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초 록

딥러닝 기법을 사용한 원자력 발전소에서의 이상 신호

탐지 알고리즘

최 윤 희

지도 교수 : 김 종 현

원자력공학과

조선대학교 대학원

원자력 발전소의 센서는 현재 발전소의 상태 및 상황을 운전원과 제어 시

스템에게 전달하는 역할을 하고 있기에 원자력 발전소의 안전한 운영을 위해

서는 신호가 매우 중요하다. TMI 사고와 후쿠시마 사고 때 알 수 있듯이 비

상상황에서의 잘못된 신호는 제어시스템과 운전원에게 혼란을 초래하고 이는

사고로 이어질 수 있다. 또한, 자율 및 자동 제어에 대한 관심이 높아지면서

신뢰할 수 있는 신호의 중요성이 높아졌다. 본 논문은 원자력 발전소에서의

신호가 급격히 변화하는 비상 상황에서의 이상 신호 탐지를 위한 알고리즘을

제안한다. 알고리즘은 딥러닝 기법의 한 종류인 Variational Autoencoder

(VAE)와 Long Short-Term Memory (LSTM)을 기반으로 한다. 또한, 알고

리즘은 3개의 최적화 단계를 통해 최적화된다. 최적화 단계는 1) 최적의 입력

값 선택, 2) 매개변수 선택, 3) 문턱값 선정 등으로 구성된다. 마지막으로, 제

안된 알고리즘은 Compact Nuclear Simulator (CNS)를 통해 검증된다. 검증

결과 제안된 알고리즘은 비상상황에서의 신호 고장을 97% 이상 검출한다.
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Abstract

Signal Anomaly Detection Algorithm Using Deep

Learning in NPPs

                                           Younhee Choi

                                                                   Advisor : Prof. Jonghyun Kim , Ph.D.

                                                                Department of Nuclear Engineering       

                                                                  Graduate School of Chosun University

The validity and correctness of signals are critical to the safe operation

of nuclear power plants (NPPs). Faulty signals as well as sensors may

degrade the performances of both control systems and operators under the

emergency situations, as learned from the past accidents in NPPs.

Moreover, increasing interest in autonomous and automatic controls also

highlights the importance of reliable signals because successful controls

largely rely on the integrity of input signals. This paper aims to propose

an algorithm for the signal anomaly detection in emergency situations in

which signals are dramatically changing over time in NPPs. The

algorithm is based on a combination of Variational Auto-Encoder (VAE)

and Long Short-Term Memory (LSTM) that employs unsupervised

learning. The optimization of algorithm is also conducted for selecting

inputs, determining hyper-parameters of the network, and determining

thresholds to identify signal failures. Lastly, the proposed algorithm is

validated by using the Compact Nuclear Simulator (CNS). The result

presents that the suggested algorithm could detect more than 97% of the

status of signals successfully in the emergency situations.
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I. Introduction

To operate nuclear power plants (NPPs) safely and efficiently, signals

from sensors to operators must be valid and correct. Faulty signals as well

as sensors may impair the performances of control systems as well as of

operators. This may consequently lead to icky situations that compromise

the safety of NPPs [1]. In particular, operator's misjudgment under the

emergency situation resulting from faulty signals could be a main

contributor to a severe accident, as learned from past experiences such as

Three Mile Island and Fukushima Daiichi NPP accidents [2-6]. Moreover,

recent interest in autonomous or automatic controls is improving and then

the reliability of signal becomes more important for the successful

operation because signals are inputs to those control systems.

For this reason, many researches have been performed for developing

techniques for the signal anomaly detection [7-30]. Those approaches can

be classified into model-based and data-driven approaches. Model-based

approaches [7-14] are based on the understanding of physical mechanisms

of the system and the accurate models. Data-driven approaches [15-30] are

using historical operational data without accurate model presentations.

Data-driven approaches seem more suitable for complex systems like

NPPs, because it is virtually difficult to develop accurate physical

mechanisms or models of them.

Lately, the increasing availability of enormous datasets of signal

measurement has been favoring the data-driven approach over an

analytical model-based approach for signal reconstruction. [31]. Typical

examples of data-driven approaches include Artificial Neural Networks

(ANNs) [15-21], Principal Component Analysis (PCA) [22-25], Independent
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Component Analysis (ICA) [26], Auto-Associative Kernel Regression

(AAKR) [27], Multivariate State Estimation Technique (MSET) [28], Support

Vector Machines (SVMs) [28], and Fuzzy Similarity (FS) [29]. A comparison

study pointed out that the auto-associative method, which is a kind of

unsupervised learnings, is suitable because of its quickness and robustness

[30].

