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ABSTRACT

Routing Algorithms Based on Reinforcement Learning for Unmanned
Aerial Vehicle Swarm Networks

Muhammad Morshed Alam

Advisor: Prof. Sangman Moh, Ph.D.
Department of Computer Engineering
Graduate School of Chosun University

In recent years, unmanned aerial vehicles (UAVs) have attracted increased
attention from academic and industrial research communities for their wide range of
potential applications in military and civilian domains. Owing to the flexible three-
dimensional (3D) mobility, on-demand deployment and low cost, a collaborative
UAYV swarm networks (UAVSNS) can effectively execute emerging missions such
as surveillance and communication coverage in an emergency. Due to the high
mobility, dynamic time-varying topology, limited onboard energy, and frequent link
breakages, data packet routing from remote UAVs to base station (BS) produces
excessive retransmissions, long delays, strong mutual interferences, energy holes,
and loops. Therefore, in UAVSNSs, collaborative mobility control, path stability
defined by predictive 3D link duration (LD), link signal-to-interference-plus-noise
ratio (SINR), delay, and residual energy of UAVs should be jointly taken into
consideration to improve both mission and packet routing performance because they
are tightly coupled. To effectively address the above challenges, we jointly consider
the collaborative mobility control and multi-link quality metric packet routing in
UAVSNSs by utilizing nature-inspired swarming behavior-based adaptive mobility
control and reinforcement learning, which are suitable to perform multi-objective
optimization in a resource constraint dynamic UAVSNS.

In the first work, we propose a joint topology control and routing (JTCR)
protocol comprising three modules to perform a crowd surveillance mission utilizing
a UAVSN. The first JTCR module provides virtual force-based mobility control

viii

Collection @ chosun



(VEMC), which controls the mobility of UAVs to track the mobile ground target
while ensuring stable connectivity in aerial links. The second module provides
energy-efficient mobility-aware fuzzy clustering that clusters the UAVSN topology
to aggregate the sensed data to each cluster head (CH) by utilizing the UAV mobility
provided by the VFMC. The third module provides topology-aware Q-routing,
which routes the aggregated data from CH UAVs to the BS by selecting an optimal
path in terms of network delay, path stability, and energy consumption of UAVs.

In the second work, we propose a Q-learning (QL)-based routing protocol
inspired by adaptive flocking control (QRIFC) to execute a surveillance mission in
a post-disaster scenario. In QRIFC, the proposed adaptive flocking control algorithm
generates optimal mobility with fairness in travel distance for each UAV to control
the optimal node density. It also addresses the trade-off between aerial coverage and
quality of service in connectivity by imposing constraints on the minimum separation
distance and maximum allowable inter-UAV spacing using two-hop neighbor
information. Additionally, it provides a stable LD between neighboring UAVs and
optimizes the control overhead. Furthermore, QL performs multi-objective
optimization by utilizing a new state exploration and exploitation strategy to select
an optimal routing path in terms of delay, stable path selection defined by predictive
3D maximum-minimum LD, and energy consumption of UAVSs.

In the last work, we propose joint trajectory control, frequency resource
allocation, and packet routing (JTFR), in which link utility is maximized by jointly
considering the link stability, SINR, queuing delay, and residual energy of UAVs.
Finding the optimal link utility is extremely challenging because of the complex
sequential decision-making process based on multiple constraint parameters in cross
layer design. JTFR employs adaptive distributed multi-agent deep deterministic
policy gradient coupled with swarming behavior to obtain the optimal solution. For
each UAV, an actor network is established by utilizing a long short-term memory-
based state representation layer containing two-hop neighbor information to adopt
the dynamic time-varying topology. Subsequently, a scalable multi-head attentional
critic network is set up to adaptively adjust the actor-network policy of each UAV
by collaborating with neighbors.

Extensive computer simulation is performed to evaluate the performance of each
proposed protocol by rigorously comparing it with existing baseline protocols.
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According to our performance study, the proposed JTCR shows 34% better tracking-
coverage rate, 9.5% better connectivity rate, 7—21% average better packet delivery
ratio (PDR), 9—37% less average end-to-end delay (AE2ED), and 15—23% less
energy consumption in comparison to existing routing protocols. This is mainly
enabled by the realistic mobility control of the UAV swarm at the reasonable cost of
control overhead and a smaller number of retransmissions. The proposed QRIFC
outperforms existing routing protocols by 21—40 % less AE2ED and 9—23% higher
average PDR with fewer retransmissions. Similarly, the proposed JTFR outperforms
existing routing protocols by 30—60% less AE2ED, 15—32% better average PDR,
and 20—46% less energy consumption.
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1. Introduction

Unmanned aerial vehicles (UAVS) equipped with various types of sensors have
numerous applications in military and civilian fields, including in search and rescue
operations, surveillance, wildfire monitoring, agricultural remote sensing, relay networks,
providing wireless coverage to ground users (GUSs) as aerial base stations (ABSs), and post-
disaster relief operations [1], [2]. The rapid development of network technologies is
envisioned to enable the autonomous operation of multi-UAV networks for any type of
mission. It includes advanced sensors [3], control and battery technologies, global
positioning systems (GPS) or GPS-denied positioning techniques, incorporations of various
artificial intelligence [4], machine learning techniques [5], obstacle avoidance techniques
[6], and advanced routing protocols [7]-[13].

Compared to a single-UAV system with limited energy, a limited computational
capacity, poor functionality, fixed sensor field of view, and poor survivability, a
collaborative UAV swarm networks (UAVSNS) provides a wide range of advantages such
as wider coverage, high survivability, high flexibility, efficient task allocation, and
adaptability. Owing to the unique features of UAVSNSs such as their self-organizing and
self-healing distributed autonomous sensing, three-dimensional (3D) positional adjustment,
and low cost, the integration of UAVSNSs into other applications is becoming popular, such
as data collection in wireless sensor networks (WSNs) [14], [15] or from internet of things
(1o0T) devices [16], data ferrying in delay tolerant networks [17], mobile edge computing
services to low power 10T devices [18], UAV-aided vehicular ad hoc networks (VANETS)
[19], energy harvesting for low-power I0T devices [20], [21], and ABSs [22], [23]. UAVSNSs
can serve as ABSs to provide better network coverage, as they have a higher probability of
acquiring a line-of-sight (LoS) to GUs.

UAVSNs can form a multi-hop network consisting of flying nodes and a few fixed base
stations (BSs); these are known as flying ad hoc networks (FANETS), and do not require
any fixed infrastructure. In a FANET, using a hop-by-hop relaying method, a UAV can
perform near real-time data delivery to a BS or other UAVs. In FANETS, owing to the high
mobility and limited transmission range, the state of the UAV swarm (position, velocity, and
direction) changes frequently. UAVSNSs also changes the formation topology in a dynamic
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environment, owing to mission requirements such as evenly monitoring a particular area,
tracking mobile GUs, and leaving or joining the aerial network before and after replenishing
energy through a charging scheduling algorithm (CSA) [24]. This situation imposes many
challenges on the control process of UAVSNS, such as developing a formation control law,
maintaining stable links, selecting a multi-hop path for relaying data, guaranteeing the
quality of service (Qo0S), and optimizing energy consumption.

Owing to changes in the relative speeds of UAVs to meet the mission performance
requirements such as maximizing the coverage rate of the mission area [25], [26], tracking
high-density areas of GUs [23], tracking mobile targets [27], [28] and ensuring motion
fairness among UAVs [29], [30], there are massive challenges to the communication
performance of a UAVSN. To meet the mission performance requirements, the key
challenges in a UAVSN topology are in maintaining the communication performance, such
as providing a stable link duration (LD) in the aerial links to reduce the frequent link
breakages, retransmissions, and high latency. The LD between two neighboring UAVS is a
function of the UAV transmission range, relative distance, and relative velocity with
neighboring UAVS, as shown in Figure 1.1 [31], [32] The LD parameter defines how long a
neighboring UAV will stay with another transmission range, and it widely used to construct
topologies [33], optimize the control overhead [34], find the fitness of a node to identify a
cluster head (CH), a dominating set [35], and make routing decisions [31], [34], [36].

Through the efficient utilization and optimization of the constrained resources of a
UAVSN, a topology control algorithm (TCA) can be used to support both medium access
control (MAC) and routing protocols. TCA allows to develop a comprehensive FANET by
performing the joint optimization on control and communication to balance the mission and
communication performance. The control sections mainly consider (i) the trajectory or
mobility control to maintain trade-off between aerial coverage and connectivity by
maintaining optimal node density and avoiding inter-UAV collision, (ii) topology
construction and adjustment, and (iii) adaptive control of hello interval (HI) to address the
trade-off between topology prediction accuracy and control overhead. The communication
sections mainly include not only the allocation of resources (i.e., timeslot, frequency, and
power) for transmission scheduling but also optimal relay selection. Thus, TCAs can
optimize the energy consumption of UAVS, reduce inter-UAV interference and control
overhead, maximize the network throughput, and ensure stable LD.
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1.1 Components of UAV Swarm Networks

Here, we briefly discuss the UAVSN, its components, and functionalities. UAVSN
imitates the behavior of swarm intelligence (SI) and collaborates with the terminal BS/loT
devices/sensors/GUs to form an autonomous self-organized multi-UAV communication
system known as the FANET. In FANETS, the terrestrial devices are replaced by the UAVS,
and can establish communication on-demand or in any type of emergency scenario without
requiring any fixed infrastructure. Each UAV in the swarm is capable of sensing, executing
a computationally intensive task locally or in an edge/cloud server, performing
communication, caching data, and working as a router to forward remote UAVS sensing data
to a BS for further processing. Thus, UAVSNSs have two sections: a terrestrial section and
non-terrestrial section, as illustrated in Figure 1.1.
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HAP .~
&
U2H,

Leave for
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Link duration (LD)

| S2BS

H2BS'

A 2} Base station (BS)
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RE level of UAVs: [ High [ Medium[g Low

Figure 1.1 An on-demand UAV swarm network and its different components.

The terrestrial section usually comprises mobile ground vehicles, fixed BS, mobile or
fixed charging stations (CSs), edge server, GUs, sensors, and 10T devices. UAVSNSs can
collaborate with existing terrestrial BS or an emergency vehicle on an on-demand basis to
extend the network capacity. The BS can be equipped with an edge server [37] and CSs [38].
UAVs can offload their computationally intensive tasks to the edge server [39]. When the
residual energy (RE) of a UAV reaches the minimal threshold, the UAV can leave the aerial
network utilizing a CSA to get energy replenishment at a particular wireless CS [38].

The non-terrestrial section consists of a set of homogenous or non-homogenous UAVs
working collaboratively at different altitudes; these are known as low altitude platforms
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(LAPs) and high-altitude platforms (HAPs). Usually, each UAV has four major modules
such as flight control, energy management, computation, and communication module. The
mobility information of UAVs in 3D space can be described by six degree of freedom such
as surge, heave, sway, pitch, yaw, and roll [40].

There are a variety of communication links in UAV networks according to the mission
planning and control method. These communication links can be classified as air-to-ground
(A2G) links and air-to-air (A2A) links. In general, the A2G links include UAV to BS (U2BS),
UAYV to GU (U2GU or GU2U), HAP to BS (H2BS), and satellite to BS (S2BS). Similarly,
the A2A links are UAV to UAV (U2U), UAV to HAP (U2H), and HAP to satellite (H2S).
UAVs can directly communicate with the satellite, especially with the GPS to localize
themselves in global coordinates. Usually, LAPs can communicate with the BS using U2BS
downlinks. U2BS links have low cost in terms of transmission power, latency, and path loss
in LoS cases. However, the quality of the U2BS links significantly degrades in the no line
of sight (NLoS) cases. To this end, depending on the signal quality and type of mission
planning, LAPs can also utilize the U2H and H2S uplinks to communicate with the BS [31].

Ina LAP, the radius of the disk size sensor coverage of the UAVSs to the ground terminal
R. is a function of the UAV altitude h and FoV «, as shown in Figure 1.1. With an
increasing altitude h, R, increases and the probability of getting the LoS also increases.
However, simultaneously, the path losses are also increased, as a result, the UAV altitude
should be controlled within an optimal altitude range depending on the mission environment,
distribution of the GUs, and application [41].

In UAVSNSs, the communication traffic comprise sensing data collected by each UAV
and the control message (i.e., mobility information of the UAVs collected by onboard GPS,
inertial measurement unit (IMU) and LiDAR sensors). UAVs can exchange control
messages among themselves or with BS to maintain a local neighbor list, control the mobility
of the swarm, generate multi-hop routing paths for communicating with BS and relaying
sensing data, maintain cooperative mission planning, and execute task assignment [42], [43].

1.2 Design Issues of Routing Protocols in UAVSNSs

Controlling the WSN topology is less complex, as sensor nodes are mostly static, or
have very little two-dimensional (2D) mobility. In [44], [45], the TCAs for WSNs were
studied by classifying them into four categories: transmission power adjustment,
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transmission power mode switching, clustering, and hybrid mode. In general, power mode
switching is not suitable for FANETS, as UAVs require energy to stay in the air and to
communicate with neighboring nodes to plan a collaborative mission. Moreover, the UAV
flying energy consumption is sufficiently larger than the communication energy
consumption [35]. In VANETS, node's mobility is constrained by roads; as a result,
predicting the topology is much easier than in FANET, and the node energy is not
constrained [46]. FANETSs differ from other ad hoc networks in terms of the node density,
3D mobility [47], inter-UAV collision, restricted trajectories owing to collaborative motion
planning and constraint mission boundary, limited energy of UAVs, wind disturbance, and
frequent topology alterations for meeting mission performance [48], [49]. The conventional
TCAs and routing protocols related to MANETSs, VANETS, and WSNs are not suitable for
high-speed UAVs, because the sensors or ground vehicles in these networks make horizontal
2D movements with less mobility, UAVs have 3D mobility in horizontal and vertical
directions [40]. The key issues to design the TCA and routing protocols for UAVSNSs or
FANETSs are briefly discussed.

1.2.1 Connectivity

In UAVSNSs, the data collected by UAVs need to be transmitted to a BS by relaying
through an optimal reliable multi-hop path that gives the optimal delay, highest link survival
time [31], and produces balance in energy consumption for all of the UAVSs. In addition, in
cooperative missions, UAVSs need to exchange information for mission coordination. To
cope with the dynamic topology and limited energy, the UAVSs should establish a stable
formation by maintaining relative distances and velocities. To maintain strong connectivity,
UAVs should not frequently fly away from each other, and they should consider a few
communication constraints such as signal-to-interference-plus-noise ratio (SINR) level by
maintaining acceptable relative distance and transmission power, maintaining a minimum
safe distance, and maintaining a certain maximum attainable speed under the maximum
attitude angles to adjust the direction.

1.2.2 Coverage

The designed algorithm should maintain a proper SINR level to achieve an acceptable
data rate for all wireless links. It should consider the trade-off between coverage rate and
QoS in aerial connectivity according to the application of UAVSNSs. Owing to the fixed
communication range and relatively high costs of UAVs, it is impractical to deploy enough
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UAVs to cover a large target area over. Therefore, UAVs need to move around to confirm
that each area is covered sufficiently well, which is known as dynamic coverage. The static
coverage provides fixed coverage density, which may give a constant mission performance,
i.e., GUs detection [24]. However, it is not desirable to cover a particular target area most of
the time while leaving the remainder only poorly covered. Additionally, the density of
mobile GUs may not be equal in the mission area [50]. As a result, UAVs need to move
slowly to monitor the mission area with fairness [29], detect the maximum mobile targets
[24], or serve the maximum number of GUs as ABS [51]. For obtaining maximum coverage
with QoS in connectivity of U2U and U2BS links, the UAVSN deployment depends on a
few important parameters such as the proper assessment of GUs distribution and their
mobility model [52], [53] and 3D positions adjustment of UAVs to serve maximum GUs.

1.2.3 Distributed Algorithm

A centralized algorithm requires global information, and all of the UAVs must send
data to the central controller. Therefore, this approach consumes a high bandwidth in the
backbone network and incurs high computational cost. It also encounters scalability issues.
In contrast, in a distributed algorithm, each UAV maintains continuous awareness of its one
or two-hop neighbors and cooperates collaboratively to achieve the desired goal. Hence, this
method requires less computational complexity. However, significant theoretical challenges
arise when controlling UAVSNs based on partial information.

1.2.4 Tolerance to Communication Delay and Localization Error

The optimal allocation of resources (such as UAV transmission power, frequency, and
timeslots) can significantly enhance SINR and delay in inter-UAV communication. Time
delays, while broadcasting control packets among UAVs may cause the UAVS to record
inaccurate locations for their neighbor UAVs. This may affect the formation controller
performance [54]. It can also produce an error in topology prediction; this sequentially
affects the MAC and routing protocol performance, owing to instability in the links. The
major causes of time delays in UAVSNSs are the inter-UAV distances, node densities, sizes
of control packets and data packets, transmission power, and effects of the multi-path fading
wireless channel [55]. GPS-equipped UAVs may have localization errors of 10-30 m [56].
Therefore, the designed control model should be sufficiently tolerant to GPS errors to
maintain updated routing path [57]. A stable routing path can avoid link breakages in
dynamic UAVSN, which can significantly reduce unnecessary retransmissions.
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1.2.5 Collision Avoidance and Tolerance to UAV Failure

During flocking, UAVs should maintain a minimum distance from one another to avoid
internal collisions [58]. However, in many cases, a UAV swarm may require partitioning in
the network topology, especially when they flock in a complex-obstacle environment or
track any moving target. The designed algorithm should adaptively update the network
topology and perform formation reconfiguration as soon as the obstacle is passed and the

UAVS re-enter each other’s communication ranges [34].
1.2.6 Optimal Control Overhead and Number of Transmissions

The designed algorithm should be simple and should generate optimal control messages
to maintain the dynamic time-varying topology. In FANETS, each UAV senses topological
changes by actively monitoring a neighbor set and periodically exchanging hello packets
with each other so as to share the updated mobility information. A shorter HI enables higher
accuracies in real-time neighbor discovery and ensures a more up-to-date routing path.
Consequently, it increases the control overhead as a penalty. Moreover, it is suggested that
the sensing data are logically aggregated to minimize the number of transmissions [59].

1.2.7 Link Bidirectionality

The edges in the constructed topology should be bidirectional or symmetrical.
Considering the MAC and network layers, the UAVs need to communicate bidirectionally.
For instance, many MAC protocols such as the IEEE 802.11 standard protocols require an
undirected graph topology to send a clear to send or request to send message before data
transmission, to avoid data collisions and solve the hidden and exposed terminal problem
[60].

1.2.8 Redundancy

The designed algorithm should be aware of all types of failure issues, such as UAV
failures caused by any type of hardware failure, software failure, or even energy limitation.
In such cases, the self-healing UAV swarm should recover the neighboring connectivity as
soon as possible without creating any partition in the network during flocking.

1.2.9 Stability and Scalability of Dynamic UAVSNs

One key research challenge is in maintaining the formation stability and autonomous
scalability for a dynamic UAVSN. The designed controller should achieve the formation
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and adaptively maintain the formation stability by performing the formation reconfiguration
as UAVs are joining or leaving the swarm due to mission requirement or energy
replenishment [34], [61]. A stable formation can ensure link stability.

1.2.10 Optimizing UAV Energy Consumption

To prolong the network lifetime, UAV energy consumption optimization is required.
The flight control, communication, and computation module are the major sources of UAV
energy consumption. The optimal trajectory planning with motion fairness [29], energy-
efficient MAC, and routing protocol [62], and offloading the computationally intensive tasks
to the edge servers [63] can help to minimize the energy consumption of UAVs. The TCAs
can control the optimal node density by adjusting the inter-UAV distances according to the
transmission range to ensure the connectivity rate and less interference. Additionally, the
optimal node density reduces the competition in MAC layer channel access, which can
significantly reduce number of retransmissions [35]. The propulsion energy consumption by
the UAV rotors is proportional to the distance it travels during flocking. Hence, to reduce
energy consumption, a UAV swarm should have a collaborative mobility control scheme so
that each UAV gets an optimal distance to travel [23], [29], [50], [57].

1.2.11 Convergence Time

The convergence time of the designed algorithm should be as fast as possible. Because
the nodes have high mobility, the algorithm should return the optimum solution as quickly
as possible to maintain the up-to-date topological changes [35].

1.3 Organization of Thesis

Rest of the thesis is organized as follows: In Chapter 2, existing topology control
algorithms and routing protocols in UAVSNs will be reviewed and qualitatively compared
along with their advantages and limitations. In Chapter 3, the joint topology control and
routing (JTCR) for UAVSN is proposed and evaluated to execute a crowd surveillance
mission. In Chapter 4, the Q-learning-based routing inspired by adaptive flocking control
(QRIFC) is proposed to design collaborative mobility models and routing protocols in
FANETSs. In Chapter 5, the joint trajectory control, frequency allocation, and routing (JTFR)
for UAVSN is proposed based on cross layer design and evaluated.
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2. Related Works

In UAVSNS, the relative mobility, link delay, and path stability are highly coupled with
each other. TCA can ensure aerial coverage and network connectivity by controlling the
relative mobility of UAVs by adopting swarming behavior. Thus, it can improve the
performance of routing protocols significantly by ensuring appropriate node density, smooth
trajectory of UAVSs, and enhancing the topology prediction accuracy. In this Chapter, the
related literature review for the existing TCAs and routing protocols in UAVSNS are briefly
discussed along with their advantages and limitations. Based on their limitations and
identified research gaps, the key open issues and research challenges is summarized.

2.1 Topology Control for UAVSNs

A TCA is a mechanism for coordinating and optimizing the position, relative velocity,
direction, and orientation of UAVs in 3D space according to the transmission range of each
UAV that can generate a network with certain properties to achieve mission and
communication goals. The main objectives of TCAs are to provide stable connectivity in
high-speed FANETS, while ensuring a safe distance for avoiding collisions and meeting
SINR constraint to ensure QoS in the U2U links, to maximize the coverage to perform the
mission successfully, and to optimize the energy consumption of UAVs and network delays.
In FANETS, the optimal positioning of the UAVs depends on mobility control parameters,
such as the speed, direction, transmission power, and density of UAVS.

The topology control problem is an iterative process, in which the first step comprises
topology construction (TC) and the second step comprises topology adjustment (TA).
Typically, the TC has high computational complexity, as it generates the FANET topology
from scratch. Therefore, this construction process requires a powerful algorithm that may be
computationally expensive, as it must satisfy all of the constraints to provide a feasible
topology. After obtaining the optimal reduced topology, a less computationally expensive
TA should begin operating, so that it can rapidly adjust the topology in real-time to maintain
the optimal form according to the dynamic conditions. This algorithm can also trigger a new
topology construction phase by running the TC when any constraints are violated in the
existing network topology over a certain period. More details discussion about TCA is given
in [40]. In the next section, the relation with TCA, MAC protocol, routing protocol, and
formation control is briefly discussed.
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2.1.1 TCA Interaction with MAC Protocol

During flocking in a dynamic environment, the node density and inter-UAV distance
changes frequently. Adaptive adjustment of UAV trajectory according to inter-UAV
distance and physical layer transmission power can ensure optimal node density and reduces
the possibility of interference [64]. Even though the MAC layer can control the transmission
power, it cannot consider packet-level power control by itself. This is because this layer does
not include information on the exact power required for each hop according to the inter-
UAV distances at each time interval of the mobility updates [65], [66]. Therefore, according
to the inter-UAV distances obtained from the TCA during flocking, the UAVs can set
optimal transmission power as shown in Figure 2.1, so as to simplify the network topology
by removing the redundant longest edges and minimize the interference in the inter-UAV
communication.

TCA

(Aware of inter-UAV distance,
mobility, UAV density, SINR and
transmission power)

T Execute TC to adjust the
inter-UAYV distance if the
interference crossed
maximum threshold

Set the power
level according to
inter-UAYV distance

A A

MAC protocol

(Aware of delay and interference in
inter-UAV communicaiton)

Figure 2.1 Collaboration between TCA and MAC protocol.

A TCA can support the network layer by offering a more efficient neighbor list and
reducing the possibility of data collision and interference at the MAC layer. Similarly, the
MAC layer can trigger the execution of the TCA to adjust the density of UAVs and
contention window in case it discovers the interference crossed a maximum threshold during
neighboring UAVs communication [67]. The proper assessment of inter-UAV distances
according to the physical layer transmission range and the updated neighbor list given by a
TCA helps to maintain optimal node density. Additionally, adaptively adjusting the size of
contention window according to the node density helps to precisely estimate the data packet
collision and successful packet transmission probability in UAVSNS. In [67], the authors
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investigated the relation between MAC protocol and flocking control [68] to adaptively
adjust the size of the contention window according to the node density of UAVs by
calculating the inter-UAV distances with neighboring UAVs and updated neighbor list. It
also helps to calculate the precise MAC layer contention for carrier sense multiple access
with data collision avoidance.

2.1.2 TCA Interaction with Routing Protocol

Routing protocol is responsible for finding and maintaining the reliable path between a
source and destination UAVs. When a UAV needs to transmit a packet to another UAV or
BS, it finds the reliable multi-hop routing path with the help of a routing protocol for a
particular destination in terms of optimal delay, UAV RE, and LD. The TCA controls the
mobility of UAVs so that a strong neighborhood is established between UAVs for each
timeslot that ensures sufficient LD among neighboring UAVs to avoid frequent link
breakages. Thus, it reduces the number of retransmissions and offers a stable neighbor list
to the routing protocol to generate an updated routing path at each data interval. As shown
in Figure 2.2, the TCA constructs the UAVSN topology to maintain an updated neighbor list
for each UAV by executing the TC that detects the optimal mobility of each UAV according
to the mission requirements at each timeslot. Additionally, it can also trigger the TA in case
it detects considerable fluctuations in the active neighbor set over time by sensing the
instantaneous degree of violation in imposed safety and SINR constraints with neighboring
UAVs due to the changes in mobility during flocking.

Routing protocol
(Aware of delay, retransmissions,
RE, routing holes and loops)

Trigger TA execution if detects 1 Execute TC and TA to construct the
excessive number of retransmissions, topology by updating the mobility
high delay, routing holes, loops and of UAVs while satisfying safety and
blind paths i} SINR constraint
TCA

(Aware of mobility, inter-UAV
distance, link duration and SINR
level of neighbor links)

Figure 2.2 Collaboration between TCA and routing protocol.

Therefore, instead of passively waiting for the routing protocol to separately update the
neighbor list, a mobility update phase can be triggered by the TCA to detect updated
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neighbors if the neighboring UAVs of the source UAV stays too far or are detected within
an interference zone, or even if the imposed safety distance and SINR constraints are
violated. This leads to a faster response to a time-varying topology. It also reduces the packet
loss and routing holes by assuring an updated neighbor list with the desired SINR levels for
the respective source UAVSs to perform data relaying. Similarly, the routing layer can also
trigger the TA execution in the TCA, e.g., when it detects an excessive number of
retransmissions, link breakages, and routing holes, as in such cases, it assumes that there
have been many changes in the network topology since the last execution of the TC.

2.1.3 TCA Interaction with Formation Control

A formation control mechanism can maintain a relatively steady state in a UAVSN by
matching the velocities and distances between neighboring UAVs and helping to avoid inter-
UAV collisions [69]. The output of the UAV formation control, typically consisting of
current and target WPs for all UAVSs, can predict the topology of the network [34]. Proper
formation control provides stability in the network topology, boosts the network’s
transmission efficiency and task execution capacity. In [50], the authors studied flocking
control protocols for ensuring stability in maintaining a safe distance between UAVs and
simultaneously preserving aerial connectivity. In general, the important tasks required to
control UAV swarm formations are maintaining the relative positions, relative velocities,
and directions of the UAVs, avoiding external obstacles and inter-UAV collisions, and
moving the entire formation or the center of the mass of the formation along a pre-defined
trajectory. It also ensures that the fleet of UAVs remains in a relatively steady-state with
enough LD to exchange information for cooperative coordination and to perform data
collection. Therefore, formation control techniques have a strong relationship with the
network topology control. It can easily meet the requirements of the TCAs of UAV networks
and cooperate with the routing protocol to generate a stable routing path.

Flocking describes the aggregated behavior of multi-agent systems, where a group of
UAVs interacts to achieve common goals. This approach is a commonly used approach to
control UAV swarm formations. The common properties of a swarm network include its
self-organization, self-formation, and collision avoidance. The distributed self-organization
and robustness of the cooperative control of UAV swarms are similar to the decentralized
and self-organized characteristics of biological groups such as ant colonies, bee colonies,
flocks of birds, and schools of fish [70]. Large-scale UAVSN coordination, as inspired by
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these self-organized biomorphic flight pattern algorithms, enhances the efficiency of the
autonomous distributed operations of UAVSN. Thus, mimicking the autonomous swarm
behaviors of animals makes the complex multi-UAV coordination problem easier to address,
and enhances the autonomy of UAV networks. A cooperative UAVSN flying in a complex
environment can maintain a robust topology in a dynamic environment by generating
collective motions adopting the three rules of the Boids flocking proposed by Reynolds in
1986 [71]-[73]. These three rules concern separation, cohesion, and alignment. Each rule
produces a motion component vector. The weighted resultant of these three motion vectors
determines the optimal mobility information such as the acceleration, velocity, direction,
and position of each UAV in a swarm, as shown in Figure 2.3.
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Figure 2.3 UAV swarm and its collective motion during flocking in a complex
environment.

2.1.4 Taxonomy of TCAs

In this sub-section, we briefly discuss the existing TCA’s for UAVSN topology by
classifying them according to topology architectures and UAV roles in a UAVSN topology.

2.1.4.1 Topology Architecture

According to the topology architecture, we classified TCA’s in UAVSN as centralized,
distributed, hybrid, and hierarchical structures, as shown in Figure 2.4.

In centralized TCAs, a central controller (i.e., a UAV in LAP/HAP or BS) has global
knowledge regarding all of the UAVs and the mission environment. The global knowledge
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includes the mobility information of each UAV in the swarm, locations of static/dynamic
obstacles, shapes of the obstacles, and locations of tracked/untracked targets collected by
the onboard sensor of each UAV. The central controller utilizes all this global knowledge
for intelligent decision-making to control the swarm topology formation, perform obstacle
avoidance, make a routing decision, execute CSA, and so on by sending the control
commands to each UAV. The advantages of centralized topology are the design is simple
and implementation is easy. The limitations of centralized topology are lack of robustness
and high computational power because it may cause a single point of failure as the entire
topology is coordinated by a single controller. It also offers low scalability due to the limited
transmission range of the controller. The complexity of the central controller increases with
the number of UAVs. The software defined network (SDN) [74] and deep reinforcement
learning (DRL) [75] are the widely used centralized TCA for UAVSN.

In a distributed TCAs (also known as cooperative control), each UAV exchanges the
mobility information and environmental data of a subset of UAVs, usually one or two-hop
members of each UAV group. Each UAV has its own controller that can make decisions by
independently utilizing locally collected information. For instance, each UAV can retain a
similar velocity and constant relative distance with its neighbor UAVs according to the
velocity and location information from its neighbors. The advantages of the distributed
control are its high network scalability with low computational cost. UAVs can share their
computation and communication burdens with neighbors. Thus, it has more flexibility and
robustness. The limitations and challenges concern avoiding local optimality owing to a lack
of global knowledge during decision-making. The virtual force [76], [77], virtual spring [78],
artificial potential field (APF) [64], graph theory-based consensus [61], distributed model
predictive control [79], [80], reinforcement learning (RL) [81], and game theory-based [82]
algorithm are widely used TCA’s for UAVSN.

In a hybrid TCAs, UAVSN has both a central controller and sub-controllers. Initially,
the central controller (i.e., BS or a UAV in aerial network) constructs the UAVSN topology
by collecting global knowledge. Then, each UAV makes decisions based on their local
knowledge and adjusts their mobility. After a certain interval, the central controller collects
mobility information from all UAVs and checks if the optimality (inter-UAV distance) of
the network topology persists or not. According to that, if necessary, it reconstructs the
UAVSN topology again from scratch. The advantages of the hybrid control architecture are
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its global awareness, better scalability, and lower computational complexity compared to
purely centralized control. The challenges in hybrid control are in minimizing the
computational complexity and number of control packets. In [83], [84], the authors applied
hybrid control methods to coordinate UAVSN missions.

In a hierarchical TCAs, the topology is controlled by selecting a set of sub-controllers,
and each sub-controller considers an equal number of member UAVSs for constructing a set
of clusters. The sub-controller is also termed as the dominating node in the connecting
dominating set (CDS) [85] or the CH in cluster-based TCAs. This type of control is similar
to decentralized control. Usually, each sub-controller manages one cluster, considering its
one-hop or two-hop members. In some design cases, the sub-controllers can act under the
control of a root central controller (BS/HAP) that makes decisions and provides mission
commands to the sub-controllers [86]. Then, the sub-controllers exchange the mission
commands, but only with their respective cluster members (CMs). The CM UAVSs execute
the mission commands and give feedback to the sub-controllers, and the sub-controller also
gives feedback to the central controller. However, considering the robustness and scalability,
many design algorithms choose a distributed clustering process without the intervention of
any central controller [87].

In homogenous UAVSNSs, the sub-controllers are selected based on the fitness at each
round of mobility updates. The key parameters used to select the fittest UAVSs as the sub-
controllers are the RE level, average LD with the neighbors [35], distances between the
neighbors, distance from the BS, and degree of the node. Some algorithms create a multi-
objective function considering multiple parameters to select the fittest UAV as the sub-
controller [35], [59]. The sub-controller collects mobility information and sensing data from
the CMs. Then, it performs data aggregation and compression, and makes a routing decision
[88]. Hierarchical control is very suitable to large-scale UAVSNS, as it creates load
balancing in energy consumption and minimizes the complexity in selecting the next
forwarding node; in particular, routing decisions are transferred to a set of sub-controllers at
each round of data transmission. The performance of the hierarchical control depends on the
sub-controller lifetime, stability, mobility control, optimal number of sub-controllers,
response time to construct the cluster topology, and number of control packets. The CDS-
based [89], coalition game theory (CGT) [88], [90]-[93] and meta heuristic Sl (i.e., particle
swarm optimization (PSO) [56], grey wolf optimization (GWO) [59], and glowworm swarm
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optimization (GSO) [94]) are the widely used hierarchical control methods to coordinate
UAV swarm missions. More details explanation about each TCA along with their
advantages and limitations are given in [40].
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Figure 2.4 Taxonomy of TCAs in UAVSNSs.

2.1.4.2 UAV Roles in UAVSN Topology

According to the UAV roles, TCAs can be classified as dynamic flat aerial mesh
network (AMN) and leader follower (LF) topologies. In dynamic flat AMN topology, each
UAYV has the same role, and they work collaboratively to explore the mission area. Each
UAV within the swarm communicates with one or two hop members and produces the
mobility information to maintain AMN that can satisfy both connectivity and coverage needs.
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In [38], [95], the authors utilized the virtual spring-based mobility model for UAV swarm
to maintain strong flat AMN. The spring has both attractive and repulsive nature to produce
resultant swarm mobility. The repulsive forces help to avoid inter-UAV collision and
maintain inter-UAV distance to reduce the overlapping in sensor coverage to the ground
terminal. The attractive forces help to maintain QoS in communication. The repulsive forces
also can be used to avoid external obstacles. Similarly, in [23], [50], the authors utilized the
V/Fs to maintain the AMN simultaneously UAVSs serve as the ABS to the GUs.

