

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Reinforcement Learning-Based

Offloading in Unmanned Aerial Vehicle-

Aided Edge Computing Systems

February 2023

Master’s Degree Thesis

Graduate School of Chosun University

Department of Computer Engineering

S. M. Asiful Huda

Reinforcement Learning-Based

Offloading in Unmanned Aerial

Vehicle-Aided Edge Computing

Systems

무인 비행체 활용 에지 컴퓨팅 시스템에서의 강화 학습 기반

오프로딩

February 24, 2023

Graduate School of Chosun University

Department of Computer Engineering

S. M. Asiful Huda

Reinforcement Learning-Based Offloading in

Unmanned Aerial Vehicle-Aided Edge

Computing Systems

 Advisor: Prof. Sangman Moh, Ph.D.

A thesis submitted in partial fulfillment of the

requirements for a master’s degree

Graduate School of Chosun University

Department of Computer Engineering

S. M. Asiful Huda

October 2022

This is to certify that the master’s thesis of

S. M. Asiful Huda

has been approved by examining committee for

the thesis requirement for the master’s degree.

후다 아시풀의

석사학위논문을 인준함

 위원장 조선대학교 교수 신석주 (인)

 위 원 조선대학교 교수 강문수 (인)

 위 원 조선대학교 교수 모상만 (인)

2022년 12월

조선대학교 대학원

i

Table of contents

List of Figures ... iii

List of Tables ... iv

Abstract ... v

요 약 ... vii

1. Introduction ... 1

1.1 Overview ... 1

1.2 Research Objective .. 5

1.3 Thesis Layout .. 6

2. Related Works ... 7

2.1 Existing Offloading Techniques in UAV-MEC 7

2.2 Comparison of Existing Offloading Algorithms in UAV-MEC 14

3. System Model ... 19

3.1. Motivation Scenario .. 19

3.2. Network Model and Assumptions .. 19

3.3. Communication Model ... 21

3.4. Task Computation Model ... 23

3.5. Problem Formulation .. 28

3.6. RL Framework .. 30

ii

4. Deep Reinforcement Learning based Computation Offloading Algorithm

(DRLCO) ... 34

4.1. Complexity Analysis ... 38

5. Performance Evaluation ... 39

5.1. Experimental Setup ... 39

5.2. Convergence Analysis .. 41

5.2. Performance Metrics ... 42

5.2. Simulation Results and Discussion ... 44

6. Conclusion and Future Works ... 51

Bibliography ... 52

Acknowledgement .. 59

iii

List of Figures

Figure 1. Practical use case of unmanned aerial vehicle (UAV)-swarm-enabled

mobile edge computing system for surveillance scenario 20

Figure 2. Block Diagram of the propos ed DRLCO scheme. 35

Figure 3. Convergence of DRLCO and DQN. .. 42

Figure 4. Average offloading cost. .. 45

Figure 5. Energy consumption. ... 47

Figure 6. Task execution delay. .. 49

iv

List of Tables

Table 1. Operational characteristics of offloading techniques for UAV-MEC

 .. 17

Table 2. Simulation parameters. .. 40

v

Abstract

Reinforcement Learning-Based Offloading in Unmanned Aerial

Vehicle-Aided Edge Computing System

S. M. Asiful Huda

Advisor: Prof. Sangman Moh, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

 Unmanned aerial vehicles (UAVs) have recently shown an ever-

increasing trend in many areas of civil applications as well as military

applications such as surveillance, reconnaissance, augmented reality, etc. Due

to ease of flexibility in terms of mobility and cost, UAVs can be deployed

anywhere to provide seamless connectivity where terrestrial infrastructure is

not available or damaged. However, both performing communication and

executing computation-intensive tasks become huge burden for a UAV to

perform a mission because of the battery lifetime being very limited. To

mitigate this issue, mobile edge computing (MEC) is considered as a reliable

and effective platform which can provide additional computational support at

the edge of the network. Incorporating an MEC server enables to offload the

computationally intensive tasks to be offloaded from UAVs to the edge server.

This reduces the transmission delay significantly compared to a cloud server.

However, based on the dynamic characteristics of different tasks, offloading

decision is a major issue. Furthermore, most tasks have a stringent deadline

that the task needs to be executed.

UAV swarm-enabled MEC systems can be effectively leveraged to address

this problem. Most of the existing studies consider the assumption that a

vi

single-UAV system has sufficient communication and computation capacity

to perform any mission which is very unlikely. In this thesis, we propose a

deep reinforcement learning based computation offloading (DRLCO) scheme

using double deep Q-learning for surveillance applications. DRLCO

minimizes the total weighted cost by jointly considering task execution delay

and energy consumption. The DRLCO technique can effectively address the

dynamic environment and based on the task characteristics, effective

offloading decisions are made. The performance of DRLCO is evaluated

through computer simulation and compared with conventional offloading

schemes. The simulation results show that proposed DRLCO mechanism can

outperform the conventional offloading techniques in terms of total offloading

cost, task execution delay and energy consumption.

vii

요 약

무인 비행체 활용 에지 컴퓨팅 시스템에서의 강화 학습

기반 오프로딩

 후다 아시풀

 지도교수: 모상만

 컴퓨터공학과

 조선대학교 대학원

무인 비행체(UAV)는 최근 감시, 증강 현실, 가상 현실 등과 같은 군사

응용 분야뿐만 아니라 민간 응용 분야의 많은 영역에서 지속적으로

증가하는 추세를 보이고 있다. 높은 이동성과 낮은 비용으로 인해

UAV 는 지상 기반 시설을 이용할 수 없거나 손상된 곳에서 원활한

연결을 제공하기 위해 어디에나 배치될 수 있다. 그러나 제한된 배터리

용량 때문에, 통신과 계산 집약적 작업을 함께 수행하는 것은 UAV 임무

수행에 큰 부담이 된다. 이 문제를 완화하기 위한 모바일 에지

컴퓨팅(MEC)은 네트워크 에지에서 추가 컴퓨팅 지원을 제공할 수 있는

안정적이고 효과적인 플랫폼으로 간주된다. MEC 서버를 활용하면

계산 집약적인 작업을 UAV 에서 에지 서버로 오프로드하여 클라우드

서버에 비해 전송 지연을 크게 줄일 수 있다. 그러나 서로 다른 작업의

동적 특성에 따라 오프로드 결정이 주요 문제가 된다. 또한 대부분의

작업에는 엄격한 실행 마감 시간이 있다.

UAV 군집 지원 MEC 시스템을 효과적으로 활용하여 이 문제를

해결할 수 있다. 대부분의 기존 연구는 단일 UAV 시스템이 임무를

viii

수행하기에 충분한 통신 및 계산 용량을 가지고 있다는 가정한다. 본

논문에서는 보안 감시 응용을 위한 심층 강화 학습 기반 계산

오프로딩(DRLCO) 기법을 제안한다. DRLCO 기법은 이중 심층 Q-

학습을 사용하고 태스크 실행 시간과 에너지 소모량을 함께

려함으로써 총 가중치 비용을 최소화한다. DRLCO 기법은 동적 환경을

효과적으로 해결할 수 있으며 작업 특성에 따라 효과적인 오프로드

결정이 내려진다. 컴퓨터 시뮬레이션을 통해 DRLCO 성능을 평가하고

기존 오프로드 방식들과 비교한다. 시뮬레이션 결과에 의하면, 제안한

DRLCO 메커니즘이 총 오프로드 비용, 작업 실행 지연 및 에너지 소비

측면 등에서 기존 오프로드 기법들보다 우수하다.

1

1. Introduction

1.1 Overview

The increasing growth of smart devices has resulted in a dramatic change in

society, which now heavily relies on cellular technologies. Online streaming

services and social-networking sites have become popular and useful across

all demographics. The resultant data increase has created intense burdens for

mobile service providers. Without proper measures for storing and processing

such workloads, cellular networks will become even more congested, resulting

in deteriorated quality and slower download speeds. Hence, additional

computational resources are necessary for mobile devices. Furthermore, the

long-term evolution of 5G technology has inspired a wide range of services

that require high computational tasks, for which the designated devices are ill-

equipped to handle [1].