This study aims to propose an signal anomaly detection algorithm under

the emergency situations in which signals are dramatically changing over

time in NPPs. The proposed algorithm is based on Variational

Auto-Encoder (VAE) and Long Short-Term Memory (LSTM), i.e., one of

ANNs. First, this study discusses the signal behaviors under the

emergency situation in NPPs and methods (i.e., VAE and LSTM). Then, an

algorithm for signal anomaly detecting is proposed by applying LSTM and

VAE. The optimization of algorithm is also conducted for selecting input

sets, determining hyper-parameters of the network, and determining

thresholds to identify signal anomaly. Finally, the suggested algorithm is

validated by using the Compact Nuclear Simulator (CNS).
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II. Signal Behavior and VAE & LSTM

This section reviews the signal behavior under the emergency situation

in NPPs. Then, VAE and LSTM will be briefly introduced.

A. Signal Behavior in the Emergency Situation

Signal failures may occur due to many reasons such as abnormalities of

sensor, transmitter, and/or cable, which can be caused by internal, external

or environmental problems, e.g., pollution, vibration, extreme temperature,

and aging [32]. Typical failure modes of sensors in NPPs can be divided

into bias, drift, and stuck failures, as illustrated in Fig. 1. In the bias, a

constant value is added to the normal, intact signal, while the drift is a

time-correlated permanent offset failure. The stuck failure is one in which

the signal is wrongly indicating a constant value. Typical stuck failures in

NPPs are 'stuck at the highest value' (called, stuck-high), 'stuck at the

lowest value' (called, stuck-low), and 'stuck at the current value at the

time of failure' (called, stuck-as-is).
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(a) Normal (b) Bias failure

(c) Drift failure (d) Stuck failure

Fig. 1. Types of signal failure

Emergency situations are a situation in which the detection of signal

failures is difficult by operators' visual inspection as well as even a

computerized technique. In the normal situation, since plant parameters

usually have a steady value, a parameter indicated by a faulty signal

could be distinctive from the normal state of signal. However, in the

emergency situation, many parameters are changing dramatically and it is

difficult to distinguish whether a change of parameter are caused by the

emergency situation or signal failure. Especially, the stuck failures may

cause operator's misunderstanding about the situation if they regard the

faulty signal as normal wrongly. For instance, Fig. 2 presents different

behaviors of parameters in the emergency situation (e.g., LOCA scenario).
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As shown in Fig. 2 (a), some parameters may show the minimum value

of measurement, which is a similar pattern to the stuck-low failure. In

addition, some parameters are expected to show the maximum value like

Fig. 2 (b), which is similar to the stuck-high failure, while some

parameters scarcely change like Fig. 2 (c). Therefore, if the stuck failures

of signals are added to this situation, operators may have incorrect

situation awareness and this may influence negatively their mitigations in

the emergency situation.
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(a) Main steam head pressure, 
indicating the minimum value

(b) Aux feedwater flow from 

condensate storage tank, indicating 
the maximum value

(c) Pressurizer relief tank 
temperature, indicating a certain

value

(d) Loop #1 delta temperature, 
changing over time

Fig. 2. Signal behaviors of NPPs in the emergency situation
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B. Methods

This section introduced VAE, which is a kind of unsupervised learning,

used to detect the signal failure, and LSTM used to process time-series

data.

1. VAE

VAE is a variant of an Auto-encoder (AE) rooted in Bayesian inference

[33]. VAE is a method of unsupervised learning that learns to restore

output values similar to input values. The VAE consists of an encoder at

the front and a decoder at the rear that are connected to each other. The

encoder is made of an overall narrower shape with fewer nodes in

subsequent layers than in previous layers. Conversely, the decoder has a

wider overall pattern, with the later layers having more nodes than the

previous layers. The encoder compresses the input data and performs

dimension reduction, expressing a smaller number of parameters. And the

encoder deduces probability distribution parameters of decoder inputs,

instead of directly deducing inputs for the decoder (i.e., input of VAE's

decoder is a random variable from continuous probability distribution).

Accordingly, the decoder receives various inputs (probabilistic) even

though the original input of the entire model is same. The decoder plays

a role of restoring the compressed data back to the existing input data.