One of the most common topology formation types is the LF strategy, owing to its
flexibility and controllability. In UAVSNS, a single UAV designated as the leader flies
independently to perform the assigned mission with the help of its own control mechanism,
and other UAVs assist the leader by following its trajectory or a neighbor of the leader to
form a specific formation. The leader controls the route of the entire swarm. The formation
and stable topology are maintained through continuous adjustments of the distances, angles,
and speeds between the leader and follower UAVs. Several LF strategies have been
proposed, including single leader multiple followers (SLMF) [96], [97] multiple leaders and
multiple followers (MLMF) [91], [98], and virtual leader-follower (VLF) [79], as shown in

Figure 2.5.
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Figure 2.5 Different leader-follower (LF) topology. (a) Single leader multiple follower
(SLMF), (b) Multiple leader multiple follower (MLMF), (c) Virtual leader follower (VLF).

In the SLMF strategy as shown in Figure 2.5(a), a single leader has multiple followers.
In the MLMF strategy as shown in Figure 2.5(b), the swarm topology has multiple leaders,
and each leader has multiple followers. An associated leader and follower can flock at
different heights to execute the mission. The LF topology can consist of homogenous UAVs
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or heterogeneous UAVSs. The leaders can be predefined or can be selected on-demand basis.
In a heterogeneous network, the leaders are pre-defined. Here, the leaders usually have
higher power and computational capacities, as they collect mission data from the follower
UAVs and perform mission coordination. In contrast, in a homogenous UAV network, a
leader can be selected on an on-demand basis, such as according to the hierarchy index
during flocking, or can be determined according to the fitness of the UAV [57].

The MLMF topology can maintain a better topology formation than that based on a
single leader. In a VLF formation strategy as shown in Figure 2.5(c), a virtual leader can be
considered at the center of the mass of the formation, as a moving reference point for the
entire swarm formation. The virtual leader has a preplanned trajectory; this is also the desired
trajectory of the entire UAV formation. In [79], the barycenter of the formation shape was
considered as the virtual leader to track the reference trajectory, and the follower UAVs
maintained the required distances, velocities, and angles with respect to the virtual leader to
track the formation trajectory, thereby overcoming a weakness of the traditional LF flocking
strategy.

The LF topology formation is very helpful for performing obstacle avoidance without
partitioning the swarm. During flocking, if any UAV senses the presence of an obstacle
within its sensing zone, it can declare itself as a local leader and guide neighboring UAVs
to perform obstacle avoidance [57]. The LF topology simplifies the UAVSN topology
control problem as the entire swarm trajectory depends on a single leader, but this model's
lack of robustness in case of the failure of the explicit leader may destroy the formation of
the entire swarm. Moreover, because all of the UAVs follow one leader, the convergence
speed is slow.

2.1.5 TCA for Connectivity and Coverage

A significant amount of research has been performed on TCA in UAVSNSs, while
addressing the need for coverage and connectivity. In [99], proposed a coverage-efficient
clustering algorithm (CECA) for large-scale FANETS that maximizes the area coverage by
optimizing the number of CHs, the positions of UAVSs, and their transmission power under
delay constraints using gradient descent optimization. The CECA outperforms the mobility
control-based clustering algorithm (MOOC) [100], which utilizes virtual forces to maximize
coverage and maintain connectivity. However, the CECA encounter a slightly higher delay
related to MOOC. In [56], an energy-efficient clustering for FANET was proposed by
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optimizing a multi-objective CH selection fitness function using PSO. They also proposed
a multi-hop routing technique to send data packets from the CHs to the BS. In [59], a multi-
UAYV clustering method was proposed by solving a multi-objective CH selection function
jointly considering UAV RE, node degree (ND), and inter-UAV distances. They also
proposed a compressed sensing-based inter-cluster routing scheme that reduces the number
of transmissions. Because the positions of UAVs change frequently, a fitness calculation
relying on inter-UAV distance without mobility prediction causes instability in FANETS.
Moreover, in their inter-cluster routing, mobility prediction is not taken into consideration,
which is very crucial in FANETS. In [92], a distributed stable clustering method utilizing the
coalition game theory for FANETs was proposed, and the clustering minimizes delay in
intra-cluster communication by using link subsistence probability. However, to achieve the
Nash equilibrium, coalition game theory requires a long convergence time and needs to
perform cluster switching operation frequently in high mobility.

In [83], the authors proposed a mission-critical FANET operation (MCFO) that jointly
optimizes mission assignments and network topologies in a dynamic environment to
enhance the mission and network performance. They constructed the FANET topology by
optimizing the position of relay UAVs to ensure strong SINR among mission UAVs. They
utilized two centralized high computational algorithms (i.e., PSO and role switching) and
adjusts the topology using a gradient descent method under safety-distance and SINR
constraints. In [95], the authors proposed a virtual spring-based mobility control for
FANETSs that maintains an aerial mesh network for post-disaster operations and addresses
ground-user coverage, ensuring QoS in connectivity. In [76], the authors studied distributed
topology control via virtual forces to efficiently control a FANET topology, enhancing both
connectivity and coverage. In [34], the authors proposed a proactive distributed topology-
aware routing method based on the relationship between the TCA and the routing layer by
calculating the LD of neighboring UAVs. However, the UAV energy issue is not considered
by them. In [87], the authors proposed a TCA for FANET by constructing a CDS-based
topology and iteratively solving joint optimization to adjust the transmission power and
position of UAVs using PSO. However, in the dominating set selection, they only considered
the ND as a primary metric. According to the above review, we can say that joint
consideration of mobility prediction, ND, and RE can give better UAV fitness evaluation
and stability in CH lifetime in highly dynamic FANETS.
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2.2 Existing Mobility Models and Routing Protocols

In this section, the existing mobility models, and routing protocols for UAVSNs are
reviewed along with their advantages and limitations. The necessity of adopting a realistic
mobility model and the advantages of a RL-based routing protocol for UAVSNSs are also
discussed briefly.

2.2.1 Existing Collaborative Mobility Models

In [9], [11], several mobility models for UAVSNs were reviewed including random
direction, random waypoint, reference point group mobility, and Gauss-Markov. However,
none of these mobility models adopt the distributed autonomous cooperative coordination
of UAV swarms because they do not consider aerodynamic constraints and are mostly
proposed for MANETS [34], [35]. In UAVSNSs, adopting an appropriate mobility model that
jointly addresses distributed collaborative coordination, coverage, connectivity, collision
avoidance, and link stability is important for obtaining realistic simulation results. Realistic
mobility, inspired by behavioral flocking control, can construct a stable UAVSN topology
by following three flocking rules [101]. Here, each UAV independently makes decisions by
interacting with its neighbors and can precisely define the group motion property with inter-
UAYV caollision avoidance. Through distributed collaboration, the entire UAV swarm can
iteratively maintain stable connectivity and coverage by matching distances and velocities
with neighboring UAVs. Moreover, the prediction of the future 3D position and velocity of
UAVs can help the routing protocol to predict the topology and select a better relay UAV.

In the literature, several behavior-based mobility models have been applied for
UAVSNSs, such as Boids flocking [35], virtual force [76], virtual spring [95], [102], [103],
and APF [98]. Wang et al. [3] and Zhao et al. [9] utilized the attractive and repulsive virtual
force to control UAVSN mobility to maximize coverage to the ground user to serve as ABS
while simultaneously maintaining bi-connectivity in the UTU links. Trotta et al. [38], [95]
designed a virtual spring-based mobility model inspired by Hooke’s law to produce
attractive and repulsive forces that can maintain a strong UAVSN topology, ensuring both
aerial connectivity QoS and coverage to perform surveillance and ABS services. In [24],
APF was utilized to control UAV swarm mobility to track a mobile crowd of humans while
simultaneously maintaining aerial connectivity. Wang et al. [35] developed a Boids-
flocking-based mobility model for UAVSNSs to adaptively control the UAVSN topology by
selecting stable minimal connecting dominating sets, thereby incurring less control overhead.

20

Collection @ chosun



To prevent swarm partitioning and improve topology management, they added three
additional flocking rules: centripetalism, consistency, and synchronization along with
separation, cohesion, and alignment. However, these three new rules assume that each UAV
knows the position and velocity of the entire swarm. This assumption restricts the distributed
execution and requires a higher overhead. Chen et al. [104] developed a formation consensus
law using two-hop information, which provided a faster formation consensus and better
connectivity rate while consuming higher bandwidth.

Therefore, to maintain link stability, avoid swarm partitioning, maintain connectivity
with the BS, and ensure uniform node distribution with minimal control overhead, the
adaptive adjustment of flocking rules and their weights by using the two-hop neighbor’s
position and velocity is necessarily required.

2.2.2 Existing Routing Protocols

According to previous studies [7]-[9], [11], [13], the routing protocols in UAVSNSs are
classified as topology-based, position-based, and RL-based.

2.2.2.1 Topology-Based Routing Protocols

Topology-based routing protocols are classified as proactive, reactive, and hybrid
routing protocols.

Proactive routing protocols produce a large overhead to maintain the updated routing
table for a dynamic topology. Thus, they consume higher bandwidth and energy, which is
not suitable for resource constrained UAVSNs. Additionally, they exhibit a slow reaction to
a highly dynamic topology, which causes delays, routing loops, link breakages, and blind
paths [33]. A loop-free property is essential for dynamic UAVSNSs to prevent data packets
from being continually routed through similar nodes or paths. Blind path challenges occur
in UAVSNs when the neighboring UAVs leave the transmission range of the corresponding
source UAV within the intermediate time of topology update because of several reasons
such as sudden changes in relative mobility, requirements for energy replenishment, and
UAV failure [33]. Additionally, UAVSNs may encounter frequent link breakages if the
selected relay UAV leaves the transmission range of the corresponding source UAV during
data transmission. Both the blind path and link breakage phenomena produce high
retransmissions, delays, and energy consumption.
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In [105], [106], the authors studied the optimized link-state routing protocol (OLSR),
which encounters higher overheads and routing loops and has a slow reaction in highly
dynamic networks. Similarly, in [107], the authors studied the destination sequenced
distance vector (DSDV), which consumes a large portion of the network bandwidth and
provides a very high overhead owing to periodic updates in UAVSNSs. Hong et al. [34] first
introduced the path stability metric defined by the LD to overcome the link breakages and
trade-off between topology prediction accuracy and control overhead by adaptively
maintaining the hello interval in OLSR for UAVSNs. However, the uncertainty in UAV
communications caused by delay and limited energy are not considered. Moreover, LD is
calculated in a two-dimensional scenario. Grag et al. [108] proposed mobility and
congestion aware OLSR (MCA-OLSR) for UAV networks by leveraging a cross layer
design. In MCA-OLSR, each UAV makes a routing decision based on multiple link quality
metrics, such as LD, hop count, delay, and number of interfacing links. Owing to priority-
aware packet queue management and multi-metric routing decision, MCA-OLSR
outperforms existing OLSR protocols.

Reactive routing protocols result in higher latency and delays owing to the on-demand
route-discovery process. Additionally, in large-scale UAVSNSs, the network overhead
increases for reactive routing owing to an increase in the header size of the routing table
[109]. In [13], the authors reported that dynamic source routing (DSR) provides a
comparatively lower overhead at the cost of delays in route discovery. However, for large-
scale UAVSNSs, DSR routing encounters an extremely high overhead owing to an increase
in the routing discovery table header [109]. Li et al. [109] proposed a routing protocol for
large-scale UAV communications by leveraging the cross-layer design and introducing a
link quality metric in DSR jointly considering link SINR, relative velocity, and queuing
delay. To obtain the optimal transmit power, they utilized mean field game theory and
optimally allocated the frequency resource by traversing in the available frequency that
maximized link SINR. However, reactive DSR produces a large overhead and delay because
of the proportional increase in the routing discovery header along with a long path. Similarly,
ad-hoc on-demand distance vector (AODV) routing encounters route failures, higher delays,
and higher bandwidth consumption in large-scale UAVSNSs [107].

Hybrid routing protocols encounter higher computational complexities and overhead
owing to the complex clustering, CH selection, and cluster maintenance processes [59].
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Wang et al. [35] proposed a low complexity two-hop CDS-based topology management for
UAVSNs by adopting a Boids flocking-based mobility model. In [87], a CDS-based
dynamic topology management was proposed to maximize the throughput in the backbone
network by jointly optimizing transmission power, CDS number, and UAV position using
page rank and PSO. In [56], joint single-shot localization, clustering, and multi-hop routing
techniques were proposed using a bounding box and PSO. However, these types of CDS and
cluster-based dynamic topology management require frequent topology construction and
management, which triggers a higher overhead because of their frequent cluster head or
minimal CDS selection and advertising head declaration, cluster joining, leaving, and
merging messages [110]. Moreover, all these methods assume MAC layer resources (i.e.,
timeslots or frequency) are allocated optimally to prevent interference.

Therefore, all these traditional topology-aware proactive, reactive, and hybrid routing
protocols encounter several limitations in highly dynamic UAVSNs owing to the high
control overhead and large delay in neighbor and path discovery [111]. All these
conventional routing protocols trace the shortest path, which can trigger energy holes and
severe network congestion. Additionally, they do not support adaptability to the dynamic
topology to discover the efficient routing path autonomously. The limitations of topology-
based proactive, reactive, and hybrid routing protocols are summarized in Table 2.1.

Table 2.1 Summary of topology-based routing protocols and their limitations in UAVSNSs.

Protocol type Limitations to adopt in UAVSNs

e Higher control overhead
Proactive e Higher bandwidth consumption to maintain an updated neighbor table.

o Slow reaction to rapid topology changes

¢ High control overhead

¢ Routing loop, and link breakage

DSDV [107] e Requires periodic updates, high bandwidth, and control overhead

¢ Higher delay in on-demand routing discovery

¢ No link quality assessment

¢ Produces higher overhead during route discovery in large-scale

DSR [111] networks.

o Higher delays

AODV [107] e Higher delay, high bandwidth consumption, and link breakage

Hybrid [59] o High computational complexity to construct and maintain the cluster,
cluster head, and cluster member.

OLSR [105]

Reactive
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2.2.2.2 Position-Based Routing Protocols

In position-based routing, each UAV node utilizes the GPS for localization. In addition,
UAVs can use range-free and range-based cooperative localization in a GPS-denied
environment. Position-based routing protocols utilize local knowledge, often one- or two-
hop information, to make routing decisions. UAVs make forwarding decisions based on their
current position, the position of the destination, and the position of their neighbors. In [10],
[112], the authors studied several position-based routing protocols in UAVSNs by
classifying them into two categories based on path strategy: single-path and multipath
strategies. Under the single-path strategy, they reviewed deterministic progress-based,
randomized progress-based, and hybrid position-based routing protocols. Deterministic
progress-based routing protocols have several relay node-selection strategies, including
greedy forwarding, compass forwarding, and most forwarding [10]. Multipath strategies
include restricted direction flooding, random directional flooding, and simple flooding of
data packets [10].

According to their study, considering the dynamism in network topology in the 3D
space, inter-UAV collision, high overhead, and delay, position-based routing protocols are
attracting the interest of researchers. However, position-based routing protocols encounter
several challenges in UAVSNSs, such as maintaining the link quality [113], controlling the
hello interval to predict up-to-date topology [34], localization errors, link breakages, blind
paths, the presence of routing loops, and energy holes [33]. Additionally, to prolong the
lifetime of UAVSNS, it is necessary to achieve a proper load balance in terms of energy and
delay while determining the optimal routing path [62]. Tracing the shortest routing path may
be initially beneficial, but it cannot be an optimal routing path as it depletes the energy of a
few selected UAVSs, and the shortest paths can be extremely congested by traffic over time
[33]. It also creates energy holes in UAVSNSs because selecting the shortest path always
drains the energy of a few selected UAVs.

Greedy forwarding cannot ensure optimal performance in terms of energy consumption,
delay, and link quality, as it always seeks progress in the transmission distance toward the
destination. Additionally, owing to the selection of relay nodes at the edge of the
transmission range of the source node, greedy forwarding encounters blind path and link-
breakage problems. The compass and most forward techniques have higher possibilities of
trapping in routing loops and local minimum [10]. The term local minimum (routing holes)
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in position-based routing is defined as the selected relay UAV with no further neighbors to
relay toward the target destination node. Flooding techniques in multipath forwarding
produce excessive overhead, high MAC layer contention, high bandwidth, and energy
consumption. The limitations of only position-based routing protocols for UAVSNs are
summarized in Table 2.2.

Table 2.2 Summary of position-based routing protocols and their limitations in UAVSNs.

Path Protocol Limitations to adopt in UAVSNs

strategy
o Always seeks progress in transmission distance; thus, it cannot
Greedy ensure the desired link quality.
forwarding e Encounters link breakages, blind paths, and routing loops.

_ e Not energy efficient
S:Jnagt:]e' Compass * High possibility to trap in routing loops.
strategy forwarding e Not energy efficient

e Trapped in local minimum (no further node within transmission
Most range to forward toward the destination)
forwarding e Encounters higher link breakages and blind paths.
¢ Not energy efficient

¢ Deterministic decision to select the direction of broadcasting
Restricted Packets.
directional e Broadcast multiple copies of the same packet to the selected
flooding  direction.
Multipath e Provides excessive overhead and is not energy efficient
strategy Randomized ® Randomized decision to select the flooding direction.
directional e Provides excessive overhead and high contention.
flooding e Not energy efficient
Simple  * Excessive overhead and high contention
Flooding e Not energy efficient

2.2.2.3 Reinforcement Learning-Based Routing Protocols

In UAVSNS, link quality depends on several parameters, such as inter-UAV distance,
node density, SINR, delay, relative mobility, and RE of relaying UAVs. The optimal node
density and link SINR can be achieved by jointly optimizing the UAV mobility (position,
velocity, and acceleration) and transmitting power according to the inter-UAV distance by
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adopting a suitable TCA [34], [64]. The link delay includes MAC-layer channel access,
gueuing, propagation, and transmission delays. The optimal resource allocation in resource-
constrained UAVSNs, such as physical-layer UAV transmission power, MAC-layer
timeslots, or frequency resources, can significantly improve the SINR level in aerial links.
Thus, this sequentially improves the network-layer performance (relay selection) as they are
highly coupled.

Owing to the above advantages, researchers have jointly considered the MAC layer
delay, link SINR, relative mobility, position progress to the destination, and RE level of
neighboring UAVS, to design a multi-objective reward function in reinforcement learning
(RL)-based algorithms [7], [8]. RL is an area of machine learning concerned with how
intelligent agents ought to take an action from a specific state by interacting with a dynamic
environment to maximize long term cumulative reward. Through the iterative state
transitions, an agent learns how to choose an optimal action. Thus, RL-based action can be
formulated as a Markov decision process (MDP) tuple consisting of state, action, and reward.
The state represents the consequences that an agent faces in a dynamic environment by
taking actions according to the learning policy. Through sequential action and utilizing
previous experience, RL agents can make wiser decisions to reach a common objective.
Owing to the advantages of less modeling difficulty, RL method can be used efficiently to
solve complex multi-objective optimization problems by designing multi-objective reward
function and treating optimization constraints as the penalty terms. Thus, RL-method does
not require the convexity requirement and adaptively learn optimal policy by interacting
with dynamic environment without requiring any central controller.

In UAVSNSs, RL is applied in many scenarios such as trajectory control [114], [115],
channel modeling [116], and resource allocation [37]. Recently, RL has been widely used in
UAVSNSs to design the smooth collaborative trajectory planning for UAV swarms with
collision avoidance, and routing protocol design [117]. The combination of RL and deep
learning also known as deep reinforcement learning (DRL) is getting attention to solve
complex optimization problems due to the advantages of extracting important features,
dealing with large state-action dimensionality, and utilizing recent historical information in
time-varying dynamic topology. The recurrent neural network (RNN) such as long short-
term memory (LSTM) and gated recurrent unit (GRU) [118] can efficiently track the
temporal correlation in the sequential time series data (i.e., UAV trajectory, relative mobility,
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and channel state), which is very effective to deal time-varying dynamic topology of
UAVSNS.

According to our earlier discussion in Section 2.1, we can say that the TCA iteratively
updates the mobility of each UAV within a swarm by using the mobility information of its
neighbors. Additionally, the output of the TCA decides the topology of the UAV swarm by
predicting the present and future mobility information for each UAV (acceleration, velocity,
position, and flying direction) [21]. Thus, we can say that relative trajectory knowledge
given by the TCA and link stability is highly coupled [29]. It can ensure stable connectivity
between UAVs during flocking. The TCA updates the mobility information for each UAV
in the next timeslot based on the most recent historical mobility information in the current
timeslot, which indicates the similarity with the Markov property. This is because the
Markov property states that the next states of the process depend only on the current state of
the process. As a result, RL/DRL-based MDP formulation can be adopted to make routing
decisions to obtain the most stable path [119].

Owing to this relationship, researchers have used the RL technique to select the optimal
relay nodes for forwarding data in UAVSNS by designing a multi-objective reward function.
Because the reward function reinforces the action policy of an RL agent and accelerates the
algorithm convergence for optimal decision making, a good reward function considering
multiple objectives (i.e., delay, SINR, relay node energy, and distance progress toward the
destination node) gives better routing performance. Consequently, this joint consideration
of multiple objectives significantly improves the packet delivery ratio (PDR), throughput,
end-to-end delay, and balances the energy consumption in UAVSNSs. The important features
supported by RL-based routing protocols compared to the existing topology-based and
position-based routing protocols in UAVSNs are summarized in Table 2.3.
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Table 2.3 Important features supported by RL-based routing protocols in UAVSNs.
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The widely used RL/DRL methods are Q-learning (QL) [120], deep Q-network (DQN)
[121], [122], and deep deterministic policy gradient (DDPG) [37], [115], [123]. Among them
QL and DOQN are value-based RL method and can handle only small-scale discrete action
space. In contrast, DDPG is an RL algorithm that combines ideas from DQN and policy
gradient methods to enable learning of continuous control problem in high-dimensional state
and action spaces. DDPG is an actor-critic algorithm, meaning it maintains both an actor
network to approximate the deterministic policy and a critic network to approximate the
action-value function.

QL is a model-free value-based off-policy RL approach, which can obtain an instant
optimal policy based on historic experiences even without prior information of the
environment or even without the intervention of any central controller [124]. Here, each
agent makes an optimal decision based on its neighbor state information, which can be
treated as partial MDP. Considering the high mobility, constraint energy, and memory
resources of UAVs, the QL method is more suitable for UAVSNs routing decision making
than DRL because it is computationally more expensive and requires a large memory to store
training samples and a history of action—reward pairs. In UAVSNSs, QL is more suitable to
make online decisions by adaptively addressing the trade-off between exploration and
exploitation. Nevertheless, in large scale UAVSNs specially in cross-layer design QL
encounters complexity to deal with large state-action dimensionality.

Considerable research has been conducted to improve the performance of position-
based forwarding by integrating it with QL. Jung et al. [113] proposed a QL-based
geographic routing (QGeO) for FANETs to overcome the limitations of position-based
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forwarding. Rather than solely seeking progress in the transmission distance to forward data
toward the destination, QGeO introduces the concept of packet travel speed (PTS), which
considers the distance progress toward the destination, localization error, link error, and link
delay to select the relay UAV. However, in QGeO, the UAV energy is not considered, and
the discount factor is adjusted only for two different inter-UAV distances. In [113], [125],
the authors showed that accounting for the mobility dynamism in FANET position-based
routing with QL reduces broadcast storms and minimizes the delay in communication. Sliwa
et al. [126] proposed a QL-based routing protocol for a UAV-aided network in which each
UAYV adaptively updates the Q-values by exchanging hello packets. Additionally, to cope
with the dynamic FANET topology, the QL model adaptively adjusts the discount factor
based on the LD and cohesion value [126]. Owing to the utilization of the predictive LD
according to the relative UAV trajectory knowledge, a high PDR and lower latency were
achieved. However, UAV energy was not considered in their design.

Liu et al. [62] proposed a QL-based multi-objective optimization (QMR) routing
protocol for FANETSs to minimize the delay and UAV energy. To address the FANETS
dynamism, the QL module adaptively adjusts the value of the learning rate and discount
factor according to the delay and similarity in the neighbor set. Furthermore, to address the
exploration-exploitation trade-off in QL, the QMR routing protocol selects a relay UAV that
provides a higher PTS value. Arafat and Moh [33] proposed a QL-based topology-aware
routing (QTAR) in which each UAV maintains a two-hop neighbor list by imposing
constraints on the PTS. Using the two-hop neighbor mobility information, each UAV can
extend its local view and make better optimal decisions. However, the connectivity control
and link SINR conditions were not considered for both the QMR and QTAR. Similarly, Luis
et. al. [127] proposed an improved QL-based routing protocol for FANETS by integrating
QMR and Q-noise+ to minimize the delay and jitter. Based on the availability of candidate
neighbor UAVs, their algorithm selects the neighbor UAV according to the maximum PTS
or random exploration by utilizing the €-greedy method. In [128], the queuing theory was
applied to perform neighbor discovery and adaptively adjust the hello interval to adopt the
dynamic topology. Subsequently, they utilized QL to trace the optimal path for UAV
communication in terms of the minimal delay and communication energy consumption.
They predicted the mobility of neighboring UAVs by precisely calculating the LD using a
simple Kalman filter under RWP mobility. However, the simple Kalman filter-based
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neighbor UAV mobility prediction only ensures accuracy in linear Gaussian motion,
whereas realistic UAV maotion is mostly non-linear [129].

Without monitoring the connectivity for a particular time interval to control the relative
mobility of the UAVS, it is very challenging to satisfy the imposed PTS constraint with
neighboring UAVs. Both QMR and QTAR may face challenges in maintaining an adequate
LD greater than the PTT required for successful packet delivery. This problem becomes
more complex if UAVSN needs to maintain coverage efficiency by tracking mobile ground
targets (MGTSs) because it brings more instability to the FANET topology. Thus, to ensure
both mission and communication performance in a real UAVSN application scenario, joint
topology control and routing are required.

Additionally, we notice that neither QMR nor QTAR consider the path stability metric
in the reward function. Because the reward function reinforces the QL agent’s action, a good
reward function can help QL agents to achieve better decision making. In addition, neighbor
selection only based on the PTS metric cannot ensure better path stability because PTS only
considers the inter-UAV distance. Thus, to cope with the high mobility of UAVs in 3D space,
the relay UAV selection (state exploration) by predicting the mobility of UAVs given by 3D
LD provides better stability in routing. In [130], a piecewise linear 2D mobility model was
utilized to control connectivity among UAVs. Based on the mobility, the model controls the
value of the temperature parameter in the simulated annealing optimization, which
determines the exploration rate in QL to make energy-efficient routing decisions. However,
in their QL model, the UAVs randomly selected a relay UAV [130]. Exploration based on
random actions produces higher retransmissions and detours. According to the above
comparative review of the existing protocols, the comparison of the QL-based routing
protocols is summarized in Table 2.4.
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Table 2.4 Comparison of QL-based routing protocols in UAVSNE.
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Zang et al. [131] proposed a centralized data-driven adaptive routing protocol for UAV
communications, where a weighted link quality metric is jointly defined by considering the
inter-UAV distance, packet arrival rate, queue backlog length, and the number of hops. To
avoid network congestion, they predicted the packet arrival at each UAV by leveraging the
LSTM. Nevertheless, mobility prediction solely based on the inter-UAV distance in a
centralized server may not provide an optimal solution. In [132], an extended MDP
formulation was proposed by considering the state of both the current node and its one-hop
neighbor, to select a relay UAV for minimizing delay. Owing to the large state space and
discrete next-hop selection action space, they adopted DQN to make a routing decision.
Additionally, to mitigate the online training problem in QL, they trained the DQN model
offline using the concept of a generative adversarial network. In [122], adaptive hello
interval adjustment techniques were proposed using DQN to improve the link reliability in
dynamic UAVSNs. However, all of the above-mentioned QL and DQN-based algorithms
ignore UAYV trajectory optimization and MAC layer frequency or timeslot allocation, which
is a critical requirement to improve the routing protocol performance.

Ding et al. [133] utilized a multi-agent deep Q-mixing network to solve a multi-hop
packet routing problem from UAV to BS by jointly considering the trajectory design,
frequency resource allocation, and next-hop selection. Their objective was to minimize
transmission delays. However, the Q-mixing network computes the global Q-value for the
actions taken without properly considering the observation collected from the neighboring
UAVs [134]. Moreover, they discretized the UAV movement to simplify the action space,
whereas the realistic action space for the UAV trajectory should be continuous [29]. Qiu et
al. [135] applied MA-DDPG-LSTM to make routing decisions in UAVSNs by jointly
considering link SINR, LD, and queuing delay, which involves adopting centralized training
and distributed execution.

To cope with the dynamic topology, they considered the LSTM-based actor and critic
network. However, trajectory control according to the physical layer transmission range was
not considered, and they assumed that frequency resources are allocated optimally in the
MAC layer. In a multi-agent scenario, critic network solely based on LSTM cannot provide
adaptive attention to the neighbors’ policy and LSTM does not support parallelization in the
critic value function computation, which can trigger slow convergence and unstable training.
Moreover, in the fully centralized training, the state-action dimensionality in centralized
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critic network becomes excessively large with increasing number of UAVSs, which can cause
higher computational complexity and less scalability. DQN, double DQN (DDQN), and
DDPG encounters to behave optimally during online execution after the offline training.
Thus, further research is required to overcome above challenges.

All of the above-mentioned routing protocols consider generic mobility models, such
as RWP and Gauss-Markov. Such mobility models cannot adopt the properties of UAVSNs
and their aerodynamics [40]. Moreover, all RL/DRL-based algorithms control the UAV
trajectory by defining UAV movements in the discrete action space (left, right, forward,
backward, and hover) without any collaboration with the neighboring UAVs [133], [136].
Such discrete trajectory control cannot provide realistic trajectory because of the reduced
degree of freedom in movement. Additionally, it requires a long time to train [136]. In
UAVSNSs, the swarming behavior-based mobility models can autonomously maintain
optimal node density, coverage, connectivity, stable LD, and inter-UAYV collision avoidance
in both U2U and U2BS links [120].

Therefore, it is necessary to design swarming behavior coupling adaptive distributed
multi-agent DDPG with two-hop neighbor information to control UAV trajectory in
continuous action space, allocate frequency resources, and select relay UAVs. To generate
realistic trajectory of UAVs in a distributed manner a behavior-based motion model needed
to design under the sensor noise, wind disturbance, and communication uncertainties.
Subsequently, the key observed state of the time-varying topology, such as the motion rules
generated by the relative distance and velocity, link SINR, frequency state, queue backlog
size, and LD up to two-hop neighbors are fed into the actor LSTM-based state representation
layer (SRL). LSTM-based SRL forwards a better state to the actor fully connected layer
(FCL) by mining temporal correlations between the current state and a finite amount of the
previous historical state. Moreover, multi-head attentional critic networks can be utilized to
generate action value function and adaptively adjust the actor policy by paying attention to
its neighbors in a sorted weighted manner. Here, each agent state-action can be treated as a
guery, and the neighbor's state-action spaces can be considered as both key and value. The
normalized attention weights given by the scaled dot product guides each agent to which
neighbor it should pay more attention to produce a more precise Q-value.

33

Collection @ chosun



2.3 Issues and Challenges of Routing in UAVSNSs

In this section, the key open issues and research challenges to design RL-based routing
algorithms for UAVSN are summarized.

2.3.1 Joint TCA and Routing

In FANETS, the relative mobility and the path stability are highly coupled with each
other. TCA can ensure aerial coverage and path stability by controlling the relative mobility
of UAVs, while performing the collaborative mission. TCA also minimizes the number of
transmissions by performing the data aggregation at each elected CH and offers a stable
topology to the inter-cluster multi-hop routing protocol. Owing to the high mobility of UAVSs,
it is very difficult to maintain communication from one CH to another. Thus, an alternative
approach is required to perform inter-cluster routing so that we can deal with multiple issues
such as traffic congestion, energy holes, routing holes, loops, and link quality assessment in
inter-cluster routing. QL-based position-aware routing is suitable to perform multi-objective
optimization in FANETs, which can significantly improve the inter-cluster routing
performance.

As a result, the joint consideration of TCA and QL-based routing protocol enhances the
performance of FANETS, because TCAs control the mobility of UAVs by controlling the
relative distance, relative velocity, and direction according to the neighbor UAVS'
movements to ensure sufficient LD. Additionally, TCA maintains a strong neighborhood
with the neighbor UAVSs, and offers a relatively stable state of the UAVSs to the routing
protocol at each time slot of the mobility update while incurring minimum overhead.

2.3.2 Realistic Mobility Model

According to our survey and reviewed protocol, all routing protocols except PARRoOT
[126] consider generic mobility models, such as RWP and Gaussian Markov mobility
models. However, according to the discussion in Section 2.1 and 2.3.2, the mobility models
in UAVSNSs should be application-dependent and should adopt the behavior of Sl to achieve
realistic results in the simulation environment. Mobility control algorithms, such as Boids
flocking [35], virtual force [50], [57], [76], virtual spring [38], [95], and APF [24], [64], [98]
produce a realistic mobility model for a UAV swarm in a software simulation environment
considering the type of mission. Thus, designing and evaluating routing protocols that
consider a realistic mobility model can be an interesting research concept.
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2.3.3 Multi Objective Reward Function Design

Because the reward function reinforces the algorithm convergence, designing a good
reward function is very important to improve the routing performance. The QMR [62] and
QTAR [33] jointly consider the link delay and RE level of UAVs in their multi-objective
reward function and achieved significant performance improvement for PDR, end-to-end
delay, and balance in energy consumption. However, designing the reward function
considering path stability, delay, and UAV residual energy may provide more better routing
performance in FANETS.

2.3.4 Trade-off Between Exploration and Exploitation

Exploration is an attempt to discover a new state in the search space that may provide
a better reward compared with the existing experience of an RL agent. Exploitation refers to
performing the best action according to existing experience. Exploration aids in determining
the global optimal solution. However, during exploration, the action performed might be
good or bad because excessive exploration may produce unnecessary detours,
retransmissions in UAVSNSs, and delay the convergence of the algorithm. Therefore, in
UAVSNSs routing decision making using RL, a strategy is required to balance the trade-off
between exploration and exploitation to attain the global optima.

Some RL algorithms consider €-greedy [127] and upper confidence bound (UCB) [137]
strategies to control the exploration rate. However, in the e-greedy strategy, the exploration
rate depends on the parameter €, which is frequently approximately 10 %, resulting in a very
low exploration rate. The UCB strategy can control the exploration rate by jointly
considering the sum of the average cumulative reward and number of times a specific action
is selected within a specific time. In [62], the authors reported that the exploration rate should
be controlled according to the network condition and degree of mobility changes in
UAVSNSs, instead of exploration based on time. This is logical because, when the relative
neighbor state is stable, UAVs can exploit according to the existing Q-value. Otherwise,
when the relative neighbor state is not stable, UAVs can perform exploration according to
the predicted link duration with the neighbor links to achieve a more stable routing path.

2.3.5 Precise Calculation of UAV Energy Consumption

In UAVSNSs, the energy consumption cost of UAVs depends on the power consumption
for propulsion and communication to transmit and receive data with neighboring UAVS,
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GUs, and BS [138]. However, the propulsion power of UAVs consumes significantly more
energy than the communication energy cost [35]. All routing protocols only consider the
communication energy when calculating the energy cost. For a realistic performance, the
energy cost should be obtained by considering both propulsion and communication power.
An appropriate energy consumption cost defines the presence of UAVs in the aerial network
and defines the accurate node density, which is directly related to communication
performance. The propulsion power is proportional to the UAV trajectory. Thus, during a
collaborative mission, the trajectory should be optimized and smooth, and all UAVs should
travel approximately the same distance to execute the mission [29]. Additionally, the
propulsion energy cost depends on the type of UAV deployed to execute the mission. A
recent survey discussed the propulsion energy model according to the type of UAV [139].

