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국문초록

특별한 플래그벡터 순서쌍을 만족하는 4차원 다면체의 구성에 관한 연구

김 혜 미

지도교수 : 김 진 홍

조선대학교 교육대학원 수학교육전공

Sjöberg와 Ziegler는 4차원 다면체의 플래그벡터 순서쌍 를 완벽하게 

결정하는 연구 결과를 발표하였다. 이 발표를 토대로 Kim과 Park은 4차원 

다면체의 플래그벡터의 순서쌍 의 범위에 관해 새로운 결과를 제시하

였다. 본 논문에는 Kim과 Park의 연구 결과에서 제시한 범위를 만족하는 4

차원 다면체의 구체적인 예를 꼭짓점의 개수가 7개이거나 또는 8개인 경우

에서 찾았다. 이를 위해 먼저 4차원 다면체   …에 대하여 의 경

계를 구성하고 있는 면(facet)들의 정확한 구조를 규명하였다. 그런 다음  

  라 할 때, 의  값이 각각

9, 12, 15, 18, 21, 24, 27, 33, 36, 39, 42, 43, 45, 48, 49

로 주어짐을 구체적인 계산에 통해 확인하여 Kim과 Park이 증명한 필요조건

이 충분조건이 될 가능성을 보여주는 몇 가지 구체적인 예를 제시했다.
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Ⅰ. Introduction

Our main concern of this thesis is the convex polytope  of dimension  in 

the Euclidean space     equipped with the Euclidean metric  ⋅⋅ 

which is one of the fundamental geometric objects in geometry. We say 

that a linear inequality   ≤  is valid if it is satisfied for all point 

∈. A face of  is the set of the form

   ∩∈   ∣   ≤ ,

where   ≤  is a valid inequality for  . The dimension of a face  is 

defined to be the dimension of its affine hull aff. By definition, for a 

valid inequality   ≤  for , we can obtain a face  itself. All other 

faces  of  such that  ⊂ ,  is called a proper face of . It is clear 

that by definition the inequality   ≤ for , we have the empty face 

∅ of . The faces of dimension   dim are called vertices, edges, and 

facets, respectively.

Let  be a convex polytope of dimension , in short called a 

-dimensional polytope. Then we say that  is simplicial if every facet of 

is a simplex. This is equivalent to saying that every face of  is a 

simplex. Thus every facet of a simplicial polytope has exactly  vertices. 

Conversely, if every facet of a polytope  has exactly  vertices, then 

is simplicial.

Now, let    denote the number of -dimensional faces of  for 

 ≤  ≤ . Then the -vector of  is defined to

  …  .

It is well-known from the Euler-Poincare formula that we have

⋯   .

More generally, the so-called Dehn-Sommerville equations hold for a 

-dimensional polytope  (see Chapter 2 for more details). In order to 

explain them, we need to define the flag vectors of . To be more precise, 



- 2 -

let  be a subset of    … , and let    denote the number 

of chains 

 ⊂  ⊂⋯⊂    ⊂ 

of faces of  with 

dim … dim . 

It is more convenient to make use of the notation  … 
 instead of 

… 
 for any subset … of … . For example, 

 then will mean . With these understood, the flag vector of 

is defined to be

 ⊆  …  .

It is clear that  the -vector   is just a vector which is formed by 

some part of components of the whole flag vector  ⊆  …  . Namely, 

for example, if we take    for each  ≤  ≤ , then we have

  .

We remark that the notion of the flag vector as well as the -vector is 

one of the fundamental combinatorial invariants for convex polytopes and 

that the notion of the -vector is more well-known than that of the 

flag-vector.

In [11], Sjöberg and Ziegler has recently proved very remarkable results 

that completely characterize the flag vector pair  of any 

4-dimensional polytopes. It is worth mentioning that Altshuler and 

Steinberg's results of a 4-dimensional polytopes with up to 8 vertices and 

geometric methods such as stacking, general stacking on cyclic polytopes, 

facet splitting, and truncating played important roles in finding out the 

structure of specific 4-dimensional polytopes.