Mobile edge computing (MEC) is a promising solution that leverages cloud

servers deployed in support of mobile devices to mitigate computational

workloads via process offloading. In 2009, the first edge-computing concept

(i.e., cloudlet) was proposed. Cloudlets allow mobile users to take advantage

of cloud services, but they require users to swap between Wi-Fi and cellular

networks during use [2].

Tasks can also be executed locally on mobile devices by leveraging the

concept of an ad hoc cloud [3]. It enables multiple user devices to combine

their computational resources to process tasks. Notably, offloading to an edge

server directly improves the quality of experience and battery lifetime [4]. In

2012, Cisco proposed the concept of computation offloading [5]. Hence, any

mobile device having constrained resources can wirelessly pass processing

2

tasks to other devices having sufficient resources. Those other devices then

complete the tasks and transmit the results back to the mobile devices.

Unfortunately, this method continues to fall short of expectations, owing to the

characteristics of wireless networks in rural and mountainous areas.

Furthermore, cases of emergency response should always take precedence.

Thus, even in the most ideal environments, maintaining the quality of

experience and energy efficiency while avoiding communication delays is

difficult.

Unmanned aerial vehicle (UAV)-enabled MEC servers have emerged as

promising candidates for handling computationally intensive task loads in

areas lacking ground infrastructure. Due to the high mobility and low cost,

both academia and industry have shown interest in UAV research. There has

been an enormous amount of studies that emphasizes on the effective

communication and localization techniques for the UAV network [6]–[14]. In

Ref. [6], the authors designed a routing protocol where UAVs are divided into

cluster and presented a comparative study. The authors in [7], [8] proposed

routing protocol using reinforcement learning (RL). UAVs can send raw

images from affected areas to any base station (BS) for fast mobility [15]. It

was recently noted that UAVs can also act as MEC servers or MEC relays.

UAV-mounted MEC relay services use line-of-sight (LoS) links to transmit

computational tasks to MEC servers situated on the ground as they hover over

areas where it is otherwise challenging to set up a cloud or edge computing-

based solutions.

In military applications, the vital task is to capture information from a given

region and send it to the nearest BS to identify or track objects from a distance,

which generally is very intricate and burdensome for any human. UAVs can

also provide target-tracking geographical data-capture services. A UAV-aided

3

wireless sensor network is another promising paradigm to enhance the energy

efficiency of the sensor nodes in collecting data in various areas of commercial

applications [16] However, transmission delays are hindrances because longer

processing times result in late responses. Integrating MEC servers into UAVs

effectively eradicates this problem. Furthermore, UAVs can simultaneously

operate as computation servers and relay nodes [17], resulting in faster

decision-making during emergency scenarios while increasing efficiency with

potential real-time computational capabilities. Notably in such scenarios,

UAVs can either process computational tasks locally, or they can offload them

to other edge servers.

Despite being a promising approach, it has been less explored in the existing

literature. For UAV-enabled MEC networks, the existing literature emphasizes

localization [12], routing protocol [18], bandwidth allocation [19], path

planning [20], area coverage [21], topology control [22], etc. These studies

mostly focused on optimizing the rescue efficiency by minimizing the

response delay and enhancing resource utilization. In a UAV-assisted

surveillance system, UAVs perform the duty of covering a certain region and

execute computationally intensive tasks in which both delay and energy

consumption are crucial metrics [23]. In large-scale 3D areas, single-UAV

systems often fail to successfully accomplish complex missions because of

their limited energy capacity, although they provide sufficient coverage for a

specific area. In such cases, a swarm of UAVs comprising many small and

low-cost UAVs was observed to be effective in performing missions in large

areas [21]. With the availability of a mobile edge server, the offloading

computation task minimizes the task execution delay and energy consumption

involved in offloading the task from the UAV.

In the UAV-MEC system, one of the most crucial decisions is where the

4

task execution occurs (e.g., local execution, edge server). This may depend on

various metrics such as the number of tasks, channel quality, UAV position,

and edge nodes [24]. The UAV-enabled MEC system may fail to execute a

task when the computational load increases significantly with a limited

number of UAVs and insufficient computing resources. A promising solution

is to utilize a UAV-enabled MEC system along with a base station (BS)-

assisted MEC to enable the UAVs utilize the MEC services provided by the

BS [25]. The offloading decision becomes more challenging under dynamic

environmental conditions, where the characteristics of the network are highly

dynamic. Thus, capturing accurate information to determine an offloading

decision becomes difficult. Offloading decision-making has been explored

broadly which mainly focuses on using traditional optimization methods and

heuristic methods. [4], [26], [27]. However, because of the complicated

constraint conditions related to practical environments, these algorithms

cannot obtain significant results. For example, global optimization methods

require the problem formulation to be as simple as possible to enable it to be

decomposed into subproblems. Reinforcement learning (RL) is considered a

viable solution for such complex and dynamic environments, as it can model

large and complex environments. Incorporating deep learning with RL yields

deep reinforcement learning (DRL) algorithms such as a deep Q-learning

network (DQN), that is able to obtain significant results in the absence of

previous environment knowledge [28]–[30].

Motivated by the above discussion, in our thesis, we consider a hierarchical

UAV-enabled MEC architecture comprising a head UAV (H-UAV), a team of

member UAVs (M-UAVs), and a BS-assisted MEC to enhance the task

execution time and energy efficiency for surveillance application scenarios.

The M-UAV senses the area and generates a computing task to be processed.

5

When the number of tasks increases significantly and the processing capacity

of the local edge server is at a maximum, the M-UAV can offload the task to

either the H-UAV or ground edge server. The decision to offload the task

depends on various factors, such as the task type and computation capacity at

the H-UAV.

1.2 Research Objective

The collaboration between the H-UAV and ground edge server enables a

minimizing the energy consumption as well as task delay. Based on the above

discussion, we formulate a weighted sum cost minimization problem by jointly

considering task execution delay and energy consumption. In our study, we

emphasize both on energy consumption and task execution delay because

UAV have limited energy and tasks may have stringent deadline. The major

contributions of this study are summarized as follows:

• We design a network consisting of a UAV swarm and a ground MEC

server in which the swarm is divided into individual coalitions. In each

coalition, the M-UAV senses a plane area and generates a computation-

intensive task that can be processed directly at the aerial edge server or

can utilize additional MEC resources from the BS.

• Considering the limited energy of the UAV, communication and task

execution delay, we design the computation offloading decision-making

problem of the M-UAV as a weighted cost minimization problem

considering both the energy consumption of the UAV and the task

execution time.

• We formulate the weighted cost minimization problem leveraging deep

reinforcement learning (DRL) scheme. The state, action, and reward of

6

the DRL are designed. Each agent (M-UAV) acts with the environment

and selects an action that provides a reward. The optimal offloading policy

is achieved by maximizing the cumulative reward.

• To maximize the expected cumulative reward (by minimizing the

weighted sum cost), we propose a DDQN-based decentralized DRLCO

scheme in which each M-UAV is considered to be an agent and can make

the offloading decision using local observation.

• We performed a comprehensive numerical simulation to verify the

convergence of the proposed method and compare our results with those

of other conventional schemes (local computing, edge execution, and

DQN) with varying parameter configurations. The superiority of the

proposed scheme was investigated using different performance metrics.

1.3 Thesis Layout

Rest of the thesis is organized as follows:

Existing offloading techniques are summarized next. The system model of

our proposed work is described in Section 3. The proposed DRLCO technique

is demonstrated in detail along with the devised algorithm in Section 4. The

performance of the proposed algorithm is then evaluated through computer

simulation and compared with conventional offloading schemes in Section 5.

Finally, the study is concluded in Section 7.