The input of the decoder is derived through sampling from the

corresponding probability distribution, and for this reason, it always

produces different outputs for the same input [33]. This allows VAE to be

used not only as a model for dimension reduction, but also as a

generation model that can generate new data. The structure of VAE is

shown in Fig. 3.
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Fig. 3. The VAE structure

Goal of VAE is to model the distribution of observations  and

generate new data by introducing latent random variables  . With the

VAE, the posterior distribution is defined as      ∣ .

Latent variable  is generated from a prior distribution ,  and  are

parameters of the encoder and the decoder, respectively. Because the

parameter  and distribution for  are intractable, we can represent the

marginal log-likelihood of an individual point as l

log    ∣∣∣    notation from [39], where

 is Kullback-Leibler (KL) divergence from a prior    to the

variational approximation   ∣  of  ∣  and  is the

variational lower bound of the data  by Jensen's inequality [33].

The VAE optimizes the parameters,  and  , by maximizing the lower

bound of the log likelihood,  ,



- 9 -

       ∣ ∣∣   ∣  log ∣  

(1)

The first term of Eq. (1) regularizes the latent variable z by minimizing

the KL divergence between the approximated posterior and the prior of

the latent variable. The second term of Eq. (1) is the reconstruction of 

by maximizing the log likelihood log ∣   with sampling from

log  ∣ .

Signal detection through VAE is based on the probability of successful

reconstruction. The VAE is trained for the reconstruction of the normal

signal. If the VAE reconstructs the input signal successfully, it means that

the characteristics of input signal are similar to those of the normal,

trained signal. If the difference between the generated and input signals is

large, it is likely that the input is not trained and so can be a faulty

signal.

2. LSTM

LSTM is a kind of recurrent neural network (RNN), capable of learning

long-short term dependency in sequence data [34-36]. The LSTM is

designed to avoid the long-term dependency problem of RNN [37]. The

structure of LSTM is a chain form of repeating a certain neural network

(cell), which is same as RNN. The difference from RNN is that each cell

of the LSTM consists of three parts: forget gate, input gate and output

gate. The structure of a LSTM cell is shown in Fig. 4.
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tanh

X

X X tanh

X

f(t) i(t) o(t)

h(t)

c(t)

Fig. 4. The LSTM structure

Eq. (2-5) describe the output from each gate unit in a LSTM cell:

           (2)

           (3)

            (4)

      tanh         (5)

where W is the weight matrix of each gate and b is the bias. The forget

gate ( ) reflects some of the previous cell state (  ) for the cell state

(  ). It is remained or discarded according to the previous output and

the present value. The input gate () modifies the value after the input

data () has passed through the complete connection layer of tanh as an

activation function. Finally, the input data ( ) passes through the output

gate. The output gate () considers past and modified input data, by

adjusting the input signal ( ) to the tanh and making the output data.

 ,   and   respectively the weights between the input layer and

the input gate, between the input layer and the forget gate, and between

the input layer and the output gate.  ,   and   represent weights
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corresponding between each gate and hidden layer.   is the weight

between the hidden layer and the forget gate,   is the weight between

the hidden layer and the input gate, and   is the weight between the

hidden layer and the output gate.  ,  and  are the additive biases

of the input, forget and output gate, respectively [38].
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III. Development of Signal Anomaly Detection 

Algorithm in the Emergency Situation

An signal anomaly detection algorithm is proposed that can detect stuck

failures of signals in the emergency situation by using a combined method

of VAE and LSTM. Fig. 5 (i.e., the left part) presents the overview of the

suggested algorithm. The details will be introduced in Section III.1. This

study also carried out optimization activities to improve the performance

of algorithm for the selection of input parameters, determination of

hyper-parameters of network, and determination of thresholds as shown in

the right part of Fig. 5. The LOCA was considered as an emergency

situation using the compact nuclear simulator (CNS). The optimization

activity will be presented in Section III.2.
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Fig. 5. The overview of the signal anomaly detection algorithm 

A. Algorithm for Signal Anomaly Detection

The algorithm for the signal anomaly detection comprises four main

steps: input preprocessing (step 1), signal reconstruction (step 2),

reconstruction error calculation (step 3), and determining the signal failures

(step 4). The optimization conducted concurrently with these steps is

covered in the next section.

