “The use of photoplethysmography for assessing hypertension,” Nature News,  

26-Jun-2019.

[4] “Hypertension,” World Health Organization. [Online. Available: https://www.who.int/ 

news-room/fact-sheets/detail/hypertension. 

[5] Choudhury L, Marsh J D. Myocardial infarction in young patients[J]. The American 

journal of medicine, 1999, 107(3): 254-261.

[6] Zhou B, Perel P, Mensah G A, et al. Global epidemiology, health burden and effective 

interventions for elevated blood pressure and hypertension. Nature Reviews Cardiology,  

2021, 18(11): 785-802.

[7] Antonakoudis G, Poulimenos I, Kifnidis K, et al. Blood pressure control and 

cardiovascular risk reduction. Hippokratia, 2007, 11(3): 114.

[8] Van de Vosse F N, Stergiopulos N. Pulse wave propagation in the arterial tree. Annual 

Review of Fluid Mechanics, 2011, 43: 467-499.

[9] Li B N, Dong M C, Vai M I. On an automatic delineator for arterial blood pressure 

waveforms[J]. Biomedical Signal Processing and Control, 2010, 5(1): 76-81.

[10] World Health Organization. Improving hypertension control in 3 million people: 

country experiences of programme development and implementation. 2020.



- 42 -

[11] Balestrieri E, Rapuano S. Instruments and methods for calibration of oscillometric 

blood pressure measurement devices. IEEE Transactions on instrumentation and 

measurement, 2010, 59(9): 2391-2404.

[12] F. Heydari, M. P. Ebrahim, J.-M. Redoute, K. Joe, K. Walker, and M. Rasit Yuce,    

    “A chest-based continuous cuffless blood pressure method: Estimation and evaluation   

    using multiple body sensors,” Information Fusion, vol. 54, pp. 119–127, 2020.

[13] Chung E, Chen G, Alexander B, et al. Non-invasive continuous blood pressure 

monitoring: a review of current applications. Frontiers of medicine, 2013, 7: 91-101.

[14] Hill B L, Rakocz N, Rudas Á, et al. Imputation of the continuous arterial line blood 

pressure waveform from non-invasive measurements using deep learning. Scientific 

reports, 2021, 11(1): 15755.

[15] Brzezinski, Marek, Thomas Luisetti, and Martin J. London. "Radial artery cannulation: 

a comprehensive review of recent anatomic and physiologic investigations." Anesthesia 

& Analgesia 109.6 (2009): 1763-1781.

[16] Peter, Lukáš, Norbert Noury, and M. Cerny. "A review of methods for non-invasive 

and continuous blood pressure monitoring: Pulse transit time method is promising?." 

Irbm 35.5 (2014): 271-282.

[17] Kuusela, Tom A., et al. "Nonlinear methods of biosignal analysis in assessing 

terbutaline-induced heart rate and blood pressure changes." American Journal of 

Physiology-Heart and Circulatory Physiology 282.2 (2002): H773-H781.

[18] Allen, John. "Photoplethysmography and its application in clinical physiological 

measurement." Physiological measurement 28.3 (2007): R1.

[19] El-Hajj, Chadi, and Panayiotis A. Kyriacou. "Cuffless blood pressure estimation from 

PPG signals and its derivatives using deep learning models." Biomedical Signal 

Processing and Control 70 (2021): 102984.

[20] Zhou, Zhi-Hua, and Ji Feng. "Deep Forest: Towards An Alternative to Deep Neural 

Networks." IJCAI. 2017.

[21] Pilz N, Patzak A, Bothe T L. Continuous cuffless and non-invasive measurement of 

arterial blood pressure—Concepts and future perspectives. Blood Pressure, 2022, 31(1): 

254-269.



- 43 -

[22] Kim, Youngsung, and Jeunwoo Lee. "Cuffless and non-invasive estimation of a 

continuous blood pressure based on ptt." 2010 2nd International Conference on 

Information Technology Convergence and Services . IEEE, 2010.

[23] Peter L, Noury N, Cerny M. A review of methods for non-invasive and continuous 

blood pressure monitoring: Pulse transit time method is promising. Irbm, 2014, 35(5): 

271-282.

[24] Le T, Ellington F, Lee T Y, et al. Continuous non-invasive blood pressure monitoring: 

a methodological review on measurement techniques. IEEE Access, 2020, 8: 

212478-212498.