Right after the results of Sjöberg and Ziegler, in [11] Kim and Park proved 

some necessary conditions for the ranges of flag vector pairs such as 

 ,  ,   ,    of 4-dimensional polytopes. However, 

currently their results are far from complete in that it is not obvious 
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whether or not their results give rise to necessary and sufficient conditions 

for flag vector pairs  ,   ,  ,   to be satisfied by 

4-dimensional polytopes.

One of the aims of this thesis is to explicitly construct various and 

concrete examples of 4-dimensional polytopes which satisfy necessary 

conditions for the ranges of flag vector pair   proved by Kim and 

Park in [7]. This will provide some evidence that their results might be a 

necessary and sufficient condition for the range of flag vector pair   

as well as the validity for the results given in [11]. 

In order to construct such examples, we make use of the examples of 

4-dimensional polytopes   …  with the number of vertices equal to 

7 or 8 given in the paper [11] of Sjöberg and Ziegler (see [Table 1.1]). 

The polytopes in [Table 1.1] are listed by their facet list. More precisely, 

Fukuda, Miyata, and Moriyama provide a complete list of all 31 polytopes 

with 7 vertices and 1294 polytopes with 8 vertices [4]. The third column 

in [Table 1.1] such as  means that the polytope can be found as the 

-th polytope listed in the classification of -polytopes with 7 vertices.

polytope facet list row
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[Table 1.1] 4-polytopes  with   7 or 8

To be more precise, our main result goes as follows.

Theorem 1.1

For each  ≤  ≤ , let  be a -dimensional polytope as in 

[Table 1.1], and let

 .

Then each  has the following values:

9, 12, 15, 18, 21, 24, 27, 33, 36, 39, 42, 43, 45, 48, 49.

Furthermore, the values of   , and  for each polytope 

are given by the following [Table 1.2]:

         

          


       





       





        





        
 




        
  




       
    



      

 7 21 57 35 27

 7 19 60 36 24

 7 19 63 39 21

 7 19 66 42 18

 7 19 69 45 15

 7 20 72 46 12

 7 20 75 49 9
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[Table 1.2] Values of    , and 

The proof of Theorem 1.1 will be given in Chapter 3. In fact, it should be 

remarked that in a similar context Y. Seol also investigated the properties 

of polytopes … in the [6, Table 3] of Sjöberg and Ziegler in her 

thesis [11], which actually needs some corrections.

The thesis is organized as follows. 

In Chapter 2, we first summarize some basic definitions, notation, and 

useful facts which are necessary for explaining our main results given in 

Chapter 3. We refer the reader to [1], [3], [5], [6], [7], [8], [9]. [10], 

[12] and [13] more details. Moreover, in this chapter we summarize some 

important results previously obtained by Kim and Park in [3] which are our 

main concern of this thesis.

Finally, Chapter 3 is devoted to giving a proof of Theorem 1.1 and 

completely determining the values of  for the polytopes  ( ≤  ≤ ) in 

[Table 1.1].

 8 24 71 39 49

 8 23 72 42 48

 8 25 77 43 43

 8 23 75 45 45

 8 24 78 46 42

 8 24 81 49 39

 8 24 84 52 36

 8 24 87 55 33
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Ⅱ. Certain flag vector pairs of 4-polytopes

This chapter summarizes the definitions and notation used in the thesis. In 

addition, in this chapter we will explain the important facts which are 

essential in understanding this thesis.

To do so, we begin with recalling that a simple polytope means that faces 

meet at one vertex as many as the number of dimensions of polytope. As 

in Chapter 1, let  be a subset of    … , and let    

denote the number of chains 

 ⊂  ⊂⋯⊂    ⊂ 

of faces of  with 

dim … dim .

Let �  denote the set of all 4-polytopes, up to the combinatorial 

equivalence. Our main concern of this thesis is to characterize the set

 (�
 = ∈  : 4-polytope},

so the following generalized Euler-Poincare equations play an important 

role.

Theorem 2.1 (Dehn-Sommerville equations, Bayer and Billera [2]).