2.3.6 Cross Layer Design

In UAVSNS, the link delay, SINR level, link reliability, UAV RE level, and relative
mobility prediction defined by 3D LD are the key factors in defining link quality. The
trajectory control according to the physical layer transmission power and optimal resource
allocation (i.e., frequency or timeslots, and MAC queue management) in the MAC layer,
control the link SINR, data rate, and network congestion. Joint consideration of trajectory
control, resource allocation, and relay selection according to above mentioned multiple link
quality parameters can significantly improve the performance of the routing protocol
performance because they are highly coupled. Thus, designing such cross-layer routing
protocol in UAVSNSs can be an interesting research direction.

2.3.7 Neural Network Architecture

In conventional DDPG, both actor, critic, and their target networks are constructed
solely depending on FCL. FCL cannot extract the important features based on temporal
continuity of sequential time series data of dynamic time-varying topology, which may be
useful for obtaining better policy and value function approximation. Additionally, in multi-
agent inter-active environment, each agent needs to adjust its policy according to the policy
changes of the neighboring agent by adaptively paying attention to the nearby agent
according to their degree of influence to avoid environmental non-stationarity and achieve
faster convergence. Moreover, to support scalability, and reduce computational complexity
in large scale UAVSN, critic network should utilize state-action features by using multi-
head attention network only considering the nearby agents.
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2.3.8 Model Training and Adaptive Learning

The training method of multi-agent DRL considers fully centralized, centralized
training and decentralized execution, and fully cooperative training [140]. Considering the
distributed execution of UAVSN and huge state-action dimensionality in large scale
UAVSN fully cooperative training-based DRL algorithm design is highly required. It is
because in fully centralized training each agent needs to transmit its observation-action to
the central critic, which may cause higher computational complexity, bandwidth
consumption, less scalability, and dealing with outdated mobility state of UAVS.
Additionally, considering the fixed communication range of UAVs, some UAVs may stay
very far away, and their observation-action has very less impact on current UAV’s reward.
Thus, training each UAV’s actor network based on global Q-value generated by centralized
critic without paying adaptive attention to the neighboring agent may not generate optimal
policy. Nevertheless, avoiding the local optimal decision is a challenging issue in fully
cooperative training, which requires research attention.

2.4 Comparison Between Proposed Routing Protocols

Based on the identified open issues and research challenges discussed in Section 2.3,
we proposed three state-of-the-art routing protocols for UAVSNs to meet different objective
and target application scenarios. The comparison of contributions between proposed routing
protocols are summarized in Table 2.5.

Table 2.5 Comparison of contributions between proposed routing protocols.

Parameter Proposed protocol
JTCR QRIFC JTFR
Key e Proposed a e Proposed an o Designed a fully cross-layer

contribution

hierarchical routing
protocol to perform
crowd surveillance
consisting of three
modules.

o We consider
practical mission
driven mobility
models inspired by
virtual force to
construct hierarchical
UAVSN topology.
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adaptive 3D mobility
model inspired by
behavior-based
flocking model.

¢ Designed a new
reward function for
QL-based routing
protocol using
maximum-minimum
LD up to two-hop

neighbor information.
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routing protocol using multi-
agent DRL algorithm.

o A link utility maximization
problem is designed under
several practical constraints in
UAVSN environment.

* We modified the actor and
critic neural network
architecture to adopt the
dynamic time varying
topology.



Topology
type

o Leader-follower

o Flat AMN

o Flat AMN

e Owing to two
phase topology
control and
hierarchical routing,
it provides less MAC
layer contention for
both intra-cluster and
inter-cluster routing.
o Balances the

o Faster swarm
cohesion and topology
formation using two-
hop neighbor
information.

e The proposed
mobility model
maintains both U2U
and U2BS links.

o MDP is formulated
considering multiple key
features in multi-agent
environment, which enhances
decision making.

o UAVs can make decisions
using historical information of
time-varying topology.

o Critic network with attention

Advantages  requirement between e Local optima mechanism helps to focus on
mission performance  avoidance using two-  relevant information with less
and communication  hop neighbor computational complexity and
performance. information. overcomes the environmental

e Proposed a new non-stationarity.
exploration and o Distributed model training
exploitation strategy mechanism coupling with
for routing decision swarming behavior-based
making to obtain motion model in the presence
better average reward.  of Gaussian noise helps to
It outperforms the adopt high fidelity behavior
existing method, and and optimal policy for online
benchmark method. execution.
e May trap in local e Cannot utilize the e Although it has less
minimum as only historical information computational complexity
utilize one-hop of time-varying compared to fully centralized
neighbor topology. or centralized training and

Limitations  information. e Support only limited distributed execution, it has
¢ Required higher state-action features in  higher computational
control overhead to MDP formulation as complexity to train the model.
maintain two-phase QL suffers curse of
topology control. dimensionality.

Target e Crowd ¢ 3D realistic mobility e Post-disaster mapping and

application surveillance, aerial model for routing surveillance

base station
deployment, and
proving edge
computing service to
ground devices.

protocol simulation in
UAVSN environment.
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3. Joint Topology Control and Routing

3.1 Introduction

Recently, the rapid development of UAV technology has made UAV swarms
commercially viable. Advanced sensors [141], vision-based target localization [142], [143],
battery improvements, ultra-wideband indoor and outdoor localization [144], GPS-based
localization [56], obstacle avoidance techniques [6], integration of various artificial
intelligences [59], and machine-learning techniques [145] are used together to provide
autonomous operation of a UAV swarm. Low-altitude UAVs and drones have shown
considerable potential to mitigate pandemic disease outbreaks, especially during COVID-
19. This is accomplished via large-scale crowd surveillance and public announcements to
enforce social distancing. The UAVs have been used to spray disinfectants into
contaminated areas and deliver emergency medical supplies. UAVs equipped with infrared
cameras for large-scale temperature measurements in crowds have also been deployed [146].

It has been observed that LiDAR sensors with 360° field of view equipped on a UAV
can track MGTs, i.e., mobile crowd of human, while preserving individual privacy and
monitoring social distancing. Moreover, LiDAR-based 3D UAV mapping is functional and
provides high accuracy during harsh weather [147]. Today, cities are dense population
centers driven by economic motives, resource availability, and social standards. As a result,
next generation video surveillance systems are expected to incorporate UAV swarms [24],
[148].

The deployment of UAV swarms for persistent crowd surveillance poses several
research challenges. To localize the ground targets utilizing the onboard vision sensors of
each UAV is a challenge [149]. Another challenge is the topology control of a UAV swarm,
which adjusts UAV positions in 3D space periodically according to each UAV’s
transmission range not only to maximize coverage but also to maintain the high connectivity
in UAV-to-UAV (U2U) links with the desired SINR [23], [24], [50], [84]. Efficient energy
management is also a challenge. It can be achieved by an energy-efficient routing protocol
that delivers the sensed data such as the captured video of MGTs, 3D LiDAR mapping, and
thermal images to the BS or the mobile edge computing server with minimum delay and
high PDR in a real-time basis. Though the energy-efficient routing prolongs the lifetime of
FANETSs significantly, the energy replenishment technique is required to perform persistent
surveillance [38].

In this study, we focus on joint topology control and routing to ensure mission
performance while improving communication performance. Energy efficiency is also
considered in routing. Similar to [149], we consider the vision-based localization of MGTs
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within a mission area. Some state-of-the-art object detection and categorization methods can
be used to visually distinguish MGTs from other background objects [142]. UAV swarm
deployment for optimal MGT coverage over mission areas is very challenging owing to
several constraints such as the limited number of available UAVs, energy limitations, limited
communication ranges, desirable SINRs of U2U links, MGT mobility, trade-off between
coverage efficacy, and aerial connectivity [100]. Surveillance using a UAV swarm requires
maximizing the coverage of MGTs while transmitting the sensed data to BSs, which
demands high QoS in connectivity with acceptable delays [99]. To meet the mission
performance, UAVs should be placed as wide as possible, which affects the QoS in the U2U
links. To preserve strong connectivity, UAVs should not frequently fly away from each
other’s communication range by maintaining the three principles of flocking: cohesion,
separation, and alignment [98]. Owing to the relatively high cost of UAVS, it is infeasible to
deploy enough UAVs to cover a large mission area. Therefore, UAVS require to move to
track maximum MGTSs as dynamic coverage. The static coverage gives a fixed coverage
density, but it is not appropriate to sense a particular area for most of the time while leaving
the remainder, and the density of MGTs may not be equal [29].

In [13], [111], the authors studied the topology-aware proactive, reactive, and hybrid
routing protocols that may produce not only high control overhead and long delay but also
a routing loop. It is because they have a slow reaction to the highly dynamic topology.
Finding the shortest path may be good for the fastest delivery during the initial phases, but
it cannot be an optimal routing path because it may trigger energy holes as it drains the
energy of a few selected UAVS, and the shortest paths can be extremely congested [62]. In
contrast, by considering the 3D dynamic time-varying topology, higher control overhead,
and the possibility of inter-UAV collision, the position-based routing protocols are expected
to be a valuable option for FANETSs [10], [112]. However, because they only look for
progress in transmission distance to reach the desired destination without both predicting the
relative mobility and considering the link quality (LQ), they face higher link breakages in
highly mobile FANETSs [150]. They also encounter some other challenges with FANETS,
including the hello interval for up-to-date topology prediction, the presence of routing holes,
routing loops, and balanced energy consumption [33].

Thus, to deal with multiple problems, an intelligent algorithm is required to perform
multi-hop routing in FANETs. Recently, RL is widely exploited to enhance the
communication performance in FANETS, by predicting channel conditions and by jointly
optimizing the UAV trajectory and communication performance [138]. By iteratively taking
actions in a dynamic environment and exploiting previous experiences, RL agents can make
wiser decisions to maximize the reward. QL is a value-based model-free off-policy RL
algorithm, which is one of the simplest and most practiced RL algorithms [150]. Owing to
the advantages of multi-objective optimization, the position-based routing protocol
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incorporating QL is a lucrative solution for resource-constrained FANETS [62]. QL can be
used to avoid the routing holes and loops by assigning minimum rewards. Nevertheless, the
QL process can result in higher retransmissions that drain UAV energy. This is mainly due
to the insufficient training samples, the imbalance between exploration and exploitation
strategy, and random actions lacking proper guidance. In this paper, to overcome the above
limitations, we propose an integrated scheme of two-phase topology control and position-
based Q-routing with a new state exploration strategy, which is named as joint topology
control and routing (JTCR).

To maintain a stable FANET topology, strong neighboring relationships should be
maintained by controlling the relative distance, resultant direction, and velocity so that the
link longevity (LG) among neighboring UAVSs is maximized. To accomplish this, we
propose JTCR to jointly investigate topology control and routing in FANETS. The major
contributions of this study are summarized as follows:

o Virtual force-based mobility control (VFMC): The VFMC is the first module of
JTCR and utilizes two different virtual forces: the MGT discovery force (MGT-DF)
to maximize coverage toward MGTs and the adaptively weighted topology
formation force (TFF) to ensure the desired SINR level in U2U links under the
minimum separating distance. By leveraging these virtual forces at each timeslot,
each UAYV can estimate a net virtual force (NVF) to determine the optimal mobility
information. The VFMC optimizes the hello interval to obtain topological changes
faster and minimizes the control overhead according to the minimum link longevity
found within the one-hop vicinity of each UAV.

e Energy-efficient mobility-aware fuzzy clustering (EMFC): The EMFC is the
second module of JTCR and utilizes the mobility information provided by VFMC
to divide the topology into multiple stable clusters for data aggregation. The EMFC
clustering concept reduces the number of agents, as data packets are aggregated at
each selected cluster head (CH). This helps the next Q-routing effort to relay data
traffic to the BS with less transmission and less MAC layer contention, and it gives
a high PDR compared with the individual UAV transmissions to the BS.

e Topology aware Q-routing (TAQR): TAQR is the third module of JTCR and
achieves the multi-objective optimization for inter-cluster position-based multi-hop
routing. The TAQR offers the source CH UAVs to transmit the aggregated data
packets (ADPs) to the BS by selecting an optimal routing path that avoids
congestion, energy holes, loops, and link breakages in FANETS.
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QL requires exploration to converge to an optimal route. During exploration,
uncertainties may produce unnecessary detours, resulting in a larger number of
retransmissions and more energy consumption. To overcome this problem, we
design a new state exploration and exploitation strategy for FANETS based on the
relationship between the average neighbor intimacy (ANI), packet travel time (PTT),
packet travel speed (PTS), and the link longevity. This strategy meets the trade-off
between exploration and exploitation to avoid local optima. It also helps to avoid
unnecessary random exploration and detours, which accelerates the convergence
and reduces the number of retransmissions in FANETS.

We design a new multi-objective reward function based on the one-hop delay,
path stability defined by neighbor intimacy (NI), and the RE of UAVs. Our designed
reward function achieves a better average reward compared to the existing routing
protocol. The TAQR can avoid routing holes, routing loops, failure-state, and link
breakages by introducing a penalty mechanism and topology adjustment triggering
method.

3.2 System Model

We consider a set of quadrotor UAVs U = {ui}'izll, equipped with sensors (e.g., LIiDAR,

thermal and normal cameras, GPS, IMU, and wireless communication interfaces) deployed
in a 3D mission area, D (length = x,width = y, height = h) . The UAVs perform
surveillance operations that track a randomly distributed set of MGTs, M = {mk}}{"ﬁl, as
shown in Figure 3.1. Here, |.| represents set cardinality. The entire surveillance operation
time T is divided into equal n discrete timeslots T = {tn}'nT='1, where At is considered as the
length of each timeslot t,,. At each t,,, each UAV periodically senses the mission area D,
and transmits data (e.g., videos and 3D LiDAR mapping of MGTS5) to the associated leader
CH UAV. The data are then transmitted to the BS for further processing with the help of an
edge server . We assume that the duration At is sufficiently small, and the location of UAVs
are fixed within this interval. At each t,,, the UAVSs can leave the aerial network for energy
replenishment via a charging scheduling algorithm and thereafter rejoin in the aerial network

[38]

Each UAV u;, can localize itself in the global frame at each time instant ¢, by utilizing
its GPS, whose coordinates are p,,,(t) = (x;,¥;, h;) and has a fixed communication range
R with transmission power P.,. UAVs utilize their on-board sensors to localize MGT
positions or dense areas (DAs) of MGTs within their disk-size sensor-coverage radius R,
at each t,,. All UAVs are aware of the location of the BS and dimension D. Our proposed
JTCR, which is used to perform crowd surveillance in terms of channel and delay models,
topology construction model, and routing model is discussed below.
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Figure 3.1 UAV swarm network for persistent crowd surveillance.

The frequently used notations in this study are summarized in Table 3.1.

Table 3.1 Notations used in this study (JTCR).

Notation Description
D Three-dimensional (3D) mission area
U= {ui}ig |1 Set of u;UAVs
M = {mk}lkﬂill Set of MGTs
T = {fn}lnT=|1 Entire surveillance time
At Length of each timeslot t,,
G(t,) FANET topology graph at each t,,
Py, Position vector of each UAV u;
vy, Velocity vector of each UAV u;
a,, Acceleration vector of each UAV u;
Ry4 Separating distance range
R UAV communication range
N(u;) One-hop neighbor of UAV u;
dy,; Distance between two neighboring UAVs
R¢ Sensor coverage to the ground terminal
ngF MGT discovery force (MGT-DF) vector
Topology formation force (TFF) vector
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Ui H
Net virtual force (NVF) vector

LGy, Link longevity for link wu;;
HI Hello interval for each UAV u;
LQy, Link quality for link w;;
NIy, Neighbor intimacy
NDy, Node degree of UAV u;
RE,, Residual energy of UAV u;
Npmax Maximum cluster size
Ry IF-THEN Fuzzy rules
delayuij One-hop delay on link u;;
PTT,,; Packet travel time for UAV u;
PTS,,; Packet travel speed for UAV u;
T Multi objective reward function
Qyy; Learning rate in Q-learning
Ay Discount factor in Q-learning
ANIL, Average neighbor intimacy for UAV u;
PFChopy One-hop potential forwarding candidate set

3.2.1 Channel and Delay Model

Owing to the open 3D spaces, communications among high-altitude UAVs (U2U links)
and UAV-to-BS links are dominated by the LoS [92]. At time instant ¢, the channel power
gain G;;(t) between a source UAV wu;, and a receiver UAV wu;, or a BS in the free-space path
loss model can be expressed as follows [151]:

Gij(®) = podyy, (0), (3.1)

where p, represents the channel-power gain at a particular reference distance of 1 m, ¢ is
the path-loss exponent, and dui,-(t) represents the distance between two UAVS. In our study,

we utilize the time division multiple access-based MAC to ensure that each UAV gets a
dedicated timeslot for broadcasting with interference avoidance. We assume that some
UAVs transmit data with a common probability of ¢ independently at each timeslot.
Therefore, the expected interference I;;(t) on link wu;; is expressed as [;;(t) =
Yrevnhzij PGrj (t)P{, where ¢ represents the interference rate with a set of £ # i, j active
neighboring UAVs of receiving UAV u; [99]. Thus, the approximate SINR W;;(t) in dB
between two UAVs under I;;(t) is expressed as follows:
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() — Gij(OPex _ Gij(t)Pey
Fij (t) = 10log Ijj(t)+ Ny 10log Yhxij DG a(OPE+N,

(3.2)

where N, is the assumed additive white Gaussian noise. According to the ¥;;(t), the per-
hop packet error rate PER; ; (¥;;(t))between transmitter and receiver is estimated as follows
[152], [153]:

1, Wii(t) < Wi

PERy; (¥;(1)) ~ e (<)), ) > Wy (3.3)

where Wy, is the SINR threshold. Additionally, a, and g, are transmission-mode-
dependent parameters whose values are stated in [153]. The average one-hop delay tL’}]‘.lC

between two UAVs is expressed as follows [99]:

mac _ Tij
tuij - [l—PERij(L["ij(t))]’ (34)

where 7;; = tycx — tey represents the round-trip time of one-hop transmission. Here, the ¢,
and t,cx represents the packet transmission time and acknowledge (ACK) reception time.
For system bandwidth B, the transmitted data rate R, is estimated as R, = B log,[1 +

;0]

3.2.2 Topology Construction Model in FANETs

We design a two-phase topology control to construct the topology for a large-scale
FANET and above the TC, a position-based multi-hop routing incorporated with the QL is
applied to perform surveillance.

In the first phase of topology control, UAVs use the distributed VFMC algorithm to
construct the initial FANET topology G (t,,) = (V,E, M), where V € {U U BS} represents
the vertices consisting of UAV u; € U and BS. Here, each UAV u; € U, communicates with
neighboring UAVs within the communication range R, and senses my, € M, MGTs within
the R¢. A wireless link E, between two UAVs u;; exists if the distance between two UAVs

dui,- < R. The objective of the VFMC is mathematically illustrated as follows. We find the
mobility information M1 € (py,, vy, a,,,) for each UAV w; at each ¢, so that

wmax YR m+ (- @)max LGy, u; € N(uy), (3.5)

subject to the following constraints:

Umin < Dy, < Vmax Vu; € U, (358.)
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Amin < Qy; < Amax, Yu; € U, (3.5b)
honin < hy; < hnax, Yu; € U, (3.5¢)
Ryg < dui,- (t) <R. Yu; € U, (3.5d)

According to (3.5), the VFMC requires to determine the M1 at each t,, that consist of the
position, velocity, and acceleration (py, v, a,,) for each UAV w; € U so that the
maximum number of MGTs m;, € M can be tracked, and the LG among one-hop
neighboring UAVs N (u;)is maximized for that particular ¢,,. In (3.5), the first component
determines the mission performance as MGTs coverage, and the second component
determines the communication performance by maximizing the LG with N (u;) UAVs. The
weighting parameter w < 1, determines the balance between mission and communication
performance, whose value is adaptively set according to the node density by performing the
topology adjustment. Constraints (3.5a), (3.5b), and (3.5c¢) indicate that the velocity of each
UAV must be within v, € [Vyin Vmax] » the acceleration should be within a,, €
[@min Gmax] » and the flying height should be adjusted within hy. € [Anin Amax]
respectively. According to (3.5d), the relative distance between two neighboring UAVs
dul.].(t) must be greater than the separating distance Rg4 to avoid inter-UAV collisions and

to minimize the overlap in R, of adjacent UAVs. Additionally, dul.].(t) should be less than

the communication range R to maximize the LG and maintain the SINR level in U2U links.
The details of the VFMC algorithm is given in Section 3.3.1.

In the second phase of topology control, the UAV swarm utilizes the given M1 to divide
the whole swarm network into multiple stable clusters to perform data aggregation under the
cluster-size constraint. The EMFC obtains the fittest UAVs as the CH by calculating the
priority index (PI) in association with the fuzzy logic. The fuzzy logic blends a few
parameters such as NI that is computed from LG and LQ, ND, and RE within N (u;) of each
UAV. The fuzzy logic is an appropriate tool for blending the above parameters for better
decision-making. The fuzzy logic system has three steps: fuzzification, rule-based fuzzy
inference, and defuzzification. During fuzzification, the above four parameters are mapped
into normalized crisp values representing input fuzzy sets utilizing two widely used fuzzy
membership functions to determine the degree of each fuzzy input via three predefined
linguistic values. During the second step, the predefined IF-THEN rule is combined with
each fuzzy input, which gives an aggregated fuzzy output, Pl. During defuzzification, the
aggregated fuzzy output is converted into an output crisp Pl for each UAV utilizing the
center of gravity (CoG) [154]. The UAV with the highest P1 within N (u;) works as a leader
CH that carries the ADPs. ADPs are considered learning agents in the next TAQR. The
details of the EMFC algorithm is given in Section 3.3.2.

46

Collection @ chosun



3.2.3 Q-Learning-Based Inter-Cluster Routing Model

The third module of JTCR is TAQR and it performs inter-cluster routing in FANETS
to route ADPs from CH UAV to BS, as shown in Figure 3.2. In this sub-section, the relation
between two-phase topology control and TAQR multi-hop routing is briefly discussed. QL
evaluates the expected value of the cumulative multi-objective reward and achieves the
instant optimal policy according to the historical experience in an unknown environment
without having any central controller. According to the local view of the agent, the decision-
making process using the QL can be expressed as a partial Markov decision process (PMDP)
tuple (s, a,p, ), where s represents the finite set of states, a represents the finite set of
actions, p represents the state transition probability, and r represents the reward that
evaluates an action. We found QL more suitable in our resource constraint dynamic FANET
environment compared to other RL techniques. This is because deep learning algorithms
require higher computational complexity, large training samples, and large memory to
preserve the history of state-action pairs in replay buffer.

The VFMC predicts the mobility of each UAV in the next timeslot based on the
mobility state in the current timeslot by interacting with both one-hop neighboring UAVs
and the detected MGTSs, which implies the similarity with the Markov property. This is
because Markov property states that the next state of the process depends on the current state
of the process. The ADPs are forwarded from a CH UAYV (source state) to the BS (final state)
by selecting a relay UAV located toward the direction of the BS. Such a forwarding includes
a new state transition probability to select an optimal routing path in terms of delay, path
stability, and balanced energy consumption. Owing to these relationships, the FANET
routing decision can be formulated as a PMDP. The PMDP process in QL gives limited
action space to each agent because it is only defined by its one-hop neighboring UAVS.

In TAQR, as shown in Figure 3.2, the ADPs initially held by all source CH UAVs act
as learning agents, and the entire FANET topology is the environment. The current state of
the ADPs is the location of the source CH UAV, which is routed to the BS through the state
transition from one UAV to another until it is delivered to the BS. During the state transition,
the next state of the ADPs can be the BS or neighboring UAVs (relay state) that are
considered in the PFC set. When a CH UAV wu; transmits the ADPs to its one-hop neighbor
UAV w;, this is defined as an action Ay and the corresponding link is u;;. Through action
Ay the state of the ADPs moves from s, to Su; and the corresponding Ay is evaluated
by a multi-objective reward T consisting of a one-hop delay defined by PTT, NI, and RE

of the selected relay UAV. For each relay-link selection, the UAV receives a reward or a
penalty. Progressively, each UAV collects a Q-value that contributes to an optimal policy in
which the cumulative reward is maximized over time.
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The Q-values are updated at each forwarding UAV according to the following equation:

Qn(sui' auij) < Qp(sui' auij) + auij [ruij + Auij rgl,aXQ(Suj' all,lij) - Qp(sup auij)]! (36)
uij

where Q"(sui,auﬁ) and Qp(sui,aul.].) represents the new and previous Q-value. The term

max Q(suj,a;ij) represents the expected maximum Q-value in the next state Su; when the

a

uij
agent selects the best learned action a;i].. The a,,;; and 4, represent the learning rate and
discount factor, respectively, whose values are within [0 1]. The Qy, indicates the degree to

which newly obtained information overrides the old information, and this parameter controls
the convergence of the QL. The value of Auij controls the importance of future rewards and

defines how much the QL learns from its previous mistakes. As a result, to estimate the
precise Q-value, the Ay, and Aui]. should be adjusted adaptively to cope with the dynamism

of FANETSs. The details of the TAQR algorithm will be given in Section 3.3.3. The
relationship stack of the two-phase topology control and routing in JTCR is illustrated in
Figure 3.2.

JICR
................................................................................ R
E Two-phasc topology control (TC) H
' '
E VFMC Mobility controller EMFC Fuzzy logic controller E
' . (Data fusion center) (!
H Mission Tnput Fuzz E
' performance sets Lot eri '
' nput crisp !
E - value H
' UAV mobility . Defuzzification '
! information (M) Fuzzitication Inference (CoG) '
' detection and initial H
1 RF. . . . 1
E TOPO]ﬂg_}’G(t,,) - CQutput crisp value lPT E
H o construction '
1 | Communication Data transmission to CH Selection )
H performance nearest BS (Data fusion center) || 1
’ L}
1 L}
H If {CH is not within the transmission range of BS} l E
)
H TAQR QL-based multi-hop routing controller E
)
! Agent ,
! Learning agent; ADPs holding by CH UAVs | :
1 L}
L}
E State tramsition: Source CH UAV to neighbor Reward '
! UAVs and state transition continues until reach to ewar o H
! v the BS PIT | |[& :
H Action : !
! Neighbor scleetion NT g !
. M ’
L e o =
5 o L}
E FANET topology graph generated by two-phase T )
! - TC: VEMC and EMFC !
: :
1 )
1 L}

Figure 3.2 The relationship stack of the two-phase topology control (VFMC and EMFC)
and QL-based multi-hop routing (TAQR) in JTCR.
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3.3 Topology Control and Routing Algorithms

In this section, we first present the topology construction of the JTCR via a two-phase
topology control to perform the surveillance. Then, we derive the multi-hop routing
algorithm (i.e., TAQR) to route the ADPs to the BS.

3.3.1 Distributed VFMC Algorithm

The distributed VFMC is the first module of our JTCR, and it constructs the initial
topology for FANET by detecting the MI for each UAV. We assume that the position of the
MGTs is unknown to all UAVs and that they are tracked by the onboard target tracking
sensor (e.g., LIDAR) within the R when they fly over the MGTs. They also exchange hello
packets with one-hop neighbor UAVs within their communication range, R, at certain hello
interval to maintain aerial connectivity with updated topology prediction. Low hello interval
provides better positioning accuracy of neighboring UAVs while increasing the control
overhead in turn. A high hello interval reduces the hello packet but forces UAVs to deal with
inaccurate positionings of neighboring UAVs, leading to incorrect topology prediction.
Therefore, we obtain an optimal hello interval for each UAV to significantly reduce the
control overhead and to control the FANET topology with the updated mobility information.

The VFMC has two virtual force vectors, and each has two force components that create
a balance between mission and communication performance, as given in (3.5). The first
virtual force is the MGT-DF, which ensures coverage efficiency by tracking the maximum
MGTs within D. The MGT-DF has two force components and obtained with the help of
onboard LiDAR data, which are used to localize DAs or isolated MGT locations within the
R.. The magnitude and direction of the virtual forces are computed based on the Euclidean
distance between the UAVs and the DAs of MGTSs represented as d(u;, DA;) or the isolated
MGTs represented as d(u;, m; ) considering the uneven distribution of m;, MGTSs, as shown
in Figure 3.3 (a)-(b).

The first force component of the MGT-DF is the attractive force toward the high DAs
of MGTs F(u;, DA;), within the R of each UAV wu;, as shown in Figure 3.3(a). It is
computed based on Coulomb’s law:

1

DA;
F(u;, DAy = %21 Kpa, X o=

=1

(3.7)

where K4, represents the attractive force constant toward high DAs of MGTs and depends

on the size of the DAs. If a UAV u; tracks two different-sized DAs within its R, the
resultant force direction will be slightly closer to the large DA (DA-2 in Figure 3.3(a)) and
will be adjusted following the line between two DAs to efficiently maintain the travel
distance of each UAV while maximizing coverage, as shown in Figure 3.3(a).
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Figure 3.3 Geometric diagram of virtual forces and their motion components that act on
each UAV in a UAV swarm.

The second force component is attractive force toward the isolated MGTs F (u;, m;) within
the R of each UAV wu;, as shown in Figure 3.3(b). It is also computed based on Coulomb’s
law as given below:

1
F(u,my) = X0k Ky % d(u;my)?’

(3.8)

where K, represents the attractive force constant toward the isolated MGTs, and K, <
Kp 4, to give attraction priority to the DAs of the MGTs. The attraction values of the force
decrease with the increasing distance between the UAVs and DAs or MGTSs. As a result, we
adjust the attractive force value by controlling the UAV height within [Apin Amax]-
Therefore, the MGT-DF ngF for each UAV wu; is computed as follows:

Fpi. = F(u, DAY) + F(u;, my), (3.9)

The Fi. is the second virtual force that maintains the separating distance to avoid

collisions while reducing overlap in R, among neighboring UAVS. It also maintains
communication QoS by controlling the relative distance between UAVs to maximize the LG

as much as possible, as given in (3.5) and (3.5d). The FLT‘;F has two force-vector components:
the attractive force F,p(u;, ;) and the repulsive force Frp(u;,u;), as shown in Figure
3.3(c). Both F4r(u;,u;) and Frp(u;, u;) are obtained according to inter-UAV distance to
satisfy the imposed flocking constraints given in (3.5d). As UAVs are dragged toward the

DAs of MGTs, it is necessary to maintain a separating distance R,;, among the N (u;) of
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each UAV to avoid inter-UAV collisions and reduce overlapping in R.. FRF(ui,uj) is
computed as follows:

1 1

. yKpl=>——-—=)], 0<d,..<R

P (1) = { 20 Ko (dai,. de> wy < Rsa, (3.10)
0, Rsqg < dy;; <R

The Frp(u;, u;) is activated only when the separating distance constraint is violated
(dy;; < Rsq). The value of the repulsive force constant is always K > Ky to strictly
maintain the separating distance, where K, is the attractive force constant. When UAVs
flock by satisfying the relative distance constraints given in (3.5d), the Fgp(u;, u;) is zero.
However, due to the uncertainty in UAV flocking (such as uneven distribution of MGTs in
D), and the UAVs may frequently fly away from each communication range R. As a result,
to maintain the strong neighbor relationship, we control the relative distance between two
UAVs within the range given in (3.5d) by applying an attractive force F,r(u;, u;). The

F,r(u;,u;) is exponentially increases when the relative distance is increased within
Ryg < dui]. < R, and it becomes zero otherwise. The F 4 (ui,uj) is computed as follows:

(d“ij_RSd)z
) = 4 Zujentn Ka (Ra = duy ) exp [ =5, Rea < dyyy <R (3.11)

0, otherwise

Fup(u;, Uj

Therefore, the FL,. is computed as follows:
Frip = 01F 45 (U 1)) + 0o Fpp(u;, ), (3.12)

wherew; + w, = 1 is the force weight, which values are adaptively adjusted by applying
topology adjustment according to the node density within neighboring UAVs to meet safety
distances and QoS in communication requirements to maintain a sufficient LG and the
desired SINR.

The topology adjustment is performed by sensing the changes in neighboring distances

represented as TAS and TAY' for each UAV w;, at two different times ¢ and ', where ¢’ >
t. This is computed as follows:

TAgt' = exp [m {de — min duij}]’ (3.13)

quN(ui)
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tt! _ —

where 1, and n, are sensitivity parameters. The TAﬁt'measures the degree of violation in
imposed safety-distance constraints, duij > R4, and immediately increases exponentially if
dy;; < Rsq. If the value of TA'is greater than the threshold &, , the weight becomes w, >

w to increase the effect of repulsive force given by (3.10). The TAY measures the degree
of violation for the imposed QoS constraints, dui,- < R . It immediately increases

exponentially if dui,- > R. If the value of TAgt'is greater than the threshold §,, the weight
becomes w; > w, to increase the effect of attractive force given by (3.11).

Finally, the NVF inVF acting on each UAV is computed via vector addition as follows:
FyLp=Fpb + Frl. (3.15)

According to the Newton’s second law of motion, at each t,,, each UAV u; utilizes the Fyl,
as its control input (acceleration) to determine the MI € (a,,, vy, Py,;) and it can be
computed as follows:

a,(t,) = <| NVF”> x tan" (|| Fyyze|l) % % X Apaxe (3.16)
VF

vui(tn+1) = vui(tn) + aui(tn) x At, (3.17)
vu,(tn+1) ”vui(tn+1)” < Vmax

= , 3.18

vul (tn+1) [ Vul(tn+1) x T ||‘Uu,(tn+1)|| > Vrmax ( )

||vu (tn+1)|| :
Pu,(tne1) = Pu,(tn) + vy, (DAL + @y (8,)AL, (3.19)

where v, (t,4+1) and py,, (t,41) represents UAV velocity and position in the next time slot,
respectively. Here, ||. || represents the magnitude of a vector. According to (3.16)—(3.19), at
each t,,, UAV u; utilizes FNVF to compute its acceleration a,,, velocity v,,,, and position
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Py, As the magnitude of Fy}, varies from 0 to +oo, to set the acceleration within

[amln amax], We apply a trigonometric function in (3.16). Similarly, to keep the velocity

Within [Vmin Ymax], We use equation (3.18). According to the MI, FANET topology G (t,,)
is constructed.

We derive the LG between two adjacent UAVs and determine the adaptive hello
interval to optimize the number of hello packets. The LG defines the link subsistence time
between two adjacent UAVSs, which is a function of the relative distance, relative velocity,
and communication range R of the UAVs. Let UAV u; receive two consecutive hello
packets at time t and t” (t’ > t) from the neighbor UAV u; € N(u;), as shown in Figure
3.4.

-
L PRy

Ci
MOV

-
-
-------

Figure 3.4 The LG and hello interval estimation between two neighboring UAVSs (receding
scenario).

According to the hello packet, UAV wu; obtains the position of UAV w; at times ¢ and
t' as pu].(t) and Pu; (t"), respectively. Similarly, from M1, UAV u; detects its own position
as py, (t) and p,, (t"). The change in relative distance Ad between two UAVs from ¢ to t'is
computed as Ad = dy,, (t') = dy,,(£) = ||pu, (&) = u, (0| = || P, (©) = pu, (©) |- When
Ad > 0, receding motion occurs between two UAVSs. From t to t', the predicted relative
velocity between the two is Ad /(t’ s As aresult, the expected time needed to move away
|| ~duyy ()]

-
approaching motion occurs between the two UAVS. The expected time to cross distance R

from each other’s communication range R, is estimated as —————— When Ad < 0, the
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at a minimum relative speed vy, , IS computed as [ .x = R/Umin' Finally, LGy, is
estimated by each UAV w; for u; € N(w;), as given below:

R—dq..(t)

Jr=au, @] vy ”, if Ad >0

LGy, =1 @9 (3.20)
% X T if Ad < 0

Instead of using a fixed hello interval, it should be optimized with topological
alterations to offer an updated neighbor table to the routing protocol. As a result, we set the
interval for each UAV equal to the minimum LG found within N(u;) of UAV u;. The
adaptive hello interval HI is estimated as follows:

HI = o X [ min LGy, |, (3.22)

u]-EN(ui)

where o represents the frequency factor whose value is within o € [0 1], and the default
value is 0.5. A UAV u;, senses the changes in N(u;) set from time t to t’ represented as

Nt(u)and Nt' (u;) respectively, and the value of o is adaptively controlled as follows:

S 62)

|v @ U e

To estimate the LQui]. of a bidirectional link, we use the expected transmission count

[155], which is computed by counting the number of transmitted hello packets and those
receiving ACKs for a particular hello interval, as given in (3.21) and computed as follows:

Qui]- - Tful-]-’

(3.23)
where fdul.].represents the forward delivery ratio of successfully sending hello packets to the
receiver, and T‘fuij represents the reverse delivery ratio of successfully receiving the ACK
for each hello packet from the receiver.