7

2. Related Works

2.1 Existing Offloading Techniques in UAV-MEC

With the drastic increase of Internet of Things (IoT) devices and emerging

computation-intensive and delay-sensitive applications (e.g., augmented

reality, face recognition, virtual reality) MEC have become a promising trend

which enables the end-users to offload the heavy computation-intensive tasks

to enhance the overall system performance. With edge servers installed at the

edge of the network, the end-users have the option to offload the task to the

edge server rather than offloading to the cloud. Thus, the overall task execution

delay can be reduced significantly. Furthermore, the tasks having different

requirements demands to be executed considering the dynamic task

characteristics. For example, tasks that have strict deadline with less

computational requirement may be executed in the UAV than sending to the

edge server. Similarly, tasks having less strict deadline and high computation

can be well executed to the edge server. The major drawback with the

introduction of next-generation wireless networks is going to be limited

battery lifetime and computation resource of the mobile users for performing

the task with low latency requirements, which are introduced by the services

and applications such as virtual reality, telesurgery, autonomous driving, and

UAVs [31]. UAV-MEC systems can comfortably handle such emergent

situations where terrestrial MEC servers are out of service or overloaded [32].

Having said that, existing studies have greatly emphasized on the computation

offloading aspects of UAV-enabled MEC to enhance the system efficiency by

considering different practical scenarios in their study.

RL-based algorithms have been used widely in various fields of wireless

communication, owing to the uncertain behavior of the communications

8

environment. Because the network entities must act on those uncertain

behaviors, RL is a near-perfect solution; it enables agents to take random

actions to reach an optimal policy, especially in complex environments [33].

Existing studies show that RL algorithms can deal with massive amount of

offloading request generated by mobile devices autonomically. In such a

scenario, offloading decision is a very complex task because it involves several

metrics such as availability of resource, resource demand, and current network

status [34].

A hierarchical and cooperative coalition formation-based offloading

algorithm was proposed in [35] wherein the authors placed UAVs as players

in a game scenario acting in such a way that the overall payoffs were

maximized. They presented a hierarchical structure in which the first level

resulted in a coalition that could act cooperatively. However, to demonstrate

the noncooperative manner of individual stations owned by different service

providers, the second level comprised identical subgames. The authors showed

that their algorithm reached an optimal state wherein the formation was stable,

and the BSs followed a combined strategy to produce an offloading strategy.

The authors proposed a game-theory-based RL approach that could find an

optimal strategy for BSs via a Markov decision process. They demonstrated

that BSs and UAVs can adapt mixed strategies, even when the players are not

aware of the actions taken by other BSs. To evaluate performance, they

compared their proposed strategy to other benchmark methods in terms of the

numbers of users and payoffs achieved when reaching an optimal state.

A novel algorithm for offloading computational tasks to UAVs was

presented in Ref. [36] which focuses on the cooperative behavior of UAVs,

enabling them to offload tasks to other UAVs. The authors showed that UAVs

9

can collaboratively work with others to maximize total network utility and to

equalize and reduce computational and communication costs. To achieve this,

they focused on limited computational resources and proposed a Markov

decision process combined with a deep RL (DRL) to optimize target

parameters, assuming that the UAV could also perform as a computational

server alongside an edge server. This research showed that the system does not

need to send all information to the central operator. This allows the

implementation of such systems in areas where there is an immense task load

generated from IoT devices.

A Space Air-Ground Integrated Network (SAGIN) network was

demonstrated in Ref. [37] for offloading computational tasks, where UAVs

provide additional computational support as edge servers. The authors

considered a remote area with IoT devices on the ground performing heavy

computationally intensive tasks, such as surveillance and monitoring. Because

the area lacked cellular communications, the SAGIN network was equipped

with complete caching, edge computing, and network provisioning

capabilities. Their work helped to determine the allocation of resources

alongside the scheduling of offloading tasks in a dynamic network. They

further investigated the Markov decision process to better understand

uncertain system dynamics. Utilizing the Markov decision process has a

significant advantage in deciding upon uncertain system entities. To better

handle the dynamicity of the network, the authors suggested an on-the-fly

approach for DRL. They utilized common policy-gradient methods to act in

the complex action space, and for fast convergence to the optimal, an actor-

critic technique was adopted. This study revealed that such a system could

generate optimal performance by jointly allocating resources in a virtual

10

machine as well as via task assignment. The system minimized the total cost

better than other benchmark methods.

A DRL-based hybrid load-balancing strategy was presented in Ref. [38]

wherein the authors investigated the mitigation of limited computational

resources by introducing UAVs as MEC nodes to improve computational

capabilities. The authors suggested a DE-based UAV deployment algorithm

that optimized task execution time. Initially, they considered that all UAVs

were at randomly assigned positions. Then, they allocated the maximum load

to each depending on its location. To tackle the intercommunication burdens

among UAVs and IoT devices, they utilized a GAP, and an approximation-

based algorithm was presented to determine the connections between IoT

nodes and the UAV. To manage incoming tasks, they proposed a DRL

algorithm for assigning tasks to the UAV. They demonstrated that it could

adapt to dynamic system environments while controlling the effective

allocation of network resources, enabling more effective handling of recently

arriving tasks. The decision to either offload at a UAV or process the task

locally created a binary offloading problem.

A novel cooperative technique for offloading tasks to other UAVs to tackle

power consumption, total delay, and job loss was presented in Ref. [39]. Here,

the authors considered a situation wherein there was a significant amount of

latency caused by ground-generated data taking up a long time to reach the

UAV. In the proposed system, the UAVs were equipped with a computational

facility similar to an edge server. Owing to the excessive number of

computational resources onboard and the limited power of the UAV, the

authors introduced a system controller that could decide whether to turn the

central controller on or off. Furthermore, the controller could offload tasks

11

from the overloaded UAV to an underloaded one by leveraging RL to reach

an optimal policy under uncertain and dynamic conditions in large and

complex action space. The authors presented three offloading approaches

using greedy and traversal-based algorithms as evaluation benchmarks. Their

method minimized the total system cost for computing and reached the Nash

equilibrium.

The authors of Ref. [40] attempted to reach an optimal offloading state by

concentrating on total system costs. They considered a system having multiple

wireless users and UAVs having limited capacities. Optimally, wireless users

can offload tasks to UAVs. The authors considered that the UAVs could be

recharged wirelessly using solar panels. Under this scenario, the authors

formulated an optimization problem, wherein the focus was on minimizing the

total cost of offloading by combinedly considering energy consumption,

bandwidth costs, and total delay. Considering the large action space, the

authors used the K-means algorithm to classify several types of computational

tasks, resulting in the reduction of the dimensionality of the action space

because a large action space can slow down the learning rate.

An optimized deep-Q-network (DQN) for DRL-based offloading, called

double DQN (DDQN), which minimizes the total cost by solving the

overestimation problem was proposed in [41]. The author compared the

performance of the proposed method in terms of task arrival probability,

cumulative reward delay cost, and the rate of arrival of renewable resources.

They then compared their proposed method to four other benchmark

techniques, wherein the location of offloading was considered. The proposed

UACODRL technique significantly outperformed the other benchmarks in

terms of average cumulative reward. Although the algorithm performed

12

significantly well, with an increase in users, performance was negatively

affected because it also increased the power consumption. Hence, in a large

and dense network, system performance will suffer. The proposed scheme can

be applied to heterogeneous wireless networks, and the UAVs can be charged

wirelessly using a renewable energy supply.

The Multi-agent RL (MARL) approach was proposed in Ref. [42] where

two RL agents performed two different tasks individually in a UAV-mounted

edge-computing architecture. The novelty of this study lay in its consideration

of the interdependency of the task and its dynamicity. At each time slot, when

a task arrives at the queue, the two agents are responsible for deciding the

target device for execution and the amount of bandwidth needed. The main

goal is to minimize the average response time by determining an optimal

policy that incorporates task assignment and bandwidth allocation.

In urban areas, UAVs are used primarily for tracking and monitoring city

areas. From the perspective of object detection in surveillance and monitoring

applications, the UAV’s next action depends on the results obtained from

object detection. Therefore, delays in task execution are crucial performance

determinants [24]. To address this, a system that considers network load

parameters was established to minimize the sum of energy expense and delay.