1. Step 1 (Input preprocessing)

Step 1 is to normalize selected input signals to be suitable for the input

of VAE-LSTM network in the next step. Plant signals have different ranges

of values or states (e.g., feedwater temperature: 220℃, steam generator
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(SG) level: 50%, and valve state: open or closed). Generally, variables with

higher values will have a larger impact on the network result. However,

higher values are not necessarily more important for prediction. This

problem causes local minima. To reduce this problem, the input

pre-processing obtains the regular plant parameters as input and then

outputs the normalized plant parameters that will be utilized by the

network of the next step.

Min-max normalization is used to prevent local minima and increase

the learning speed. A signal from the NPP is transformed to a value

between 0 and 1 by using Eq. 6.  is the current value of the signal,

while max and min are the maximum and minimum values of collected

data for that signal, respectively.

 max  min

  min
(6)

This step receives the selected signals as inputs. The signals that are

highly related to the signal are selected by the Pearson correlation analysis

to achieve the high performance in the detection of signal failure. The

process to determine the inputs will be discussed in Section III.A.2.

2. Step 2 (Signal reconstruction using VAE-LSTM)

Step 2 of signal reconstruction attempts to produce the same value as

each pre-processed input resulting from the previous step. This step is

implemented by using a VAE-LSTM network, as shown in Fig. 6. The

encoder receives the normalized signals from the previous step as inputs.

It is trained to extract their features with the mean and standard deviation

of normal distribution. Then, the decoder is expected to reconstruct the
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output as much as same as the input. The LSTM in both the encoder and

decoder is used to handle time-series data because the plant signal is

dynamic and the prior information is important in the prediction. The

repeat vector was also used to increase the dimension of input values to

the LSTM. The encoder and decoder consist of several layers and nodes,

and the structure of network, i.e., the number of layers and nodes, was

optimized to achieve the best reconstruction performance, which will be

introduced in Section III.A.3.

Well trained VAE-LSTM network would produce the same output for

each normalized input. The network is trained using the normal data that

contain no signal failure, which is an unsupervised learning. Then, after

the network is well trained, if a faulty signal that is not trained comes in,

the deviation between the input and output, called the reconstruction error

(RE), becomes large.

Normalized NPPs parameters

Loop 1 
Cold-leg 

temp

Loop 1 
Cold-leg 

temp
… SG 1 level

Steam 
line 1 
flow

Decoder-LSTM

Reconstructed signals

Loop 1 
Cold-leg 

temp

Loop 1 
Cold-leg 

temp
… SG 1 level

Steam 
line 1 
flow

Encoder-LSTM

Input
: 397 normalized signals

Repeat vector layer
LSTM layer
Dense layer
Dense layer
Latent variables layer
Repeat vector layer
LSTM layer
LSTM layer

output
: 26 reconstructed signals

Fig. 6. Architecture of the Step 2

3. Step 3 (RE calculation)

Step 3 is to calculate the difference between the reconstructed signal

generated from the previous step and the normalized input signal, i.e., RE.
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The RE is calculated using Eq. 7 as below;

     (7)

where  is the normalized value of original signal that is the input to

the signal reconstruction step in Step 1, and  is the reconstructed value

from Step 2.

Fig. 7 presents an example of how the reconstructed value is generated

for the normal signal with no failure and the RE is calculated. Fig. 7 (a)

depicts the original signal (blue line) for Loop #2 coldleg temperature in

the LOCA that is obtained from the CNS and the reconstructed value (red

line) from the VAE-LSTM network. Since the network is well trained for

the normal signal, the RE would be very small as shown in Fig. 7 (b).

Fig. 8 presents an example for handling faulty signals. As shown in Fig. 8

(a), the temperature signal fails at 300 sec. Since the network was not

trained for this faulty signal, the difference between the reconstructed

value and the faulty input signal becomes large as shown in Fig. 8 (b).

If we choose an appropriate criterion of RE that can discriminate normal

and faulty signals, it is possible to detect signal failures. The process for

the determination of the criterion, named a threshold, will be discussed in

Section III.A.4.
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(a) Reconstruction result of loop2 

coldleg temperature

(b) RE calculation result of loop2 

coldleg temperature 

Fig. 7. Reconstruction result of loop2 coldleg temperature

4. Step 4 (Determination of signal failures)

Step 4 determines whether the signal is normal or faulty by comparing

the RE calculated from the previous step and the pre-defined threshold.