Each UAV shares the hello packets with N (u;) UAVs using the hello interval given in
(3.21), including a unique UAV ID, a hello packet sequence number, an M1 with parameters
of delay, an LG, an LQ, an ND, and an RE, which are utilized in the phase-2 of topology
control, and the routing for better decision making. The VFMC algorithm is described in
Algorithm 3.1.
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Algorithm 3.1: VFMC

Input: Locations of DAs and isolated MGTs m; € M, UAVs u; € U candidate position p,,;, and
predefined thresholds &, and &,.

Output: Topology G(t,) = (V,E,M) with MI(t,) € (Py, Yy, @) and Neighbor relationship
parameters: LG, hello interval (HI) and LQ

1: Proceed to the next time slot ¢,,.,

Step 1: Broadcast HELLO Packets (HPs) with current position

2: foreachu; € U do

3: Broadcast HPs to one-hop neighbor

4: end for

Step 2: Information update for neighbor discovery

5: for v received HPs at UAV u; from neighbor u; do

6: Get originator u; unique UAV ID

7 if [u; € N(w)] then

8: if (received HP sequence > record HP sequence) then
9: Update the position of u;

10: end if

11:  else

12: Add a new record for u; to neighbor set N (u;)
13: endif

14: end for

Step 3: Mobility information MI(t,) € (P, vy, @) detection
15: for each UAV u; having one-hop neighbor u; € N(u;) do

16: Calculate the MGT-DF F . using (3.7)—(3.9)

17: if (TAS"' > 6, ) then // Violation of the safety constraint
18: Set the force weight as w, > w; in (3.12)

19: else if (TAY" > &, ) then //Violation of the SINR constraint
20: Set the force weight as w; > w, in (3.12)

21: else

22: Set the force weight as w,; = w, in (3.12)

23: end if

24: Calculate the TFF F,L . using (3.10)—(3.12)

25: Compute the NVF Fy,. using (3.15)

26: Compute MI(t,) € (Py; Vu Ay,) UsiNg (3.16)—(3.19)

27: Construct the FANET topology G(t,) = (V,E, M)

28: Calculate the LG using (3.20)

29: Update the HI using (3.21)—(3.22)

30: Calculate the LQ using (3.23)

31: end for

3.3.2 EMFC Clustering

The EMFC is the second phase of the JTCR that divides the first-phase topology G(t,,),
into a set of stable clusters to perform data aggregation. The EMFC clustering process has
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three steps: UAV fitness PI calculation to selecta CH < U UAV to act as a local leader to
perform data fusion; cluster formation via follower selection; and cluster equalization. As
G(t,) is connected, cluster invitation and joining requests are not required. The PI
calculation process utilizes fuzzy logic, which takes into input two link-related parameters
(i.e., LG and LQ) as NI and two UAV state-related parameters (i.e., ND and RE) to obtain
the output PI. Each UAV wu;, shares PI with u; € N (u;) via the hello packets, and the UAV
u; having the highest Pl within its N(u;) vicinity, declares itself to be the CH;. The PI
calculation process using fuzzy logic involves three steps. In the first step, each UAV u;
normalizes the above fuzzy input sets by using the maximum value of corresponding input
parameters collected through the received hello packets from one-hop neighbor u; € N (u;).

The UAV u; having the largest LGy, computed in (3.20) within its N(u;) UAVS is
quite suitable for becoming a stable CH, because the highest LGy, gives better link
subsistence probability with neighbors. A larger LQy,; computed in (3.23) offers better link
reliability for collecting data from the other CMs. NI, represents the neighbor intimacy of
a UAV with its N (u;) UAVs consisting of both LGy, and LQy;- A larger Ny, gives better
stability and better PDR during data aggregation at each elected CH. NI, is computed as
follows:

LG’u.i]' LQui]-

max LGj max LQj; |’
ujeN(u; ujeN(u;

Nl = (3.24)

As all UAVs attempt to move to the dense areas of the MGTSs, those having the greatest
number of neighbors defined by the ND, offer better leadership and minimize the number of
CH requirements. A UAV u;having node degree ND,,; is normalized as follows:

NDui_u renzx}& ) NDuf
ND,. = i . 2
Ui max NDy. (3 5)
quN(ui) ]

As the CH UAV performs data aggregation and compression for its cluster members (CMs),
it requires sufficient energy. The UAV having the highest RE within its one-hop vicinity
provides better stability for CH. The RE of a UAV RE;,, is normalized as follows:

REy;— min _RE;.

quN(ui) J

RE,, =

mo )REuj (3.26)
qu u;
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We use two fuzzy membership functions (i.e., triangular and trapezoidal) to convert these
input crisp values to fuzzy values. The associated linguistic values and the ranges of fuzzy
membership functions are given in Table 3.2 and Figure 3.5 (a)—(d).

Table 3.2 Input and output fuzzy sets with linguistic values.

Input/Output Linguistic value
NI Bad (B), Medium (M), and Good (G)
ND Low (L), Medium (M), and High (H)
RE Low (L), Medium (M), and High (H)
Pl Very low (VL), Low (L), Unpreferable (U), Medium (M), High (H),

and Very high (VH)
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(a) Fuzzy membership of NI.  (b) Fuzzy membership of ND.
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(c) Fuzzy membership of RE. (d) Fuzzy membership of PI.

Figure 3.5 Fuzzy membership values of inputs (NI, ND, and RE) and output (PI) fuzzy sets
in the EMFC.

In the second step, the states of the fuzzy input sets are evaluated by each predefined
IF-THEN rule Ry given in Table 3.3 by using the MIN-MAX method [154] to find the
aggregated fuzzy output PI given in (3.27). The pre-defined linguistic values of output PI
and associated fuzzy membership function ranges are also given in Table 3.3 and Figure
3.5(d). Because we consider three inputs with three linguistic values, the number of rules in
Table 3.3 is 33 = 27. The multi-objective PI is computed as follows:
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PI = p;NLy, + poNDy, + p3REy,, (3.27)

where py, p, and p3 are the weighting factors of the fuzzy rules add p; + p, + p3 = 1.
Finally, the defuzzification point as the crisp output of Pl is obtained by applying the CoG
method in the aggregated fuzzy output of PI. In Figure 3.5(d), the corresponding centroid
value of x-coordinate after evaluating all IF-THEN rules represents the final decoded crisp
PI that gives the fitness of each UAV.

Table 3.3 Fuzzy IF-THEN rules to find the PI for UAVs.

Ry IN O [Ry IN o)

NI [ND | RE |PI NI [ND |RE |PI
1 |B |L |L |VL|[15|M [M [H |M
2 |B |[L |M [VL|16|M |H |[L |U
3 /B |[L |H |[VL[17|M |[H |M [M
4 [B [M |L |VL[18|M |[H |H |M
5 (B |[M |M |L |19|G |L |L |L
6 |B |[M |H |L |20|G |[L |M [M
7 |B |H |L |[VvL|21|G |L |H |H
8 |B |[H |M |VL|[22|G |M |L |U
9 [B |H |H |Uul]23[G |[M [M [M
0 |M |L |L |L |24|G [M [H |H
11 |M |[L |M |U |25|G |[H |[L |U
2|M |L |H [M|26|G |[H |M |H
13|M |M |L |L |27|G [H |H |VH
4 |M M |[M | M
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During cluster formation phase, each elected CH; forms a cluster using its one-hop
neighbor u; € N(u;) as the CM represented as CH; € {CM{y,}, where i = {1,2,--- } is the
index of each CM under the respective CH, as shown in Figure 3.6. During the cluster-size
equalization process, if each CH; has a number of CMs greater than the threshold Ny, >
Npax, it releases the CMs according to the order of lowest LG until the size becomes N¢y, <
Nynax- The released CMs can be borrowed by a neighbor CH; if it has fewer CMg'H]_. The
equal cluster size produces fewer contention delays during data aggregation at each CH and
creates a balance of inter- and intra-cluster data transmissions. Each CH; collects the sensing
data from its CMZlHl. and acts as a data fusion center to prepare the ADPs by performing data
aggregation.

All CH; participate in the next TAQR routing as source nodes to deliver the ADPs to
the BS via multi-hop routing. The EMFC clustering process reduces the number of
transmissions in the FANET compared with each UAV individually transmitting to the BS
via multi-hop routing. Some UAVs may not belong to any CH, owing to the cluster-size
constraints, and they participate in the next TAQR with their own sensing data without
facing any problems as topology G (t,,) is connected. The above process of the EMFC
algorithm is described in Algorithm 3.2.
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Algorithm 3.2: EMFC

Input: Topology G (t,,), mobility information MI(t,), neighbor relationship parameters: LG, Hl,
LQ, ND, RE, and N, -

Output: Leader CH set in G(t,,) and their associated follower as cluster formation

Step 1: PI calculation using fuzzy logic to select CH as local leader.

1. for each round do

for each u; € U with one-hop neighbor u; € N(u;) do

Received hello packets from u; € N(u;) and extract it.

3
4: Getmax (LGy,;, LQu,;, NDyy, RE,;) within [u; € {N(w;) Uu}]
5
6

v N

Get min (ND,,;, RE,,;) within [u; € {N(u;) Uu}
Mapping crisp inputs [Nluij, ND,,, REui] to fuzzy membership function using Equation

(3.24)—(3.27) and Table 3.2
7. PI < null [l Initialization of aggregated fuzzy output Pl
8. forN « 1t03%do

9: Evaluate input states using fuzzy rules evaluate (Ry) given in Table 3.3 using fuzzy MIN-
MAX method

10: Pl « PI U evaluate(Ry) // Aggregate the fuzzy output PI

11: end for

12: Calculate crisp output of PI using CoG method

13: Include PI value in hello packet and transmits to u; € N (u;)

Step 2: Cluster formation via follower CM selection for each CH

14: if (PI(u;) > [PI(w) € N(w)]) then

15: Set u; as CH; and construct cluster using N (u;) UAVs

16: else

17: Follow the nearest CH according to the maximum Pl in N (u;)

18: end if

Step 3: Cluster size equalization

19: if (Ncw; > Nmax) then

20: Release CMs according to the order of min LG value until satisfy Ny,,, constraint

21: Set cluster size restriction flag==true

22: elseif (Ncy; < Nimax) then

23: Borrow CM from neighbor CH; according to the order of max LG until satisfying the Ny,
constraint

24: Set cluster size restriction flag==true

25: else // all CH restriction flag==true

26: Remaining UAVs declare as self CH

27: endif

28: end for

29: round++ //Go to next round

30: end for
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3.3.3 TAQR Learning

The TAQR is a position-based multi-hop routing protocol incorporated with QL, where
each CH carrying an ADP act as an RL agent and adaptively learns how to reach the BS to
deliver ADPs for further processing by finding an optimal routing path in terms of delays,
reliable links, and UAV energy, as explained next.

3.3.3.1 State Exploration for Forwarding Node Selection

We derive an initial state exploration strategy to avoid unnecessary exploration and
detours during initial decision-making for selecting the next relay UAV by the source CH
or the respective intermediate source by defining a potential forwarding candidates (PFC)
set considering few one-hop neighbors of the respective source UAVs according to the
distance progress toward the BS. According to Figure 3.6, the source CH; selects a one-hop
PFC set as PFCpop1{CH;} € {CM{y,, CMEy,}. If CH; selects the UAV CMZy, to relay the
ADPs as it shows better distance progress toward the BS, the CM%HL, has the PFC set
represented as PFCrop2{CM¢y,} € {CMcy;, CMEy )} o reach the destination BS. The PFC
sets from the source CH; to destination BS is defined as PFCp,p{CH;} =
{CMEy,|d(CMEy,, BS) < d(CH;, BS)} and PFChop2{CMéy,} =
{CMZlHj|d(CM§Hj,BS) < d(CMéHi,BS)}, where d(.) represents the distance between the
respective source UAV and the BS. To explain the QL model, we denote the respective
source UAV as u;, which selects the next relay UAV u; € PFCj,p, to forward the ADPs to
the BS.

Cluster-i

Cluster=f

RE level of UAVs: @ High s Medium g Low —= Data fusion at CH
--==# ADPs multi-hop routling path generated by TAQR (Exploralion path)
--==# ADPs mulli-hop routing path generated by TAQR (Exploitation path)

Figure 3.6 Two-phase topology control with CH associated CMs, and PFC sets for
respective source UAVSs to route ADPs to BS using TAQR with exploration and
exploitation paths at different rounds of data transmission.
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3.3.3.2 Link Delay and PTS for Forwarding Metrics

Considering the limitation of position-based routing protocol as it only seeks the
progress in transmission distance, we calculate the PTSy,; for each relaying UAV u; €

PCF4p1, that considers both distance progress and channel condition. The one-hop dela}’uij
consists of mac delay t/7%° to access the channel and M/M/1 queuing delay 7. We

assume that the packet arrival rate A, at UAV u; follows the poison distribution. The

ngue —

1/ _ , Where E, is the forwarding rate [156]. The delay,,.. between two UAVS is
(Fy, = Au,) : o

waiting time for the packet to reach the head of the transmission queue is t

updated using exponentially weighted moving average and is computed as follows:

delay,,; = Bdelay,, + (1 - B) (t]}%° + ), (3.28)

where weighting parameter g € [0 1]. ThePTTuij for a successful state transition from
source u; to u; is computed as

du..  p..
PTT,,; = delay,,, + —*+ Bsize (3.29)

i)
c Rug;

where c represents the propagation speed equal to the speed of light, and Pg;,, represents
the size of the packets. From PTT,,; we estimated PTS,,, for link u;; as follows:

PTS, = [{d(”i'“)‘d(”f'“)}] > 0. (3.30)
ij PTTy,;

A value of PTSui]. > 0 indicates that the relay UAV shows distance progress toward the BS,

and a higher value of PTSul.]. accelerates the probability of delivering the ADPs to the next

relay UAV within the given deadline PTTy;. Therefore, during exploration, the neighbor

UAV u; € PFCpqpq , Which offers a maximum PTSy,; >0 satisfying the condition

LG, = PTT, ., isincluded in the u; € PFCp,y,, Set to relay the ADPs toward the BS.

ij ij

3.3.3.3 Multi Objective Reward Function

The source UAV w; evaluates its action as a relay UAV w; € PFCp,p, Selection, by
using the multi-objective reward Ty, 10 discover optimal routing paths to avoid congestion,
link breakages, and energy holes. The first component of the Tuyj is PTTy,;, which helps to
avoid highly congested path. The relay link u;jhaving less PTTul.jprovide less delay. Hence,
we use the negative exponential in the first component of Ty
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Frequent link breakages cause more retransmissions in FANETs. Owing to sudden
change in relative mobility, the neighbor UAV u; may leave the communication range R of
the respective source UAV u; within the intermediate time of neighbor upgrade or even in
the middle of data transmissions. Thus, to ensure better path stability, a UAV w; € PFCppq
is considered to be a relay that gives a higher LG given by (3.20) and a better reliable LQ
given by (3.23). By blending these two parameters, we obtain NI which is the second

component of T

The UAV u; € PFCp,p,q having more RE,, in proportion to its initial energy E;,; is

more eligible to be the next forwarding node with respect to the current source UAV u; to
equalize energy consumption. The energy-related cost E; is the third component of Ty

Finally, T is computed as follows:

1 —PTTy.. 1 —PTT,..
Ty =3 AT 0+ AN, + AE| =S| Are i+

REy;
LGy, . XLQy. .
ij ij Eini
A, + As RE | (3.31)
max  LGy..XLQy.. j
uj€PFChopg ij ij max
quPFChopl Eini

where A; + A, + Az = 1 is the weighting parameter. If the next node is the BS, we allocate
the maximum reward 7;,,« to the link u;; as given in (3.32). If the taken action stuck in local
optima (routing holes), meaning that the selected relay UAV w;, shows distance progress to
the BS but there is no potential neighbor UAV to forward further or even if it takes longer
PTT for ADPs to reach the BS, we allocate minimum reward r,,;, to that relay UAV.
Otherwise, when UAV u; works as a relay toward the BS, each action is evaluated by T
givenin (3.31). Additionally, if the relay UAV u; does not send an ACK to the source UAV
u;, it will consider the failure state and give a penalty r,;, to that link. Therefore, the final
reward Ty for updating the Q-value is computed as follows:

Tax = 100, if link u;j lead to the BS
= {Tmin = —100, if link w;; is local minimum, (3.32)
100 X 7y, otherwise

Tui;
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3.7.3.4 Adaptive Q-learning Parameters

As discussed in Section 3.2.3, a,;; and 1, ;should be controlled adaptively to generate
a stable Q-value, considering the frequent topological changes. We update ay,; € [0 1] for
link u;; according to the exponential of the normalized one-hop delayuij as follows:

1— _ ”delayuij_muij” £ 0
;= eXp oy, » Huy 5 (3.33)

0.3, fyy =0

where My, and Ihy,; represent the mean and variance of the delayui]. computed in (3.28).
According to (3.33), if delayui]. is higher, Ay is larger to update the Q-value faster.

A higher/’lul.j value defines the stability of the expected future Q-value, and a lower
Aui]. gives a vulnerable Q-value expectation. As we aim to find a stable reliable link u;;, we
adaptively adjust the value of 4, €[0,1] for link u;; according to mobility, more
specifically the relative distance d,,,; intimacy with the neighboring UAVs as follows:

Rgq—dy. .
_M' if 0<dy, <Ry
wy = Ra J : (3.34)
1-—L  if Ryg<dy, <R

According to (3.34), the value of Ay decreases when dy;; < Rsa, and it is maximized when
dy;; = Rsa- Then, Ay decreases proportionally with an increasing dy,; and becomes zero
when dui]. = R. After obtaining Ay Aui]., and Ty We update the Q-value using (3.6) for
the corresponding link w;;.

3.3.3.4 Routing Decision and Balance Between Exploration and Exploitation

Exploration is the discovery of a new state for ADPs that may provide a better reward
than experience. Exploitation takes the best action according to the maximum Q-value of
the corresponding link, and it helps reach the global optima. However, during exploration,
the actions taken can be good or bad. Hence, excessive exploration can generate unnecessary
detours. Therefore, in FANET QL-based routing decision-making, an exploration strategy
is required to obtain a new state for relaying that may provide better routing paths.

Each UAV u; adaptively decides either to perform exploration or exploitation
according to the value of ANI denoted as ANI,,,. ANI,, is computed based on the NI
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given by (3.24) to meet the balance between exploration and exploitation. The ANI,, is
computed as follows:

Zu]-EN(ul-) NIul--

— J
ANy, = =L < Ny, (3.35)

If the ANL,, is less than the threshold value N1, that is set to 0.9 in our study, the UAV
decides to explore and, instead of taking random action, the neighboring UAVs (whose
PTSy,; >0 and LGy, = PTTuij) are never selected as relay UAVs and are included in the
PFCpopy to explore a new state. If the ANI,, > N, it means the neighkoring state is
relatively stable. Thus, UAV decides to perform exploitation. The source UAV u; selects
the neighbor UAV u; € PFCy,p4, that offer the maximum Q-value stratifying the constraint
LGy, =2 PTT,;. When the source UAVs have less NI and hardly meet the imposed LG
constraints LGy, = PTTul,].with neighboring UAVS, the TAQR can trigger the topology
adjustment operation to adjust the weight of the attractive force in (3.12) to maintain the

path stability by controlling the relative velocity and LG with one of the neighboring UAVs
to forward toward the BS.

To avoid the routing loop during relay UAV selection, each source UAV must not
consider any UAYV that has been previously considered in the end-to-end path to the BS.
During each state transition, the updated Q-value is continually tracked against previously
visited UAVs so that none of the forwarding UAVs is selected more than once. Additionally,
the penalty r,;, value in the reward function (3.32) helps avoid unnecessary detours of
ADPs.

The above process is described in Algorithm 3.3. Lines 15—33 represents our proposed
state exploration strategy to route ADPs toward BS according to neighbor state stability
condition, ANT,,, < Nlg,. It includes the topology adjustment triggering method to improve

the neighbor intimacy to meet the condition, LGui]. = PTTy,; (Lines 25—28). It also includes
the penalty mechanism if the forwarding UAVs fail to meet the condition PTSy,; >0, to

avoid the routing holes (Lines 30—33). Lines 34—38 represent the exploitation strategy
based on the maximum Q-value found in u; € PFCppq Set.
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Algorithm 3.3: TAQR

Input: FANET topology generated by VFMC and EMFC, N1,

Output: Leader CH UAVs transmit ADPs to the BS

1: Proceed to next time slot ¢,,, 4

2: Q —value = PTT,;; = PTSy; = 0 [l Initialization

// Phase-1 FANET Topology Control: Topology G (t,) and MI detection

3: for each UAV u; € U do

4: Call algorithm 1

5: end for

/I Phase-2 FANET Topology Control: Local leader CH and follower CM selection
6: for each UAV u; € U do

7: Call algorithm 2

8: CH collect data from CM and prepare ADPs

9: end for

/I Routing decision using Q-learning: Each CH carrying the ADPs act as source and other UAV act
as relay to transmit ADPs to BS //

10: while ADPs need to transmit do

11: if (d(u;, BS) < R) then //if source UAV within the communication range of BS

12: Transmit the data to BS and allocate maximum reward

13: else

14: Make routing decisions based on Q-learning

15: if (ANI,, < Nl;,) then //exploration

16: for each w; € PFCpq Of u; do

17: Calculate PTTuU. using (3.29)

18: Calculate PTSui]. using (3.30)

19: end for

20: if (PTSui]. > 0) then

21: if (LGul.}. > PTTuij) then

22: Update PFCy,p1 < (u; € PFCy,pq) according to the descending
order of PTSul.}.

23: Select relay UAV u; € PFCy,),, that offer maximum PTSuij

24: Calculate the reward using (3.32) and update the Q-value using
(3.33)—(3.34) and (3.6)

25: else

26: Trigger topology adjustment to adjust the weight of the attractive
force in (12) to satisfy LGui]. = PTTuij

27: Select relay UAV u; € PFCh,p; that satisfy LGuU = PTTy,;

28: Calculate the reward using (3.32) and update the Q-value using
(3.33)—(3.34) and (3.6)

29: end if

30: else

31: Trigger penalty mechanism

32: Give minimum reward and update Q-value

33: end if

34: else // exploitation
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35: Select the relay UAV u; € PFCy,,; With maximum Q-value

36: Calculate the reward using (3.32) and update the Q-value using (3.33)—(3.34) and
(3.6)

3r: end if

38: endif

39: end while

3.3.4 Cost and Time Complexity

The three modules of VFMC, EMFC, and TAQR are executed in each UAV using one-
hop neighbor information. As a result, the computational cost for one complete round
depends on the degree of the UAV during the sequential updates of the FANET topology at
each HlI, as given in (3.21). Thus, the approximate computational cost for each Hl is 0(24)
messages, including ACKs, where A represents the maximum degree of a UAV over each
sequential topology update. The time complexity of the VFMC is 0(AM), and that of the
EMFCis O(A27IN) + O(OptcyXlogY), where 27 is the number of rules in the fuzzy table,

IN is the number of fuzzy inputs, Opt-y = U/N represents the optimal number of elected
max

CHs for each round, X is the maximum number of shortage CM UAVs for a CH to become
Npax, and Y is the minimum number of CM UAVs within a CH that must leave to satisfy
the cluster constraint, Ncy, < Npyax. Finally, the time complexity of TAQR is 0(A) for state

exploration because it requires only one-hop neighbor information.

3.4 Performance Evaluation

In this Section, the performance of the proposed JTCR is evaluated via an extensive
computer simulation. As JTCR considers the mission and communication performance, we
consider the two protocols of MOOC [100] and MCFO [83], which are suitable for
comparison with our JTCR. As we adopted the QL-based geographic routing protocol, we
also compared the JTCR with the recently proposed QL-based geographic routing protocol
QTAR [33], which was proposed specifically to perform surveillance missions. We adopted
the implementation environment for the MCFO as a few mission UAVs were set to track the
MGTs with a circular trajectory, and some relay UAVs (70 % of the total UAVS) were used
to create a relay path with the BS by following the mission UAV’s trajectory. For routing,
the shortest path was typically considered. MOOC is a clustering protocol that uses attractive
and repulsive virtual forces to maximize coverage and maintain connectivity among UAVS.
We adopted the MOOC simulation environment by using only the attractive and repulsive
virtual forces between UAVs. The MOOC provides a fixed coverage density by hovering
without tracking MGTSs. For routing decisions, we adopted conventional clustering-based
hierarchical routing (i.e., CM to CH, CH to another CH, and CH to BS). We implemented
the QTAR environment according to topology construction and multi-hop data routing
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proposed in [33]. In the following subsections, the simulation environment and performance
metrics are discussed.

3.4.1 Simulation Environment

We implemented the proposed JTCR surveillance model using MATLAB with
Mamdani fuzzy logic and a reinforcement learning toolbox. The UAVs were uniformly
deployed in mission-area D with a topology dimension of 2,000 x 2,000 x 100 m to monitor
the randomly distributed MGTs at a speed of 5 m/s. We considered the reference point group
mobility model (RPGM) and random waypoint (RWP) [157] for the MGTs and UAVS to
change their mobility according to the Ml of the VFMC at each timeslot. The height of the
UAVs varied from 70 to 100 m. The maximum allowable velocity v,,,x and acceleration
amax for the UAVs was set to 15 m/s and 5 m/s. The maximum communication range of the
UAV was set to 250 m, and Ry; was set to 100 m. The minimum threshold value for
calculating the LG value was set to 2 s. In our simulation, during each timeslot, the data
transmission of each UAV is completed in three phases: sensing the MGTSs by using onboard
sensors, sending the sensed data to the elected CH UAYV for aggregation, and relaying the
ADPs toward a single location fixed BS. Each data interval round was 10 s, and the total
simulation time was T = 1000 s. To perform the topology adjustment, we setn, = 0.4 and
n, = 0.2. Additionally, we applied the values of §; = 55 and §, = 7. The values of the
force constants were set to Kj, 4, =600, K,,, = 8, Kz = 3,000, and K, = 1,000. Initially, we
set 0 = 0.5 and HI = 0.5 s. To generate data traffic, we considered a video streaming
application running on each UAV modeled at a constant bitrate (CBR). The complete
parameters used in the simulation are listed in Table 3.4.

Table 3.4 Simulation parameters (JTCR).

Parameter Value
Topology Dimension 2,000 x 2,000 x 100 m
Maximum number of UAVs 100
Number of MGTs 1300
MGTs mobility model RPGM and RWP
UAYV height range 70-100 m
UAYV communication range (R) 250 m
Separating distance (Rgq) 100 m
Maximum velocity of UAVs 12 m/s
Carrier frequency 2.4 GHz
UAYV transmit power 5mW
SINR threshold for U2U links 0dB
Propagation model Free space
Path loss exponent ({) 3
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MAC protocol CSMA/CA with TDMA

Bandwidth (B) 20 MHz
Antenna Omni-directional
UAV initial energy (E,;) 2 x 10> Joule (J)
Energy threshold of UAV 2,000
Traffic type CBR
Traffic load per video streaming 2 Mbps
Transport protocol User datagram protocol
Comparing protocols MOOC, MCFO, and QTAR

3.4.2 Performance Metrics

We considered performance metrics of two categories: mission and communication
performance. The mission-related performance metrics are as follows:

e Tracking coverage rate (TCR): Indicates the ratio between the total number of
MGTs uniquely covered by all UAVs divided by the total number of MGTs at each
timeslot. The TCR metric is evaluated for different numbers of UAVs and time steps
in seconds.

Communication-related performance metrics taken in our study are given below:

e Connectivity rate: Ratio between the number of connected node pairs and possible
maximum number of connected node pairs in the topology with the same number of
UAVs, which is a connected graph.

e Packet delivery ratio (PDR): The PDR is determined by the number of successfully
delivered data packets at the BS and the number of data packets originating from
the leader CH UAVSs. PDR reflects the data delivery effectiveness of the routing
protocol and higher PDR means better performance.

e Average number of retransmissions (ANR): The ANR represents the average
number of packets needed to be retransmitted by the source CH UAV, owing to link
breakages and congestion. Less ANR means better performance.

e Average end-to-end delay (AE2ED): The average time required for successful data

transmission between the source CH and BS is described as AE2ED. Less AE2ED
means better performance.
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e Control overhead: The size of control packets per hello interval generated by the
topology control and routing is defined as the control overhead. The control
overhead includes hello packets that contain UAV mobility information, delay, LG,
LQ, ND, RE, PI, and Q-value for each neighbor included in the packet header for
constructing the FANET topology and routing decisions.

e Clustering stability: Number of CHs, number of isolated CH due to cluster size
constraint, and CH lifetime. All the above parameters are observed for the different
number of UAVS.

e Normalized Residual Energy (NRE): This metric consists of both the UAV
propulsion energy consumption (PE,,) to perform flocking adjustments given in

[138] and the energy consumption to perform the data communications (CE,,,) given

Eini_(PEui+CEui) NRE

is observed after completing the simulation, and higher NRE indicates less energy
consumption.

in [56] at each timeslot. NRE for each UAV is normalized as

ini

3.4.3 Simulation Results and Discussion

In this subsection, the simulation results are compared with the existing protocols and
discussed in terms of the above performance metrics.

3.4.3.1 Mission Performance

Because the QTAR is only routing protocol, it was not included in the mission
performance evaluation. Figure 3.7 shows the TCR for different numbers of UAVs. As in
the proposed JTCR, we assumed that all UAVs performed missions and simultaneously
relayed data with the help of an MGT-DF vector, which tracks more MGTs and provides
better TCR than others.

100

80

60

40 '
Zﬂr//{JTCR —w—MCFO MOOC

20 30 40 50 60 70 80 90 100
Number of UAVs

TCR (%)

Figure 3.7 TCR for different number of UAVS.

70

Collection @ chosun



The MGT-DF vector of the VFMC mobility controller updated the UAV position according
to the mobility of the MGTs. Initially, MOOC provided a better TCR than MCFO because
it maintained a constant coverage density, but with an increasing number of UAVs, MCFO
obtained higher mission UAVs to track more MGTSs. Thus, when the node density passed
57, the MCFO provided better mission performance than did MOOC.

Figure 3.8 represents the TCR for 80 UAVs at different time steps (seconds). The
proposed JTCR outperforms others and TCR increases iteratively due to continuous mobility
updates of UAVs to track maximum MGTs using the MGT-DF of VFMC mobility controller.
Because MCFO is required to balance the number of mission UAVs and relay UAVS to
optimize mission and communication performance, it shows less TCR compared with the
JTCR, but it iteratively increases over MOOC. Initially, MOOC provides a better TCR than
MCFO because it maintains a fixed coverage of the mission area, but its TCR becomes
steady after few iterations as UAVs are not tracking the movement of MGTs.
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Figure 3.8 Tracking coverage rate (TCR) for different time steps (seconds) with 80 UAVs.

3.4.3.2 Communication Performance

In this subsection, we evaluate the JTCR for communication performance metrics with
different number of UAVS. Figure 3.9 shows the connectivity rate for different number of
UAVSs. The proposed JTCR provide a better connectivity rate than others as it uses TFF,
which has the attractive and repulsive virtual forces to construct the FANET topology.
Simultaneously, it adaptively balances the force weights according to the changes in inter-
UAV distance between neighboring UAVs during the mission. The adaptive hello interval
also creates a strong relationship with neighbor UAVs. As QTAR does not include the
connectivity maintenance mechanism, it is not included here. MOOC offers better
connectivity than MCFO because it controls the UAV velocity by applying attractive and
repulsive virtual forces. However, with the increased number of UAVS, the connectivity
performance of MCFO increases as it obtains more relay UAVs to construct the FANET
topology at a reasonable inter-UAV flocking distance.
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Figure 3.10 shows the PDR for different number of UAVSs. The proposed JTCR provide
a better PDR than the other methods for two reasons. First, owing to the EMFC clustering
concept being used instead of transmitting the sensed data straight away, each UAV selects
the leader CH UAV that provides better leadership and better LG and LQ to transmit the
sensed data to the BS. The EMFC clustering also offers fewer MAC contention delay, owing
to the equal cluster size during data aggregation at the CH UAV. Second, the CH UAV
forwards data to the ADPs by selecting the forwarding UAV that offers a higher PTS
satisfying the LG constraint. Moreover, as shown in Figure 3.11, the JTCR requires far fewer
retransmissions compared than others. This is a vital requirement for achieving high PDR
performance.
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Figure 3.9 Connectivity rate for the different number of UAVs.
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Figure 3.10 PDR for the different number of UAVS.

Figure 3.11 shows the ANR performance for different number of UAVs. The proposed
JTCR requires fewer retransmissions than others, as the initial topology construction creates
a strong neighbor relationship among UAVs by maximizing the LG with neighboring UAVs
to avoid frequent link breakages while performing the mission. In addition, during EMFC
data aggregation, the CH UAV with higher stability and LG is considered. Similarly, during
relay UAV selection, the CH UAV selects the UAV offering a higher neighbor intimacy in
terms of LG and LQ. The proposed JTCR can avoid link breakage, owing to its adaptive
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hello interval that adjusts to the minimum LG found within its one-hop vicinity to refresh
the neighbor list immediately according to the degree of topological changes. The QTAR
always selects the forwarding UAV that offers a higher PTS without controlling the relative
velocity. Hence, more link breakages are encountered. The MCFO provides more
retransmissions because it always selects a relay that provides the shortest path toward the
destination. As a result, MCFO encounters higher data congestion. MOOC provides fewer
retransmissions compared with the MCFO as it controls the UAV’s relative velocity to
maximize the connectivity duration.
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Figure 3.11 Average number of retransmissions (ANR) for the different number of UAVs.

Figure 3.12 represents the AE2ED delay for different number of UAVS, and the JTCR
creates less delay compared with others due to three main reasons. First, during data
aggregation, each UAV encounters less contention, owing to the equal CMs for each leader
CH. Second, during relay UAV selection (state exploration), JTCR selects the relay UAV
that offers higher PTS. JTCR precisely calculates the PTT, queuing, transmission, and
propagation delay for each neighbor UAV. Third, in the reward function, JTCR estimates
the reward jointly considering the one-hop delay and neighbor intimacy (both LG and LQ)
that offer better path stability. Although the MCFO selects the shortest path, neither it nor
the MOOC considers the MAC-layer assumption of selecting the optimal relay UAV that
offers the least delay. However, owing to the clustering data aggregation concept, MOOC
provides comparatively less delay than does the MCFO. QTAR considers both MAC and
gueuing delays. However, owing to each UAV transmission to the BS, the delays are higher
than the proposed JTCR.
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Figure 3.12 Average end-to-end delay (AE2ED) for the different number of UAVS.