The network comprises a UAV, an edge server, and an access point that

connects the UAV to the server. The authors formulated the optimization

problem by utilizing a semi-Markov process to minimize total costs. The

authors defined the Markov process states as primary, termination, data

transmission, and queuing types. The binary decision was made by the UAV,

referring to either local computing or offloading. Performance was evaluated

using parameters that depend on server load and wireless channel quality.

13

Simulations showed that the agents who were aware of system dynamics had

advantages over agents lacking this information because they could not make

decisions based on channel situation. Furthermore, the trajectory of the UAV

is crucial, and the authors illuminated the average delays over the trajectory

concerning system load. The study was concluded by demonstrating a good

delay reduction. However, The system does not consider the UAV mobility

model. In monitoring and tracking systems, the UAV will monitor certain

areas wherein obstacles are unpredictable. These considerations make the

study much more complex and require further attention.

Preventing eavesdropping and data transmission interception between UAVs

and MECs is critical. The authors of Ref. [43] presented a method that

considered this scenario. To mitigate the latency caused by the limited

computational capacity of mobile devices, the authors aimed to reduce total

energy consumption by allocating resources and ratios. To achieve this, the

study proposed a DQN, which falls short of dynamically optimizing multiple

performance metrics. The proposed method converged at ~8,000 iterations. To

evaluate the effectiveness, they compared their method with two others: a local

computing scheme and an offloading method based on total weighted cost,

MEC processing capability, weight factoring, and total users. Simulations

showed that the proposed method achieved a much lower cost when the

number of users was set to five. It also demonstrated adaptivity when

determining tradeoffs between communications and computational resources

while reducing the eavesdropping threat.

14

2.2 Comparison of Existing Offloading Algorithms in UAV-

MEC

The existing offloading techniques in UAV enabled MEC are compared

based on the operational characteristics in Table 1. From the comparison, we

observe that most offloading techniques consider binary offloading

mechanism which is either the task is locally computed or is offloaded to the

edge server. UAV played the role of edge server in most studies, however,

some studies consider the option of relay node as well. Minimizing the energy

consumption and total delay is the most significant metric, which is not

surprising. Offloaded tasks deteriorate the battery storage of the UAV, and the

inability to successfully execute tasks and return the results impacts the overall

system. Consideration of successful task completion, task arrival, task

deadline can be crucial to enhance the overall task completion performance.

Additionally, in a multi-UAV network, because the UAVs have dynamic

topologies owing to their high mobility, ensuring reliable, secure, and effective

communications amongst nodes is a major challenge. Hence, most studies

focused on either military or civilian applications in densely populated areas

for joint metrics, offloading delays, effective UAV deployments, trajectories,

mission completion times, and resource allocations to enhance overall system

performance. For example, for crowd surveillance, video capturing, video

processing, face recognition, and face matching, tremendous overhead is

generated in a single UAV–MEC system. In such cases, collaborative

methodologies may provide potential solutions because they enable

cooperative task execution.

To leverage the computing facilities provided by the MEC server, an

optimization approach for DL-based target-tracking UAVs, which is widely

15

used in urban areas, was proposed. To perform this type of task effectively

using the limited computing resources and battery lifetime, offloading a

portion of the task to a MEC server is required. For this reason, the authors in

Ref. [44] proposed a hierarchical architecture in which one portion of DL

execution is executed at the UAV, and another portion is executed at the edge

server. The study emphasized several crucial performance metrics, such as

interference error rate, input data quality, and transmission bandwidth. To

meet objectives, the authors considered a MEC system with multiple UAVs to

track either a person or a vehicle. While executing the task, the lower level of

the DL model was executed to save bandwidth for transmission. Subsequently,

the next portion of the model was executed at the MEC to enhance the

inference error rate. Offloading can either be binary or partial. The constraint

under consideration fulfills both types.

This study also emphasized the availability of the wireless channel because

its unavailability makes it impossible for the task to be offloaded. The

offloading decision depends on image quality. For example, if it is good, object

tracking is executed at the UAV, otherwise, it is executed at the MEC node.

The proposed method was evaluated in terms of total cost and interference

error rate according to the offloading ratio and total number of UAVs.

Simulation results demonstrated that with total offloading, the tasks were

executed at the MEC server, which supports the correctness of the proposed

method.

The authors of Ref. [26] considered the allocation of data and trajectory

optimization intending to minimize the total energy consumption in a hovering

UAV-enabled MEC system to provide computational services to ground

mobile terminals (MTs). Specifically, the authors considered different energy

16

consumption rates of specific MTs when individual devices consumed more

computational resources, and most of the computing occurred at the devices

instead of the flying edge server. In the system model, the authors considered

that all tasks were independent and could be divided into several portions to

be offloaded.

To effectively optimize both the UAV trajectory and the allocation of bits,

the authors divided the problem into two subproblems and formulated them as

convex optimization problems. The authors proposed the JTDATO algorithm,

which solves the individual subproblems while jointly optimizing both the

trajectory and data allocation. To evaluate system performance, the authors

presented an optimized trajectory alongside a data transfer and maximum

energy consumption scheme. The proposed method-maintained speed while

traversing trajectory when the distance between the UAV and the MTs was

minimal. Therefore, more MTs can offload tasks to edge servers, thus

conserving energy. To further investigate the performance of the proposed

method, the authors also considered the random deployment of MTs. In this

case, the energy consumption was much lower than baseline methods.

However, the mobility of MTs can change the energy consumption scenario

assumed in this study. High mobility adds more dynamicity to the system.

However, there are several challenges associated with collaborative UAV

deployments. Communication links can drop between UAVs, owing to battery

drainage, malfunctions, and terrain. Overlapping areas must be controlled to

maximize coverage. Most studies utilized a traditional optimization method in

which the overall network information is obtained by the UAV and utilized to

make an offloading decision. A central controller was also assumed in some

studies to collect the required network information, channel information, etc.

17

In contrast, in coalitional UAV systems, the decision is made by each member

by interacting with others, enabling them to collaboratively decide upon an

optimization plan in a distributed fashion [45].

Most studies consider tasks generated from IoT devices or mobile users

considering the data-intensive task requirement. However, the task generated

from a vehicular network in surveillance applications poses a different

challenge because UAVs need an efficient mobility plan to support the

extremely dynamic nature. Furthermore, the consideration of topology

formation depending on the dynamic nature of the environment is overlooked

by most studies. Thus, further research is needed to design robust offloading

algorithms for such complex application scenarios.

Table 1. Operational characteristics of offloading techniques for UAV-

MEC.

Algorithm Offloading

type

UAV

role

Performance

metrics

Application

scenario

Optimization

objectives

HGTRL

Binary

Edge

server

Offloading delay,

Energy

consumption

Mobile

device

Maximizes the long-

term payoff (inversely

proportional to delay

and energy cost)

COUMEC Binary Edge

server

Service drop rate,

Network utility

Mobile

device

Maximizes the total

utility by deciding

optimal offloading and

resource allocation

policies.

SAG-IOT

Binary,

cloud

processing

Edge

server

Average total

delay, Total cost

IoT user Minimizes the total

system cost in terms of

delay, energy

consumption of IoT

user, edge, and server

usage cost

DE-GAP-

DRL

Binary Edge

server

Task Load

balance, Average

transmission cost

Ground IoT

device

Minimizes the average

slowdown of tasks in

UAVs

GTCO

Binary Edge

server

Mean delay, Loss

probability, Power

consumption gain

Ground

device

Maximizes an objective

function defined in

terms of power

consumption, delay, and

18

loss probability by

offloaded and non-

offloaded jobs

UACODRL Binary Edge

server,

load

relay

Cumulative

reward

Wireless

user

Minimizes the weighted

sum of the delay, energy

consumption, and

bandwidth cost

MARL Binary Edge

server

Average mission

response time,

Communication,

and processing

time of the

missions

Surveillance Minimizes the mission

response time

DP-DRL Binary Edge

server

Offloading and

local computing

probability,

Average delay

Building

inspection

Minimizes the weighted

sum of delay and energy

expense

DDQN Partial Edge

server,

load

relay

Total weighted

cost, Latency,

Energy

consumption

IoT device Minimizes the weighted

cost of latency and

energy consumption

HMTD Partial Edge

server

Total cost,

Inference error.