[25] Nabeel P M, Karthik S, Joseph J, et al. Arterial blood pressure estimation from local 

pulse wave velocity using dual-element photoplethysmograph probe. IEEE Transactions 

on Instrumentation and Measurement, 2018, 67(6): 1399-1408.

[26] Salvi P, Lio G, Labat C, et al. Validation of a new non-invasive portable tonometer 

for determining arterial pressure wave and pulse wave velocity: the PulsePen device. 

Journal of hypertension, 2004, 22(12): 2285-2293.

[27] Kachuee M, Kiani M M, Mohammadzade H, et al. Cuffless blood pressure estimation 

algorithms for continuous health-care monitoring. IEEE Transactions on Biomedical 

Engineering, 2016, 64(4): 859-869.

[28] Yoon Y Z, Kang J M, Kwon Y, et al. Cuff-less blood pressure estimation using pulse 

waveform analysis and pulse arrival time. IEEE journal of biomedical and health 

informatics, 2017, 22(4): 1068-1074.

[29] Aimie-Salleh, Noor, et al. "Heart rate variability recording system using 

photoplethysmography sensor." Autonomic Nervous System Monitoring-Heart Rate 

Variability . London, UK: IntechOpen, 2019.

[30] Cho, Gilsoo, et al. "Performance evaluation of textile-based electrodes and motion 

sensors for smart clothing." IEEE Sensors Journal 11.12 (2011): 3183-3193.

[31] Schäfer, Axel, and Jan Vagedes. "How accurate is pulse rate variability as an estimate 

of heart rate variability: A review on studies comparing photoplethysmographic 

technology with an electrocardiogram." International journal of cardiology 166.1 (2013): 

15-29.



- 44 -

[32] Lin, Wan-Hua, et al. "New photoplethysmogram indicators for improving cuffless and 

continuous blood pressure estimation accuracy." Physiological measurement 39.2 

(2018): 025005.

[33] Thambiraj G, Gandhi U, Mangalanathan U, et al. Investigation on the effect of 

Womersley number, ECG and PPG features for cuff less blood pressure estimation 

using machine learning[J]. Biomedical Signal Processing and Control, 2020, 60: 

101942.

[34] El Hajj, Chadi, and Panayiotis A. Kyriacou. "Cuffless and continuous blood pressure 

estimation from ppg signals using recurrent neural networks." 2020 42nd annual 

international conference of the IEEE engineering in medicine &biology society 

(EMBC). IEEE, 2020.

[35] Geddes, L. A., et al. "Pulse transit time as an indicator of arterial blood pressure." 

psychophysiology 18.1 (1981): 71-74.

[36] Eom H, Lee D, Han S, et al. End-to-end deep learning architecture for continuous 

blood pressure estimation using attention mechanism. Sensors, 2020, 20(8): 2338.

[37] Tanveer, Md Sayed, and Md Kamrul Hasan. "Cuffless blood pressure estimation from 

electrocardiogram and photoplethysmogram using waveform based ANN-LSTM 

network." Biomedical Signal Processing and Control 51 (2019): 382-392.

[38] Bhattacharjee, D. "Cuff-Less Blood Pressure Estimation from Electrocardiogram and 

Photoplethysmography Based on VGG19-LSTM Network." Computer Methods in 

Medicine and Health Care: Proceedings of the CMMHC 2021 Workshop . Vol. 18. 

IOS Press, 2021.

[39] Baker S, Xiang W, Atkinson I. A computationally efficient CNN-LSTM neural 

network for estimation of blood pressure from features of electrocardiogram and 

photoplethysmogram waveforms. Knowledge-Based Systems, 2022: 109151.

[39] El-Hajj C, Kyriacou P A. Deep learning models for cuffless blood pressure monitoring 

from PPG signals using attention mechanism[J]. Biomedical Signal Processing and 

Control, 2021, 65: 102301.

[40] Esmaelpoor J, Moradi M H, Kadkhodamohammadi A. A multistage deep neural 

network model for blood pressure estimation using photoplethysmogram signals. 

Computers in Biology and Medicine, 2020, 120: 103719.



- 45 -

[41] Gothwal, H., S. Kedawat, and R. Kumar, Cardiac arrhythmias detection in an ECG 

beat signal using fast fourier transform and artificial neural network. Journal of 

Biomedical Science and Engineering, 2011. 4(04): p. 289.