As discussed in the previous section, if the RE for a signal is smaller than

the threshold, the signal is finally labeled as normal. On the other hand, if

the RE exceeds the threshold, the signal is determined to be a faulty

signal, as shown in Fig. 9.

(a) Reconstruction result of loop1 

coldleg temperature

(b) RE calculation result of loop1 

coldleg temperature 

Fig. 8. Reconstruction result of loop1 coldleg temperature
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Is RE within 

the threshold?

Faulty signalNormal signal

Yes No

Fig. 9. Example for the Step 4

B. Optimization

1. Testbed

To improve the performance of algorithm, this study carried out the

optimizations for 1) selecting inputs to the VAE-LSTM network, 2)

determining the hyper-parameters of the VAE-LSTM network, and 3)

defining the thresholds of RE for determining faulty signals. For the

optimization, the CNS was used to simulate emergency situations. The

CNS was developed by Korea Atomic Energy Research Institute (KAERI)

with the reference to a Westinghouse 3 loop 900MW Pressurized Water

Reactor (PWR) [39]. Fig. 10 shows the display of the CNS as an overview.
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Fig. 10. Overview of the CNS 

A total of 26 signals are selected for the optimization of the signal

validation algorithm, as listed in Table 1. In other words, optimization is

conducted to detect the stuck failures of these 26 signals.
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NPP parameter

Feedwater pump outlet pressure

Feedwater line 1 flow

Feedwater line 2 flow

Feedwater line 3 flow

Feedwater temperature

Main steam flow

Steam line 1 flow

Steam line 2 flow

Steam line 3 flow

Main steam header pressure

Charging line outlet temperature

Loop 1 cold-leg temperature

Loop 2 cold-leg temperature

Loop 3 cold-leg temperature

Pressurized temperature

Core outlet temperature

Net letdown flow

Pressurized level

Pressurized pressure

Loop 1 flow

Loop 2 flow

Loop 3 flow

Steam generator 1 level

Steam generator 2 level

Steam generator 1 pressure

Steam generator 1 pressure

Table 1. Selected signals for the optimization 

Table 2 presents the detailed list of collected data for this study. Data

#1 includes normal signals from 49 LOCA scenarios and is used for the

VAE-LSTM network training. Data #2 also includes the data of normal

signals from five scenarios, is used for Optimizations 1 and 2. The data

for faulty signals are divided for the purposes of optimization and

validation. Data #3 includes the stuck failures of 26 selected variables.

Note that the stuck-low dataset includes only the failures of 12 variables



- 21 -

because the other 14 signals indicate the lowest values in the scenarios

without any faults and are not distinguishable from the stuck-low failures.

Data #4 is used for validation.

2. Optimization 1 (Selected of optimal input sets)

The objective of this optimization is to find out the set of optimal

inputs to the VAE-LSTM network to reconstruct the normal signals of 26

plant variables. Different sets of inputs in the VAE-LSTM network would

show different reconstruction performances. A correlation analysis was

performed to choose the optimal set of inputs among 2,200 variables that

are available in the CNS. The Pearson Correlation Analysis [40] has been

used by applying the correlation coefficient given in Eq. 8.

Situation Data #N Failure Types Number of Datasets

LOCA

Data #1 Normal 49 scenarios×1,500 s = 72,627 datasets

Data #2 Normal 5 scenarios×1,500 s = 8,070 datasets

Data #3 Faulty

Stuck-high 54 scenarios×1,500 s×26 signals = 2,098,122 
datasets

Stuck-low 54 scenarios×1,500 s×12 signals = 968,364 datasets

Stuck-as-is 54 scenarios×1,500 s×12 signals = 2,098,122 
datasets

Data #4 Faulty

Stuck-high 18 scenarios×1,500 s×26 signals = 702,468 datasets

Stuck-low 18 scenarios×1,500 s×12 signals = 270,180 datasets

Stuck-as-is 18 scenarios×1,500 s×26 signals = 702,468 datasets

Table 2. The detailed list of collected data
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(8)

Here, N is the number of observations,   and  are the values for the

i-th observation where  indicates the 26 target variables for signal

validation through stuck failure detection and  indicates all the available

variables in the CNS (i.e., 2,200 plant variables), and s is the standard

deviation. Pearson's coefficient r has a value between -1 and 1, where the

larger the absolute value of , the higher the correlation. An  value

approaching 1 means that there is positive linearity, while that

approaching -1 means that there is negative linearity. A coefficient of 0

indicates that there is no linear correlation between the two variables.