Target

tracking

Minimizes the total cost.

UMEC Partial Edge

server

Energy

consumption,

Computation load

Surveillance Minimizes the energy

consumption of UAVs

JTDATO Hybrid Edge

server

UAV Trajectory

Energy

consumption

among Mobile

terminals

Mobile

terminals

Minimizes the energy

consumption of all

mobile terminals

CCCP Hybrid Edge

server

UAV trajectory,

Energy

consumption of

UAV,

Transmission

power of all users

User device Minimizes the total

transmission energy

consumption of all users

19

3. System Model

3.1. Motivation Scenario

In this thesis, we focus on the implementation of a UAV swarm-enabled

MEC system consisting of a multi-UAV network and a ground BS-enabled

MEC that provides computational support to the UAVs. The UAV swarm is

assumed to perform a video surveillance task to avoid unexpected occurrences

during the event. Owing to their high mobility, UAVs are deployed around the

venue to capture videos using an onboard camera for face recognition tasks.

Owing to such tasks being highly computation intensive and UAVs having a

limited battery lifetime, in this thesis, we address the minimization of the

energy consumption of the UAV and the task completion delay by exploiting

the benefits of additional computation service provided by the ground BS-

MEC server. Thus, this system can replace human involvement with reduced

costs and faster response times.

3.2. Network Model and Assumptions

We consider a UAV swarm-enabled MEC system in which the UAVs are

assumed to perform a surveillance mission in an urban area as shown in Figure

1. We envision a widely used application scenario dedicated to public venue

use (e.g., stadium) based on the ETSI framework [46]. Typically, ETSI

considers stadiums as a potential use case requiring MEC services

20

Figure 1. Practical use case of unmanned aerial vehicle (UAV) swarm-enabled

mobile edge computing system for surveillance applications.

owing to the additional arrangements conducted during large sports events

[47]. We assume that UAVs are divided into 𝑁 coalitions, i.e.,

{𝑄1, 𝑄2 , … , 𝑄𝑁}. Each coalition consists of one coalition head and several

coalition members. Each UAV in the coalition is equipped with a computing

unit to perform computationally intensive tasks. Here, we consider that

coalition heads have a high computing performance compared with M-UAVs.

The M-UAVs function as sensing UAVs by sensing a particular area and

capturing videos to process them using face recognition algorithms.

When the computing resources are exhausted and computing tasks are

prolonged in the M-UAVs, the task can be either offloaded to the H-UAV or

to the ground edge server to assist the M-UAVs depending on the task

characteristics. The tasks are classified into two types: computationally

intensive or delay tolerant task and delay sensitive task. If the task is delay

21

sensitive and must be computed before a certain time period, the task is

offloaded to the H-UAV to avoid transmission delay. Otherwise, if the task is

delay tolerant and requires high computational power and more energy, the

task is offloaded from the M-UAVs to the ground edge server via a wireless

link that has a sufficient computing capacity. Our objective is to minimize the

overall computational energy and transmission latency involved in this

computation offloading scenario. We assume that the topology of the UAV

has been optimized according to the task requirements; therefore, the M-UAVs

remain in a quasi-static scenario during offloading the task [48].

We consider that the required energy of all UAVs is sufficient to perform

the mission and wireless communication during a flight period of 𝐽, which is

divided into 𝑇 time slots equally. We denote the set of time slot as ℱ =

{1, 2, ⋯ , 𝑡, ⋯ , 𝑇}. The M-UAVs and H-UAVs are considered to fly at different

altitudes to avoid collisions. We represent the coalition members and coalition

head as ℳ = {1,2, ⋯ , 𝑀} and ℋ = {1, 2, ⋯ , 𝐻}, respectively, where 𝑀 and

𝐻 represents the number of M-UAVs and H-UAVs in a coalition 𝑄𝑁.

We denote the horizontal coordinates of M-UAV 𝑗 as 𝑤𝑗
𝑀 = (𝑥𝑗 , 𝑦𝑗 , ℎ), where

𝑗 ∈ ℳ . The H-UAV flies through a predefined trajectory to minimize the

transmission delay. The horizontal coordinate of the H-UAV in time slot t is

denoted by 𝑤𝑡
𝐻 = (𝑋𝑡, 𝑌𝑡, 𝐻).

3.3. Communication Model

 We consider that the communication channels between the M-UAVs and

H-UAV are characterized by line-of-sight communication, wherein the

channel quality heavily relies on the communication distance [49][50]. The

distance between the H-UAV and M-UAV 𝑗 in time slot 𝑡 is denoted as

22

 𝑑𝑗,𝑡 = √∥∥𝑤𝑛
𝐻 − 𝑤𝑗,𝑡

𝑀
∥∥

2
, ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ. (1)

We assume that the channel gain between the H-UAV and M-UAVs in

coalition 𝑄𝑁 follows the free-space path loss model as follows:

 ℎ𝑗,𝑡 = η𝑑𝑗,𝑡
−2 =

η

∥
∥𝑤𝑛

𝐻−𝑤𝑗,𝑡
𝑀

∥
∥2 , ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ, (2)

where η denotes the channel gain, which is located at 1 m and relies on the

antenna gain and carrier frequency.

We consider that between the time intervals, all the M-UAVs are served by

the H-UAV by following frequency division multiple access (FDMA) [51].

The total bandwidth of system B is partitioned into M sub-bands without

overlapping. In each time slot, each M-UAV is allocated
𝐵

𝑀
 subbands.

Following this, as shown in [52], the signal-to-noise ratio is derived as follows:

𝑆𝑁𝑅𝑗,𝑡 =
ℎ𝑗,𝑡𝑃𝑗,𝑡

℘𝐵/𝑀

=
η𝑃𝑗,𝑡

℘𝐵

𝑀∥∥w𝑡
𝐻 − w𝑖,𝑡

𝑀
∥∥

2

, ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ,

 (3)

where 𝑃𝑗,𝑡 denotes the transmit power of the 𝑗𝑡ℎ M-UAV, and ℘ indicates the

spectrum density of the white Gaussian noise (WGN) in W/Hz at the H-UAV.

Following Shannon’s formula, the uplink data rate of M-UAV j in time slot t

is given by

23

 𝑅𝑗,𝑡 =
𝐵

𝑀
log2 (1 +

η𝑃𝑗,𝑡

℘𝐵/𝑀∥
∥w𝑡

𝐻−w𝑗,𝑡
𝑀

∥
∥2) , ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ. (4)

 Similarly, when the 𝑗𝑡ℎ M-UAV offloads the task to the ground edge

server, we assume that the location of the edge server is fixed, and the

horizontal coordinate of the edge server is denoted as 𝑤t
𝐸𝐶 = (𝑥𝐸𝐶 , 𝑦𝐸𝐶 , 0).

Subsequently, the distance between the 𝑗𝑡ℎ M-UAV and edge server in time

slot 𝑡 is defined as

 𝑑𝐸𝐶,𝑡 = ∥∥w𝑗,𝑡
𝑀 − 𝑤t

EC
∥∥. (5)

Because the UAV offloads computationally intensive tasks to the ground

edge server, the channel gain between the 𝑗𝑡ℎ M-UAV and edge server in time

slot t is denoted by

 ℎ𝐸𝐶,𝑡 =
ℊ

[𝑑𝐸𝐶,𝑡]2 (6)

where ℊ denotes the power gain and the reference distance is considered to be

1 meter. Therefore, the transmission data rate between the 𝑗𝑡ℎ M-UAV and

edge server in time slot 𝑡 is defined as

 𝑅𝐸𝐶,𝑡 = 𝐵𝑢𝑙𝑜𝑔2 (1 +
ℎ𝐸𝐶,𝑡 𝑃𝑗,𝑡

𝜇2) , ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ (7)

Where 𝐵𝑢 is the bandwidth pre-assigned to the edge server and 𝜇 is the noise

power.