[42] Saeed M, Villarroel M, Reisner A T, et al. Multiparameter Intelligent Monitoring in 

Intensive Care II (MIMIC-II): a public-access intensive care unit database. Critical 

care medicine, 2011, 39(5): 952.

[43] Virtanen, Pauli, et al. "SciPy 1.0: fundamental algorithms for scientific computing in 

Python." Nature methods  17.3 (2020): 261-272

[44] Zhang, Gengjia, et al. "Cuff-less blood pressure estimation from ECG and PPG using 

CNN-LSTM algorithms." 2023 IEEE 2nd International Conference on AI in 

Cybersecurity (ICAIC). IEEE, 2023.

[45] Malik, Marek. "Heart rate variability: Standards of measurement, physiological 

interpretation, and clinical use: Task force of the European Society of Cardiology and 

the North American Society for Pacing and Electrophysiology." Annals of 

Noninvasive Electrocardiology 1.2 (1996): 151-181.

[46] Bolin L P, Saul A D, Bethune Scroggs L L, et al. A pilot study investigating the 

relationship between heart rate variability and blood pressure in young adults at risk 

for cardiovascular disease. Clinical hypertension, 2022, 28(1): 1-8.

[47] Lee, Soojeong, and Joon-Hyuk Chang. "Oscillometric blood pressure estimation based 

on deep learning." IEEE Transactions on Industrial Informatics 13.2 (2016): 461-472.

[48] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of 

machine Learning research 12 (2011): 2825-2830.

[49] Janitza, Silke, Gerhard Tutz, and Anne-Laure Boulesteix. "Random forest for ordinal 

responses: prediction and variable selection." Computational Statistics & Data Analysis 

96 (2016): 57-73.

[50] Geurts, Pierre, Damien Ernst, and Louis Wehenkel. "Extremely randomized trees." 

Machine learning 63.1 (2006): 3-42.

[51] Maddula R, Stivers J, Mousavi M, et al. Deep Recurrent Convolutional Neural 

Networks for Classifying P300 BCI signals[J]. GBCIC, 2017, 201: 18-22.



- 46 -

[52] Yao Q, Wang R, Fan X, et al. Multi-class arrhythmia detection from 12-lead 

varied-length ECG using attention-based time-incremental convolutional neural 

network[J]. Information Fusion, 2020, 53: 174-182.

[53] Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow[M]. " 

O'Reilly Media, Inc.", 2022.

[54] Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the 

IEEE conference on computer vision and pattern recognition . 2018.

[55] E. O’Brien, J. Petrie, W. Littler, M. de Swiet, P.L. Padfield, D. Altman, The British 

hypertension society protocol for the evaluation of blood pressure measuring devices, 

J. Hypertens. 8 (7) (1990) 607–619,

[56] Association for the Advancement of Medical Instrumentation, American national 

standard: Electronic or automated sphygmomanometers, 1993.

[57] M. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, "Cuffless Blood 

Pressure Estimation Algorithms for Continuous Health-Care Monitoring," IEEE 

Transactions on Biomedical Engineering, vol. 64, no. 4, pp. 859-869, April 2017, doi: 

10.1109/TBME.2016.2580904.

[58] Li, Yung-Hui, et al. "Real-time cuffless continuous blood pressure estimation using 

deep learning model." Sensors 20.19 (2020): 5606.

[59] Mousavi, Seyedeh Somayyeh, et al. "Cuff-Less blood pressure estimation using only 

the ecg signal in frequency domain." 2018 8th International Conference on Computer 

and Knowledge Engineering (ICCKE). IEEE, 2018.

[60] Fujita, Daisuke, et al. "PPG-based systolic blood pressure estimation method using 

PLS and level-crossing feature." Applied Sciences 9.2 (2019): 304.

[61] Fan, Xiaomao, et al. "An Adaptive Weight Learning-Based Multitask Deep Network 

for Continuous Blood Pressure Estimation Using Electrocardiogram Signals." Sensors 

21.5 (2021): 1595.

[62] Jiang, Hengbing, et al. "Continuous Blood Pressure Estimation Based on Multi-Scale 

Feature Extraction by the Neural Network With Multi-Task Learning." Frontiers in 

Neuroscience 16 (2022).



- 47 -

[63] Hasanzadeh N, Ahmadi M M, Mohammadzade H. Blood pressure estimation using 

photoplethysmogram signal and its morphological features. IEEE Sensors Journal, 

2019, 20(8): 4300-4310.