Figure 3.13 shows the control overhead size per hello interval for different numbers of
UAVs. QTAR gives a very high control overhead compared with others because it retains
the two-hop neighbor information. The JTCR produces very less control overhead compared
with QTAR because it retains only one-hop neighbor information and optimizes the number
of hello packets by controlling the hello interval in terms of minimum LG and hello interval
frequency by sensing the topological changes at two different times. Additionally, the
adaptive force weight management of TFF in JTCR according to inter-UAV distance
maximizes the LG with neighboring UAVS, which helps JTCR to significantly reduce
control overhead than QTAR. However, as JTCR must store mobility information, LG, LQ,
ND, PI, and Q-value information for each neighbor link, the proposed JTCR provides a
slightly higher control overhead than does the MCFO and MOOC. Owing to broadcasting
the hello messages at a fixed hello interval, the control overhead is increased almost linearly
with the increased number of UAVs in both MOOC and MCFO.
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Figure 3.13 Control overhead size per hello interval for the different number of UAVs.
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Figure 3.14 presents the NRE of different routing protocols for 100 UAVs. In Figure
3.14, the horizontal red line within each box represents the median of the NRE for each
routing protocol. JTCR shows better NRE (less energy consumption) compared to other
routing protocols owing to three major reasons. First, the VFMC module in JTCR generates
an efficient travel distance for each UAV (to maximize coverage toward MGTs and maintain
connectivity with neighbor UAVSs). It not only reduces propulsion energy consumption but
also produces balance in propulsion energy consumption during flocking adjustments. This
is because propulsion energy consumption is proportional to each UAV trajectory, and it is
sufficiently larger than the communication energy consumption. Second, to select the data
aggregator, the EMFC module in JTCR gives priority to the UAVs having higher RE level.
Third, while selecting relay UAV by TAQR module in JTCR, more reward is given to the
UAVs having a higher RE. This creates proper load sharing among UAVS to avoid energy
holes, resulting in the extended FANET lifetime. Additionally, owing to the data aggregation
and our proposed exploration and exploitation strategy, the JTCR requires fewer
transmissions than QTAR, which significantly reduces UAV communication energy
consumption. Due to the above reasons, if we look at the NRE distribution of UAVs in each
box, JTCR produces more balance in energy consumption. The balance in energy
consumption gives better node density and topological stability in FANETs. QTAR provides
higher energy consumption than the JTCR because it encounters high control overhead and
more retransmissions. Both MCFO and MOOC provide less NRE because they do not
consider any energy consumption metric during clustering or route selection.
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Figure 3.14 Normalized residual energy (NRE) for different routing protocols.

Next, we observe the clustering stability performance of the proposed JTCR with MOOC
clustering. Figure 3.15 shows the required number of leader CH UAVs for the different
number of UAVs. The EMFC module in JTCR requires more CH than MOOC because
MOOC uses a multi-hop clustering in which CMs can join the CH, even if it is away from
its one-hop vicinity, usually two-hop members are allowed to join. However, if we observe
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the CH lifetime in Figure 3.16, the EMFC clustering of JTCR provides much better CH
lifetime and stability in the FANET topology. This is because, during leader CH selection,
JTCR jointly considers the NI, the leadership factor (ND), and the RE level of UAVs.

According to Figure 3.17, the JTCR provides a smaller number of isolated CHs in the
clustering process compared to MOOC. It is because the EMFC clustering module in JTCR
performs the cluster size equalization under the constraint of the maximum cluster size.
Higher CH lifetime and the less number of isolated CHs also improve the performance
during data aggregation, create load balance in inter-cluster routing, and mitigate the routing
delay by adopting the QL-based optimization. In Figure 3.17, for our JTCR, we observe little
variation (as the number of isolated CHs is not large) in the number of isolated CHs for
different number of UAVSs. This is mainly because of both the cluster size equalization under
the constraint of the maximum cluster size and the distribution of UAVs distribution within
the mission area. MOOC considers multi-hop CMs by only controlling the velocity of
neighboring UAVs, and the RE level of CH UAVs are not taken into consideration. MOOC
allows the follower CM to follow the leader CH away from its one-hop neighbors without
considering the RE levels of the leader CH. Such policy in MOOC clustering produces
uncertainty in the stability of the FANET topology because UAVS may leave the network
for energy replenishment if they reach the threshold energy levels.
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Figure 3.15 Number of CH UAVs versus the number of UAVS.
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Figure 3.17 Number of isolated CHs versus the number of UAVS.

As the proposed JTCR utilizes the RL algorithm to make inter-cluster routing decisions
using the TAQR module, a key concern is QL convergence. We next discuss the
convergence of our TAQR inter-cluster multi-hop routing compared with QTAR.
Considering the topological changes in FANETSs to support adaptive learning, QTAR
updates the discount factor for each neighbor link according to the degree of change in the
neighboring set at two different times, which may not provide appropriate link conditions
with each neighbor UAV. In contrast, the proposed TAQR updates the discount factor
according to the relative distance. This provides a proper assessment of each neighbor link
SINR level and produces a more precise Q-value by giving a higher discount to the links
that satisfy the imposed flocking constraints (the minimum separating distance and the
maximum transmission range constraint to support desired SINR).

The TAQR achieves better topology and produces suboptimal actions very quickly
because a two-phased topology control is designed to provide a stable topology for each
timeslot at a reasonable cost in control overhead by considering both mission and
communication performance. In QTAR, each UAV stores the mobility information, delay,
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and Q-value for all two-hop neighbors. As a result, owing to the extended topological
knowledge, it converges slightly earlier than TAQR, as shown in Figure 3.18. Because
QTAR does not consider the exploration and exploitation policy of QL, it converged with
fewer rewards. In contrast, owing to the exploration strategy based on the ANI and the
relation between PTS, PTT, and LG with neighbor UAVS, the TAQR in JTCR provides
better average reward via exploring the new state, as shown in Figure 3.18. Because the
VFMC mobility controller in JTCR controls the relative distance, the LG between
neighboring UAVSs is also guaranteed with a reasonable cost in control overhead at each
timeslot.

Compared with the QTAR, the TAQR in JTCR is more intelligent when making routing
decisions. During exploration, it selects the relay UAV that offers a higher PTS satisfying
the LG constraint and ensures a longer survival time of the selected neighbor link to
complete the data transmission within the given PTT. It avoids the routing loop by storing
the previously visited UAV in an end-to-end path. It can also trigger the topology adjustment
process to adaptively adjust the weight of the TFF if the neighbors listed in the PFC set are
too far away or if they fall within an interference zone.
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Figure 3.18 Average reward versus the number of iterations.

3.4.3.3 Comparative Summary

Based on our discussion in Section 3.4.3, in this subsection, we briefly discuss the
mission and communication performance improvements of our proposed JTCR compared
to other routing protocols. We observe that our proposed JTCR gives 34.95% and 33.74%
better TCR compared to MOOC and MCFO, respectively, as mission performance. The
EMFC module in JTCR gives 29.18% better CH lifetime compared to MOOC.
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JTCR gives 6.14% and 9.50% better connectivity rate than MOOC and MCFO,
respectively. JTCR exhibits 7.03%, 15.58%, and 21.58% better PDR performance compared
to QTAR, MOOC, and MCFO, respectively. Also, JTCR provides 9.75 %, 24.04%, and
38.32% less AE2ED compared to QTAR, MOOC, and MCFO, respectively. In the case of
NRE (remaining energy), JTCR exhibits 15.72%, 19.79%, and 23.46% better NRE (less
energy consumption) compared to QTAR, MOOC, and MCFO, respectively. JTCR shows
65.70% less control overhead than QTAR, which is a significant reduction in control
overhead while improving the communication performance. However, JTCR provides a
slightly higher control overhead (30.79% and 19.94%) compared to MOOC and MCFO,
respectively, because the proposed JTCR improves both mission performance and
communication performance simultaneously. Nevertheless, such a slight increment in
control overhead can be acceptable, thanks to the performance improvements of both
mission and communication.

3.5 Conclusion

In this study, we jointly investigated the relationship between MAC, topology control,
and routing policy to efficiently perform crowd surveillance operations using a UAV swarm.
A two-phase topology control balances the requirement between mission and
communication performance to meet the trade-off between coverage and aerial connectivity.
It also offers a stable FANET topology at each timeslot to the routing protocol for forwarding
the sensed data to the BS. Thus, it provides better PDR, fewer retransmissions, and less end-
to-end delay. It also produces a balance in the energy consumption of UAVs and extends the
lifetime of the FANET with reasonable control overhead. In TAQR, the strategy of
exploration and exploitation helps to avoid local optima in QL and gives a better average
reward. Additionally, the adaptive learning in TAQR helps to avoid routing holes, loops,
and unexpected link breakages in inter-cluster multi-hop routing. Because our objective was
to detect the maximum number of MGTs and transmit the sensed data to the BS, we slowly
controlled the mobility of UAVs.
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4. Q-Learning-Based Routing Inspired by Adaptive
Flocking Control

4.1 Introduction

With the significant development of UAV technology in recent years, UAV swarms
have been utilized in many applications including surveillance [100], wildfire monitoring
[59], ABS [23], data collection, and providing mobile edge computing services to low-power
Internet of things devices. In a UAV swarm also known as FANET, UAVs can
collaboratively execute a mission through a formation control algorithm with 3D positioning,
by communicating with each other in an ad hoc manner. Significant advancements in sensor
and battery technologies, localization techniques based on GPS, and cooperative localization
using different ranging methods in GPS-denied environments have enhanced the autonomy
of FANETSs [56], [95], [158].

In such a UAV swarm, cooperative coordination among UAVS is necessarily required
to maximize the coverage and communication performance [159]. Regarding to
communication performance, it should maintain a desirable connectivity rate with minimal
delay in the UAV-to-UAV (UTU) and UAV-to-base station (UTBS) links. To achieve the
above objectives, researchers are designing the self-organized, self-healing, and distributed
coordination of multiple UAVs mimicking the properties of Sl [50], [76], [101]. Owing to
the high mobility in 3D space, time-varying topology, limited energy, fixed transmission
range, and the possibility of inter-UAV collisions, FANET topologies are highly dynamic
and different from MANETs and VANETSs. Moreover, in FANETs, UAVs can arbitrarily
leave an aerial network to obtain energy replenishment and thereafter rejoin the network
[38]. In MANETSs and VANETS, nodes have moderate and high mobilities in 2D space,
respectively. However, in VANETS, the mobility of the nodes is constrained by the road,
and the nodes are not energy-limited. Owing to these unique properties, the mobility models
and routing protocols proposed for MANETSs or VANETS are not suitable for direct adoption
in FANETs [35]. Mobility models for FANETSs should be realistic, autonomous, and
mission-driven to achieve high mission and communication performances [83], [159].

To perform a collaborative mission, a mobility model for FANETs should have the
following properties. First, each UAV should autonomously maintain a particular separation
distance from its neighbor to avoid inter-UAV collisions while simultaneously staying
adequately closer to ensure QoS in the UTU links. Second, to preserve collaborative
coordination and synchronization of movements, the UAVs should continuously adjust their
position, velocity, and flying direction according to the mobility of neighboring UAVS.
Third, UAVs in the swarm should be self-healing to establish connectivity during the failure
of a neighboring UAV and should be able to arbitrarily leave or join the FANET. Fourth,
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the trajectory of each UAV should be smooth, and the moving trajectory of each UAV should
maintain fairness in the travel distance to create a balance in energy consumption [29].
Finally, an optimal control overhead should be incurred to predict the updated topology.

The abovementioned properties of collaborative FANETS are similar to the distributed,
stable, and self-organized characteristics of biological groups such as flocks of birds and
schools of fish [101]. Thus, the large-scale FANET coordination inspired by these behavior-
based self-organized swarming flights enhances the effectiveness and simplifies the
autonomous distributed coordination of UAV swarms. Cooperative FANETS flying in a
dynamic environment can maintain a robust topology through collective motion by adopting
the three rules of flocking proposed by Reynolds in 1986 [71]. The three rules are cohesion
(attraction), alignment (velocity matching), and separation (repulsion). Each rule produces
a motion-component vector, and the weighted sum of the three motion vectors determines
the optimal mobility of each UAV for maintaining a connected topology.

In FANETs, owing to the limited transmission power of the UAVs, a direct
communication link can only be established within a limited transmission range. Thus, to
transmit the data sensed by remote UAVs to the base station (BS), a reliable multi-hop path
needs to be established by a series of intermediate relay UAVs. Because of the highly
dynamic topology and data routing without proper awareness of the updated topology,
FANETSs face higher link breakages and blind-path issues. They encounter link breakages if
the selected relay UAV leaves the transmission range of the corresponding source UAV in
the middle of data transmission. The topology is dynamically changed by the relative
mobility and failure of UAVs. Blind path occurs when the neighboring UAV leaves the
transmission range of the corresponding source UAV during the topology update [33]. Both
phenomena result in high retransmissions and energy consumption. To predict the updated
topology, the UAVs exchange hello packets with their neighbors at a particular hello interval.
Although a low hello interval provides updated mobility information to the neighboring
UAVs, it simultaneously increases the overhead. Thus, to satisfy the trade-off between
topology prediction accuracy and overhead, the hello interval must be controlled according
to the degree of mobility changes.

In [13], [109], [111], the authors studied traditional topology-aware routing protocols
in MANETS, which give slow reaction to a highly dynamic network. Thus, they encounter
higher link breakages, delay, overhead, energy holes, routing loops, and blind paths. Tracing
the shortest routing path may be good initially, but it cannot be an optimal routing path as it
triggers energy holes by depleting a few selected UAVs’ energy [62]. Additionally, the
shortest paths can be highly congested. A loop-free property is very crucial for FANETS to
prevent data packets from being continually routed through similar nodes. Considering the
3D dynamic topology, high overhead, and possibility of inter-UAV collision, position-based
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routing protocols have attracted the attention of researchers [10]. Nevertheless, the position-
based routing protocols encounter several challenges in FANETS such as maintaining the
link quality with increased transmission distance and avoiding the link breakages [10]. Other
challenges exist, such as controlling the hello interval to predict the updated topology,
localization error, routing holes, routing loops, and energy holes. Routing holes in position-
based routing are a local minimum case in which the forwarding UAV has no neighboring
UAVs within its transmission range to forward data packets toward the destination.

Recently, RL has been widely applied to optimize wireless network communication
performance [2]. Through sequential actions by interacting with dynamic environments and
utilizing previous experiences, RL agents can make wiser decisions to maximize the reward.
In FANETs, RL is applied in many application scenarios, such as network topology
prediction, channel estimation, joint optimization of the UAV’s trajectory and
communication [160], and data routing [62]. QL is a model-free off-policy value-based RL
that is suitable for performing multi-objective optimization in resource-constrained FANETS.
QL evaluates the expected value of the cumulative reward and obtains the instant optimal
policy based on historical experience, even in an unknown environment without a central
controller.

In dynamic FANETS, the link quality of multi-hop paths depends on several parameters
such as node density, link signal-to-interference-plus-noise ratio (SINR), delay, relative
mobility, and RE of relay UAVSs. Thus, to jointly address the above issues, researchers have
designed a multi-objective reward function in adaptive QL to select the optimal relay node
for forwarding data [33], [62]. This joint consideration of multiple objectives significantly
improves the PDR, end-to-end delay, and energy consumption [62]. Additionally, QL can
be trained to identify the link that is trapped in the local minimum in position-based
forwarding by providing a minimum reward [119]. However, the QL model results in high
retransmissions and detours. This is mainly due to the insufficient training samples, the
strategy of exploration and exploitation, and the random relay node selection.

In FANETS, while selecting a relay, it is important to find a stable path that ensures
sufficient LD for reliable data transmission. The relative mobility prediction metric LD
defines a predictable time at which two neighboring UAVs stay within their transmission
range [31], [34]. Thus, LD is a function of the inter-UAV distance, relative velocity, flying
direction, and UAV transmission range. In a multi-hop path, the minimum LD between two
adjacent nodes defines the lifetime of that path. Thus, if there are multiple paths to reach the
destination from a particular source, the maximum of the minimum LD along with these
multi-hop paths yields the best stable path. Additionally, the consideration of the link delay
and RE of intermediate relay UAVs significantly improves the routing performance.
Mobility estimation and stable 3D LD can be precisely calculated using a designed flocking
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controller. Subsequently, the routing module utilizes the LD to obtain a stable multi-hop
path because the relative trajectory knowledge and link stability are highly coupled in a
dynamic topology.

The contributions of this study are two-fold. First, a robust distributed mobility model
for FANETSs is proposed to perform a collaborative UAV swarm mission inspired by
behavior-based flocking control. Afterward, the relationship between the flocking-based
mobility model and routing is studied to develop a novel routing protocol. The specific
contributions of this study are as follows:

o Adaptive flocking control algorithm (AFCA): In AFCA, each UAV utilizes the
mobility information of its two-hop neighbor to extend its local view and produce
cohesion, alignment, and separation flocking rules. Owing to the wider knowledge
of the time-varying topology, AFCA provides faster swarm cohesion.

To deal with the dynamic topology, AFCA adaptively adjusts the weights of
the flocking rules according to the network condition to maximize coverage under
the aerial connectivity constraint. The adaptive adjustment of the weights of the
flocking rules facilitates the maintenance of optimal node density in FANETS,
which provides better SINR, link stability, and inter-UAV collision avoidance.
Additionally, AFCA ensures fairness in the travel distance of each UAV, thereby
balancing the energy consumption of the UAVs.

To address the trade-off between topology prediction accuracy and control
overhead, AFCA adaptively controls the hello interval for each UAV according to
the degree of mobility changes within the neighboring UAVS, defined by the one-
hop minimum LD.

e Q-learning-based routing protocol inspired by flocking control (QRIFC): A new
multi-objective reward function for QL is designed to minimize delay, energy
consumption, and stable path selection using the maximum-minimum 3D predictive
LD up to a two-hop neighbor. This strategy extends the local view of each UAV to
select a more stable path.

QL requires exploration before converging to an optimal route. The
uncertainties during exploration lead to unnecessary detours, resulting in a higher
number of retransmissions and energy consumption. To address this issue, a new
state exploration and exploitation strategy for FANETS is proposed on the basis of
the relationship between the normalized average link duration (NALD), packet
travel time (PTT), and packet travel speed (PTS). This strategy provides adaptability
to QL to cope with the dynamic topology and accelerate the QL convergence to the
optimal route. It outperforms existing routing protocols, UCB, and €-greedy-based
exploration and exploitation strategies and achieves a better average reward.
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The penalty mechanism in QRIFC helps to avoid routing holes and loops.
QRIFC can trigger topology adjustment (TA) to adaptively adjust the weight of the
flocking rules if it detects higher PTT and link breakages.

4.2 System Model

There are a set of N quadrotor UAVs U = {uy, u,, -+, uy} equipped with GPS, IMU,
and wireless interface in this study. UAVs are deployed within a 3D mission area to perform
a collaborative surveillance mission, as shown in Figure 4.1. The dimensions (length, width,
and height) of the mission area are bounded by (Xmin < X < Xmax Ymin <V <
Ymaxr Zmin < Z < Zmax). The entire surveillance mission time T = {ty,t,,*, tp_1, ty} IS
divided into t,, timeslots, and the length of each timeslot is a constant . It is assumed that
T is sufficiently small, and within this time, the mobility of each UAV is fixed. Thus, the
FANET topology can be represented as a time-dependent undirected graph, G(t,) =
(V(tn), E(ty)), where V(t,,) € {U(t,) U BS} represents the vertex set consisting of U(t,,)
UAVs and a single localization-fixed BS. The BS is considered as a ground vehicle, which
is the data collection and mission control center. The BS can serve as an edge-computing
server to perform computationally intensive tasks for the UAVs. In addition, each UAV is
aware of the locations of the BS, pgs.

Link duration Leaving for energy
( replenishment PP,

.. Joining ‘lfter energ\
replenishment

S0 LT S TS -
urce ~ 0/ e H \4,;/( d
<=\ Packet ‘*}’Mk“
UTBS N
. S

&
3 Mission area 0 Target

Xmin < X < Xmax
RE level of UAVs: B High [g Mediumg Low
® Charging station & yAv
=== Multi-hop routing path for packet transmission

Figure 4.1 An example of collaborative UAV swarm mission.

At each t,;, each UAV sends important sensing data to the BS through a multi-hop
routing path, as illustrated in Figure 4.1. The RE level of the UAVs is divided into three
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categories: high, medium, and low. At each t,,,, according to the RE level, the UAVs enter
a charging scheduling process to leave the aerial network for energy replenishment at the
wireless charging station and thereafter rejoin the network, as shown in Figure 4.1. The
transmission range of each UAV is divided into two regions: the repulsion range R,. and
attraction range R, . Thus, to meet the safety distance and transmission range constraints, the
inter-UAV distance d,,;(t,) must be maintained within R, < dy, (tn) < Rq. If dy; (tn) <
R,, adirect edge E (t,,) between two UAVs is present. Each UAV u; uses an onboard GPS
to localize its 3D position g, (t,) € (x;, ¥;,z;). To avoid external obstacles, the height of
UAVs is maintained within z,,, (t,,) € [Zmin, Zmax ]. The channel, delay, energy, mobility,
routing model, and problem formulation for the proposed QRIFC will be derived in the
following subsections. The key notations used in this study are listed in Table 4.1.

Table 4.1 Key notations used in this study (QRIFC).

Notation Description
T ={t,,-,t,} Operation time T divided into t,, timeslots
T Length of each timeslot
U={u;,uy} Setof NUAVsand y; is index of each UAV
Pu, (tn) 3D Position vector of UAV wu; at timeslot t,,
Dgs 2D Position of the fixed BS
Uy, (tn) Velocity of UAV wu; at timeslot t,,
R, Repulsion range
R, Attraction range
Ny, (t) One-hop neighbor set
N, (tr) One-hop neighbor found in attraction range
Ny, (ts) UAV in proximity of repulsion range
N, (t) Two-hop neighbor set
dy,;(tn) Distance between two neighboring UAVs
PTT,,, One-hop packet travel time
PTSy,; One-hop packet travel speed
PTT,, ., Packet travel time of two-hop neighbors
PTSy, ., Packet travel speed of two-hop neighbors
RE,,(ts) Residual energy (RE) of a UAV u;
LDy, Link duration (LD) between two adjacent UAVs

u; € PRi_pop  One-hop potential relay of UAV wu;
Uy € PRy_pop ~ Two-hop potential relay of UAV wu;
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4.2.1 Channel Model

Owing to the 3D mobility, wireless communication channels between high-altitude
UAVs (UTU links) and UTBS links are dominated by line-of-sight (LoS). Thus, the channel
power gain G;;(t,) between a source UAV u; and a receiver UAV u; or a BS in free space

is considered as G;;(t,) = pod;li., where p, represents the LoS channel power gain at a
particular reference distance, that is, p, = 1 m, and  is the path-loss exponent [35]. For a
given transmission power A* of UAV u;, the SINR v;;(t,,) at UAV u; can be estimated as
follows [99]:

={ ptx
Gij(tn) P Pody; P

ror® 10108 P G’

Yij(tn) = 10log 4.0)

where I;; represents the interference, J; € U represents the set of £ #i,j active
neighboring UAVs simultaneously broadcasting and o2(t,,) represents the additive white
Gaussian noise power. Here, ¢ is a binary variable, whose value turns into 1 if UAV u;
detects a simultaneous transmission within its one-hop neighborhood, otherwise its value set
to zero.

UTU links are established successfully if y;;(t,) = v, Where y.y, is a predefined

SINR threshold. Hence, the maximum communication range for UAV u; to communicate
1/¢

. Each UAV is equipped with an

Popt?it

with UAV w; is dy, (tn) < diff, = [( o

1ij(tn)+ 02(tn) ) 1020

omnidirectional antenna, and the maximum communication range of each UAV can be
denoted as a sphere with radius R, = dﬁ’;}.. For the system bandwidth B, the transmitted data

rate Cy,, (tn) at UAV v is estimated as Cy,, (t,) = B log,[1 + vij(tn)]- For agiven y;;(t),
the per-hop packet error rate PER;; on link w;; is estimated as follows [152]:

anexp (—gnvij(tn)), vij(tn) = Ven

PER;;(y;j(tn)) = {1, V() < Ve (4.2)

where n is the transmission mode index. a, and g, are transmission-mode-related
parameters whose values are mentioned in [161].

4.2.2 Delay Model

In FANETS, the data transmission delay tu;; for link u;; consists of one-hop MAC
delay ¢2%¢, queuing delay tfj:je, propagation delay tfjg, and transmission delay t;;¥ . Thus,
tuy; =t © + tfj:;e + tfjlt‘j + ¢ The ¢ represents the contention delay for the source
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node to access the medium utilizing a MAC protocol. The queuing delay of each data packet
at UAV u; depends on the packet arrival rate A,; and forwarding rate F,,. The M/M/1

queuing model is adopted and it is assumed that the packet arrival rate 4,,, follows the

Poisson distribution. Thus, tﬂ?]‘_e is updated as tﬂ?]‘_e = 1/(F _4 ),where F,, isthe service
Ui %

Ui

rate; tfjg is computed as t}fg = J/vp, where v, is the propagation speed; and t{7,

computed as tﬁ’i‘j = %’ where Pg;,, represents the packet size. Finally, the window
U.i]' n

mean exponentially weighted moving average on tuy; is applied to obtain a more accurate
delay as delayuij(tn). Each UAV u; maintains a fixed window of length W for each
neighbor u; € Ny (t,,) to record the delayul.].(tn) for the last data packets transmitted on the
link u;; within the W and, the delay is computed as follows:

Shcn-w delayy, (tn)

delayuij(tn) = (1 - ﬂ) w / + ﬁtuij’ (43)

where € [0 1] represents the weighting coefficient. Thus, the required PTT on the link w;;,
PTT,,, for one-hop transmission is computed as follows:

delayuij

PTTuij - m

(4.4)

4.2.3 Energy Model
The energy consumption cost of a quadrotor UAV comprises two major components:
propulsion energy and communication energy. The propulsion power PR,,, produces thrust

through the UAV rotors to overcome drag forces and gravity to support the mobility of
UAVs in air. Similar to [138], the thrust T, and PR,,; for the quadrotor UAVs is obtained.

In practice, PR,,; is much higher than the communication power. According to [138], the T},
generated by each rotor is a function of the UAV velocity v,, and acceleration d,,,. The PRy,
for UAV w; is a function of 4,,and Tj,. Thus, PR,,, is proportional to the UAV trajectory. As

a result, maintaining fairness in the travel distance for each UAV while performing the
collaborative mission ensures a balance in energy consumption.

The energy consumption for communication depends on the size of the transmitted and
received data at each timeslot. Given the transmitting data rate Cﬁ’ifj (t,), transmitting power
PLfix , and packet size Py;,., the transmitting energy consumption E{i’f for the UAV wu; is
(P&fxpsize)

computed as Eff = . Similarly, given the receiving data rate cgg;(tn) and the
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receiving power P;* the energy consumption for receiving data E;Y by UAV u; is

(Plzfxpsize)

Cu;(tn)

computed as E;* = . For a UAV u; with initial maximum energy E,,.«, the RE at

t,, is computed as follows:
RE = Emax — 2 [{PR EL* + EI* 45
ui(tn) max Ztnzl[{ uiT + Ui + Ui }] ( ' )

It is assumed that, when the RE,, (t,) UAV u; reaches the threshold energy level Ey, it
enters a charging scheduling process to obtain a charging slot from the charging station for
energy replenishment. After energy replenishment, RE;, (t,) of UAVs are reset to the Ey,«
and return to the aerial network. The charging scheduling process is an optimization process
comprising several joint objectives, such as minimizing the ascending and descending costs,
and maintaining the connectivity and coverage density in FANETS [40]. This issue is out of
scope of this study.

4.2.4 Problem Formulation

Owing to the constrained transmission power of UAVS, the source UAV u; transmits
its data packet to the BS by selecting a series of relay UAVs resulting in a path
(wi, uj, uy, -+, BS). It is assumed that the path comprises h hops. The main objective of the
QL algorithm is to minimize delay in terms of maximum PTS, select the stable path in terms
of a maximum of minimum LDs, and select the relay UAVs provided by the highest RE
level. Thus, jointly considering these three metrics, the link quality maximization problem
can be represented as

max Z?;ll(wlPTSuij +w,LDy,; + w3REy, ), (4.6)

subject to the following constraints: The inter-UAV distance should be bounded by R,. <
dy,;(ta) < Ry. The acceleration and velocity of UAVs should be within [|dy, () || < amax

and ||%,(t,)|| < Vinax- The path delay should satisfy minLD,,; > max PTT,; to avoid

link breakages, and the UAV RE level should satisfy RE,, (t,,) < E;,. Note that each term

in (4.6) is normalized by using the maximum value of corresponding parameters found
within two-hop neighbor information, which will be derived further in Section 4.3.2. Here,
wy +w, + w3 = 1, where wy, w,, and ws represent the weights of the three link-quality
metrics, respectively.

According to (4.6), the optimal path selection in a FANET is highly coupled with
relative mobility control, path stability, delay, and available UAV RE. Thus, this study
jointly considers the mobility control strategy based on AFCA and the precisely calculated
the UAV RE given by (4.5). Then, relative mobility knowledge, path delay based on PTT
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given by (4.4), and UAV RE are fed into the QL module to make intelligent routing decision
and trigger TA.

4.2.5 Framework for AFCA and QRIFC

In this subsection, the relation between the mobility in AFCA and the QL in QRIFC is
briefly discussed. The AFCA considers each UAV as a particle with an initial velocity and
position. Owing to the limited transmission range, generating the flocking rules only
utilizing the one-hop neighbor mobility may produce partition in the swarm and delay the
swarm cohesion. Thus, to adopt better collaborative movement with link stability, the AFCA
extends the local view of each UAV by collecting mobility information up to two-hop
neighbors. Then, AFCA calculates the topology formation rule (TFR) by taking the weighted
sum of the cohesion, alignment, and separation rule. According to, TFR each UAV updates
the mobility to construct the FANET topology G (t,,) and predict the LD to select the relay
UAV. The details of the AFCA are provided in Section 4.3.1.

In QL, the agent experiences different consequences in the environment, known as
states. In a particular state, an agent may select an action from a set of allowable actions and
obtain a reward or penalty. Iteratively, each agent gathers an experience, represented by a
Q-value, that leads to an optimal policy in which the cumulative reward is maximized over
time. Thus, the QL-based decision-making process can be described as a MDP
tuple (s, a, p, ), where s represents a set of states, a represents a set of possible actions, p
represents the state transition probability, and r represents the reward. In AFCA, the
mobility of UAVSs in the next timeslot is updated based on the mobility status in the current
timeslot. This property helps the routing model to adopt the MDP formulation with QL to
make routing decisions in FANETS. In QRIFC, the data packet carried by each UAV is a
learning agent and the FANET topology constructed by the AFCA is the environment, as
shown in Figure 4.2.
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AFCA

Flocking rules
Topology
formation rule o UAV mobility detection
Initial UAVs (TFR) calculation o LD calculation
positionand | g —»t via weighted sum (-9t ® FANET topology
velocity of'three flocking construction
rules

Environmental feedback to AFCA to adjust the weight of the
flocking rules if high PTT or link breakage is detected by QRIFC

QRIFC
Environment
FANET topology graph generated by AFCA |
Action Reward
Relay UAV selection Agent §
from a neighbor to Decision making: Data packets are carried by each =
: LD z
forward data packets UAV . P Y 2
toward BS State: Current position of neighbor UAVs
| State transition: State transition continues until data |

Ipackets reach the BS (final state)

Figure 4.2 The interaction between AFCA and QRIFC.

The current state of the data packet is the location of the carrying UAV (source), which is
routed to the BS (final state) through an intermediate state transition (one relay UAV to
another) until it is delivered to the BS. When UAV u; transmits the data packets to its one-
hop neighbor UAV w;, this is defined as an action Ay and the associated link is w;;.

Through Ay the state of the data packet moves from s, to s, , and each Ay is evaluated
using a new multi-objective reward Ty comprising the PTS, LD, and RE of the relay UAV.
During the Ay evaluation via Tugjo if QRIFC detects a higher PTT and link breakage, the

UAYV can trigger the adjustment of the weight of the flocking rules to improve the neighbor
intimacy. The Q-values for each neighbor link are updated using the following Bellman
equation:

ld ld
Qnew(sui' auij) < QO (Sui' auij) + auij [ruij + Auij r(I;l,aXQ(Sui,! alllij) - QO (Suil auij)]’

ugj

4.7)
where max Q (sy,,, a{lij) represents the future Q-value expectation in the next state s,,, after
executinguthe best action a;ij, Ay and Aui]. are the learning rate and discount factor,
respectively, with values within [0 1]. Qy,; specifies the degree to which the newly obtained
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information overrides the old information and controls QL convergence. Aui,- controls the

importance of future rewards and identifies how much QL learns from its earlier mistakes.
Thus, to estimate the precise Q-value and deal with the dynamic topology, both Qy; and

Ay, ; should be adaptively controlled according to the PTT and mobility of UAVs. The details
of QRIFC will be provided in Section 4.3.2.

4.3 Flocking Control and Routing Algorithms

In this section, the AFCA is derived to construct the topology of a UAV swarm and then
determine the 3D LD, which is further utilized by QRIFC to make a routing decision.

4.3.1 Adaptive Flocking Control

The motion component, which is used to determine the mobility of each UAV using two-
hop mobility, is calculated as follows:

The cohesion rule C?ui(tn) defines the motion of each UAV attracted to the average

centroid of the neighboring UAV positions. Its purpose is to keep the UAVSs close to one
another to avoid frequent link breakages or swarm partitions. According to Figure 4.3, the

motion component is determined by ﬁui (t,) for UAV wu; by utilizing the one-hop neighbor
setu; € N7 (t,) located in the attraction range R, < duij(tn) < R, (.9, uj € (uz,u3,uy)),

and two-hop neighbor u;, € Nﬁi(tn) (e.0., ug € us). ﬁui(tn) is computed as follows:

CRy,(tn) = wy

ZujeN%i(tn){ﬁuj(tn)—ﬁui(tn)}] o [EukeNai(tn){ﬁuk(cn)—ﬁui(tn)} | @8

NG ()] N2, (tn)|

where w; + w, = 1 represents the weight value for the one-hop and two-hop motion
components. To prioritize a one-hop neighbor w; > w, is considered. Here, |. | denotes the
cardinality of a set.

The alignment rule ﬁui(tn) ensures that each UAV adopts a velocity direction
according to its neighbor’s average velocity. According to Figure 4.3, the motion component
is determined by ﬁui(tn) for UAV u; by utilizing u; € Ny, (t,), velocity 13uj(tn) , U €

Nﬁi (tn), and velocity o, (t,). Zﬁui(tn) is computed as follows:

AR, (t) = w3

Zu -ENﬁi(tn){ﬁuj(tn)_ﬁui(tn)}] w0, [EukENﬁi(tn){ﬁuk(tn)—gui(tn)} , (49)

]
N (tn)| N2, (tn)|
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where w3z + w, = 1 represents the weights for the one-hop and two-hop neighbor velocity
alignment rules. To prioritize the one-hop neighbor velocity, w; > w,. Both ﬁ?’ui(tn) and

ﬁui(tn) help the UAVs to maintain the transmission-range constraint d,,,; (tn) < R,.

Mobility information
sharing over UTU link

Attraction range

......

{ >
S
,. . range 8

-
.o
ae)

. K%
I .
y \ duq (tn) /
/

u; € Njj, ()

Figure 4.3 Motion components for each UAV in AFCA.