3.4. Task Computation Model

24

In this paper, we assume that each M-UAV 𝑗 in a coalition 𝑄𝑁 has a sensing

task that can be computed locally in the 𝑗𝑡ℎ M-UAV or either in the H-UAV

or the ground edge server that is co-located with the BS at time slot t, where

𝑡 ∈ ℱ . Let 𝑎𝑗
1 define the computation offloading decision of the M-UAV,

where 𝑎𝑗
1 = 1 indicates that the M-UAV offloads the task, whereas 𝑎𝑗

1 = 0

indicates that the task is computed locally. We define each task as 𝛫𝑗
𝑡 =

(𝐿𝑗
𝑡, 𝑑𝑗

𝑡), where 𝐿𝑗
𝑡 indicates the CPU cycles required to perform task of the 𝑗𝑡ℎ

M-UAV, and 𝑑𝑗
𝑡 indicates the data size that must be computed at time slot 𝑡.

Next, we derive the computation cost in terms of the task delay as well as

energy consumption for local and edge computing.

1) Local computing: We denote the computation capability, i.e., the clock

frequency of the CPU chip, of M-UAV 𝑗 for task 𝐽𝑗
𝑡 as 𝑓𝑗,𝐾 . The local

execution time of task 𝐾 on M-UAV j is given by

 𝑇𝑙𝑜𝑐,𝑒𝑥𝑒 =
𝐿𝑗

𝑡

𝑓𝑗,𝐾
 (8)

while the energy consumption of M-UAV j for executing task 𝐾𝑗
𝑡 is given by

 𝐸𝑗,𝑚
𝑙𝑜𝑐,𝑒𝑥𝑒 = 𝑘𝐿𝑗

𝑡𝑓𝑗,𝐾
2 (9)

where 𝑘 indicates the switched capacitance of a specific chip architecture of

the device. In accordance with previous studies, we consider that 𝑘 = 10−28

[53]. Consequently, the total cost for executing task 𝐾𝑗
𝑡 locally is defined by

the sum of the local execution time and energy consumption during execution.

That is,

25

 𝑈𝑗,𝐾
𝑙𝑜𝑐𝑎𝑙 = 𝛼1

𝑙 𝑇𝑙𝑜𝑐,𝑒𝑥𝑒 + 𝛽
2
𝑙 𝐸𝑗,𝑚

𝑙𝑜𝑐,𝑒𝑥𝑒
, (10)

where 𝜗1 and 𝜗2 are the weights that control the importance of the latency

and energy consumption.

2) Task offloading: With an increasing number of tasks, the computation

capacity of the M-UAV is exhausted owing to the shortage of computing

resources. Thus, the tasks generated after a certain time are continuously

rejected. Hence, whether an M-UAV should offload its tasks has a significant

impact on the performance of the overall network. In our paper, we consider

that the M-UAV can offload the task to either the H-UAV or the ground edge

server, depending on the task characteristics. As discussed earlier, we consider

that tasks can be classified into two different categories: delay sensitive and

energy sensitive tasks. The intuition for such a consideration is that deep-

learning-based image recognition techniques involve many phases, such as

noise removal, pre-processing, resizing, training, and classification. Thus, the

tasks are of various types, with varying sizes and computational requirements.

Therefore, for any task 𝐾𝑗
𝑡, 𝑎𝑗

2 ∈ {0, 1} represents the action that the 𝑗𝑡ℎ M-

UAV can perform. When the task is delay-sensitive, it is offloaded to the H-

UAV, i.e., 𝑎𝑗
2 = 1; hence, the total delay consists of the transmission and

computation delays at the H-UAV.

Thus, the transmission delay for offloading the task to the H-UAV is given

by

 𝑇
𝐾𝑗

𝑡
𝑡𝑥 =

𝑑𝑗
𝑡

𝑅𝑗,𝑡
. (11)

Because the H-UAV has a higher computational capacity than the M-UAV,

each H-UAV can execute the offloaded task locally using the computing unit

26

onboard. Here, we assume that the H-UAV can run several virtual machines

to compute tasks from different M-UAVs [54][55]. Thus, we consider tasks

from different M-UAVs are executed simultaneously. Hence, we ignore the

computation capacity allocation in this paper [48][17]. Therefore, when the H-

UAV functions as a server, the computation delay of the H-UAV is given by

 𝑇𝐻,𝑒𝑥𝑒 =
𝐿𝑗

𝑡

𝑓ℎ,𝐾
 (12)

where 𝑓ℎ,𝐾 denotes the clock frequency of the H-UAV on task K. Meanwhile,

the energy consumption during task execution can be calculated by

 𝐸𝐻,𝑒𝑥𝑒 = 𝑘𝐻𝐿𝑗
𝑡𝑓ℎ,𝐾

2 (13)

where 𝑘𝐻 represents the effective switched capacitance of the H-UAV related

to the chip architecture; we set 𝑘𝐻 = 10−28 [53]. The total completion time of

the task 𝛫𝑗
𝑡 is defined by the sum of transmission delay from M-UAV j to the

H-UAV and the execution delay at the H-UAV.

 𝑇𝑗,𝐾
𝐻−𝑈𝐴𝑉 = 𝑇𝐻,𝑒𝑥𝑒 + 𝑇

𝐾𝑗
𝑡

𝑡𝑟𝑎. (14)

We are now ready to define the total cost for executing the task on H-UAV,

which is given by

 𝑈𝑗,𝐾
𝐻−𝑈𝐴𝑉 = 𝛼1

ℎ𝑇𝑗,𝐾
𝐻−𝑈𝐴𝑉 + 𝛽

2
ℎ𝐸𝐻,𝑒𝑥𝑒. (15)

However, because deep learning techniques often require extensive

computation (e.g., matching face images from existing datasets), tasks can be

computationally intensive and require more time, executing such tasks at the

H-UAV may degrade the overall network performance. Thus, we consider that

27

the M-UAV can also offload the task to the edge server for edge execution

with a strong computation capacity, i.e., 𝑎𝑗
2 = 0. In this case, execution occurs

in three phases: (i) Task transmission stage, (ii) edge computing stage, and (iii)

result transmission stage.

In the first phase, we derive the total cost by considering the energy

consumption during the transmission and execution of the task. The

transmission time and energy consumption of the task 𝛫𝑗
𝑡 at the edge server

are given by

 𝑇
𝛫𝑗

𝑡
𝑒𝑑𝑔𝑒,𝑡𝑥

=
𝑑𝑙

𝑡

𝑅𝐸𝐶,𝑡
. (16)

and

 𝐸
𝛫𝑗

𝑡
𝑒𝑑𝑔𝑒,𝑡𝑥

= 𝑃𝑗,𝑡 𝑇
𝛫𝑗

𝑡
𝑒𝑑𝑔𝑒,𝑡𝑥

. (17)

For edge execution, the computing task execution time is denoted by

 𝑇𝑒𝑑𝑔𝑒,𝑒𝑥𝑒 =
𝐿𝑗

𝑡

𝑓𝑒
, (18)

where 𝑓𝑒 denotes the CPU frequency of the ground edge server.

We assume that the frequency remains constant during task execution.

Owing to the high computational capacity and sufficient power of the ground

edge server, the edge server can easily complete the offloaded task.