Let  be a -polytope and  ⊆   ⋯  Let ⊆ ∪ such 

that     and such that there is no ∈ for which is      the 

following identity holds:


   

 

  ∪     

The following lemma holds:

Lemma 2.2 The flag vector of every 4-polytope  satisfies the following 

identity:
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Proof. For the proof, we apply the generalized Dehn-Sommerville equation 

(Theorem 2.1) with          Then it is easy to  obtain 


  



     

This implies that we have 

     

By using the identity   , it is now obvious to show 

     

as desired.                                                         □

As a consequence of Lemma 2.2, we can show the following

Lemma 2.3 The flag vector of every 4-polytope  satisfies the inequalities:

 ≤  ≤  ≤ 

Proof. For the proof, we make use of a result of Sjöberg and Ziegler in 

[11]. That is, we have

 ≤  ≤  ≤  

Thus it follows from Lemma 2.2 that we have

  ≥      

This implies that we have

 ≤   

   ≤   

                                                      

(2.1)

Since we have  ≥  and  ≥ , it follows from the identity 

     that

                          ≥   ≥  ≥                          

(2.2)

Finally, using (2.1) and (2.2), it is easy to obtain 

                  ≤  ≤  ≤                           □
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In fact, it turns out that in [7] the following result, essentially due to Kim 

and Park, holds:

Theorem 2.4 The flag vector pair     of a -polytope 

 satisfies the following two conditions:

(1)  ≤  ≤  ≤  

(2)  ≥  and for ∈,  ≠   .

Note that Theorem 2.4 is one of our key motivations for our concrete 

enumeration of flag vector pairs   for certain 4-polytopes. Indeed, 

our main Theorem 1.1 provides some affirmative evidence for the validity 

of Theorem 2.4. Hopefully, we expect that Theorem 2.4 is very closely 

related to a necessary and sufficient condition for a complete 

characterization of flag vector pairs  of  4-polytopes. 

Note also that the bipyramid P over the tetrahedron contains a unique 

non-edge so that P satisfies

             

and     Thus, there exists a 4-polytope where   in 

Theorem 2.4 is actually achieved.

Next, we list some examples of polytopes with small polytopal pairs 

  for  ≤  with simplex facet or simple vertices, following the 

paper of Sjöberg and Ziegler in [11]. Actually these examples play an 

important role in finding some concrete examples that satisfy the results 

given in Theorem 2.1. To do so, we first explain some well-known 

4-polytopes listed in [Table 2.1]. 

In order to define the cyclic polytope, we first need to define the moment 

curve at , as follows: 
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   →   ↦   … ∈.

For any  , the standard -th cyclic polytope with  vertices, denoted 

by , is defined as the convex hull in   of  different points 

… on the moment curve  such that    ⋯ . The set of 

all sides of the (convex) polytope  is a partially ordered set (or poset) 

when partially aligned by inclusion. The two polytopes are said to be 

equivalent in combination of the same combination type. The cyclic 

polytope  are exactly an equivalent combination to the standard cyclic 

polytope .

We next explain how to construct a stacking from a given polytope. Indeed, 

let  be a -polytope with face , and let  be a point beyond face 

below the other side. Let  be the convex hull of  and , i.e.,  conv

∪. In this case,  is said to be a -polytope obtained by stacking. 

Thus, by stacking, for example, to a square cone , we can obtain a new 

-polytope , a convex shell of , and a new vertex .

On the other hand, a pyramid over triangular bipyramid just means the 

polytope obtained by taking the pyramid over a 3-dimensional triangular 

bipyramid.

For the facet splitting, consider plane  of 4-polytope  and hyperplane 

intersecting the relative interior of  in polygon . If the only vertex of 

is a simple vertex on one side of , we can obtain a new polytope  by 

separating facet  into two new sides by polygon . In this case,  is 

said to be obtained from  by splitting a facet. For example, splitting the 

bipyramid means that we obtain a new polytope by dividing one side of the 

bipyramid. We refer the reader to [11] more details.

For any convex polytope  ⊂ , one can defines its dual polytope  ∗ in 
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∗ by

 ∗  ∈∗     ≥ ∈.

It can be shown that the dual polytope  ∗ is convex in the dual space 

∗ and the origin 0 is always contained in the interior of  ∗. If, in 

addition,  contains the origin  in its interior, then  ∗ is also a convex 

polytope which is bounded and  ∗∗  . In this paper, we always assume 

that  contains the origin in its interior, unless stated otherwise. Note that 

there is a one-to-one order-reversing correspondence between the face 

poset of  and that of  ∗. Moreover, if  is simple, its dual polytope  ∗

is simplicial, and the converse is also true. It is easy to see that the dual 

of a simplex is again a simplex itself and the dual of a cube in   is a 

cross-polytope, that is, an octahedron. 