[64] U. Senturk, K. Polat, I. Yucedag, A non-invasive continuous cuffless blood pressure 

estimation using dynamic recurrent neural networks, Applied Acoustics 170 (2020) 

107534.

[65] L. N. Harfiya, C.-C. Chang, Y.-H. Li, Continuous blood pressure estimation using 

exclusively photopletysmography by lstm-based signal-to-ignal translation, Sensors 21 

(9) (2021) 2952

[66] Kachuee, Mohammad, et al. "Cuffless blood pressure estimation algorithms for 

continuous health-care monitoring." IEEE Transactions on Biomedical Engineering  64.4 

(2016): 859-869.

[67] Li, Yung-Hui, et al. "Real-time cuffless continuous blood pressure estimation using 

deep learning model." Sensors 20.19 (2020): 5606.

[68] Mousavi, Seyedeh Somayyeh, et al. "Cuff-Less blood pressure estimation using only 

the ecg signal in frequency domain." 2018 8th International Conference on Computer 

and Knowledge Engineering (ICCKE). IEEE, 2018.

[69] Fujita, Daisuke, Arata Suzuki, and Kazuteru Ryu. "PPG-based systolic blood pressure 

estimation method using PLS and level-crossing feature." Applied Sciences 9.2 (2019): 

304.

[70] Fan, Xiaomao, et al. "An Adaptive Weight Learning-Based Multitask Deep Network 

for Continuous Blood Pressure Estimation Using Electrocardiogram Signals." Sensors 

21.5 (2021): 1595.

[71] Jiang, Hengbing, et al. "Continuous Blood Pressure Estimation Based on Multi-Scale 

Feature Extraction by the Neural Network With Multi-Task Learning." Frontiers in 

Neuroscience 16 (2022).

[72] Hasanzadeh N, Ahmadi M M, Mohammadzade H. Blood pressure estimation using 

photoplethysmogram signal and its morphological features. IEEE Sensors Journal, 

2019, 20(8): 4300-4310.



- 48 -

List of Publications

Paper

1)　Gengjia Zhang, Daegil Choi, Siho Shin, Da Eun Kim and Jaehyo Jung, "Development of 

Continuous Cuffless Blood Pressure Prediction Platform Using Enhanced 1-D SENet-LSTM", 

Expert Systems with Applications: under review, Mar. 2023 

2) Gengjia Zhang, Siho Shin, and Jaehyo Jung, "Cascade Forest Regression Algorithm for 

Non-invasive Blood Pressure Estimation Using PPG Signals", Applied Soft Computing: 3rd 

under review, Aug. 2022

3) Da Eun Kim, Siho Shin, Gengjia Zhang, Daegil Choi  and  Jaehyo Jung, "Fully stretchable 

textile-based triboelectric nanogenerators with crepe-paper-induced surface 

microstructures." RSC Advances  13.16 (2023): 11142-11149.

4) Jaehyo Jung, Siho Shin, Gengjia Zhang, and Meina Li."End-to-end models for cuffless blood 

pressure measurement from ECG and PPG signals", Artificial Intelligence In Medicine: under 

review, Sep. 2022

5) Siho Shin,,MinGu Kang, Gengjia Zhang, Jaehyo Jung and Youn Tae Kim,.  "Lightweight 

Ensemble Network for Detecting Heart Disease Using ECG Signals." Applied Sciences  12.7 

(2022): 3291.

6) MinGu Kang, Siho Shin, Gengjia Zhang, Jaehyo Jung and Youn Tae Kim, "Mental stress 

classification based on a support vector machine and naive bayes using electrocardiogram 

signals." Sensors  21.23 (2021): 7916.



- 49 -

List of Publications

Conference 

1) Gengjia Zhang, Daegil Choi, Da Eun Kim and Jaehyo Jung "Reconstruction of ABP 

waveform from the ECG or PPG signals using enhanced 1-D U-network", IEEE/ACIS 23rd 

International Conference on Computer and Information Science (ICIS 2023) June 23-25, 

2022, Wuxi, China: submit, April. 2023

2) Gengjia Zhang, Daegil Choi, Siho Shin and Jaehyo Jung. "Cuff-less blood pressure 

estimation from ECG and PPG using CNN-LSTM algorithms." 2023 IEEE 2nd International 

Conference on AI in Cybersecurity (ICAIC). IEEE, 2023.