Corresponding with other studies, e.g., [56] and [57], we omit the result

receiving delay because the size of the returned data is exceedingly small. We

also ignore the edge energy consumption in the total offloading cost

28

calculation because the energy consumption of the ground edge server is

negligible. Thus, the total duration for completing the execution of the task 𝛫𝑗
𝑡

in the edge server is given by

 𝑇𝑗,𝐾
𝑒𝑑𝑔𝑒

= 𝑇
𝐽𝑙

𝑡

𝑒𝑑𝑔𝑒,𝑡𝑥
+ 𝑇𝑒𝑑𝑔𝑒,𝑒𝑥𝑒. (19)

The total cost of edge execution is given by

 𝑈𝑗,𝐾
𝑒𝑑𝑔𝑒

= 𝛼1
𝑒𝑇𝑗,𝐾

𝑒𝑑𝑔𝑒
+ 𝛽

2
𝑒𝐸

𝐽𝑙
𝑡

𝑒𝑑𝑔𝑒,𝑡𝑥
. (20)

Because of the computation capacity among the three computation nodes,

based on where the task is being executed, we introduce different weights to

enable diversity in the delay and the energy consumption calculation of the

three cases. This means 𝛼1
𝑙 is different from 𝛼1

ℎ and 𝛼1
𝑒. The same applies for

𝛽
2
𝑙 , 𝛽

2
ℎ, and 𝛽

2
𝑒.

3.5. Problem Formulation

In this thesis, our aim is to minimize the normalized weighted cost by

considering both task execution delay and energy consumption. When all tasks

are locally computed, an M-UAV cannot complete all tasks owing to its

limited energy and computational capacity. In addition, latency is another

crucial metric in an edge-computing environment that can significantly

deteriorate performance. Thus, an optimal task allocation strategy (M-UAV,

edge server) is required by considering execution time and energy

consumption. Therefore, we jointly consider the energy consumption and

execution delay during transmission and computing. Because we have a multi-

objective optimization problem, we consider a popular multi-objective

29

optimization method: the linear weighted sum method [51][58]. This method

combines multiple objectives into a single objective function.

First, the execution time and energy consumption are normalized such that

they are within the same range. To normalize, we divide the task execution

delay and energy consumption by the delay and energy calculated from local

computing. Since energy consumption and delay have different units, we have

normalized execution delay and energy consumption to a range of the same

size by dividing with the maximum energy and maximum execution delay that

is obtained from local computing. Thus, we convert the two different metrics

into the same number range. Subsequently, we apply different weights for both

energy consumption and delay. These weights enable us to configure the video

analysis based on task requirements. Based on the above discussion, the

objective function for a sequence of tasks ℛ can be formulated as follows:

𝑈𝑗 = ∑ 𝑈𝑗,𝐾
ℬ
𝐾=1 = ∑ 𝑎𝑗

1𝑎𝑗
2𝑈j,K

𝐻−𝑈𝐴𝑉 +

𝑎𝑗

1
(1 − 𝑎𝑗

2)𝑈𝑗,𝐾
𝑒𝑑𝑔𝑒

+𝐼
𝑖=0

 (1 − 𝑎𝑗
1)𝑈j,K

𝑙𝑜𝑐𝑎𝑙), (21)

where ℬ indicates the total size of set ℛ. Thus, the optimization problem can

be formally derived as

 min
𝐴

∑ 𝑈𝑗𝑗 . (22)

s.t 𝑎𝑗
1𝑎𝑗

2𝑇𝑗,𝐾
𝐻−𝑈𝐴𝑉 + 𝑎𝑗

1(1 − 𝑎𝑗
2)𝑇𝑗,𝐾

𝑒𝑑𝑔𝑒
+ (1 − 𝑎𝑗

1)𝑇𝑙𝑜𝑐,𝑒𝑥𝑒𝑐 ≤ 𝑇𝐾
𝑚𝑎𝑥 , ∀𝐾 =

 1, ⋯ , ℬ (23)

where A = { 𝑎𝑗
1, 𝑎𝑗

2| 𝑗 ∈ ℳ, 𝐾 ∈ ℛ}. This constraint states that all tasks must

be completed by the total completion time, 𝑇𝐾
𝑚𝑎𝑥 . Because we use integer

constraints (e.g., 𝑎𝑗
1𝑎𝑗

2), this is a non-convex problem, and using traditional

30

optimization techniques is not useful owing to dynamic task requirements.

Thus, we design a multi-agent reinforcement learning algorithm that can

provide a simpler and more efficient solution in less time.

3.6. RL Framework

In traditional RL, the problem is modeled as an MDP. In this section, we first

discuss why the offloading problem can be solved using DRL. Subsequently,

according to the RL framework, we provide the definitions of the state space,

action space, and reward function of our stated problem. The state space is

defined by the metrics used to determine the optimal action from all available

actions in the action space. The ultimate objective of action selection is to

maximize the reward function, which is designed based on the objective of our

study. In DRL, neural networks are used to simulate the optimization function

to obtain the optimal result by training the network parameters. Currently,

conventional optimization methods (e.g., heuristic methods and convex

optimization) are widely used to determine the optimal offloading decision in

MEC environments. However, with an increase in optimization variables and

slightly complicated constraints, these algorithms cannot obtain optimal

results. For example, in convex optimization-based techniques, the first step is

to divide the global optimization problem into subproblems. To apply

heuristic-based solutions, we must simplify the problem sufficiently, and the

MDP requires input data in a state transition matrix. In DRL, a neural network

enables DRL algorithms to obtain near-optimal results when the state space

becomes large and complex. Thus, DRL overcomes the limitations of

traditional optimization techniques in computation offloading decision-

making problems.

31

1) State space sj
t: To make the offloading decision, each agent in the network

is provided with a set of input metrics that they consider while making the

offloading decision. Let 𝑠𝑗
𝑡 = {𝐷, 𝑐, 𝑓, and 𝑑𝑡} denote the state space. The

meanings of these symbols are provided by

• D: size of the task

• C: cycles needed to complete the task

• f: computational capability of the H-UAV

• dt: task type ∈ {0,1} (energy-sensitive or delay-sensitive)

2) Action space aj
t: Each M-UAV selects a particular action after the tasks

are generated in time slot 𝑡 ∈ ℱ in the coalition. The M-UAV can select an

action from local information. In this paper, we consider binary offloading,

which can either be executed at the H-UAV or offloaded to the ground edge

server.

3) Reward function rj
t: After selecting a certain action, the agent gains a

reward that reflects the performance of the selected action by reinforcing the

action performed by the agent. Designing a good reward function is crucial for

network performance, because it can reduce the convergence time of the

algorithm. In our UAV swarm enabled MEC system, the main objective is to

complete the execution of the task with minimum task execution delay and

energy consumption within the task deadline. According to the above

discussion, the reward function is designed as follows:

The aim of each agent is to maximize the total reward. Because action

selection depends on the unique characteristics of the network dynamics in

which the agent is interacting, defining the reward function directly from the

obtained utility would affect the learning process. Thus, we consider the

32

difference between the utility value and the value obtained in the previous time

step. The intuition for such a design is that a positive difference indicates an

enhancement in the obtained reward value and, thus, that action should be

emphasized. We assume that each agent has the same reward function. Based

on the discussion above, the reward function is defined as follows:

 𝑍𝑗,𝐾 = −𝑎𝑗
2𝑎𝑗

1𝑈j,K
H−UAV − 𝑎𝑗

1(1 − 𝑎𝑗
2)𝑈𝑗,𝐾

𝑒𝑑𝑔𝑒
− (1 − 𝑎𝑗

1)𝑈j,K
local, (24)

where a higher cost results in a smaller reward, and vice versa. Thus, for each

agent, the utility is

 𝑍𝑗 = ∑ 𝑍𝑗,𝐾
ℬ
𝐾=1 . (25)

Each agent aims to maximize this objective, which emphasizes the action

that produces a better reward value. Because of the dynamic characteristics of

the network in which the agent is interacting, the action evaluation can be

ambiguous. Thus, the value obtained here cannot be directly utilized to define

the reward [59]. Therefore, the difference between reward values in immediate

timesteps are considered the reward in this paper. The intuition for such a

consideration is that an increase in the reward denotes an improvement, such

that a particular action should be emphasized. Based on the discussion above,

the reward value is defined as follows:

 𝑢𝑡
𝑗

= {

𝑝, 𝑖𝑓 𝑍𝑗
𝑡 − 𝑍𝑗

𝑡−1 < 0

𝑞, 𝑖𝑓 𝑍𝑗
𝑡 − 𝑍𝑗

𝑡−1 > 0

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (26)

where 𝑍𝑗
𝑡 is the cumulative reward gained at timeslot 𝑡 . When the reward

difference between two immediate timesteps is negative, it is considered an

improvement because the reward is formulated as a negative value; thus, 𝑝 is

a positive value, whereas a positive difference between the rewards obtained

33

from immediate timesteps yields 𝑞 which is a negative reward. For simplicity,

we consider that each agent shares the same reward.