The separation rule S?ui(tn) ensures a minimum separating distance among
neighboring UAVs to avoid the inter-UAV collision. It also reduces the overlapping in the
UAV sensor coverage to the ground terminal. According to Figure 4.3, the motion

component is determined by the ﬁui(tn) for UAV u; by utilizing the one-hop neighbor
UAVs u; € N[, (t,) (€.9. u; € u;) located in the repulsion range dy,,(tn) < Ry SRy, (tn)
is computed as follows:

z:quNﬁi(tn){ﬁui (tn)_ﬁuj(tn)}

N3, ()|

SRy, (tn) = (4.10)

Finally, the TFR, TFR,,(t,) for UAV u; is computed by taking the weighted sum of the
above three motion components:

TFRy,(ty) = [61CR,,(t) + 6,ARy,, (tn) + 835y, (t)] + @, () + W(ty), (4.11)

where §; + 8, + 83 = 1 represents the weight of each rule, and the values are adaptively
determined according to the node density and inter-UAV distance relationship. Here, the
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term 5ui(tn) = [ﬁBS - ﬁui], is used to keep connected the swarm with the BS. W(t,,)

represents the Gaussian noise with zero mean and limited variance to introduce the wind
disturbance.

To adaptively control the rule weight, the TA is performed by sensing the changes in
the one-hop neighboring minimum and maximum distances, represented as TA; and TA4,,
respectively, for each UAV u; at t,, and t,,.,. They are calculated as follows:

TA; = exp [61 {Rr — urérllvng )dul.].(tn)}], (4.12)
JjEN

TA, = exp [62{ max _d,.. (t,) — Ra}], (4.13)

wjens ) Y
where €; and e, are sensitivity constants (e; > €,). TA; determines the degree of violation
in the imposed safety distance constraint mlr% d,. (t ) = R, and increases exponentially

] EN’
if dy;; < Ry. If TA; > A4, the weight becomes §; > (§; + J,) and the effect of SRul.(tn) is

increased. TA, determines the degree of violation of the imposed transmission range
constraint ma>(< dy,; (tn) < Rgand increases exponentially when dy,;, = R, If TA; > A,

UjENS

the weight becomes (8, + §,) > 85 and the effects of both CRul.(tn) and ﬁui(tn) are
increased. Here, both A; and A, are the predefined threshold constants. The adaptive
adjustment of flocking rule weight given by TA helps UAV swarm to adjust its connectivity
with remaining neighbor UAVs in case of neighbor UAV failure due to hardware or software
malfunction. It also helps the UAV swarm to adjust the inter-UAV distance accordingly if
any UAV left due to energy limitation or re-join into the aerial networks after energy
replenishment.

Each UAV w; utilizes TFR,,(t,) as its control input to determine d,, (t,), Uy, (tn+1),
and py, (tn+1) in the next timeslot t,,,., as given below:

TFRy,(tn) e 2
aul(tn) (”TFR @ )”) X tan 1(||TFRui(tn)”) X = X Gmax; (4.14)
ﬁui(tn+1) = 73ui(tn) + aui(tn) XT, (4.15)
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1})u (tn+1) X [exp (77 - 1)]' ”ﬁui(tn+1)” < Vmax

Uy (tng1) = [ Bu,tnsd) R : (4.16)
e | x Umax X [exp (7 — 1)], ”vu,-(tn+1)” = Vmax
Hvul(tn+1)”
- - - 1 -
pui(tn+1) = pui(tn) + Uui(tn) XT+ 2 X aui(tn) X T2, (4.17)

For each UAV u;, to keep the magnitude of acceleration within ||&ui(tn)|| < Amax, @
trigonometric function is applied in (4.14). Similarly, to maintain the velocity for each UAV
within || By, (t,) || < Ymax, €quation (4.16) is applied, where @,y and vy,ax represents the
maximum attainable acceleration and velocity, respectively. Here, n € [0 1] represents the
velocity synchronization term with neighboring UAVs u; € N7 (t,,) and computed asn =

HZ eNd. J(tn )Uu (tn)”
” n is utilized as an exponential term in (4.16) to ensure that each UAV

J
can only attain the maximum velocity to fly if its neighbor’s velocity is properly

synchronized. Otherwise, the velocity of the UAV decreases according to n to avoid chaotic
movement in the swarm. Here, ||. || represents the absolute magnitude. Based on the above
mobility, the FANET topology G (t,,) is constructed.

Xy NG (tn) ||17u].(tn

LDy, is defined as the maximum link subsistence time t between two neighboring
UAVs [148]. It is bounded by the inter-UAV distance dy;; = Rq. Lettwo UAVs u; and u;
with initial positions py,; = (xy;, Y, Zy,;) and Pu; = (Xujp Yy Zu,) velocities v,,; and Uy,
and flying directions (8,,, ¢,;) and (Hu]., qﬁu].). After time t, dui]. is estimated as follows:

dy,” = (€ +at)? + (Y + bt)* + (Z + ct)?, (4.18)

where X = (ty, — %) s U= G, = )+ Z = (Zu, = 2y,) » @ = (vy, in By, cos by, —
vy, sin Huj cos ¢uj), b = (v, sin 6y, sing,, — vy, sin Huj sin (,‘buj), and ¢ = (v, cos 6y, —
vy; cos 6,;). By substituting dy,, = R, into (18), t?(a® + b* + c?) + t(2aX +2bY +
2cZ) + X%+ Y? + 2% — R,* = 0 is obtained. Then,

At2 +Bt+C =0, (4.19)

is found where 4 = (a? + b? +¢?), B = (2aX +2bY +2cZ), and C = X2+ Y? +
Z? — R,?. The solution of (4.19) has one positive root and one negative root. The positive
root defines the LDy;.
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To predict the updated topology with minimal control overhead, the hello interval HI,,
for each UAV u; is estimated by the minimum LDy, found within the one-hop neighbor

Ny, (t,,) and is computed as follows:

HL,, =0 X[ min LDuU], (4.20)

quN&i(tn)

where o is the hello interval factor with the default value of 0.5. Each UAV exchanges the
hello packet with N&i (t,) neighbor UAVs using the hello interval given in (4.20), including
a hello packet sequence number, a unique UAV ID, mobility information (3D position,
velocity, LD, PTT, and RE) of it and its neighbors. According to the received hello packets,
each UAV u; updates its one-hop u; € Ny (t,) and two-hop u, € N, (t,,) neighbor table.
Afterward, the UAV updates its mobility in the next time slot and makes routing decisions
using the QRIFC routing module. The above process is summarized in Algorithm 4.1.
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Algorithm 4.1: AFCA

Input: Neighbor UAV location and threshold A; and A,

Output: Topology G (t,,), UAV mobility, LD, and HI,,

1: Proceed to the next time slot ¢, 1

Phase 1: Hello packet (HP) broadcasting

2: for each u; € U(t,) do

3: Transmit HPs to u; € N&}. UAVs with its u;, € (N&}. N N&i) mobility information
4: end for

Phase 2: One-hop and two-hop neighbor table update

5: for V received HPs at UAV w; from neighbor u; € Ny, do

6:  Get originator u; € Ny, unique UAV ID
7:  if (u; € Nyj,) then

8: if (received HP sequence > record HP sequence) then
9: Update the position of u; € Nyj, and uy € N,

10: end if

I1: else

12: Add a new record for u; € N&i and its neighbor u;, € lei
13:  endif

14: end for

Phase 3: Mobility update according to weighted flocking rules
15: for each UAV u; having u; € N, do

16: Calculate the CR, (t,), ARy, (t,), and SRy, (t,) using (4.8)—(4.10)
17: if (TA; > A;) then // Violation of the separating distance

18: Set the rule weight 63 > (61 + 6,) in (4.11)

19: else if (TA, > A, ) then //Violation of the transmission range
20: Set the rule weight (6; + §,) > 63 in (4.11)

21: end if

22: Calculate the ﬁui (t,) using (4.11)

23: Compute a(ty,), Uy, (tns1), and py, (tn41) using (4.14)—(4.17)
24: Construct the FANET topology G (t,,)

25: Calculate the LDuij by solving (4.19)

26: Update the HI,,; using (4.20)

27: Update the RE,,, (t,) using (4.5)

28: end for

4.3.2 Q-Learning-Based Routing

QRIFC is a position-based multi-hop routing protocol combined with QL, where data
packets carried by each UAV act as RL agents and adaptively learn how to reach the BS by
utilizing the relative mobility (PTS and LD) with a two-hop neighbor given by AFCA.
Routing decisions based on only one-hop neighbors’ knowledge might be less optimal
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because they do not consider the availability of further suitable relay UAVs for forwarding
toward the BS. QRIFC enhances the routing performance by expanding the local view of
the topology at the current source UAV to include two-hop neighbor information. The
optimal relay UAV selection strategy for a source UAV to forward the sensed data packet
to the destination BS in QRIFC is explained below:

4.3.2.1 State Exploration for Relay UAV Selection

A state exploration strategy is derived to avoid unnecessary detours during the initial
decision making for selecting the relay UAV. This is done by defining a potential relay (PR)
set for each respective source UAV considering the PTS up to a two-hop neighbor. It also
helps QL to tackle the large state space problem. To explain the state exploration strategy
for the data packets to reach the BS, a source UAV u; and destination BS is considered, as
shown in Figure 4.4. The source UAV u; forwards data packets to the BS by sequentially
selecting relay UAV from its one-hop PR, u; € PRy_pop (8.9, (ug,uz,u3)) , and two-hop
PR, ux € PRy_pop (€.9., (us, U7, ug)) based on the value of PTS > 0.

Uy € PRz _pop

PTS <0
<% Residual energy (RE) of UAVs: B High & Medium = Low

== multi-hop routing path generated by QRIFC
N, € [ug —us), NZ, € [ug — ug)
Pl:u; - uq > ug > BS,P2:u; - uy > u; - BS, P3:u; > u3 » ug - BS

Figure 4.4 A routing example in QRIFC using PTS, LD, and UAV RE.
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The PTT up to the two-hop neighbor for UAV w; PTT,, , € (PTTuL.j,PTTujk) is

obtained using (4.4). While selecting a relay UAV, the PTS considers the progress of the
distance toward the destination BS and PTT offered by the relay UAV. The PTS up to the
two-hop path PTS,,, , for UAV w; is computed by:

PTS, = d(u;,BS)—d(u;,BS) d(uj,BS)—d(uk,BS), (4.21)
- PTTy,.. PTT, .

ij jk
where d(.) represents the Euclidian distance between the respective source UAV and BS.
Here, PTS,, , > 0 indicates that the chosen relays show distance progress toward the BS,
and the higher the value of PTS, the more suitable the link is, as it intends to provide less
PTT.

4.3.2.2 Multi Objective Reward Function

To simply explain the relay selection strategy to transmit the data packets toward the
BS from the source state UAV u;, three suitable paths are considered: P1: u; = uy = ug =
BS, P2:u; - u, - u; = BS, and P3: u; —» u; = ug — BS, as shown in Figure 4.4. The
source UAV u; evaluates its action a,,; as arelay UAV selection by 7, ; to discover optimal
routing paths to minimize delay, ensure link stability, and avoid energy and routing holes.
Because the reward function reinforces the action policy of an agent, a good reward function
can accelerate QL convergence. Thus, to obtain the optimal path, QRIFC jointly considers
three important metrics of PTS, LD, and RE up to two-hop neighbor UAVs to update the Q-
value for each neighbor link as described in the objective function (4.6).

The first component of the reward r,}l.]. is the PTS and it minimizes the end-to-end delay.

A relay UAV that provides a higher PTS is more suitable for the next relay to forward data
packets toward the BS. Path P1 gives a better PTS than P2 and P3; thus, relay u, is more
suitable. The ruli]. is normalized as follows:

PTSy,

1
Ty = 4.22
Uij max PTSy, ' ( )
quPRl_hop,ukEPRZ_hop and

The second component Tuzi,- is the LD given by (4.19), which ensures the stability of the

chosen link. The maximum LD of one path is equal to the minimum LD of the two adjacent
UAVs along the path. This indicates that LD is not an additive metric. Therefore, it is
preferable to use a maximum-minimum LD to select a more stable path. For instance, in
Figure 4.4, the minimum LD for paths P1, P2, and P3 are 3 s, 3 s, and 2 s, respectively. If
the maximum of the minimum LD is taken, P1 and P2 are suitable to forward data packets
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by selecting relays u, or u, as they intend to provide a higher LD compared to P3. Thus,
LD up to the two-hop neighbor LD, is defined as follows:

LD, , = min (LD,,.,LD,.), (4.23)

U ugjr Ly
i~k UFEPR1_hop UKkEPR2—_hop Y Jjk

Based on the above discussion, if the source UAV has multiple paths to reach the destination,
the maximum of the minimum LD ¢,,, , along those paths provides a better stable path and

iscomputed as ¢,,, , = max [min LD, , ]. To normalize the two-hop stable path

UFEPR_pop UREPRy

selection metric ¢, , , an exponential function is applied and computed as follows:
Tfi,. =1—e Puk, (4.24)

The third component rjij is the RE of the relay UAVSs, which helps to create a balance

in energy consumption. A relay UAV with higher RE is more suitable for the next relay.
Thus, path P1 gives a better RE than P2 and P3. The ru3i], is normalized as follows:

1
Ty = 35— (REy, + REy,), (4.25)

The weighted sum of the above three components gives the ﬁfi,- for selecting the relay UAV
and computed as follows:

4 _1 1 2 3
T =3 (eruij +wery; + W37”u,-j)- (4.26)

Based on the above discussion, path P1 receives more reward because it provides better PTS,
LD, and RE of UAVs to route data packets toward the BS. If the relay UAV is chosen by
using only one-hop information, relay u; would be the best possible action. However, in the
next state transition from us, the routing trapped in the local minimum as us has less LD
with ug and u, has low RE.

If the selected action is trapped in the local minimum, that is, the chosen relay UAV u;,
shows distance progress to the BS but there is no potential neighbor UAV to forward the
data packets further, QRIFC allocates the minimum reward r,;,. If the next state is the BS,
it directly allocates the maximum reward 7,,,. Otherwise, when UAV wu; acts as a relay,

each Ay is evaluated by using the rjl.j given in (4.26). Additionally, if a relay UAV does

not convey an ACK to the source UAV, it will consider the failure state and allocate 7y,ip,
to that relay. Finally, T for updating the Q-value is computed as follows:
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Tax = 100, if link u;j lead to the BS
= {Tmin = —100, if link w;; is local minimum (4.27)

Ty,
9]
100 x rj’l.]., otherwise

4.3.2.3 Adaptive Q-learning Rate and Discount Factor
Based on the discussion in Section 4.2.5, Ay, and Aul.]. should be adaptively adjusted to

produce a stable Q-value considering the dynamic topology. The learning rate ay,; € [01]
for link u;; is updated according to the exponential of the normalized one-hop PTT,,; as
follows:

1— _ ”PTTuij_muij” 0
=1 P g, iy 70 (4.28)

0.3, fy; = 0

where My, and My, are the mean and variance of the PTTy,; computed in (4), respectively.
According to (4.28), if PTT,,; is higher, Ay, increases exponentially to update the Q-value
faster. A higher Auijvalue specifies the stability of the expected future Q-value, and a smaller
Aui]. provides a vulnerable Q-value expectation. Owing to the need for a reliable link u;;, the
value of 1, € [0, 1] for link u;; is adaptively modified according to the level of mobility
defined by the relative distance dui]. as follows:

Ry—dy..
1—M, if 0<d, <R,
Ay = o g : (4.29)
1-— :u , if Rr<dui].SRa

a

4.3.2.4 Exploration-exploitation trade-off for routing decision

Exploration is the search for a new state of data packets via a new action that may
provide a better reward. Exploitation refers to the performance of the best action according
to the maximum Q-value. However, the action taken during the exploration can be either
good or bad, which may produce detours. Thus, to satisfy the trade-off between exploration
and exploitation in highly dynamic FANETS, each UAV u; adaptively determines whether
to perform exploration or exploitation according to the value of NALD ALD,,;. The ALD,,

is computed using LD,,, , given in (4.23) and computed as follows:
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< ALDyy, (4.30)

If ALD,,, < ALDyy,, where ALDyy, is a threshold value set to 0.9, UAV u; decides to
explore because it indicates considerable changes in the neighboring mobility state. During
exploration, rather than randomly selecting a link, a neighboring UAV that offers maximum
PTS satisfying the constraints PTS,,, , > 0 and min(LD,, ,) > max(PTT,, ) is included
in the PRy,,p—1 Set for selection as a relay UAV. It also assists QL to deal with large action
space. If mui > ALDyy,, the neighboring mobility state is relatively stable. Thus, the UAV
decides to execute exploitation, and the source UAV w; selects the neighboring UAV, u; €
PRpop-1, Which offers the maximum Q-value satisfying the constraint min(LD,,, ,) >
max(PTT,, ).

When the source UAV has less neighbor stability and hardly meets the imposed LD
constraint, QRIFC can trigger TA to adjust the weight of the cohesion and alignment rules
in (4.12) to maintain path stability. To avoid routing loops, for each state transition of data
packets, the updated Q-value is continually traced against previously visited UAVSs so that
none of the intermediate relay UAVs are selected more than once in the end-to-end path.
Additionally, the penalty 1, in (4.27) helps to avoid unnecessary detours of data packets.
This process is described in Algorithm 4.2. Lines 4—26 represent the state exploration
strategy according to the condition mui(tn) < ALDy,, for data packets relayed toward the
BS. Additionally, it includes the TA triggering method to improve the neighboring proximity
according to the condition min(LD,,,_, ) > max(PTT,, , ). Lines 27—29 represent the
exploitation strategy according to the maximum Q-value.

4.3.3 Topology Update Cost and Time Complexity

Both the AFCA and QRIFC are executed in each UAV in a distributed manner. As a
result, the topology update cost for each UAV at each sequential mobility update iteration
depends on the degree of each UAV at H1,,, given by (4.21). Thus, the approximate topology
update cost for HI,,, is 0(2A) messages, including ACKs, where A represents the degree of
the UAV in the FANET topology.

The time complexity of the AFCA for each UAV is 0(A?) because each UAV updates
its mobility using the mobility information of its one-hop and two-hop neighbors. Because
QRIFC is a QL-based algorithm, its time complexity is 0 (A?) for both exploring a new state
for data packets using two-hop neighbor list as an action and updating the reward or penalty
for each action.

101

Collection @ chosun



Algorithm 4.2: QRIFC

Input: FANET topology G (t,,) generated by AFCA

Output: Optimal relay selection for data packets to reach BS
1: Procced to next timeslot t,,,

2: Q —value = PTT,,_, = PTS,,, = 0// Initialization

3: while data packets need to transmit do

18:
19:

20:
21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

if (d(u;, BS) < R,) then // UAV near to BS
Transmit the data to BS and allocate maximum reward

Make routing decisions based on Q-learning
if (ALDui(tn) < ALDth) then //exploration

for u; € N (t,) of u; do
Calculate PTT,, , using (4.4)
Calculate PTS,, , using (4.21)
end for
if (PTS,,, > 0) then
if (min(LD,,,_,) > max(PTT,,_,)) then
Update PR;_p,p < according to the descending order of PTS,,,
Select relay UAV u; € PR;_p,), that offer maximum PTS,, ,
Obtain the reward using (4.27) and update Q-value using (4.28), (4.29), and
4.7)
else
Trigger TA to satisfy min LD, , > max PTT,,_, by adjusting the weight of
the flocking rule in (4.11)
Select relay UAV u; € PRy _p,, that satisfy min(LD,,,_, ) > max(PTT,,_,)
Obtain the reward using (4.27) and update Q-value using (4.28), (4.29), and
4.7)
end if
else
Trigger penalty for bad action
Give minimum reward and update Q-value
end if

else // exploitation

Select the relay u; € PR;_p, with maximum Q-value
Obtain the reward using (4.27) and update Q-value using (4.28), (4.29), and (4.7)

end if
end if

32: end while

4.4 Performance Evaluation

In this section, extensive computer simulation is conducted to evaluate the performance

of the proposed AFCA and QRIFC. MATLAB R2021a and its reinforcement learning
toolbox are used to implement both AFCA and QRIFC. Because QRIFC is a position-aware
QL-based multi-objective optimization routing protocol, QMR [62] and QTAR [33] are
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suitable for comparison with QRIFC. In the reward function, QTAR considers the two-hop
delay, PTS, and RE. QMR considers the one-hop delay and UAV RE in the reward function.
QTAR executes exploration based on only two-hop PTS information under the generic
Gauss—Markov mobility model, whereas QMR performs exploration based on only one-hop
PTS under the random waypoint mobility model. However, for comparison in a fair
environment, the AFCA is considered for both QMR and QTAR.

4.4.1 Simulation Setup

Initially, the UAVs are randomly deployed in a 3D mission area with a topology
dimension of 3000 x 3000 x [100 — 400] m3 to perform a collaborative surveillance
mission. The maximum transmission (attraction) and repulsion ranges for each UAV are set
to R, =250m and R, = 50m, respectively. Additionally, the maximum allowable
velocity vy, and acceleration a,,, for each UAV are set to 20 m/s and 5 m/s?,
respectively. The total surveillance mission duration is T = 5000 s, and the length of each
time slot is 7 = 2 s. The minimum threshold value for calculating the LD is initially set to 2
s and HIL,, = 0.5s. To execute the TA, it is set thate; = 0.8, ¢, = 0.3, A;=55,and A, =
20. To produce data traffic, a constant bitrate (CBR)-based video streaming application
operating on each UAYV is considered. At each timeslot, each UAV periodically transmits
the data packet to the destination BS. Other important simulation parameters are listed in

Table 4.2.
Table 4.2 Simulation parameters (QRIFC).
Parameter Value
Topology dimension 3000 x 3000 x [100 — 400] m3
Number of UAVs (N) A variable number N (50—400)
UAYV initial energy (Epnqyx) 2 x 10> Joules
Path loss exponent ({) 3
SINR threshold (y;) 2dB
MAC protocol IEEE 802.11 DCF
Traffic type CBR
Transport protocol User datagram protocol
Traffic load per video stream 2 Mbit/s
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Packet arrival model Poisson

4.4.2 Performance Metrics

The performance metrics used to evaluate the stability of the AFCA flocking model are

as follows:

e Average maximum and minimum UTU distance: In AFCA, UAVs are initially
randomly distributed. Thus, the maximum and minimum UTU distances can be
greater than or less than R, and R,., respectively. Iteratively, each UAV in the
swarm communicates with neighboring UAVSs and experiences movement to
optimally gather as a connected swarm to the BS. Thus, observing the changes in
the average maximum and minimum inter-UAV distances with respect to the
number of iterations helps to understand the UTU link stability and cohesion of the
flocking process.

o Traveling distance fairness (TDF): TDF for each UAV validates the motion fairness
among the UAVs during the entire collective motion process generated by the

2

(ZI‘L—D’”)Z, where D,,. represents the travel distance by a
Nx3, (Dy,) '
UAV and is computed using (4.18). A TDF value close to 1 indicates that the travel
distances of all UAVs are the same, which ensures a balance in energy consumption.
The above performance metrics were used to compare the one-hop and two-hop
AFCA to validate the effectiveness of extending the local view.

AFCA. Itis computed as

The performance metrics used to evaluate the QRIFC routing performance are as follows:

e Average number of retransmissions (ANR): ANR denotes the average number of
packets that must be retransmitted by each UAV owing to link breakages and data
congestion.

o Packet delivery ratio (PDR): PDR refers to the ratio between successfully delivered
data packets at the BS and the total number of data packets originating from a source
UAV.

e Average end-to-end delay (AETED): AETED refers to the total average time
required to successfully deliver data packets to the BS from a source UAV. It is

computed using (4.5).

e Control overhead: The control overhead includes hello packets that contain mobility
information for each UAV and its two-hop neighbors to construct the FANET
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topology and make routing decisions. The above network performance metrics were
observed with respect to different number of UAVs and different velocities.

o Normalized residual energy (NRE): The NRE for each UAV is computed using
RP% The NRE is observed after

completing the simulation, and a lower NRE indicates higher UAV energy
consumption.

RE,, given by (4.6) and normalized as follows:

o Exploration-exploitation trade-off: To examine the exploration-exploitation trade-
off and convergence in QL, the average reward with respect to the number of
iterations is observed for different types of neighbor state exploration strategies for
data packet forwarding with the proposed QRIFC.

4.4.3 Simulation Results and Discussion

In this subsection, the simulation results are summarized and comparatively discussed.
Figure 4.5 shows a stable UAV swarm flocking in 3D space for 200 UAVs generated by
AFCA to perform a collaborative surveillance mission, which is connected to the BS. The
green line represents the trajectory of each UAV, which is iteratively generated by the AFCA
to achieve swarm cohesion.

o UAV
Trajectory

X (m)

Figure 4.5 An example of flocking generated by AFCA.

Figure 4.6 shows the changes in the average maximum and minimum UTU distances
with respect to the number of iterations for 200 UAVs. Because UAVs are randomly
deployed, the maximum and minimum UTU distances are initially greater than or less than
R, =300 mand R, = 50 m, respectively. According to Figure 4.6(a), the maximum UTU
distance is initially 930 m. Owing to the weighted cohesion and alignment rules using two-

105

Collection @ chosun



hop neighbor mobility information in AFCA, the maximum UTU distance begins to decrease
rapidly in the first 80 iterations as shown in Figure 4.6(a). Owing to the rapid decrease in
the UTU distance, the separation rule gradually starts to operate. Thus, after 80 iterations,
the maximum UTU distances slightly decrease. After approximately 240 iterations, an
equilibrium state is achieved, and changes in the maximum UTU distances are stabilized at
approximately 250 m. In contrast, one-hop AFCA requires more iterations (approximately
750 iterations) to stabilize the changes in the average maximum UTU distances (red line in
Figure 4.6(a).

According to Figure 4.6(b), the changes in the average minimum UTU distances
initially increase rapidly with the help of the weighted separation rule and stabilize at a
threshold of 50 m after approximately 250 iterations using two-hop information. In contrast,
the changes in the average minimum distances in the AFCA with one-hop information reach
a stable state after approximately 680 iterations. Therefore, generating flocking rules with
adaptive adjustment of rule weights using two-hop information provides faster swam
cohesion satisfying the imposed safety distance and transmission range constraints.
Additionally, balances in the UTU distances control the uniform node distribution within
the mission area, which enhances aerial coverage and SINR performance.
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Figure 4.6 Changes in UTU distances in AFCA.
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Figure 4.7 shows the TDF for different number of UAVSs in the AFCA. In Figure 4.7,
the TDF is close to 1 with an increasing number of UAVs, which ensures fairness in the
traveling distance while achieving swarm cohesion. Compared to one-hop AFCA, the
adaptive flocking rules using two-hop mobility in AFCA produce a smoother and fairer
travel distance for each UAV to reach the stability state owing to the advantage of velocity
synchronization and extended knowledge of neighboring UAVs positions. Because UAV
propulsion energy is proportional to the traveling distance, a better TDF in AFCA creates a
balance in the UAV energy consumption.

1
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0.75 L L ) L L )
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Number of UAVs

Figure 4.7 TDF versus the number of UAVSs.

Figure 4.8 shows the network performance of QRIFC compared to QMR and QTAR
with respect to the number of UAVs. According to Figure 4.8(a), QRIFC produces a
significantly lower ANR than QTAR and QMR for two reasons. First, owing to the joint
consideration of predictive maximum-minimum LD and PTS metrics, up to two-hop
neighbors help to select a better stable path because path stability and LD are highly coupled.
Second, the AFCA constructs a stable FANET topology with optimal node density, which
is connected to the BS by adaptively adjusting the flocking rules and their weights. QTAR
and QMR have higher ANR because they do not consider path stability, and they select the
next relay based only on the PTS without controlling the relative mobility. Hence, both QMR
and QTAR encounter more link breakages. Figure 4.8(b) shows the PDR with respect to the
number of UAVs. QRIFC has a higher PDR compared to QTAR and QMR because it
requires fewer ANR.

According to Figure 4.8(c), QRIFC exhibits lower AETED than QMR and QTAR for
two reasons. First, the relay UAV selection according to the maximum positive PTS is
computed based on the ratio between the distance progress toward the BS and PTT. QRIFC
precisely computes PTT using the link delay and link packet error rate, which is directly
related to the link SINR. Second, according to the imposed safety distance and transmission
range constraint of UAVs in AFCA, the adaptive adjustment of UTU distances helps to
maintain an optimal node density, which significantly reduces MAC layer contention. Both
QMR and QTAR compute the PTS by considering only the link delay (MAC and queuing
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delay). However, they do not consider the link packet error rate and SINR, which is a very
important metric in a dynamic network.

Figure 4.8(d) shows the control overhead with respect to the number of UAVs. QTAR
exhibits a very high control overhead owing to the savings of two-hop neighbor list.
Although QRIFC saves up to two-hop neighbor information compared to QTAR, it has less
control overhead because it adaptively controls the hello interval according to the minimum
LD found within the one-hop vicinity rather than broadcasting the hello packet at a fixed
interval. Additionally, the adaptive weighted flocking rules in the AFCA maximize the LD
with neighboring UAVs by controlling the relative distance, direction, and velocity, which
helps to maintain the hello interval at a more optimal level. Because QMR maintains only
one-hop neighbor information, it has less control overhead compared to the other routing
protocols. However, owing to the broadcast of the hello packets at a fixed interval, the QMR
control overhead also raises slowly with the increased number of UAVs although it employs
only one-hop neighbor information.
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Figure 4.8 Network performance with respect to the different number of UAVS.
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Figure 4.9 shows the network performance with respect to different attainable
maximum velocities in a swarm of 200 UAVs. In Figure 4.9(a), QRIFC significantly
outperforms QMR and QTAR in terms of ANR with increasing maximum attainable
velocities for three vital reasons. First, the adaptive weighted flocking rules in AFCA
produce optimal mobility for each UAV according to the velocity synchronization with
neighboring UAVs, which reduces the possibility of link breakages. Second, the
consideration of the maximum-minimum 3D LD metric in the reward function helps in the
selection of a more stable relay path. Third, QRIFC can trigger the TA to adjust the weight
of the flocking rules to improve the LD proximity with neighboring UAVs if it detects higher
link breakages and higher PTT while relaying data packets to the BS. Owing to the above
advantages, QRIFC has a better PDR than QMR and QTAR, as shown in Figure 4.9(b).
According to Figure 4.9(c), QRIFC exhibits less AETED with increased velocity owing to
its adaptive exploration strategy according to NALD. In QRIFC, if the UAV experiences a
high degree of change in relative mobility with its neighbors, it explores the next relay that
offers the maximum PTS to efficiently forward data packets to the BS.

According to Figure 4.9(d), QTAR exhibits higher control overhead compared to the
other parameters because of the increment in the velocity states of UAVS, and the hello
interval increases proportionally to keep updating the two-hop neighbor list. In contrast,
owing to the adaptive weighted flocking rules and the velocity synchronization in the AFCA,
the QRIFC efficiently maintains a stable relative distance and relative velocity
synchronization with neighboring UAVSs, which subsequently maximizes the minimum LD
with neighboring UAVs and maintains the control overhead at an optimal level. QMR shows
less control overhead because it broadcasts hello packets at a fixed interval, not concerning
the relative mobility states. As a result, QMR topology prediction accuracy degrades,
subsequently affecting its network performance.
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Figure 4.9 Network performance with respect to different UAV velocities.

In Figure 4.10, the QMR exhibits less energy consumption (higher NRE) because it
considers one-hop neighbor table and optimizes the energy consumption by selecting a relay
UAYV with a higher RE.
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QMR QRIFC QTAR
Routing protocol

Figure 4.10 NRE of UAVs for the different routing protocols.

Here, the horizontal red line within each box represents the median of NRE for each routing
protocol. Although QRIFC utilizes the two-hop neighbor information to generate UAV
mobility and makes routing decision to improve the communication performance, it shows
significant energy improvement compared to QTAR and is almost close to QMR owing to
the advantage of fewer ANR. In addition, QRIFC considers the UAV RE level while
selecting relay. Also, the collective motion generated by AFCA ensures higher TDF.
Considering the NRE status distribution of UAVs in each box, QRIFC exhibits a greater
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balance in energy consumption compared to QMR and QTAR owing to the balance in both
UAYV propulsion energy and communication energy, which guarantees more topological
stability.

Now QL convergence in QRIFC is addressed, and the trade-off between exploration
and exploitation is discussed by comparing different exploration strategies adopted in QMR,
QTAR, and benchmark technigues such as UCB and e-greedy method. Figure 4.11 shows
the average reward with respect to the number of iterations for different state exploration
strategies for forwarding data packets to the BS. The proposed QRIFC performed
exploration based on two-hop NALD and PTS values. In contrast, QTAR performed
exploration using only a two-hop PTS, whereas QMR performed exploration using a one-
hop PTS. UCB controls the exploration rate by considering the sum of the average
cumulative reward and the number of times a particular action is taken within a particular
time. In the e-greedy strategy, the exploration is selected according to a randomly chosen
value of € usually considering a 10% probability.

According to Figure 4.11, the exploration strategy based on two-hop NALD and PTS
in QRIFC provided faster convergence and achieved better rewards compared to the other
parameters, indicating that it can explore a better relay state for data packets to reach the BS
for three major reasons. First, the PTS is the ratio between the progress of the Euclidean
distance toward the BS and the PTT. Thus, considering the 3D mobility of UAVs, state
exploration based only on UTU distances is not optimal because UAV mobility prediction
considering the relative velocity, relative distance, and flying directions provides better
stability in state exploration, which is only possible by estimating the predictive LD. Second,
considering the dynamic topology in FANETS to precisely update the link Q-value, both
QMR and QTAR update the discount factor for each neighbor link based on the degree of
change in the neighboring set similarity, which may not deliver accurate link conditions. In
contrast, QRIFC updates the discount factor according to the relative distance, as given in
(4.29), to produce a precise Q-value by giving a higher discount to the neighboring UAVS,
which satisfies the imposed separating distance and transmission range constraints. Third,
considering the reward function, QRIFC considers path stability as LD, path delay as PTS,
and energy status as the RE of the UAV. By contrast, path stability is not considered in either
QTAR or QMR.

Two-hop PTS-based exploration in QTAR provides a better reward compared to the
QMR one-hop PTS strategy owing to the advantages of extended knowledge of the time-
varying topology. However, both QMR and QTAR exploration strategies converge with
lower reward. Then, because the UCB and e-greedy perform explorations based on the
number of times a specific action is chosen and a random probability without considering
the network condition, both give the lower reward. However, their reward slowly increases
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with the number of iterations because their learning is time dependent. In Figure 4.11, the
QRIFC exploration strategy converges to a maximum reward after approximately 270
iterations whereas, according to Figure 4.11, the AFCA flocking control achieves swarm
cohesion after approximately 240 iterations. Thus, the stability of the AFCA mobility
controller significantly enhances the routing performance of FANETS because it maximizes
LD with neighbors while performing the collaborative mission.
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Figure 4.11 Average reward versus the number of iterations.

4.4.4 Summary on performance improvement

According to the earlier performance comparison study, the performance improvement
over the conventional schemes is summarized and discussed in this subsection. In the
scalability test, QRIFC shows 21.28% and 40.16% less AETED compared to QTAR and
QMR. QRIFC also provides 9.30% and 12.85% better average PDR compared to QTAR and
QMR, respectively. Even though QRIFC exhibits 27.12% higher average control overhead
compared to QMR, QRIFC provides 24.55% less average control overhead compared to the
QTAR. Similarly, QRIFC exhibits 36.36% better average NRE level (less energy
consumption) of UAVs in comparison to QTAR and shows 20.45% less average NRE level
(higher energy consumption) in comparison to QMR.

In the velocity increment test, QRIFC provides 21.76% and 32.45% less AETED
compared to QTAR and QMR, respectively. Similarly, QRIFC shows 17.95% and 23.08%
better average PDR in comparison to QTAR and QMR, respectively. Even though QRIFC
offers 19.56% less average control overhead than QTAR, it exhibits 38.58% higher average
control overhead in comparison to QMR. Owing to the significant improvement in AETED
and PDR, the reasonable cost in control overhead and the energy consumption are acceptable.
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Thanks to the AFCA mobility controller, the new multi-objective reward function and TA
triggering method in QRIFC contribute to such performance improvement.