With these understood, our table [Table 2.1] goes as follows:

  Description   Description

Polytopes with ∆-facet and 

simple vertex
  



  4-simplex   


 
2-fold pyramid over 

quadrangle
  dual of  

 
pyramid over triangular 

bipyramid
  dual of  

 
pyramid over triangular 

prism
  



 
-fold pyramid over 

pentagon
  



   polytopes with ∆-facet

     cyclic polytope 
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[Table 2.1] some polytopal pairs

Finally, we list 3-polytopes with five and six vertices. They will play an 

important role in completely determining the facet structures of a given 

4-polytope in Chapter 3. In fact, we have the following list (see [Table 

2.2] and [Table 2.3]):

  
   

 
2-fold pyramid over 

hexagon
  cyclic polytope 

     

     

     

     

     

     

     

     

     

  
   

  
   

  split bipyramid in     cyclic polytope 

  split bipyramid in    
stack onto square pyramid 

in  

  split bipyramid in   Polytopes with simple vertex

 
stack onto square 

pyramid in  
 

dual of cyclic polytope 



  
   



  
   



  dual of     


  split bipyramid in     


 
stack onto square 

pyramid in  
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bipyramids over a 

triangle

square pyramid 

[Table 2.2] 3-polytopes with five vertices

[Table 2.3] 3-polytopes with six vertices

Ⅰ Ⅱ Ⅲ Ⅳ

Ⅴ Ⅵ Ⅶ
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III. Examples of 4-polytopes with  : 

  ≤  ≤ 

In order to find a 4-polytope satisfying the conditions of Theorem 2.4, we 

start with a -polytope given in [Table 1.1] of Chapter 1. Note that a 

3-polytope consisting of four vertices only is a tetrahedron. Furthermore, 

as mentioned in [Chapter 2, Table 2.2], a 3-polytope consisting of only 

five vertices is either a bipyramid over a triangle, , or a square 

pyramid. Finally, note that, 3-polytopes consisting of only six vertices are 

I, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ, and Ⅶ, as in [Table 2.3] given in Chapter 2.

Now, we begin with the case of , as in [Table 1.1] listed by Fukuta, 

Miyata, and Moriyama in [4].

4.1  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2

,…,6  is a 4-polytope with the following facet list:

      


(see Table 1.1 for more details). Thus it has 5 tetrahedra and 1 bipyramids 

over a triangle and one square biypramid. It turns out that there are one 

possibilities for  with such a facet list. 

Below, we list all possibilities for  with the facet list, and by explicitly 

calculating the value

  

we show that each case fits well with Theorem 2.4 of Kim and Park and 

thus supports Theorem 2.4 positively. We will explain how to obtain the 

value  only for the first case. in detail, and leave the details of other 

cases to a reader.
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(1)    with the followings edges (here, all non-edge are 61,54,32):



All 2-faces are:

[025],[026],[056],[256],[024],[026],[046],[246],[013],[015],[135],[035]

[012],[015],[025],[125],[013],[014],[034],[134],[012],[014],[024],[124]

[035],[056],[356],[034],[046],[346],[124],[134],[135],[125],[246],[256]

[346],[356] 

[Figure 4.1] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××   .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.
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Therefore,  has only one case.

      

 7 18 57 35  

[Table 4.1] 

4.2  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2

,…,6  is a 4-polytope with the following facet list:

      


(see Table 1.1 for more details). Thus it has 4 tetrahedra and 4 bipyramids 

over a triangle.  It turns out that there are four possibilities for  with 

such a facet list. as follow.