As shown in Eq. 8,  is calculated among the 26 target variables and

the CNS-available variables. Fig. 11 shows a portion of the calculation.

Plant variables with correlation coefficients higher than a specific threshold

are selected as the optimal input; this threshold is determined here

through an experimental approach.

CNS 
parameters

Target signals

Fig. 11. Pearson correlation analysis result

The criterion was determined through an experimental approach. The

accuracy in reconstructing target signals was investigated by varying the

correlation coefficient. Table 3 presents the optimization result for the
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selection of inputs. The result indicates that the reconstruction of target

signals presents the highest accuracy with the correlation coefficient

r=0.985. Finally, total 397 variables that have the correlation coefficients

higher than r=0.985 were selected as the inputs to the VAE-LSTM

network.

r value Reconstruction accuracy of the target signal (%) # of inputs

0.995 94.2% 157

0.985 99.8% 397

0.975 97.5% 604

Table 3. Number of inputs and reconstruction ratio according to the r

3. Optimization 2 (Determination of VAE-LSTM 

hyperparameters)

This optimization determines hyper-parameters of the VAE-LSTM

network, i.e., the number of batches, layers, and nodes. In general, these

hyper-parameters affect reconstruction performances of the network.

Table 4 presents the comparison of RE and loss for eight different

configurations by changing the number of batches, LSTM layers, LSTM

nodes, and latent nodes. The REs and losses in Table 4 were calculated at

300 epochs. The loss is a number indicating how bad the network's

prediction was. If the network's prediction is perfect, the loss is zero;

otherwise, the loss is greater. One epoch means one iteration about an

entire training data. The epoch is comprised of one or more batches that

are number of sampling data. As mentioned in the previous section,

ninety percent (90%) of training data were used for the model training

and the other 10 percent of data was used for the test in the
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optimization.

Fig. 12 presents the trend of losses for eight configurations over epochs.

This Figure indicates that these models have saturated losses around 300

epochs. As an example, Fig. 13 compares the signal reconstruction of

Configurations 1 and 4 for SG #1 pressure in the LOCA scenario that has

a rupture at the coldleg 1. It presents that Configuration 4 reconstructs the

original signal more accurately and stably than Configuration 1. Finally,

Configuration 4 that presents the smallest RE and loss was selected for

the hyper-parameters of VAE-LSTM network. Consequently, the VAE-LSTM

network in the signal reconstruction step has 3 LSTM layers, 4 LSTM

nodes, and 8 latent nodes with 32 batches, as shown in Fig. 6.

Configuration 

No.
Batch

LSTM 
layer

LSTM 
node

Latent 
node RE Loss

1 32 2 2 4
3.961E-

2
1.129E-

3

2 32 2 4 8 2.748E-
2

8.721E-
4

3 32 3 2 4
2.251E-

3
9.017E-

4

4 32 3 4 8
1.074E-

3
5.816E-

4

5 64 3 4 8 1.259E-
3

8.753E-
4

6 64 3 8 16
3.392E-

3
7.139E-

4

7 32 4 4 8
2.319E-

3
1.010E-

3

8 64 4 4 8
2.310E-

3
1.090E-

3

Table 4. Performance comparison for different hyper-parameters
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Fig. 12. Losses of different configuration over epochs

Fig. 13. Comparison of signal reconstruction for 1 and 4

4. Optimization 3 (Determination of RE thresholds)

This optimization determines the threshold of RE to judge whether an

input signal is normal or faulty. Fig. 14 illustrates how the threshold is
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determined. As mentioned earlier, in the suggested algorithm, the RE is

large for faulty signals because those signals are not trained, whereas the

RE has small values for normal and trained signals. The threshold is a

cutoff value of RE that divides normal or faulty signals. If the RE of a

signal is higher than the threshold, the signal is regarded as a faulty one.

If the RE of the signal is lower, it is normal. If the threshold is chosen

too high, i.e., Case 1 in Fig. 14, the algorithm generates the result that

both normal and faulty signals are normal. Therefore, the faulty signal is

regarded as normal, which is Type 1 error. If the threshold is chosen too

low, i.e., Case 3, the algorithm judges that both normal and faulty signals

are faulty. In this case, the normal signal is detected as faulty, which is

Type 2 error. If the threshold is chosen properly like Case 2, the

algorithm becomes capable of distinguishing the normal and faulty signals

correctly.