3) Gengjia Zhang, Siho Shin, Jaehyo Jung, Meina Li and Youn Tae Kim. "Development of a 

Variety of Fast Machine Learning Model for ECG-based Arrhythmia Classifier." 2022 IEEE 

Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). 

IEEE, 2022.

4) Gengjia Zhang, Siho Shin, Jaehyo Jung, Meina Li and Youn Tae Kim.  "Machine learning 

Algorithm for Non-invasive Blood Pressure Estimation Using PPG Signals." 2022 IEEE Fifth 

International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE, 

2022.

5) Daegil Choi, Gengjia Zhang, Da Eun Kim and Jaehyo Jung "Depression Diagnosis Algorithm 

Based on 2-stream CNN Using Facial Image", IEEE/ACIS 23rd International Conference on 

Computer and Information Science (ICIS 2023) June 23-25, 2022, Wuxi, China: submit, 

April. 2023

6) Daegil Choi, Gengjia Zhang, Siho Shin and Jaehyo Jung.  "Decision Tree Algorithm for 

Depression Diagnosis from Facial Images." 2023 IEEE 2nd International Conference on AI in 

Cybersecurity (ICAIC). IEEE, 2023.



- 50 -

7) MinGu Kang, Siho Shin, Gengjia Zhang, Jaehyo Jung, Meina Li and Youn Tae Kim, 

"Mental Stress Detection with Ensemble Model and Random Cropping using 

Electrocardiogram ", 2021 International Conference on Computational Science and 

Computational Intelligence (CSCI). IEEE, Dec. 2021

8) Siho Shin, MinGu Kang, Gengjia Zhang, Jaehyo Jung, Meina Li and Youn Tae Kim, 

"Development of Algorithm to Predict Arrhythmias based on Ensemble Network using 

Electrocardiogram", 2021 International Conference on Computational Science and 

Computational Intelligence (CSCI). IEEE, Dec. 2021



- 51 -

Abstract

A Study on AI Algorithms for Estimating Cuffless Blood Pressure 

Based on Biological Signals

                                Gengjia Zhang

                                Advisor. : Prof. Hyun-Sik Choi, Ph.D.

                                Department of IT Fusion Technology,

                           Graduate School of Chosun University

Blood pressure measurement is an essential component of medical care that provides 
information on an individual's cardiovascular health, and accurate measurement and 
continuous monitoring are required. In particular, with the advent of the aging population, 
the importance of blood pressure management is steadily increasing. Among them, high 
blood pressure can cause various diseases such as stroke, heart failure, heart attack, and 
kidney disease as the blood pressure in the arteries is constantly high. In order to measure 
blood pressure, hospitals use a cuff to compress the patient's arm and then measure the 
pressure in the blood vessels. This method is widely used because of its high accuracy, but 
it can endanger the elderly due to body pressure, and it is inconvenient to use because it 
is bulky and requires medical knowledge, and it is impossible to measure for a long time 
in everyday life. In this study, two artificial intelligence algorithms that can predict cuffless 
blood pressure through bio-signals are proposed. The first algorithm is a cascaded forest 
regression (CFR) that estimates systolic blood pressure (SBP) and diastolic blood pressure 
(DBP), using photovascularization (PPG) signals. The CFR algorithm achieved mean 
absolute errors of 1.760 mmHg and 2.896 mmHg for SBP and DBP, respectively. 
Additionally, best model achieved R² scores of 0.948 and 0.926 for SBP and DBP, 
respectively. The second algorithm uses an ensemble network combining a one-dimensional 
SENet and LSTM to blood pressure classification through PPG and electrocardiogram 
(ECG) signals. For the classification of hypertension, normotension, and prehypertension 
using SBP, we achieved accuracy of 94% and F1 scores of 0.92, 0.94, and 0.85. For the 
results obtained using DBP classification the overall accuracy was 91%, with F1 scores of 
0.85, 0.98, and 0.78. When compared to other studies, the classifier results generated by 
SBP and DBP based on the 1-D SENet-LSTM method improved accuracy by 2% and 
11%, respectively. The performance of the proposed algorithm was analyzed by applying 
the predicted standard deviation and average error for SBP and DBP to the American 
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Medical Device Association (AAMI) and British High Blood Pressure Association (BHS) 
standards.
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