(1)    with the followings edges (here, all non-edges are:63,21):



All 2-faces are:

[532],[530],[520],[320],[531],[501],[530],[301],[432],[402],[430],[320]

[413],[401],[430],[301],[532],[324],[534],[256],[246],[456],[354],[351]

[341],[546],[516],[461],[205],[256],[206],[061],[051],[561],[106],[104]

[164],[204],[062],[246]
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[Figure 4.2] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××   .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

(2)    with the followings edges: (here, all non-edges are:54,21)



All 2-faces are:

[532],[530],[520],[320],[531],[501],[530],[301],[432],[402],[430],[320]

[413],[401],[430],[301],[532],[324],[526],[346],[536],[264],[351],[314]

[356],[364],[516],[164],[205],[015],[256],[561],[206],[061],[106],[042]

[164],[062],[014],[624]
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[Figure 4.3] The second case of all facets of 

In this case, we have

  ,   ,   

Thus,   ××   , and  

 

(3)    with the followings edges: (here, all  non-edges are:54,60)



All 2-faces are:

[532],[530],[520],[320],[531],[501],[530],[301],[432],[402],[430],[320]

[413],[401],[430],[301],[532],[324],[526],[346],[536],[264],[351],[314]

[356],[364],[516],[164],[205],[015],[256],[561],[621],[210],[614],[042]

[162],[642],[014],[120]
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[Figure 4.4] The third case of all facets of 

In this case, we have

  ,   ,   

Thus,   ××   , and  

 

(4)    with the followings edges: (here, all non-edges are:60,63)



All 2-faces are:

[532],[530],[520],[320],[531],[501],[530],[301],[432],[402],[430],[320]

[413],[401],[430],[301],[532],[256],[324],[246],[534],[546],[534],[561]

[531],[564],[341],[164],[265],[501],[261],[250],[651],[210],[642],[140]

[641],[420],[612],[120] 
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[Figure 4.5] The fourth case of all facets of 

In this case, we have

  ,   ,   

Thus,   ××   , and  

 

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has four case.

      

 7 19 60 36  

[Table 4.2] 

4.3  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2

,…,6  is a 4-polytope with the following facet list:
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(see Table 1.1 for more details). Thus it has 6 tetrahedra and 3 bipyramids 

over a triangle.  It turns out that there are two possibilities for  with 

such a facet list. as follow.

(1)    with the followings edges (here, all non-edges are:60,54):



All 2-faces are:

[641],[612],[642],[421],[530],[502],[531],[302],[530],[510],[531],[310]

[432],[402],[430],[302],[431],[410],[430],[301],[421],[410],[402],[210]

[642],[532],[563],[432],[436],[256],[641],[463],[531],[561],[431],[635]

[520],[526],[012],[612],[051],[516]

[Figure 4.6] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××   .

It follows from the equation    that we have 
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 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

(2)    with the followings edges: (here, all non-edges are:60,63)



All 2-faces are:

[641],[612],[642],[421],[530],[502],[531],[302],[530],[510],[531],[310]

[432],[402],[430],[302],[431],[410],[430],[301],[421],[410],[402],[210]

[642],[532],[645],[432],[256],[453],[641],[615],[531],[645],[431],[435]

[520],[612],[012],[615],[051],[652]

[Figure 4.7] The second case of all facets of 

In this case, we have

  ,   ,   

Thus,   ××  , and   

 

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.
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Therefore,  has two case.

      

 7 19 63 39  

[Table 4.3] 

4.4  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2

,…,6  is a 4-polytope with the following facet list:

      
  

(see Table 1.1 for more details). Thus it has 8 tetrahedra and 2 bipyramids 

over a triangle.  It turns out that there are one possibilities for  with 

such a facet list. as follow.

(1)    with the followings edges: (here, all non-edges are:60,62)



All 2-faces are:

[653],[613],[615],[513],[643],[613],[641],[143],[542],[520],[540],[240]

[532],[321],[531],[512],[520],[521],[210],[510],[430],[432],[320],[420]

[431],[430],[410],[310],[321],[310],[320],[210],[653],[432],[643],[542]

[643],[532],[645],[410],[615],[540],[641],[510]
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[Figure 4.8] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.

      

 7 19 66 42  

[Table 4.4] 

4.5  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2
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,…,6  is a 4-polytope with the following facet list:

      
   

(see Table 1.1 for more details). Thus it has 10 tetrahedra and 1 

bipyramids over a triangle.  It turns out that there are one possibilities for 

 with such a facet list. as follow.