R
e
co

n
st

ru
ct

io
n
 E

rr
o
r 
(R

E
)

RE for a faulty signal

RE for a normal signal

Time

Case 1: Type 1 Error
(Faulty => Normal)
(Normal => Normal)

Case 3: Type 2 Error
(Faulty => Faulty)
(Normal => Faulty)

Threshold

Case 2: No Error
(Faulty => Faulty)
(Normal => Normal)

Fig. 14. Cases of thresholds

The RE threshold is determined based on the statistical method

proposed by Shewhart's [41]. Shewhart's control charts are widely used to
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calculate changes in process features from the in-control state using Eq.9.

     (9)

Here,  and  represent the mean and standard deviation, respectively,

of the RE for each variable in the training data (i.e., Data #1), and  is a

constant. This optimization step calculates the results of distinguishing

normal and faulty signals for the 26 target variables by entering different

 values (i.e.,  = 0.5, 1, 2, or 3). By testing for Type 1 and Type 2

errors according to the  value, the optimal  can be determined.

Table 5 presents the comparison of Types 1 and 2 errors for the

different  values. When =0.5, which is the lowest value, Type 1 error

was the smallest. However, this lowest threshold resulted in the largest

Type 2 error that misjudges normal signals into faulty ones. As the 

value increases, Type 1 error increases, but Type 2 error decreases. Based

on the comparison in Table 5, this study selected =1 that presents the

best performance considering both Type 1 and 2 errors. Therefore, the

following equation is applied to the threshold RE for the 'determination of

signal failure' step in Fig. 9,

     (10)

The  and  refer to the mean and standard deviation of reconstruction

error in each variable for the training data, respectively.
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Parameter
k = 0.5 k = 1 k = 2 k = 3

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

FEEDWATER 
PUMP OUTLET 
PRESS

0 0.07 0 0 0 0.06 0 0

FEEDWATER LINE 
1 FLOW 0 0.02 0 0 0 0 0 0

FEEDWATER LINE 
2 FLOW 0 0 0 0 0 0 0 0

FEEDWATER LINE 
3 FLOW

0 0.001 0 0 0 0 0 0

FEEDWATER 
TEMP

0 0.11 0 0 0.90 0.09 0.49 0

MAIN STEAM 
FLOW 0 0.06 0 0 0.93 0.06 0.06 0

STEAM LINE 

1 FLOW
0 0.011 0 0 0 0.10 0 0

STEAM LINE 

2 FLOW
0 0.011 0 0 0 0.10 0 0

STEAM LINE 

3 FLOW
0 0.011 0 0 0 0.11 0 0

MAIN STEAM 
HEADER 
PRESSURE

0 0.011 0 0 0 0.10 0 0

CHARGING LINE 
OUTLET TEMP 0 3.5 0.06 0.06 0.67 0.21 1.28 0

LOOP 1 COLDLEG 
TEMP 0 3.5 0.06 0.02 0.14 0.38 0.58 0

LOOP 2 COLDLEG 
TEMP

0 3.5 0.12 0.02 0.03 2.97 0.95 0.005

LOOP 3 COLDLEG 
TEMP

0 3.5 0.06 0.01 0.23 0.23 0.64 0

PZR TEMP 0 3.5 0 0.02 0.14 0.14 0.43 0

CORE OUTLET 
TEMPE

0 3.5 0.35 0.01 0.55 0.12 0.98 0

NET LETDOWN 
FLOW 0 0.002 0 0 0 0.002 0 0

PZR LEVEL 0.75 0.05 0.41 0 1.07 0.04 0.87 0

PZR PRESSURE 0 3.5 0.49 0.02 2.05 0.15 3.04 0

LOOP 1 FLOW 0 3.56 0 0 0 0.13 0 0

LOOP 2 FLOW 0 3.56 0 0 0 0.15 0 0

LOOP 3 FLOW 0 3.56 0 0 0 0.11 0 0

SG 1 LEVEL 
(WIDE) 0 3.5 0 0.01 0 1.24 0.29 0

SG 2 LEVEL 
(WIDE)

0 3.5 0 0.01 0 1.90 0.20 0

SG 1 PRESSURE 0 3.5 0.52 0.002 0.20 0.02 1.53 0

SG 2 PRESSURE 0 0.99 0.35 0.001 0.61 0.02 1.56 0

Sum 0.75 47.41 2.40 0.19 7.52 8.44 12.91 0.005

Table 5. Types 1 and 2 errors with different k values
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IV. Results of the Optimization

Table 6 presents the accuracy of the algorithm obtained as a result of

the three aforementioned optimizations using Data #3 from Fig. 12. The

algorithm determined 99.81% of the normal signals as "normal." It also

could detect 97.6% of signal failures (i.e., 100% of the stuck-high, 98.92%

of the stuck-low, and 93.88% of the stuck-as-is failures).