4.5 Conclusion

In this paper, the relation between swarm mobility control, delay, and routing policy
has been addressed to significantly improve the communication performance of FANETS.
The AFCA controls the relative mobility with neighboring UAVs and offers a relatively
stable state to the QRIFC. Consequently, efficient data routing is performed by using a new
reward function in QL, jointly considering the predictive 3D LD, PTS, and UAV RE. This
integrated routing strategy with adaptive flocking control provides faster swarm cohesion,
high PDR, shorter end-to-end delay, less retransmissions, and more balance in energy
consumption while incurring optimal control overhead, compared to the existing routing
protocols.
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5. Joint Trajectory Control, Frequency Allocation, and
Routing

5.1 Introduction

Due to the flexibility in 3D positioning adjustment, maneuverability, wider coverage
and connectivity, and high survivability, collaborative UAVSNs have potential in both
military and civilian applications. For instance, an autonomous UAVSN can be deployed to
perform real-time tasks, such as sensing and monitoring, over a post-disaster area and wild-
fire monitoring [162] by transmitting real-time high-resolution video or 3D images to a
ground BS. UAVSNSs can also be utilized to function as an aerial base station that provides
emergency communication services to ground users and collects data from ground-based
IoT devices.

Thus, when executing missions, UAVSNSs require collaborative trajectory control to
maximize coverage and ensure the QoS (i.e., high data rate and minimal delay) in both U2U
and U2BS links [159]. Since UAVs have limited transmission power, data packet
transmission from remote UAVSs to BS requires a multi-hop path that involves a series of
relay UAVs. However, due to the highly dynamic time-varying topology and limited energy,
packet routing from UAVSs to the BS suffers frequent link breakages, higher delays, routing
loops, and energy holes. Although the LoS access in U2U link ensures communication
guality, its exposure during simultaneous transmission generates strong mutual interferences.
Consequently, the performance of packet routing protocol depends on multiple link quality
metrics, such as link SINR, relative trajectory knowledge, queuing delay, and available RE
of a relaying UAV.

To achieve high SINR, trajectory control according to physical layer transmission range
and frequency resource allocation in the MAC layer are prerequisites. Additionally, the
relative mobility prediction metric LD can be utilized to alleviate the effect of the highly
mobile time-varying topology [34], [120]. The LD offers a predictable time at which two
adjacent UAVs remain within their communication range. In UAVSNs, the UAVs are
required to periodically adjust their position, velocity, and flying directions based on the
mobility of nearby UAVs to avoid chaotic movements and maintain stable LD. UAVSNs
topology should be self-healing to retrieve the connectivity with remaining UAVSs in the case
of UAV failure or departure due to energy depletion. The trajectory of UAVs should be
smooth and preserve fairness in travel distance to balance the propulsion energy
consumption.

To overcome the above challenges, researchers have attempted integrating the behavior
of SI, such as bird flocks or fish schools, to design self-organized, self-healing, and
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distributed collaborative trajectories [40], [81], [101]. The aviation of UAVSs in a dynamic
environment can preserve a robust topology by generating collective motion according to
the behavioral rules of the Reynolds motion model [163]. Trajectory control of UAVs based
on their physical layer transmission range inspired by behavior-based motion can obtain the
optimal aerial node density. It is achieved by imposing a constraint on the minimal
separating distance and maximum inter-UAV distances with neighboring UAVs. Such
trajectory control guarantees aerial coverage, safety distance to avoid inter-UAV collisions,
and satisfies the communication range constraint. Moreover, it can significantly reduce
mutual interference because although a higher node density increases the connectivity, it
increases the mutual interference and competition between neighboring UAVs to access the
shared medium. Consequently, the optimal allocation of frequency resources in the MAC
layer can significantly reduce the mutual interferences. In this study, joint trajectory control,
frequency resource allocation, and packet routing (JTFR) is proposed by leveraging the
cross-layer design to efficiently design packet routing in UAVSNS.

Nevertheless, behavior-based motion obtains mobility only at the next timeslot based
on the mobility at the current timeslot. In a practical scenario, wind disturbances and GPS
localization errors can severely affect the trajectory of UAVs. The uncertainties in
communication (i.e., congestion, delay, and interference) can make UAVs compute the
motion component vector with the outdated mobility of neighbor UAVs. However, each
UAYV cannot control its trajectory within the boundary of the 3D mission area by solely
depending on this behavior-based motion. Thus, an alternative approach is required to
precisely estimate the mobility. More specifically, the historical information of the UAV
trajectory generated by the motion model can be utilized to precisely predict the mobility of
the UAV. Subsequently, allocating the frequency blocks according to the historical
frequency state of each UAV and its neighboring UAVs can result in selecting a better
frequency state to avoid mutual interference. Consequently, based on the historical
information of the neighboring link SINR, delay, and relative trajectory knowledge, the
respective source UAVSs can select a better next hop to relay a packet toward the BS.
Therefore, in the proposed JTFR, the joint consideration of trajectory control in continuous
space, frequency resource allocation, and relay UAV selection transforms into a complex
collaborative sequential decision-making problem.

Recently, RL has been widely used for designing the trajectory of UAVs [164],
allocating resources, and selecting relay UAVs for packet routing [133], [138] owing to the
advantage of less computational complexity and less modeling difficulties. Data-driven deep
reinforcement learning (DRL), which comprises both deep learning and RL can efficiently
solve sequential decision-making problems by adopting the MDP. Here, each learning agent
iteratively selects an action based on the current state to maximize its cumulative reward by
interacting with the dynamic environment. QL, which can only handle problems with small-
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scale discrete state-action space, is the most conventional RL algorithm. Although the DQN
can tackle large state space problems by using a Q-value function approximator, it can only
deal with low dimensional discrete action spaces [121]. Therefore, actor-critic learning is
introduced to obtain the optimal policy in a continuous action space, where the actor maps
the input state to a stochastic action policy by leveraging the policy gradient method [165].
The critic network then evaluates the action by generating a Q-value function. An off-policy
actor-critic framework based on the DDPG, which comprises the deterministic policy
gradient and DQN, efficiently deals with the large action and state space [138], [166]. The
utilization of target networks for actor, critic, and replay buffer further improves the training
stability in DDPG. However, the single agent DDPG attempts to independently maximize
its own reward without considering the influence of neighboring agents' state-action. Thus,
the environment appears non-stationary from the perception of any individual agent, and it
result in an unstable learning process [167].

Fortunately, the extension of single-agent DDPG to multi-agent DDPG (MA-DDPG)
can solve these problems by adopting centralized training and distributed execution [168],
[169]. In MA-DDPG centralized training, the critic network utilizes the state-action of each
agent to generate a global Q-value function to train the actor-network. However, collecting
the global information of large-scale UAVSNs in a centralized server increases the
computational complexity, information exchange, and is less scalable. Moreover, the highly
dynamic topology can make the information collected by the centralized server easily
outdated, which directly affects the training process. Additionally, purely centralized
training should exchange the necessary information with a centralized server, which can be
vulnerable in terms of security. Conversely, distributed cooperative training can overcome
such challenges. However, only considering the observation from the one-hop neighboring
agent may trap in local optima. Furthermore, continuous changes in the concurrent learning
policy of nearby agents may trigger unstable learning in the multi-agent scenario [167].

The collaborative UAVSNSs are similar to a multi-agent system, where each UAV acts
as a learning agent. A major challenge in implementing collaborative UAVSNSs is that the
neighboring set for each agent is not identical and changes with time. Actions taken by the
neighboring agent significantly impact the reward of a particular agent. For instance, if two
neighboring UAVSs select the same frequency band, it generates mutual interference.
Similarly, if most neighboring UAVs select the same UAV to relay data packets, it can
create network congestion and an increased queuing delay. If the neighboring UAVs
randomly choose velocity and flying direction, the LD may reduce significantly, which
results in link breakages. Thus, the global Q-value computed by the centralized server is not
appropriate for all agents. In JTFR, the decision-making for each UAV to control the
trajectory, allocate frequency resources, and select the relay UAV is highly coupled with
other UAVSs. Notably, each neighboring agent has considerable influence [170]. In JTFR,
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multi-agent interaction is required to control the trajectory of UAVS, allocate frequency
resources, and select relay UAVs in a large state and action space. Thus, distributed MA-
DDPG (DMA-DDPG) is envisioned as the best option to efficiently solve this cooperative
sequential decision-making problem.

In MA-DDPG, the actor-network solely depending on the fully connected layer (FCL)
cannot deal with time-series data. In UAVSNSs, historical information needs to be exploited
to make a sequential decision to control the trajectory, allocate frequency resources, and
select a relay UAV. Fortunately, recurrent neural networks, such as the LSTM-based actor-
network, can store historical sequential information and utilize the information to predict the
more precise state in the next timeslot by mining the temporal relationship in the time-series
data [171]. The critic network using only the FCL, or even LSTM cannot estimate the value
function to adaptively adjust its actor action policy by prioritizing its neighbors in a
sequential adaptive weighted manner. Moreover, FCL or LSTM-based critic network has
less scalability and slow convergence. Thus, to overcome these challenges, a multi-head
attention mechanism is utilized for each agent critic network to adaptively pay attention to
its neighbors by generating attention weights using dot product similarity of their state-
action features. The adaptive adjustment of each agent policy according to changes in the
neighboring agent policy help to avoid environmental non-stationarity, which improves
learning stability. Moreover, multi-head attention introduces parallelization in the critic
value-function computation in multi-agent interaction, which delivers faster convergence.

The major contributions of this study can be summarized as follows:

e We propose JTFR by formulating and solving a link utility maximization problem
for UAVSNSs to route packets toward BS by jointly considering UAV trajectory
control, frequency resource allocation, and relay UAV selection. The link utility
contains a link stability metric defined by predictive 3D maximum-minimum LD,
link SINR, queuing delay, and relay UAV RE level under several constraints.

e The adaptive DMA-DDPG-based algorithm coupled with swarming behavior is
proposed to obtain the optimal link utility. To adopt the dynamic topology and avoid
local optima, the MDP observation state of each UAV comprises both one-hop and
two-hop neighbors’ dynamic state. Each UAV actor network is represented by three
LSTM-based state representation layers (SRLs) and an FCL. The key state
parameters of dynamic UAVSNs are embedded into the LSTM-based SRLs to
provide better state representation to the actor FCL by extracting the temporal
continuity in the historical dynamic states of the time-varying topology. It supports
the actor FCL to achieve a better deterministic policy by mapping the SRL output
toward the optimal action.
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e A multi-head attentional critic network is designed for each UAV to effectively train
each agent actor network and adaptively adjust the policy of each agent actor
network in a multi-agent dynamic environment. It precisely estimates the value
function for the action taken by the actor network by selectively assigning attention
weights to its neighboring agents according to their influence, which is used to
further minimize critic loss and update the actor network. Moreover, it provides
better scalability, learning stability, and accelerates convergence for optimal
decision-making.

e Extensive simulative analysis shows that the proposed DMA-DDPG-based JTFR
outperforms existing routing protocols in terms of traveling distance fairness, PDR,
average end-to-end delay, and energy consumption.

5.2 System Model

We consider U = {1, 2, ---,u} as a set of quad rotor UAVs having GPS, IMU, camera,
and wireless interface. They are deployed to execute surveillance mission over a three-
dimensional (3D) post-disaster mission area, as shown in Figure 5.1. The dimension of the
3D mission area is bounded by (Xmin < X < Xmax Ymin < ¥V < Ymax Zmin < Z < Zmax) -
To track the mission, the overall surveillance time T is divided into t equal timeslots
represented as 77 = {0,1,2, ---, t}, where the length of each t is adequately small denoted as
6. Hence, UAVSNs topology can be expressed as a time-dependent undirected graph
G(t) = (V(t),E(t)), where V(t) € {U(t) U BS} represents the vertex set comprising the
active UAV set U(t) and a location-fixed BS. An emergency response vehicle acts as the
BS, which can function as a mission control center and edge server. Each UAV u; can
localize its position p;(t) € (x;, yi, z;) by using GPS and being aware of the position of the
BS, pgs.

The communication range of each UAV is separated into two regions: the repulsion
range R, and attraction range A,.. Therefore, to satisfy the safe distance and communication
range constraints, the distance between two neighboring UAVs d;;(t) must be retained

within R, < d;;(t) < A,. If d;;(t) < A,, a direct edge E(t) between two neighboring
UAVs is considered. Consequently, the source UAV u; selects a series of relay UAV
represented as (u;, uy -+-, BS) to transmit packets toward BS, as illustrated in Figure 5.1.
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Figure 5.1 An example of UAV swarm networks.

Notations: [|e]|, represents the Euclidean norm, |||| represents the absolute value, and |e|
represents the cardinality of a set

5.2.1 Channel Model

Owing to the high altitude and 3D mobility adjustment, the U2U links and U2BS links
are dominated by LoS links. Thus, the channel gain between two UAVSs (u;, u;) in free-space
path can be stated as g;;(t) = pod;;(t)~%, where p, denotes the LoS channel gain within a
reference distance of 1 m, and a represents the path-loss exponent. For a given transmit
power P/* from UAV u;, the received power at UAV u; can be expressed as P () =

P (£)g:j ().

The network bandwidth divided into f;, orthogonal frequency bands can be denoted
as f = (fi, f2, -, fx), where the frequency band k is between (1< k < K). The bandwidth
of each frequency band f; is equal and denoted by B. Each UAV selects a relay UAV and
transmits a packet from its queue buffer by following the first in first out approach by
choosing a transmission frequency band f;.. The index of the frequency band selected by
UAV u; isrepresented as f, ;(t). If a UAV u; selects frequency band f;, to transmit a packet
to UAV u; at time ¢, then the corresponding binary channel association ¢, . (¢) = 1;
otherwise, ¢, ,(t) = 0. Since UAVs share the frequency band f; during simultaneous
transmission, the interference from the neighboring UAV u,, (£ # i, j) to UAV u; over the
frequency band f;, can be expressed as
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IE5() = Lpaij bryn (OPEE() podi; ()7, 5.1)

where [('bfk,la(t)] represents an U, (t) X K binary frequency band paring matrix. Here,
Up(t) = [uqg,uy, -+, uy] represents the set of active UAVs within the one and two-hop
neighborhood of UAV u; that performs simultaneous transmissions at time t. The SINR
yi; () at UAV u; can be obtained as

P (1)

yi;(t) =10 loglfk (5.2)
#j

(©+02(t)
where o2 (t) represents additive white Gaussian noise power. U2U links can be established
successfully if y;;(t) = y¢n, where y, represents SINR threshold. Thus, the maximum
communication range for UAV u; to communicate with UAV wu; is d;;(t) < dit}l =

1/«
PoP* ()

Y
(12.( )+ aZ(t))lo%l

. For each UAV with an omnidirectional antenna, the attainable

communication range can be represented as a sphere with radius A, = df]h The data
transmission rate between two UAVs C;;(t) is estimated as C;;(t) = B logz[l + Vi) (t)].

5.2.2 Delay Model

For each UAV u; the queue backlog size g;(t + 1) is represented as follows:

qi(t + 1) = min[[‘]i(t) - Di(t)] + Ai(t)' qmax]v (53)

where D;(t) = C;;(t)6; represents the amount of packets that were successfully transmitted

from the queue buffer to the next relay UAV. A;(t) represents the process of new packet
arrival in the queue buffer at timeslot t. gax represents maximum queue buffer size. Each
source UAV u; prefers the next relay UAV w; having a small queue backlog size q; given
by (5.3) to avoid long queuing delay and network congestion. Considering a sufficiently
large queue buffer size, we adopt M/M/1 queuing, where the packet arrival rate «A; obeys
the Poisson process. Thus, the average waiting time of each packet in the queue can be

approximated as t, = 1/(D- — A where D; denotes the average packet service rate.
l L

Finally, the total time required to successfully reach the next relay UAV can be
approximated as follows:

Psize
tqg = tq + m (54)
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5.2.3 Energy Model

UAYV energy consumption has two major portions: propulsion and communication
energy consumption. Generally, the propulsion energy consumption is considerably higher
than the communication energy. The propulsion power PP; of UAV u; generates thrust Ty
to fly in the air by overcoming drag forces and gravity. The T, produced by UAV rotors is
a function of the velocity v; and acceleration a;. Thus, PP; is a function of v; and Ty. The
Ty and PP; for quadrotor UAVs are obtained according to [138]. PP; is proportional to the
traveled trajectory of each UAV. The communication energy consumption depends on the
transmitted packet size Py;, at each timeslot. The transmitting energy E* can be computed
NP Psize

Cij(®)
energy level E,, .« the RE level E;(t + 1) of each UAV at the next timeslot can be tracked
as follows:

as EF* = , Where n denotes the number of retransmissions. For a given maximum

Ei(t +1) = Emax — e[ {PPi(0); + Ef*()}] (5.5)

When the E;(t + 1) is less than the threshold E;;, UAV can return to BS for battery
replacement before rejoining the aerial network.

5.2.4 Problem Formulation

Owing to the limited communication range, the source UAV u; selects a series of relay
UAVs to relay the data packet toward the BS. Hence, the end-to-end path becomes
(ui, wj, uy +++, BS), which comprises m hops. To avoid the detour, each UAV u; selects relay

UAV u; € N} (¢) in the direction of A;;= [llﬁi —Pasll, — |5 — 535”2] > 0. Additionally,
during forwarding, the link utility LU;; given in (5.6) is maintained, which jointly considers
LD to avoid link breakage, link SINR to achieve highest data rate, small queue backlog size
to avoid network congestion or delay, and highest RE energy level of relaying UAV to avoid
energy holes. Notably, each term in LU;;(t) is normalized by utilizing the corresponding
maximum value found within the neighbor information.

Ej

LU(t) = a—ad— 4 p YU 4 ¢ 4 4L, (5.6)

maxLDj; maxvyij Emax

where a + b + ¢ + d = 1, represents the weight of each link quality metric.

The LU;; maximization problem in the end-to-end path is represented as

maxZ}":_O1 LU;j, (5.7)

Subject to the following constraints:
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R, < dy;(t) < Ay, (5.7A)

min LD;; > tg, (5.7B)

—amax < 1@l < amax, (5.7C)
17:(OIl < Vmax (5.7D)

(Xmin < % < Xmax, Ymin < ¥ < Ymax Zmin < Z < Zmax), (5.7E)
f = fo fx), (5.7F)

Yij = Yen (5.7G)

q;(t + 1) < Gmax: (5.7H)
E(t+1) < E,p, (5.71)

Here, (5.7A) ensures optimal node density by satisfying the minimum separating distance
R,. and maximum communication range constraint A,.. (5.7B) helps to avoid link breakage
during data transmission by ensuring packet traveling time t, is sufficiently larger than LD.
(5.7C) and (5.7D) expresses that the acceleration and velocity should not exceed the
maximum threshold. (5.7E) indicates that UAVs should not fly away from the bounded 3D
mission area. In particular, the altitude constraint is provided to avoid the ground obstacles.
(5.7F) represents available frequency resources. (5.7G) represents the SINR constraint in the
U2U links. (5.7H) represents the queue backlog size of the relaying UAV, which should not
exceed the maximum buffer size to avoid packet loss due to buffer overflow and network
congestion. Finally, (5.71) represents the RE level constraint for UAVSs to stay in the air.
According to problem (5.7) and its constraints (5.7A)—(5.71), LU;; maximization is tightly
coupled with trajectory control, frequency resource allocation, and suitable relay UAV
selection. Here, sequential decision making is required using historical states of time-varying
topology. Thus, we integrated behavior-based motion properties with an adaptive DMA-
DDPG algorithm to efficiently solve JTFR problem (5.7) while satisfying all the constraints.
The model-free DMA-DDPG does not require convexity to solve the complex optimization
problem. By designing a multi-objective reward function with penalty terms, it can satisfy
optimization objectives and constraints.

5.2.5 Behavior-Based Motion Model

Behavior-based motion obeys three rules: cohesion (attraction), alignment (velocity
matching), and separation (repulsion). Each rule generates a motion vector, and the weighted
addition of these motion vectors defines the mobility of UAVs. The motion rules solely
based on the one-hop neighbor may create partition in UAVSN topology. Hence, two-hop
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mobility information is utilized to maintain the connected UAVSN topology. Here, each
UAV is treated as a particle with an initial position and velocity.

The cohesion rule ﬁi(t) specifies each UAV attracted toward the average centroid
position of its neighbor. Each UAV u; computes ﬁi(t) using the relative position with one-
hop neighboring UAV u; € N (t) located within R, < d;j(t) < A, and two-hop neighbor
UAVs u,, € N7(t), as given in Figure 5.2. The CR;(¢t) is computed as follows:

(5.8)

. Y et o Bi®-pi(®)} T enz i Pr®-Bi(0)}
CRi(t) — Wl[ JEN; () J ] 4 2[ keN{ (t) ],

LHO] LHOI

where w; + w, = 1 indicates the weight of the one-hop and two-hop neighbor motion
elements. To prioritize one-hop neighbor w; > w,, is considered.

OBase station
)
,

Communication " Mobility information
range , \$haring via hello packet
A ‘
pr ‘Aepulsion /{%?‘2
g . vrange /.7 \- g
N N et uy, € N;(t)

Figure 5.2 Behavior-based motion model of UAVs in UAVSNSs.

The alignment rule ﬁi(t) guides each UAV to perform velocity matching with
neighboring UAVSs. It helps UAVs to avoid chaotic movement. According to Figure 5.2,

each UAV u; computes ﬁi(t) by using relative velocity with one-hop u; € N (t) and
two-hop neighbor u, € N2(t) as follows:
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(5.9)

. Y enlnPi(O-7i ()} Y renz V) -v:(0)}
ARi(t) = w, [ JEN; (®) J ] + W, [ keN? (t) ],

LHO] LHOI

where w; + w, = 1 is the weight of the velocity alignment and w5 > w, is considered.

The separation rule SR; (t) guarantees the threshold of separating distance with nearby
UAVs to prevent inter-UAV collision, as shown in Figure 5.2. Moreover, it assists UAVS to
preserve an optimal routing path length, while forwarding packets toward BS. Each UAV
u; computes ﬁ?}(t) according to the relative distance with one-hop neighboring UAVs u; €
N/ (t) located within d;;(t) < R, which is expressed as

JENT(®) [B:(0)-P;(D)]

_ 5
SRi(6) = INTO]

(5.10)

The above three rules assist UAVs to satisfy constraint (5.7A). Moreover, with above three
motion rules to maintain connectivity with BS, an additional force is applied to detect the
motion of each UAV u; as follows:

BSi(t) = [Bss — Pil (5.11)

Finally, the resultant force ﬁi(t) also known as control input is obtained by applying
the weighted sum of the above motion rules given by (5.8)—(5.11). In JTFR, we feed these
motion rules to the actor neural network, which can adaptively adjust the force weights
according to the network condition. Additionally, LSTM-based actor neural network can
compute each force by using the historical information of relative distance and relative
velocity with nearby UAVSs, which provides higher accuracy in mobility prediction.
According to the Newton’s second law of motion, acceleration d;(t) of UAV wu; along with
flying direction is computed as follows:

FiO | ann[||Fy(0) [ amas
a(t) = P , (5.12)

m;

where m; denotes the mass of each UAV. tanh () represents the activation function to
satisfy the constraint (7C). Subsequently, the velocity of each UAV in the next timeslot can
be obtained as v;(t + 1) = ¥;(t) + d;(t)d;. To satisfy constraint (7D), v;(t + 1) is further
adjusted as follows:

ey ={ ot 150t + DI < Vi (5.13)
vi(t+1) = B(t+1) X ,
[llﬁi(t+1)|| X Vmax 19 (t + DIl = Viax

The position at next timeslots is updated as follows:
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Bi(t +1) = Bi(0) + [B:1(0)6, +3d,(6)57] (5.14)

Notably, the position vector p;(t + 1) can be decoupled into three corresponding

coordinate axes along with their projection angles (—m < 0;(t) < m—"T/5 < @i(t) <

7T/Z) with horizontal xy-plane and z-axis, which can be further utilized to estimate the LD;;.

Let two neighboring UAVs (u;, u;)have positions p; = (x;, y;,2;) and p; = (x,¥},%),

velocities v; and v;, and flying directions (o;, ;) and (ogj, ;). Once time At elapses,
d;;(At) is given as follows:

dij(At) = /(X + AAt)? + (Y + BAL)? + (Z + CAb)?, (5.15)

where X = (x; -x) , Y= (yi —yj) , 2= (z —zj) , A= (v;sinag;cos @; —
v; sinagj cos @;), B = (v;sing; sing; — v; singjsing;), and C = (v; cos g; — v; cos §;).
Since LD;; is bounded by the inter-UAV distance d;; = A,., substituting d;; = A, in (15)
yields

At?(A? + B? + C¥) + At(QAX + 2BY + 2C2) + X2+ Y% + 22— A2 = 0. (5.16)

The positive root solution of (5.16) in terms of At specifies the LD;;, which can predict
the link lifetime. The hello interval HI; for each UAV can be adjusted adaptively according
to minimum LD;; found within one-hop neighbor to improve the topology prediction
accuracy and optimize the control overhead, which can be expressed as follows:

HI; =4y X [ min LDy], (5.17)
jen; (®)
where Y symbolizes the hello frequency rate, we set 0.5 in this study. At each HI; given in
(5.17), each UAV broadcast hello packet that includes a hello sequence number, unique ID,
mobility information (3D position, velocity, LD, RE, frequency state, SINR, and queue
backlog size) of it and its neighbors. Based on the received hello packets, each UAV u;
updates its one-hop u; € N} (t) and two-hop u;, € N (t) neighbor table and motion rules.

5.3 DMA-DDPG-Based JTFR Algorithm
In this section, a DMA-DDPG-based JTFR algorithm is proposed to obtain the optimal

solution for the problem given in Section 5.2.4.
5.3.1 Necessary Preliminaries of DRL

In DRL, the agent learns to obtain an optimal policy to maximize a long-term
cumulative reward by interacting with the dynamic environment without any prior
knowledge. JTFR problem is treated as a multi-agent Markov game having a MDP tuple
(U,0,A,R,0"). Here, U € u; represents the set of UAVs acting as learning agent, O €
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0;(t) represents the observation state space (historical observation), A € a;(t) represents
the action space, R € r;(t) represents the immediate reward after UAV u;executes action
a;(t),and 0" € o;' represents the next observation state at time (¢t + 1). In this game, each
UAV u; obtains an optimal policy m;: 0;(t) X a;(t) to maximize an expected discounted
cumulative reward G;(t) = Y52, A'7;(t), where A € [0 1] represents the discount factor.
The values of actions for sequential historical observations are measured by utilizing the
state-action value function known as the Q-value. The Q-value is formulated as
Q(0:(0), ai(®)) = E(Gi(8)) = E[ri(t) + AG;(t + D] = E[r(t) + 2Q(0/,ap)]. In JTFR,
the environmental state transition, specially the behavior-based motion, updates the mobility
of each UAYV in the next timeslot based on the mobility in the current timeslot. This property
satisfies the Markov property and can be easily integrated with MDP formulation, including
most recent historical observation states, to efficiently solve the JTFR.

5.3.2 MDP Formulation for JTFR

e Observation state space: Each UAV wu; observation state o;(t) comprises three
components. The first component o} (t) = {CR;, AR;, SR;, BS;} encompasses cohesion,
alignment, separation, and connectivity with BS rule given by (5.8)—(5.11). The second
component of (t) = {¢r, , r, ,} contains the frequency state ¢, , of UAV u; and binary
frequency band paring matrix up to two-hop neighbor ¢, .. Finally, the third component

Olz(t) = {(LDl]'LD]k)‘VU' E], q]} contains tWO-hOp LD (LDl]'LD]k)v SINR Yijs RE level E],

and queue backlog size q; of one-hop neighboring UAVs u;. Thus, the o;(t) is expressed as

0;(t) = [0} (), 02 (), 03 (1) .

o Action space: The action space a;(t) comprises three components. The first component
is the control input F;. Then, d;, #;, and p; of UAV u; is updated according to the motion
model given by (5.12), (5.13), and (5.14), respectively. The second component is UAV u;
selecting the frequency band ¢y, . to transmit data packet while avoiding mutual
interference given by (5.1). The third component is relay UAV selection u; € N (t) in the

exploration direction A;;> 0, while maximizing LU;;. Thus, a;(t) = [ﬁi"/’fk,i ,u; € N1

e Reward: The reward function r;(¢) is designed according to LU;; given by (5.6) and its
constraints are considered as penalties. Thus, the first component in r;(t) is a reward for the
maximum-minimum LD r;,(t) given by (5.16). In a multi-hop path, the minimum LD
between two adjacent UAVs specifies the link lifetime. Thus, if there are several links to
reach the destination BS from a particular UAV, the maximum of the minimum LD along
with these multi-hop links returns the best stable link. Thus, r;, (t) for up to two neighbors
(LDyj, LDjy.) is computed as follows:

jr
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max min{LD;;,LD i}
jeNil(:),keNl?(t)[ W |

max[min{LD;;,LD jx}]

rp(t) = (5.18)

The second component is the reward for link SINR g5z (t) given by (5.2). Each UAV
selects the link with highest y;;(t) = y5 to achieve the highest data rate. If y;;(t) < vy¢n ,
rgingr (t) is zero and computed as follows:

vij(t)
———, Vij(t) Z Ve
Tsing(t) = jEI;l\Ijlu((t) Vi®) (5.19)
0, otherwise

The third component of the reward is 7, (t) to ensure minimum queuing delay given by
(5.3). Accordingly, each UAV selects the relay UAV that has smaller queue backlog size.
The 7,(t) is computed as follows:

() = e”U® (5.20)

The fourth component of the reward is 1 (t) to avoid energy holes. Each UAV selects
the relay UAV that has highest RE level given by (5.5). If the relay UAV RE level does not
satisfy constraint (5.71), ¢ (t) is set to zero. Otherwise, rg (t) is computed as follows:

re(t) = —2 (5.21)

Emax

Finally, the total reward r;(t) is computed as follows:

ri(t) =arp + brSINR + Ty + drE_Mlmrlm_ﬂplrpl_#mormo’ (5-22)

where 7y,y,, Tp1, and 13, represent positive constants as penalties for trapping in the local
minimum, violating constraint (5.7H), and violating constraints (5.7A) and (5.7E),
respectively. Accordingly, uyy, tyi, and pyy,, represent the binary coefficient for respective
penalty terms, whose value turns into one, when associated constraints are violated,
otherwise set to zero. The local minimum penalty term ry,,, considers three different cases.
First, since JTFR selects the relay UAV in the direction of A;;> 0 with maximum LU;;, it
will detect it as local minimum if the relay UAV has no further relaying UAV within its
communication range to forward the packet toward BS. Second, if the routing loop is
detected by tracing the previously visited hops in the end-to-end path. Third, if link breakage
occurs for violating constraint (5.7B) and UAV failure.
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5.3.3 Adaptive DMA-DDPG for JTFR

As shown in Figure 5.3, each agent utilized an adaptive DMA-DDPG algorithm with
cooperative training and distributed execution to solve JTFR. Each agent DMA-DDPG
model consists of actor-critic neural network frameworks. To stabilize the learning process
and make it convergent, the actor network and critic network of each agent consists of an
online network and a target network, as shown in Figure 5.3. The target networks for both
actor and critic have a similar neural network structure along with soft-updated parameters.
The actor network is responsible for the approximate action policy and produce actions by
mapping its own historical observation. The actor network contains three LSTM-based SRLs
and an FCL, as shown in Figure 5.4. The details of the neural network structures of the actor
network are discussed in Section 5.3.3.1.

The critic network evaluates the performance of the action by generating a Q-value
function. In the proposed DMA-DDPG, we designed an adaptive multi-head attentional
critic network that generates a Q-value of the actions taken by the actor network. It is
achieved by considering the influence of the neighboring agents’ state-action according to
the generated attention weight, as depicted in Figure 5.5. The Q-value estimation in the critic
network via cooperative training is briefly discussed in Section 5.3.3.2.

UAVSN environment Cooperative training

Execution

{o,(0),74(2), 0j(1)} |0 = g loi(D)] Neighbor UAV
uj (3 Nll

Online actor Target actor
network with network with
parameters Soft update parameters

9; 0;

i}

{oy,a; Ty 01

Replay buffer

Mini-batch
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i
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=
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Figure 5.3 Adaptive DMA-DDPG training process and neural network architecture of an
agent UAV.
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For each UAVu;, 6; and w; represent the learnable parameters of the online actor and
critic network. Similarly, 6; and w; represent the learnable parameters of the target actor
and citric networks, respectively. The actor action policy function is defined as a;(t) =
te,[o;(t)] for the observation state o;(t) and parameter ;. Since each agent UAV intends

to maximize the long-term cumulative reward by obtaining an optimal action policy, the
objective function for the actor policy can be expressed as J (6;) = Eq,[G;(t)]. Accordingly,
the optimal action policy m; ~ up, can be obtained by maximizing J(6;) with respect to 6;
as follows: pp, = arg maxJ(6;).

4

As discussed in Section 5.3.1, a state-action value function Q-value is utilized to
evaluate the expected discounted cumulative reward E(G;(t)). In DMA-DDPG, the Q-value
of each UAV u; is not only related to its own observation state and action (ol-(t), a; (t)); it
is also related to the observation and action of one-hop neighbor UAVs u; € N (t)
represented as (oj(t),aj(t)), as shown in Figure 5.3. Thus, in distributed cooperative
training, Q-value given by the online-critic network of UAV u; with parameter w; is
represented as Q;(o;(t), 0;(t), a;(t), a;(t); w;). For simplicity, we consider Q;(S;, 4;; w;),
where S; = (oi(t), 0j (t)), and 4; = (ai(t), aj(t)). Generally, to obtain the optimal action

policy in actor network gradient ascent is applied. According to the estimated Q; (S;, 4;; w;),
the gradient of J(6;) is obtained with respect to 6; as follows:

Vo (0) = B [VG:(O)] = Eg, | Vo o, (04(0))Va, Qu(Si A @) (529

ai=ﬂei(0i)]

Then, V4. J(6;) given by (23) are backpropagated to the online actor network with learning
rate$ € [0 1] to update 6; as follows:

0; « 0; + ¢V, J(6)) (5.24)

The online critic network is updated by using the temporal difference error given by the
critic loss function as follows:

2
L(w;) = E,, [()’f - Qi(si:Ai;wi)) ] (5.25)
where yf = 7;(t) +)lQ{(Si’,Ai’;w{)lalgzue,(olg) represents the target value given by the
target critic network. The online critic network is updated by minimizing L(w;) given by
(5.25) according to gradient descent with respect to w; as follows:

Vo L(w;) = —2E,,[r; + 1Q{(S;", A{'; w]) — Q(S;, A; 0;)]V,Q; (1, A ;) (5.26)
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According to V,, L(w;) and critic network learning rate ¢, w; is updated as follows:
w; < w; — ¢V, L(w;) (5.27)

The target actor and critic network parameters are then updated by slowly tracking the
learned online network parameters by updating rate 7 as follows:

{9{(—‘[9i+(1—‘[)9i’ (5.28)

w; « Tw; + (1 — 1w’

Finally, to stabilize the training process, a replay buffer R; is employed to save the state
transition samples and it is utilized to efficiently update the network parameters, as given in
Figure 5.3. In each training epoch, we randomly pick a mini batch M containing I samples
experience dataset denoted as (5%, 4%, 1%, S%). According to (5.23) and (5.26), V,,/(6;) and
V,;L(w;) is approximated as follows:

Vo (6) = 5 Ty | Vo ko, (0:(6) Ve, 0:(Sh 4L ) (5.29)

ai=ﬂ0i(0i)]’
Vo L(w) ~ —2 %M, [[r} +20; (st,4/"; w}) — Qi(S} AL w)| V., Qi(SE AL wi)],

(5.30)

5.3.3.1 LSTM-Based Actor Network

The actor network considers o;(t) as input, then it forwards its three components
Oil(t) = {CRi,ARi, SRi,BSl'}, Oiz(t) = {¢fk,i’¢fk,la}’ and OiS(t) = {(LDU'LD]k)IYL]'E]iq]}
to three different LSTM-based SRLs, as illustrated in Figure 5.4.