(1)    with the followings edges (here, all non-edges are:60,62):



All 2-faces are:

[651],[654],[614].[514],[651],[653],[631],[513],[641],[643],[613],[413]

[541],[421],[542],[421],[542],[512],[532],[530],[520],[320],[530],[531]

[301],[510],[521],[520],[210],[510],[432],[430],[420],[320],[430],[413]

[410],[310],[420],[210],[421],[410],[654],[653],[643],[542],[532],[432]

[Figure 4.9] The first case of all facets of 
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The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.

      

 7 19 69 45  

[Table 4.5] 

4.6  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2

,…,6  is a 4-polytope with the following facet list:

      
   

(see Table 1.1 for more details). Thus it has 9 tetrahedra and 2 bipyramids 

over a triangle.  It turns out that there are one possibilities for  with 

such a facet list. as follow.
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(1)    with the followings edges (here, all non-edges are:63):



All 2-faces are:

[562],[612],[516].[512],[642],[602],[640],[420],[641],[640],[610],[410]

[621],[021],[620],[610],[532],[530],[520],[320],[531],[310],[530],[501]

[520],[521],[021],[510],[430],[320],[432],[420],[431],[401],[430],[301]

[562],[642],[654],[543],[523],[324],[651],[641],[531],[654],[453],[134]

[Figure 4.10] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 
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 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

(2)    with the followings edges: (here, all non-edges are:64)



All 2-faces are:

[562],[612],[516].[512],[642],[602],[640],[420],[641],[640],[610],[410]

[621],[021],[620],[610],[532],[530],[520],[320],[531],[310],[530],[501]

[520],[521],[021],[510],[430],[320],[432],[420],[431],[401],[430],[301]

[562],[642],[532],[432],[563],[364],[651],[641],[531],[431],[436],[536]

[Figure 4.11] The second case of all facets of 

In this case, we have
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  ,   ,   ,

Thus,   ××  , and   

 

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has two case.

      

 7 20 72 46  

[Table 4.6] 

4.7  case

In this section, we deal with  case. For 7 vertices labeled  with 0,1,2

,…,6  is a 4-polytope with the following facet list:

      
   

(see Table 1.1 for more details). Thus it has 11 tetrahedra and 1 

bipyramids over a triangle.  It turns out that there are one possibilities for 

 with such a facet list. as follow.

(1)    with the followings edges (here, all non-edges are:62):



All 2-faces are:

[654],[615],[514].[614],[653],[651],[531],[613],[640],[643],[630],[430]

[641],[640],[410],[610],[631],[610],[310],[360],[541],[542],[512],[412]

[523],[320],[053],[520],[530],[351],[510],[310],[520],[210],[521],[510]
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[430],[320],[432],[420],[654],[653],[542],[432],[436],[432]

[Figure 4.12] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.
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Therefore,  has only one case.

      

 7 20 75 49  

[Table 4.7] 

4.8  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:

      
 

(see Table 1.1 for more details). Thus it has 3 tetrahedra and 3 bipyramids 

over a triangle and 2 simplicial. It turns out that there are one possibilities 

for  with such a facet list. 

(1)    with the followings edges (here, all non-edge 

are:74,76,52,51):



All 2-faces are:

[543],[530],[540],[430],[432],[420],[430],[320],[321],[320],[310],[210]

[321],[276],[273],[617],[317],[216],[530],[310],[357],[570],[371],[710]

[642],[641],[216],[042],[041],[210],[426],[276],[423],[765],[456],[273]

[345],[357],[456],[657],[461],[617],[450],[570],[410],[710]
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[Figure 4.13] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.

      

 8 24 71 39  

[Table 4.8] 
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4.9  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:

      
 

(see Table 1.1 for more details). Thus it has 4 tetrahedra and 4 bipyramids 

over a triangle and one simplicial or one . It turns out that there are 

one possibilities for  with such a facet list. 