Failure mode
Classification result (%)

Faulty Normal

Failed

Stuck-high 100 0

Stuck-low 98.92 1.08

Stuck-as-is 93.88 6.12

Total 97.6 2.4

Normal 0.19 99.81

Table 6. Optimization result using Data #3
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V. Validation

Fig. 15 shows an example of the process by which the signal anomaly

detection algorithm process detects stuck signal failures. In this Fig 15, the

algorithm receives two signals as inputs from the LOCA scenario. The

loop 1 coldleg temperature signal is faulty signal, namely a stuck-high,

while the other signal, PZR pressure, is normal. Step 1 of the algorithm

normalizes these signal inputs to a range of 0 to 1. Step 2 attempts to

reconstruct the normalized signals similarly to the in-put signals. Then

step 3 calculates the RE from the difference between the normalized and

reconstructed signals. Step 4 compares the calculated RE to the threshold

defined in the third optimization.

As shown in Fig 15, the RE of the loop 1 cold-leg temperature is larger

than the threshold, and based on the comparison, step 5 determines that

the input signal is faulty.

The proposed algorithm was also validated using the data that were not

used in either the training or optimization, i.e., Data #4. Table 7 presents

the accuracy of the signal anomaly detection algorithm using validation

data. It is indicated that the algorithm can detect 96.70% of all stuck

failures and 98.29% of all normal signals in the scenarios from this

dataset. These validation results are similar to those achieved via the

optimization shown in Table 7.
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Step 1. Input pre-processing

Step 2. Signal reconstruction

Step 3. RE calculation

Input Signals

Loop #1 Coldleg Temp: Stuck-high
PZR Pressure: Normal

Signal reconstruction

NPP parameters

Min-max normalization

Encoder-LSTM

Decoder-LSTM

RE calculation

Comparison of RE and threshold

Step 4. Comparison of RE and threshold

Is RE within 
the 

threshold?

Is RE within 
the 

threshold?

PRZ 
pressure

Faulty signalNormal signal Faulty signalNormal signal

Loop #1 
Cold leg
Temp.

Step 5. Determination of signal failures

Fig. 15. The validation process of algorithm
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Failure modes
Classification results (%)

Failed Normal

Failed

Stuck-high 100 0

Stuck-low 97.92 2.08

Stuck-as-is 92.18 7.82

Total 96.70 3.30

Normal 1.71 98.29

Table 7. Accuracy of the signal anomaly detection algorithm using the Data #4

VI. Discussion

The signal validation algorithm using unsupervised learning can detect

the entire range of stuck failures that are not close to normal signal

values. For instance, Fig. 16 (a) shows a 50% stuck failure of the PZR

signal at 150 s. The stuck-high (100%), stuck-low (0%), and stuck-as-is

(20%) failures were tested and shown to be detectable, as described in the

previous section. Fig. 16 (b) demonstrates that the "stuck at 50%" failure is

also detectable by the algorithm because the RE is larger than the

pre-defined threshold for this parameter.

(a) PZR level signal stuck at 50% (b) Detection of signal 

Fig. 16. An example of detecting stuck failure at other values
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VII. Conclusion

An algorithm has been proposed and optimized for the signal anomaly

detection under emergency situations by using deep learning methods. The

algorithm comprises four main steps: input preprocessing (step 1), signal

reconstruction (step 2), reconstruction error calculation (step 3), and

determining the signal failures (step 4). It also applied the VAE-LSTM

which is based on the deep learning method. The algorithm has been also

optimized to detects three types of signal failures, i.e., stuck-high,

stuck-low, and stuck-as-is, using the CNS. The validation result presented

that the algorithm can detect the signal failures successfully under an

emergency situation that is the LOCA.

Since the algorithm was developed based on the unsupervised learning,

it has the capability of detecting a wide range of stuck failures, which is

practically impossible for the supervised-based learning. This study is

going to be extended to different types of emergency situations such as

main steam line break (MSLB) and steam generator tube rupture (SGTR),

and to multiple signal failures.
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