LSTM utilizes cell memory to store summary of the previous inputs sequence, and
gating mechanisms to control the information flow between forget gate, input gate, output
gate, and cell memory. Accordingly, LSTM can adaptively learn the long-term dependency
relationships between time-series data of UAVSN topology. Due to space limitations, we
will not provide detailed explanations of the internal cell structure of LSTM. More details
on the structure of LSTM can be found in [172]. The decoupling of observation state o; (t)
through three different LSTM-based SRL forwards better environmental state representation
to the actor FCL, which is conducive to achieving a better deterministic policy. If all the
observation states are mixed and forwarded as input to one FCL or LSTM-based SRL in
actor network, it may hardly distinguish them, which leads to learning an undesirable policy.
At each time, the LSTM-based SRL-1 takes the input o} (t) and based on the previous

hidden state o/*"(t — 1), it returns the next hidden state o;*'(t) = LSTM[o}(t), o/ (t —
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1)] as output. Similar procedures are applied to obtain ol.h'2 (t), and oih’3 (t) for o?(t) and
o} (t), respectively. Finally, the outputs given by three LSTM-based SRLs are fed into FCL
to produce the action a;(t) = [F;, ¢y, ,,w; € N].

P Il LSTM cel

HOXR = e | —
L LSTM-based SRL-1 | E
3
h,2
of (t) 0; (t) d R
0;(t) IA.I LSTM-based SRL2[—¥ = > <
I
|

3 h3
0; [ 0 t —
A.I LSTM-based SRL-3 _1_.(_2| %

Figure 5.4 Structure of an actor network.

In the offline training process to explore the optimal action under current historical
observation, we applied a Gaussian noise W, with zero mean and limited variance as follows
a;(t) = [ﬁi + Wo, b, 0 € Nl-l]. Combining the Gaussian noise with action F; enhances
the adaptability of JTFR to the realistic UAVSN environment, including sensor noise,
positional disturbance caused by the wind, and communication delays. Notably, the
parameters of actor LSTM-based SRLs and FCL are updated according to the (5.23), (5.24),
and (5.29).

5.3.3.2 Multi-Head Attentional Critic Network

As discussed in Section 5.3.3, each UAV actor network selects an action according to
its current historical observation o;(t). Its attentional critic network then produces the Q-
value to evaluate the actor network performance not only by considering the observation-
action of the current UAV but also by selectively paying attention to the neighboring UAVs
observation-action as decision making of each UAV is coupled with other UAVs. Notably,
in large-scale UAVSNE, it is impractical for each UAV to pay attention to all the remaining
UAVs, particularly as some UAVs may stay very far away (i.e., outside communication
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range), and their local observation-actions have an extremely low impact on the current
UAYV. Thus, to reduce computational complexity and increase scalability, we applied
distributed cooperative training by only considering one-hop neighbor UAV’s u; € N1 (t)
observation-action. The attention mechanism generates normalized attention weight by
checking the similarity between query and key vector, which was originally proposed in
[173].

Qi(5;,A; wp)

Wy

Dot product

T A

Softmax |

1

Scaled dot (QKT)

Two-layers MLP

A A

concat (eq,--,ep)

..... i

product= Vg R Avlviviplvipepil Mok antey
Y y R ! E . Single layer
g w’,‘( wy o FCL
— 1 Attention unit 4
! = = = i|-2-
; gn(0;@.a;(0) | | gulo;(0.a;(®) || gulo(D), a:(t) !
leccansssesscscscssenssnssosteccncceenansseses a T T
Single layer FCL (0;(8), a;(t)) (0y(8), a; (1)) }—

u; € Nil () (Key and value) U (Query)

Figure 5.5 Structure of a multi-head attentional critic network.

In our multi-head attentional critic network, the query Q = g5 (0;(t), a;(t)) contains
the features of the observation state-action of a particular UAV u;, where key K =
gh(oj(t), aj(t)) and V = gh(oj(t), aj(t)) are the features of state-action of its one-hop
neighbors u; € N} (t). Here, gp,(e) represents a single-layer FCL with learnable weights wg,
o, and wl, as shown in Figure 5.5. Subsequently, based on the scaled dot product similarity
between query Q and key K, the critic network generates weights to adaptively pay attention
to the different one-hop neighbor UAVSs. A SoftMax operation was performed to normalize
the attention weight before multiplying with the V value to compute the context Q-value e,
for each head h given by (5.31).

Finally, the output of each attention head is concatenated and passed through another
two layers of multi-layer perceptron (MLP) to generate a final Q-value Q;(S;, 4;; w;) given
by (5.32) to update the critic loss and actor network parameters. We use three attention heads
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to focus on the features related to trajectory control, frequency band selection, and relay
selection. Thus,

e, =ATT(Q,K,V) = [softmax (3%)] xV, (5.31)
Q:i(8:, Ai; w;) = fi(g:(0s, a;), concat(ey, -+, ep)), (5.32)

where dy represents the dimension of the key K, which is used as a scaling factor to prevent
gradient disappearance. f;(e) denotes two-layers of MLP with w, learnable weight and
gi(e) is a single FCL. The two-layers of MLP helps to extract the features and reduce the
dimension of the concatenated matrix. Notably, the critic network parameters w; =
{w§, wf, w}, wy} are updated according to procedures (5.26), (5.27), and (5.30). The above-
mentioned training process is systematically outlined in Algorithm 5.1.

5.3.4 Computational Complexity

The computational complexity of the proposed DMA-DDPG can be divided into the
complexity of the actor network and that of critic network. The complexity of the LSTM-
based actor SRL layer is O(N.Ip S;), where N, denotes the number of LSTM units, I
indicates the dimension of the input observation, and S; represents the sequence length
remembered by the LSTM. Here, I, is directly related to the number of UAVs in the swarm.
The actor FCL will then have a complexity of O(LNIO), where L, N, I, and O represent the
number of layers, number of neurons per layer, input features, and output features,
respectively. For the multi-head attentional critic networks, complexity is O (hU?1,), where
h denotes the number of heads (we set h = 3), U? is for performing the dot product between
query, key, and value of U UAVSs, and I, denotes the dimension of the observation-action
spaces of each UAV. Since the actor network only has the observation by considering one-
hop and two-hop neighboring UAVSs, and the attentional critic network pays attention to
only one-hop neighboring UAVSs, with the increasing number of UAVs, the observation-
action dimensionality should remain less compared to the fully centralized MA-DDPG.
Accordingly, DMA-DDPG provides higher scalability and lower computational complexity
compared to the fully centralized MA-DDPG.
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Algorithm 5.1: DMA-DDPG-based JTFR algorithm

Input: UAV number U; frequency band f; and BS location pgg.

Output: Optimal mobility, frequency band, and relay UAV selection

// Initialization

1: Initialize each agent online actor and critic, and target actor and critic with parameters 6;, w;, 6;,

and wj, respectively;

2: Initialize each agent replay buffer R;;

3: for each episode = 0: max_episode do

4: Randomly initialize the position and velocity of each UAV;

5: for each timeslot T = 0:t do

6 for each UAV u; € U do

7: Obtain the motion rules using (5.8)—(5.11) and initial o;(t);

8: Decouple o;(t) into o} (t),02(t), and o7 (t);

9 Input 0} (t),02(t), and 0} (t) to actor LSTM-based SRLs to
obtain output ofl’l ), ol-h‘2 (1), and oih'3 (t), respectively;

10: Forward ofl'l(t), oih'2 (t), and ol-h‘3 (t) to actor FCL to obtain
output action a;(t) = [ﬁi, Drei W € N}];
11: Execute action a;(t) = [ﬁl + Wo, d5, U € Nil];

12: Update d;, 7;, and p; using motion model (5.12)—(5.14);

13: Update LD;; using (5.15)—(5.16) and adjust HI; using (5.17);
14: Update SINR y;; using (5.2);

15: Update queue backlog size using (5.3) and delay using (5.4);
16: Update residual energy (RE) level E; using (5.5);

17: Get reward 7;(t) by using (5.18)—(5.22) and obtain o;;

18: Obtain (o;, a;, 0/) from u; € N} and construct (S;, 4;, 73, S7);
19: Store state transition data (S;, 4;,1;, S;) in replay buffer R;;
20: Overwrites oldest transition data if replay buffer R; is full;
21: Select a random mini batch M with 7 samples (S%, A}, 7!, 55’);

22: Compute Q;(S;, 4;; w;) according to (5.31)—(5.32);
23: Update online critic network using (5.27), and (5.30);
24: Update online actor network using (5.24), and (5.29);

25: Update both target actor and critic network using (5.28);
26: end for

27: end for

28: end for

5.4 Performance Evaluation

In this section, we present the details of extensive computer simulations that were
performed to evaluate the performance of the proposed JTFR. Subsequently, the results are
compared with that of existing schemes. We used MATLAB R2022a to develop the UAVSN
environment. Notably, JTFR is a DMA-DDPG-based algorithm, where the actor network
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has observation from a two-hop neighbor and the critic network pays attention to the one-
hop neighbor. For comparison, the following existing algorithms are considered:

e We consider JTFR variation DMA-DDPG-1, in which both the actor and critic
network has only one-hop neighbor information. DMA-DDPG-1 has a similar MDP
formulation and neural network architecture as discussed in Section 5.3.2.

e We consider MA-DDPG-LSTM [135], in which both actor, critic, and their target
network are developed by only the LSTM cell. MDP is then formulated using the
one-hop neighbor information according to the procedure given in [135]. Here, the
state space comprises one hop neighbor list and SINR, action is neighbor link
selection, and the reward consists of one-hop LD, SINR, and queue buffer length.

o Finally, we consider the MCA-OLSR [108], which is a recently published novel
topology-based proactive cross-layer routing protocol, to validate the effectiveness
of the adaptive learning-based algorithm in packet routing. MCA-OLSR is used
according to the test environment to obtain the optimal multi-hop routing path
between a remote UAV and BS using a table-driven method. Notably, MA-DDPG-
LSTM [135] and MCA-OLSR [108] utilize the Gaussian Markov and smooth turn
mobility models in their simulation, respectively. To compare in a fair environment
and obtain more realistic simulation results for UAVSN, we consider the behavior-
based mobility model proposed in [120].

In JTFR, each LSTM-based SRL in actor network contains 64 LSTM units. Then, the
actor FCL has one input layer, two hidden layers with 256 and 128 neurons, and one output
layer with 5 neurons. In the hidden layer, the rectified linear unit is used as activation
function to avoid the vanishing gradient problem during training. In the output layers of
actor FCL, we used tanh activation function to predict ﬁi, and the SoftMax activation
function to select the frequency band and relay UAV. The value for the constant penalty
term 7y, 7, and 1, in (5.22) are set to 2, 4, and 5, respectively. Additionally, the summary
of hyper-parameter values in off-line training of JTFR are listed in Table 5.1.
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Table 5.1 Hyper-Parameters in DMA-DDPG of JTFR.

Parameter Value
Discount factor (1) 0.95
max_episode 2000
Maximum timeslot per episode (T7) 1000
Replay buffer memory size (R) 50000
Mini batch size (M) 512
Target network soft update rate (7) 0.05
Online actor learning rate (£) 0.0001
Online critic learning rate (¢) 0.0002
Optimizer ADAM

Initially, UAVs were randomly positioned within a 3D mission area with dimensions
2500 x 2500 x [100 — 400] m3. For each UAV, the value of A, and R, were setto 300 m
and 50 m, respectively. The entire surveillance duration isT = 1000 s, and §; = 2 s. The
threshold value to calculate the LD was set to 2 s. Initially, HI; was set to 0.5 s and later
adaptively adjusted according to (5.17). Additionally, the values of vy, and a,,x for each
UAV are set to 20 m/s and 5 m/s?, respectively. For producing data traffic, we assumed a
constant bitrate (CBR)-based video streaming application operating on each UAV. At each
timeslot, each UAV periodically sends the data packet toward BS. Other important
simulation parameters to set the UAVSN environment are listed in Table 5.2.

Table 5.2 Environment Parameters of UAVSNs (JTFR).

Parameter Value
Dimension of 3D mission area 2500 x 2500 x [100 — 400] m3
Number of UAVs (U) (30 —100)
Channel bandwidth 20 MHz
Bandwidth per sub-carrier (B) 1 MHz
UAV maximum energy (Emax) 2 x 10° Joules
Path loss exponent (a) 3
SINR threshold (y;) 2dB
CBR rate 2 Mbps
Transport protocol User datagram protocol
Packet arrival model Poisson
Maximum queue buffer size (qmax) 1000
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5.4.1 Performance Metrics

The performance metrics to verify algorithm convergence are as follows:

e Average reward versus number of episodes: It visualizes the learning process of the UAVs
and the algorithm convergence over time. As the number of episodes increase, the average
reward given by (5.22) should increase as the UAVs interact with the UAVSN environment
and gradually learn to improve their action to obtain an optimal policy.

e Traveling distance fairness (TDF): The TDF for each UAV justifies the motion
(EyﬂDi)z
UxYL, (0?2’
distance traveled by each UAV over the collaborative mission. Notably, D; is
calculated by using (5.14). A TDF value close to one implies that the travel distance
of each UAV is similar. Since the propulsion energy consumption of a UAV is
proportional to the travel distance, a balance in the travel distance ensures equal

energy consumption for each UAV within the swarm.

fairness between UAVSs. It is calculated as where D; represents the

The performance metrics to evaluate the routing protocol performance are as follows:

e Packet delivery ratio (PDR): PDR indicates the ratio between successfully
transmitted data packets at the BS and the total number of data packets generated by
all UAVs.

e Average end-to-end delay (AE2ED): AE2ED refers to the average time required to
successfully transmit data packets to the BS from a particular UAV given by (5.4).

e Normalized control overhead (NCO): NCO corresponds to the ratio between the
total size of hello packets required by UAVSN and the total traffic load in the
UAVSN transmitted throughout the simulation.

o Normalized residual energy (NRE): NRE for each UAV is computed using E; given

Ei_ The NRE is examined once the simulation

by (5.5) and normalized as follows:

max

is complete, and a lower NRE specifies the higher energy consumption of UAVS.
The above performance metrics are utilized to experiment with two different
categories: scalability test and velocity increment test.

5.4.2 Simulations Results and Discussion

In this section, to show the effectiveness of our proposed JTFR, we will perform a
rigorous comparative analysis according to the above-mentioned performance metrics.
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5.4.2.1 Convergence Analysis

Figure 5.6 demonstrates the average reward versus the number of episodes during
training of 100 UAVs. Both JTFR and its variation DMA-DDPG-1 obtain better average
reward and stable learning curves compared to the MA-DDPG-LSTM. It can be attributed
to the fact that each UAV’s multi-head attentional critic network pays attention to one-hop
neighbor UAVs based on the normalized attention weight and adaptively adjusts its policy
according to the neighboring UAVs policy changes, which helps to overcome the
environmental non-stationarity. Through the multi-head attention in the critic network, each
UAYV can learn to obtain only the important features from the neighboring UAVs related to
trajectory control, frequency band, and relay UAV selection, which is conducive to making
better collaborative decisions. Moreover, owing to the parallelization in feature extraction
and adaptive attention weight assignment to neighbor UAVs according to their degree of
influence, UAVs can precisely estimate the value-function in muti-agent collaborative
UAVSN. Accordingly, it enables UAVSs to obtain better action policies and accelerate the
convergence for making the optimal decision.

In particular, JTFR obtains the highest average reward and reaches convergence state
after approximately 220 episodes because of three crucial reasons. First, owing to the benefit
of expanded knowledge about dynamic topology (i.e. up to two-hop neighbor), JTFR obtains
a better observation state and can avoid local optima. Second, in JTFR, each observation
state that is related to controlling the trajectory, selecting the frequency band, and relay UAV
are embedded to the three different LSTM-based SRLs in actor network to mine the temporal
relationship in time-series data. Consequently, LSTM-based actor SRLs output features
forward better observation state to the actor FCL, which assists to obtain an optimal action
policy. Finally, due to the relay UAV selection considering maximum-minimum 3D LD up
to two-hop neighbors help UAVs to avoid unexpected link breakages. Since DMA-DDPG-
1 utilizes only one-hop neighbor information, it provides less average reward compared to
the JTFR. In contrast, MA-DDPG-LSTM did not consider the trajectory control, frequency
band allocation, and two crucial constraints (5.7B) and (5.71) in the action selection process
when dealing with UAVSN dynamic environment; thus, it obtains a smaller reward.
Additionally, MA-DDPG-LSTM’s critic network is solely based on LSTM units. As a result,
its learning encounters more oscillations in dynamic multi-agent scenarios. However, MA-
DDPG-LSTM average reward is slowly increasing with the number of episodes as LSTM
units in both actor and critic are gradually updating their parameters by using policy gradient
and minimizing a critic loss function.
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Figure 5.6 Average reward versus the number of episodes.

Figure 5.7 illustrates TDF for different number of UAVs. Since MA-DDPG-LSTM
[135] did not consider the trajectory control, we have excluded it from the TDF comparison.
Instead, a behavior-based adaptive flocking control algorithm (AFCA) [120] is considered,
in which, the control input is generated by performing simple vector addition of motion rules
without using any LSTM/DRL method to predict the mobility of UAVs. Moreover, in AFCA,
the weight of each motion rule is adaptively adjusted by computing the changes in inter-
UAYV distances within the current and previous timeslot. In Figure 5.7, with the increasing
number of UAVs JTFR provides a better TDF value (close to one), which indicates better
motion fairness and swarm cohesion in the collaborative motion task.

Both JTFR and its variation DMA-DDPG-1 provide better TDF compared to the AFCA
because of two key reasons. First, in JTFR, the motion rules for each UAV at a particular
timeslot are treated as the observation state and forwarded to the LSTM-based actor SRL-1.
The LSTM-based actor SRL-1 utilized the most recent historical state of relative distance
and relative velocity to precisely predict each motion rules, which is conducive to obtaining
a smoother trajectory for each UAV. Additionally, the LSTM-based actor SRL-1 and actor
FCL adaptively adjust their weights according to the learning process to produce the optimal
control input satisfying the constraints (5.7A)—(5.7D). Second, attention weights in the
attentional critic network help to improve trajectory control policy in actor network of each
UAV through decision-making according to neighboring UAV’s state-action similarity.
Since the mobility of each UAV at next timeslot in AFCA is estimated only based on the
current timeslot mobility, AFCA provides less accuracy in mobility prediction and less TDF
value compared to JTFR and DMA-DDPG-1, even though AFCA generates the motion rules
using two-hop information.
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Figure 5.7 TDF versus the number of UAVs.

5.4.2.2 Routing Protocol Performance Analysis

In this section, the network performance of JTFR is discussed by comparing it with that
of existing routing protocols for scalability test and velocity increment test.

5.4.2.2.1 Scalability Test

Figure 5.8 demonstrates the network performance (PDR, AE2ED, and NCO) for
different number of UAVs. According to Figure 5.8(a), JTFR exhibits better PDR
performance compared to other baseline routing protocols due to two major reasons. First,
owing to the trajectory control according to the physical layer transmission range UAV
swarm maintains optimal node density and connectivity with BS. Here, both trajectory
control and optimal frequency band allocation are conducive to achieving higher SINR.
Since JTFR produces the motion rules and frequency band using two-hop neighbor
information, it makes better decisions compared to its variation DMA-DDPG-1.
Additionally, the attentional critic network improves the decision-making process to
generate trajectory control input and select frequency band in actor network by paying
adaptive attention to the one-hop neighbor of each UAV. In contrast, MA-DDPG-LSTM
and MCA-OLSR exhibit less PDR performance compared to JTFR and DMA-DDPG-1,
primarily because they did not consider trajectory control and frequency resource allocation
in the physical and MAC layer. Second, unlike other routing protocols, JTFR selects the
relay UAV according to the maximum-minimum 3D LD while satisfying the constraint
(5.7B), which is conducive to obtaining a more stable path and a smaller number of
retransmissions to relay data packets toward BS.

According to Figure 5.8(b), JTFR provides less AE2ED compared to others because of
three vital reasons. First, JTFR selects the relay UAV that has a small queue backlog length
while satisfying constraint (5.7H) along with high SINR, which helps to reduce the queuing
delay. Moreover, JTFR only explores the relay UAV in the direction given by A;;> 0 to
avoid excessive detours of data traffic while ensuring a smaller number of hops in the end-
to-end path. Second, the attentional critic network pays attention to other UAVSs relay
selections, which helps each UAV actor-network to avoid similar actions in relay selection.
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It is because if most of the UAVs choose the same relay it may congest the network, creating
higher queuing delay. Third, owing to the advantage of trajectory control using two-hop
knowledge according to the imposed communication range constraint (5.7A), JTFR
maintains an optimal aerial node density during the entire collective motion task. In
association with the optimal node density and frequency band allocation, each UAV
achieves a higher SINR and less contention during simultaneous transmission to relay data
packets toward BS. Such features are not considered by both MA-DDPG-LSTM and MCA-
OLSR, thus, they encounter higher AE2ED compared to JTFR and its variation DMA-
DDPG-1. Moreover, MCA-OLSR utilizes carrier sense multiple access with collision
avoidance, which encounters more contentions and retransmissions even though they
employed queue management in the MAC layer.
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Figure 5.8 Network performance in scalability test.

Figure 5.8(c) illustrates the NCO performance for different number of UAVs. JTFR
and its variation DMA-DDPG-1 exhibits higher NCO compared to others. In particular,
JTFR utilizes two-hop neighbor information related to the mobility information and
frequency block state, thus, it requires a little higher control overhead compared to DMA-
DDPG-1. Additionally, during the training process, both JTFR and DMA-DDPG-1 require
obtaining the observation-action from the one-hop neighbor UAVSs, thus, they encounter
control overhead compared to MA-DDPG-LSTM and MCA-OLSR. However, both MA-
DDPG-LSTM and MCA-OLSR broadcast hello packets in the fixed hello interval without
sensing the mobility changes in their local state. As a result, they have less adaptivity to
time-varying dynamic topology. In contrast, JTFR adaptively tweaks the hello interval given
by (5.17), to address the trade-off between topology prediction accuracy and control
overhead. Consequently, the NCO for both MA-DDPG-LSTM and MCA-OLSR increases
almost linearly with increasing the number of UAVs. In contrast, JTFR and its variation
DMA-DDPG-1, NCO exhibits a lesser increment in the slope. Therefore, it can be stated
that JTFR has better adaptivity and scalability performance compared to others with a
reasonable cost in control overhead for large-scale UAVSN.

141

Collection @ chosun



5.4.2.2.2 Velocity Increment Test

Figure 5.9 illustrates the network performance for the different maximum achievable
velocities for 100 UAVs. Figure 5.9(a) and 5.9(b) show that JTFR offers significantly higher
PDR and less AE2ED compared to others owing to three vital reasons. First, in JTFR, to
control the trajectory, each UAV computes its motion rules utilizing two-hop neighbor
mobility information, and each motion rules are fed into the LSTM-based actor SRL-1 as
state observation at each timeslot. The LSTM-based actor SRL-1 utilizes previous historical
information of relative distance and relative velocity with neighboring UAVs to represent a
better state of dynamic UAVSNSs to the actor FCL to predict the control input for each UAV
for updating the acceleration, velocity, and position. Moreover, the attentional critic network
generates a more precise Q-value to adaptively update the learning parameters in LSTM-
based actor SRLs and actor FCL according to network condition defined by the link utility
maximization problem (5.7) and its constraints (5.7A)—(5.71). Second, in the reward
function given by (5.18), JTFR gives more reward for selecting the relay UAV that has stable
mobility intimacy with neighboring UAVs defined by the maximum-minimum 3D LD up to
two-hop neighbors. In highly dynamic topology, link stability is highly coupled with residual
LD, and JTFR obtains a better stable path in high mobility UAVSNs. Third, in JTFR, since
each UAV selects a frequency band by paying attention to the neighboring UAVS
participating in the simultaneous transmissions, each UAV can significantly minimize the
mutual interference, which helps to achieve higher SINR and data rate for forwarding

packets toward BS.
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Figure 5.9 Network performance in velocity increment test.

Furthermore, the relay UAV selection considering less queuing backlog size with
imposed constraint (5.7H) and packet travel time constraint (5.7B) helps to exhibit less
network congestion, delay, and avoid unexpected link breakages in during data transmission.
Thus, it helps to reduce the unnecessary retransmissions of data packets in UAVSNSs.
Consequently, less retransmission of data packets reduces the traffic overload and delay in
highly dynamic UAVSN. Both MA-DDPG-LSTM and MCA-OLSR do not support the
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above-mentioned features, thus, they exhibit less PDR and higher AE2ED compared to
JTFR and its variation DMA-DDPG-1.

According to Figure 5.9(c), JTFR and its variation DMA-DDPG-1 exhibit higher NCO
compared to other baseline protocols. It is because with changing increasing velocity in
UANSN, each UAV encounters a higher degree of changes in mobility, thus, residual LD
changes. Consequently, in JTFR, the hello interval frequency given by (5.17) becomes
smaller and triggers higher control overhead compared to others to achieve the dynamic
topology. Additionally, JTFR requires collecting mobility information from one-hop and
two-hop neighbors, thus, it encounters higher NCO compared to others. Since, both MA-
DDPG-LSTM and MCA-OLSR use a fixed hello interval, they have less sensitivity to
dynamic topology changes and less NCO compared to JTFR and its variation DMA-DDPG-
1. In particular, owing to the advantages of multi-point relay selection in MCA-OLSR
reduces redundancy in hello packet broadcasting, MCA-OLSR exhibits less NCO than
others. However, we observe for both MA-DDPG-LSTM and MCA-OLSR, the NCO
increases almost linearly with increasing the maximum attainable velocity within the swarm.
In contrast, JTFR and its variation DMA-DDPG-1 have less degree of increment in control
overhead with increasing velocity, owing to its adaptive learning in both LSTM-based actor
and attention network-based critic network of each UAV. Therefore, considering this
reasonable cost in NCO, it can be stated that JTFR offers a significant improvement in
network performance in high-mobility UANSN.

Figure 5.10 presents the NRE for different routing protocols for 100 UAVSs. In Figure
5.10, the horizontal red line within each NRE distribution box for each routing protocol
represents the median of NRE. According to Figure 5.10, the proposed JTFR provides better
NRE status (less energy consumption) compared to other routing protocols owing to two
vital reasons. First, in JTFR, we notice better TDF meaning that each UAV travels almost a
similar distance to execute the collective motion task and achieve swarm cohesion while
obeying the behavior-based motion rules. Since propulsion energy consumption is directly
proportional to the flying distance, and it is significantly higher than communication energy
consumption, balancing the flying distance between UAVs is equivalent to obtaining equal
and minimal UAV propulsion energy consumption. Second, in the link utility function, JTFR
jointly considers the relay UAV RE and mobility prediction metric LD, which facilitates
obtaining stable end-to-end paths with fewer retransmissions. Thus, it significantly reduces
the packet transmission energy consumption given by (5.5). JTFR provides better NRE
status and balance in energy consumption as the width of NRE distribution box of JTFR is
small compared to others. Additionally, owing to the consideration of relay UAV RE level
in the link utility or reward function given by (5.21), JTFR successfully avoids the energy
holes and obtains a more stable link in the end-to-end path. Since both MA-DDPG-LSTM
and MCA-OLSR do not consider the trajectory control and UAV RE level in the routing
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metric, they produce less NRE status (higher energy consumption) compared to the proposed
JTFR and its variation DMA-DDPG-1.
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Figure 5.10 Normalized residual energy.

Notably, the computational energy cost to train the JTFR model is not considered,
because the entire training process will be performed in offline mode. Following the training,
the trained model will be uploaded to each UAV to execute the mission online. During the
training process, we introduced the Gaussian noise with a control input to achieve adaptivity
to the dynamic UAVSNs environment in real-life scenarios. Moreover, during online
execution, the trained model of each UAV collects the observation from one-hop and two-
hop neighbors using hello packets and constructs its MDP tuple to make optimal real-time
decisions. Subsequently, JTFR can also utilize the attentional critic network to improve its
policy since it can act only use one-hop neighbor information. Additionally, joint
consideration of controlling trajectory using a realistic-behavior-based motion model,
selecting frequency band, and relay UAV using multi-objective link quality metrics (3D
maximum-minimum LD, SINR, delay including constraint queue backlog size, and RE),
facilitates to obtain more realistic results in the simulation environment of UAVSNs and
high fidelity for behaving optimally during online execution.

5.4.2.2.3 Summary on Performance Improvement

In this subsection, according to the performance analysis in Section 5.4.2, a
comparative summary on the performance improvement over the baseline routing protocols
is presented. In the scalability test, JTFR exhibits 19.36%, and 10.03% better average TDF
compared to AFCA and DMA-DDPG-1, respectively. JTFR then gives 15.20%, 25.03%,
and 32.42% better PDR averages compared to DMA-DDPG-1, MA-DDPG-LSTM, and
MCA-OLSR, respectively. JTFR provides 30.82%, 51.46%, and 60.23% less AE2ED
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compared to DMA-DDPG-1, MA-DDPG-LSTM, and MCA-OLSR, respectively.
Nevertheless, JTFR exhibits 8.18%, 13.15%, and 19.35% higher average NCO compared to
DMA-DDPG-1, MA-DDPG-LSTM, and MCA-OLSR, respectively.

In the velocity increment test, JTFR exhibits 14.51%, 22.37%, and 24.02% better
average PDR compared to DMA-DDPG-1, MA-DDPG-LSTM, and MCA-OLSR,
respectively. Moreover, JTFR provides 30.04%, 51.46%, and 57.25% better AE2ED
compared to DMA-DDPG-1, MA-DDPG-LSTM, and MCA-OLSR, respectively. However,
JTFR exhibits 5.63%, 6.80%, and 10.37% higher average NCO compared to DMA-DDPG-
1, MA-DDPG-LSTM, and MCA-OLSR, respectively. Additionally, JTFR exhibits 20%,
36%, and 46% less average energy consumption (propulsion energy and transmission energy)
compared to DMA-DDPG-1, MA-DDPG-LSTM, and MCA-OLSR, respectively. Owing to
the remarkable performance enhancement in PDR, AE2ED, and energy consumption, such
reasonable cost in control overhead is acceptable.

5.5 Conclusion

In this study, we formulated a link utility maximization problem by jointly considering
the 3D LD, link SINR, delay, and UAV RE level under several practical constraints to route
data packets from UAVSNSs to BS. To solve this problem, the adaptive DMA-DDPG-based
JTFR algorithm coupled with swarming behavior is proposed, in which each UAV actor
network obtains the adaptivity with dynamic time-varying topology by using its LSTM-
based SRLs. Subsequently, critic networks obtain the precise Q-value function to train each
UAYV actor policy and minimize the critic loss by adaptively paying attention to the
neighboring UAVSs, according to the collaborative decision-making of trajectory control,
frequency band allocation, and relay UAV selection. Joint consideration of trajectory control
and frequency band selection maximizes both link SINR and link stability in UAVSNSs as
they are highly coupled. Additionally, owing to the consideration of 3D maximum-minimum
LD, queue backlog size, and RE level of relaying UAV in JTFR is conducive to achieving
significant improvements in packet routing in terms of PDR, AE2ED, and energy
consumption.
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6. Conclusions and Future Works

6.1 Conclusions

Owing to high mobility, limited transmission range, communication uncertainties (i.e.,
delay and mutual interference), and wind disturbance, maintaining both mission and
communication performance of UAVSN is very challenging. To alleviate the effects of
dynamic topology in UAVSN this thesis jointly investigated the relation between
collaborative mobility control, and RL/DRL-based packet routing based on multiple link
quality metrics.

In the first work, we proposed joint topology control and routing to efficiently execute
crowd surveillance utilizing UAVSN. The two-phase topology control of UAVSN meets the
trade-off between coverage to the ground terminal and aerial connectivity. Thus, it provides
better tracking coverage ratio in terms of mission performance and better PDR, fewer
retransmissions, and less end-to-end delay in terms of communication performance.
Additionally, adaptive exploration-exploitation strategy in inter-cluster routing along with
multi-objective reward function helps to avoid unexpected link breakages, routing loops,
and network congestion.

In the second work, the proposed QRIFC jointly investigated the relations between
mobility control, delay, and routing policy using two-hop neighbor information. The
proposed adaptive flocking model based on swarming behavior defines the optimal mobility
for each UAV to maintain optimal node density, traveling distance fairness, connectivity,
and coverage. Moreover, the mobility alignment according to the relative distance and
velocity with neighboring UAVs in the two-hop neighborhood gives faster swarm cohesion
and stable LD, while incurring optimal control overhead. The adaptive exploration-
exploitation strategy, topology triggering, and new multi-objective reward function in
QRIFC based on two-hop 3D maximum-minimum LD, link PTS, and relaying UAVs RE
provides high PDR, shorter end-to-end delay, less retransmissions, and more balance in
energy consumption. Additionally, it helps to avoid local optima and gives better average
reward compared to the existing baseline routing protocols.

Finally, the proposed JTFR jointly considers collaborative trajectory control, frequency
resource allocation, and relay UAV selection to route data packets from UAVSNSs to BS by
maximizing a link utility function considering the cross-layer design. The link utility
comprises link stability defined by 3D maximum-minimum LD, link SINR, queuing delay,
and RE of relaying UAV under the constraint of minimum separating distance,
communication range, flight constraint of UAVSs, threshold SINR, queue buffer size, and
energy level of UAVSs. To efficiently solve and deal with large state-action space in this joint
optimization problem, we utilized adaptive DMA-DDPG-based algorithm coupled with
swarming behavior. In DMA-DDPG, to deal with the dynamic topology and avoid local
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optima, LSTM-based actor policy network is designed by leveraging the historical
observation from two-hop neighborhood. Then, a multi-head attentional critic network is
utilized to achieve better learning stability along with faster convergence in multi-agent
interaction by adaptively paying attention to nearby UAVs according to their degree of
influence. Joint consideration of controlling trajectory, selecting frequency band, and relay
UAV according to multi-metric link utility function while satisfying imposed constraint
helps to achieve better link utility. Additionally, it significantly improves packet routing
performance along with less UAV energy consumption compared to the baseline routing
protocols.

6.2 Future Works

In the future work, we will consider heterogenous UAVSN flocking control and
priority-based packet routing in LAP and HAP environment to conduct collaborative
missions in an emergency. Another interesting research idea is designing flocking-based
neighbor discovery for millimeter (mm)-Wave assisted UAVSN, in which each UAV
utilizes separate low-frequency omnidirectional control channel to discover neighbor,
control the relative mobility, and MAC layer transmission scheduling while avoiding
deafness, beam-alignment error, and hidden terminal problem in directional communication
[174]. Then, high-frequency mm-Wave data channel is utilized for only directional data
transmission in U2U link to achieve higher data rate, low latency, and spatial multiplexing.
We will also consider joint collaborative trajectory control and resource allocation in mobile
edge server enabled UAVSN using multi-agent deep reinforcement learning to provide
computing services to the low power 0T devices in remote areas to minimize task execution
delay and energy consumption of 10T devices.
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