(1)   with the followings edges (here, all non-edge 

are:27,21,43,70,65):



All 2-faces are:

[632],[620],[630],[320],[540],[520],[542],[240],[541],[410],[540],[510]

[532],[530],[320],[520],[540],[547],[517],[416],[476],[167],[176],[173]

[763],[610],[630],[130],[753].[751],[731],[530],[510],[130],[146],[140]

[160],[264],[240],[620],[542],[632],[246],[253],[547],[476],[537],[367]

[Figure 4.14] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,



- 33 -

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

(2)   with the followings edges: 

(here, all non-edges are:74,72,21,43,31)



All 2-faces are:

[632],[620],[630],[320],[540],[520],[542],[240],[541],[410],[540],[510]

[532],[530],[320],[520],[756],[751],[761],[546],[514],[614],[673],[730]

[630],[761],[710],[610],[510],[053],[107],[073],[157],[537],[146],[160]

[148],[246],[240],[206],[542],[523],[537],[567],[642],[623],[637],[654]

[Figure 4.15] The second case of all facets of 

In this case, we have

  ,   ,   ,

Thus,   ××  , and   
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Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has two case.

      

 8 23 72 42  

[Table 4.9] 

4.10  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:

    


(see Table 1.1 for more details). Thus it has 2 tetrahedra and 7 bipyramids 

over a triangle. It turns out that there are one possibilities for  with 

such a facet list. 

(1)    with the followings edges (here, all non-edge are:74,60,51):



All 2-faces are:

[540],[530],[543],[430],[540],[520],[542],[420],[765],[564],[753],[643]

[763],[534],[765],[752],[762],[564],[264],[524],[762],[721],[261],[763]

[713],[613],[530],[570],[537],[710],[130],[713],[107],[120],[172],[705]

[752],[025],[643],[631],[641],[430],[310],[410],[420],[264],[261],[120]

[614],[410]
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[Figure 4.16] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.

      

 8 25 77 43  

[Table 4.10] 
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4.11  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:

     

(see Table 1.1 for more details). Thus it has 6 tetrahedra and 3 bipyramids 

over a triangle and one . It turns out that there are one possibilities 

for  with such a facet list. 

(1)   with the followings edges (here, all non-edge 

are:72,70,65,52,50)

: 

All 2-faces are:

[753],[713],[751],[153],[642],[641],[612],[412],[261],[260],[210],[610]

[432],[430],[320],[420],[421],[420],[210],[410],[632],[630],[320],[620]

[641],[647],[617],[145],[175],[475],[103],[106],[306],[137],[167],[367]

[041],[043],[013],[415],[435],[153],[326],[367],[354],[234],[426],[467]

[475],[375]

[Figure 4.17] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,
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Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.

      

 8 23 75 45  

[Table 4.11] 

4.12  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:

  

(see Table 1.1 for more details). Thus it has 5 tetrahedra and 4 bipyramids 

over a triangle and one simplicial or .  It turns out that there are one 

possibilities for  with such a facet list. 

(1)   with the followings edges (here, all non-edge 

are:65,63,52,50):



All 2-faces are:

[761],[760],[710],[610],[642],[641],[421],[612],[621],[610],[620],[210]

[432],[430],[402],[302],[412],[420],[210],[410],[475],[571],[451],[476]

[671],[461],[760],[762],[260],[703],[723],[023],[735],[715],[513],[710]

[730],[130],[435],[451],[351],[430],[410],[310],[642],[423],[435],[475]

[764],[762],[723],[735]
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[Figure 4.18] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

(2)   with the followings edges:(here, all non-edge 

are:74,63,52,50)



All 2-faces are:

[761],[760],[710],[610],[642],[641],[421],[612],[621],[610],[620],[210]

[432],[430],[402],[302],[412],[420],[210],[410],[765],[715],[761],[645]

[614],[451],[762],[760],[620],[723],[703],[320],[751],[735],[513],[730]

[310],[710],[453],[451],[153],[430],[310],[410],[432],[436],[435],[465]

[375],[372],[267],[756]
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[Figure 4.19] The second case of all facets of 

In this case, we have

  ,   ,   ,

Thus,   ××  , and  

 

(3)   with the followings edges:(here, all non-edge 

are:72,65,52,31)



All 2-faces are:

[761],[760],[710],[610],[642],[641],[421],[612],[621],[610],[620],[210]

[432],[430],[402],[302],[412],[420],[210],[410],[754],[715],[541],[476]

[716],[416],[736],[730],[760],[362],[302],[620],[710],[715],[105],[703]

[735],[035],[140],[105],[145],[403],[305],[453],[457],[476],[462],[432]

[345],[357],[376],[362]
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[Figure 4.20] The third case of all facets of 

In this case, we have

  ,   ,   ,

Thus,   ××  , and  

 

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has three case.

      

 8 24 78 46   

[Table 4.12] 

4.13  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:



(see Table 1.1 for more details). Thus it has 7 tetrahedra and 3 bipyramids 
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over a triangle and one . It turns out that there are one possibilities 

for  with such a facet list. 

(1)   with the followings edges (here, all non-edge 

are:74,53,43,30):



All 2-faces are:

[761],[631],[761],[713],[752],[720],[750],[520],[751],[750],[701],[510]

[642],[640],[620],[420],[641],[610],[640],[410],[512],[402],[540],[520]

[541],[540],[410],[510],[765],[654],[761],[614],[751],[541],[731],[732]

[710],[720],[312],[120],[613],[632],[312],[610],[620],[120],[645],[657]

[673],[623],[246],[245],[257],[273]

[Figure 4.21] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain
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  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.

      

 8 24 81 49  

[Table 4.13] 

4.14  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:



(see Table 1.1 for more details). Thus it has 9 tetrahedra and 2 bipyramids 

over a triangle and one . It turns out that there are one possibilities 

for  with such a facet list. 

(1)   with the followings edges (here, all non-edge 

are:74,72,70,62):



All 2-faces are:

[640],[603],[643],[403],[641],[610],[640],[410],[542],[520],[540],[420]

[541],[401],[540],[510],[532],[132],[531],[512],[521],[510],[520],[210]

[753],[135],[751],[713],[432],[430],[302],[420],[321],[310],[210],[320]

[765],[654],[761],[614],[751],[514],[371],[376],[761],[310],[360],[160]

[325],[324],[346],[367],[357],[524],[546],[576]
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[Figure 4.22] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.
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 8 24 84 52  

[Table 4.14] 

4.15  case
In this section, we deal with  case. For 8 vertices labeled  with 0,1,2

,…,7  is a 4-polytope with the following facet list:



(see Table 1.1 for more details). Thus it has 11 tetrahedra and 1 

bipyramids over a triangle and one . It turns out that there are one 

possibilities for  with such a facet list. 

(1)   with the followings edges (here, all non-edge 

are:73,72,70,43):



All 2-faces are:

[764],[614],[761],[714],[574],[451],[751],[741],[653],[630],[650],[530]

[642],[641],[612],[412],[631],[612],[632],[123],[631],[630],[130],[610]

[542],[540],[520],[420],[541],[540],[501],[410],[530],[502],[532],[320]

[421],[420],[401],[120],[320],[210],[321],[103],[576],[761],[571],[510]

[560],[610],[674],[642],[623],[635],[576],[542],[574],[532]
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[Figure 4.23] The first case of all facets of 

The values of  and  can be obtained from Table 2.1, as follows.

  ,   ,   ,

  ,

Thus it is easy to obtain

  ××  .

It follows from the equation    that we have 

 . Consequently, this case provides an example  of a -polytope 

which satisfies

  .

Other cases for  are not possible, since it can be shown that by 

inspection 2-faces coming from possible facets do not fit well together.

Therefore,  has only one case.
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 8 24 87 55  

[Table 4.15] 

4.16 Our final results

Our goal is to find flag vector pairs  of 4-polytopes that satisfy the 

conditions which are proposed by by Kim and Park's thesis [8]. To do so, 

we have investigated some specific examples listed by Fukuta, Miyata, and 

Moriyama in [4] (see [Table 1.1] for more details). 

As a result, we have found specific cases of 4-polytopes satisfying 

  . That is, the values of  for the 4-polytopes  ∼

we have found are

[9,12,15,18,21,24,27,33,36,39,42,43,45,48,49].

More specifically, we can summarize our main results by using the 

following table.

      

 7 21 63 35 27

 7 19 60 36 24

 7 19 63 39 21

 7 19 66 42 18

 7 19 69 45 15

 7 20 72 46 12

 7 20 75 49 9

 8 24 71 39 49

 8 23 72 42 48
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[Table 4.1] Summary of our main results

 8 25 77 43 43

 8 23 75 45 45

 8 24 78 46 42

 8 24 81 49 39

 8 24 84 52 36

 8 24 87 55 33
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