34

4. Deep Reinforcement Learning based Computation

Offloading Algorithm (DRLCO)

Based on the previous discussion, we designed a deep reinforcement learning

based computation offloading (DRLCO) algorithm to solve this decision-

making problem as shown in Figure 2. In each time slot, when new tasks are

generated to be computed locally or on the MEC server, each agent (M-UAV)

acts on the environment by observing the state and selecting a specific action.

Subsequently, each agent receives an immediate reward. During the entire

time, each agent aims to determine an optimal offloading decision to maximize

the cumulative reward. Owing to the integer constraint to determine on which

device the task will be processed, conventional optimization methods fail to

obtain an optimal solution in such scenarios. In addition, deep learning

techniques occasionally fail to map the relationship between input and output

efficiently and require a longer training time in new environments [60].

To address these challenges, we propose a DRLCO algorithm that

incorporates a neural network and Q-learning to obtain an optimal offloading

decision. By combining the perceptive characteristics of the neural network

and decision-making capability of RL, we can determine the optimal

offloading decision in a dynamic environment. Because the tasks to be

computed are not known beforehand, the DRLCO algorithm was designed to

fall under the category of model-free RL. Algorithm 1 presents the proposed

DRLCO algorithm.

35

Figure 2. Block diagram of the proposed DRLCO scheme.

Two identical neural networks, whose Q functions are denoted as

𝑄𝑗
𝑡(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒) and 𝑄𝑗
𝑒(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒), are used to construct the overall structure of

the DRLCO, which we call the target network 𝜑𝑗
𝑡 and evaluation network 𝜑𝑗

𝑒.

To enhance the training efficiency and early convergence, we use the

experience replay 𝜒𝑗(𝑡) to store past samples. The sample of experiences is

defined as {𝑠𝑗
𝑡, 𝑎𝑗

𝑡 , 𝑢𝑡
𝑗
, and 𝑠′𝑗

𝑡} . The intuition for using experience replay

memory is that consecutive samples are highly correlated, which may affect

the learning process and result in sample inefficiency. To break this

correlation, we use a mini batch of random samples to train the model, which

is stored in the replay memory. As memory fills up, old experiences are

removed to create space for newer ones. Each agent (M-UAV) leverages

replay memory to determine the optimal mapping between the state and action.

We consider that the agent selects a certain action 𝑎𝑗
𝑡 using the following 𝜖-

greedy policy:

36

 𝑎𝑗
𝑡 = {

 𝑟𝑎𝑛𝑑𝑜𝑚, 𝜖

𝑎𝑟𝑔 max 𝑄𝑗
𝑒(𝑠𝑗

𝑡, 𝑎|𝜑𝑗
𝑒) , 1 − 𝜖

}. (27)

In DRLCO, two neural networks aim to determine the optimal action, as

stated previously. In a typical DQN, the max operator is used to select and

evaluate an action that results in the overestimation of values, causing

overoptimistic value estimates [61]. Therefore, to address this challenge, we

use two identical networks to separate the task of selecting and evaluating an

action, which enables the evaluation of the greedy action taken. Based on this

concept in DRLCO, the action that produces the highest Q-value is first

selected by the target network. Subsequently, the evaluation network evaluates

the selected action by calculating the Q-value of taking that action in that state.

Thus, the value of the policy is evaluated evenly using the two neural

networks. The expected cumulative reward of the target network can be

derived as

 𝑅𝑒𝑤𝑗 = 𝑢𝑡
𝑗

+ 𝜇𝑘𝑄𝑗
𝑡(𝑠′𝑗

𝑡, arg max𝑄𝑗
𝑒(𝑠′

𝑗
𝑡
, 𝑎𝑗

𝑡|𝜑𝑗
𝑒)|𝜑𝑗

𝑡). (28)

where 𝜇𝑘 denotes the discount factor for controlling further rewards.

Therefore, the loss between 𝑄𝑗
𝑡(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒) and 𝑄𝑗
𝑒(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒) is calculated as

follows:

 𝐿𝑜𝑠𝑠𝑗(𝑄𝑗
𝑒, 𝑄𝑗

𝑡) = Ε
(𝑠𝑗

𝑡,𝑎𝑗
𝑡,𝑢𝑡

𝑗
,𝑠′

𝑗
𝑡
)~𝜒𝑗

[𝑅𝑒𝑤𝑗 − 𝑄𝑗
𝑒(𝑠′

𝑗
𝑡
, 𝑎𝑗

𝑡|𝜑𝑗
𝑒))]2. (29)

The two networks are alternated simultaneously to ensure stability in the

training performance. The target network parameters are updated using the

evaluation network until convergence. Thus, each agent can learn the optimal

offloading policy in a distributed manner according to its own information.

The DRLCO algorithm, as provided in Algorithm 1, has two major parts:

37

Algorithm 1 The algorithm is run in the M-UAV

Input: Task feature {𝐷, 𝐶, 𝑓, 𝑑𝑡}

Output: Optimal offloading location for a given input

1: Initialize parameters of target and evaluation networks for all M-UAV ∈ ℳ;

2: Initialize replay memory 𝜒𝑗 for each agent M-UAV ∈ ℳ;

3: for episode = 1 to 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥 do

4: Reset entire environment for each M-UAV ∈ ℳ;

5: for j = 1 to 𝑀 do

6: M-UAV acts on the dynamic environment;

7: for t = 1 to 𝑇 do

8: M-UAV observes the state 𝑠𝑗
𝑡 parameters consisting of task size 𝐷,

required cycles to execute the task 𝐶, computational capability of the H-UAV 𝑓,

task type 𝑑𝑡

9: M-UAV selects action 𝑎𝑗
𝑡 regarding offloading the task to the H-

UAV or the ground edge server following 𝜖-greedy policy;

10: M-UAV obtains the reward 𝑢𝑡
𝑗
, next state 𝑠′𝑗

𝑡;

11: Add sample {𝑠𝑗
𝑡 , 𝑎𝑗

𝑡 , 𝑢𝑡
𝑗
, 𝑠′𝑗

𝑡} into replay memory 𝜒𝑗 when replay

memory is not full.

 if samples are sufficient in 𝜒𝑗, do

10: Select a mini batch from replay memory 𝜒𝑗;

11: Calculate cumulative reward using (28);

12: Calculate loss using (29);

13: Update the evaluation network

14: Alternate the parameters from evaluation network to target network

(𝝋𝒋
𝒕 ← 𝝋𝒋

𝒆)

15: end if

16: end for

15: end for

16: end for

17: return offloading location for given input

collecting data samples from the network environment and training based on

the collected data. The parameters of the target network and parameters with

initial weights are defined initially along with the replay memory size (lines

38

1−2). The number of episodes is then defined, and agent begins interacting

with the network environment to collect data (lines 3−11). In this data-

collection phase, each agent (M-UAV) observes the state, selects an action,

receives the reward, and receives a new state (lines 8−10). The replay memory

stores the experience gained. Subsequently, in the training phase, a random

mini batch from the replay memory is sampled to train the agent and calculate

the loss (lines 12−14).

4.1. Complexity Analysis

In this section, we study the proposed DRLCO scheme in terms of its

computational complexity. Each M-UAV 𝑗, where 𝑗 ∈ ℳ, has three types of

neural networks: input layer, fully connected (FC) layers, and output layer.

Each agent has a total of 𝑉 + 2 layers with one input layer, one output layer,

and 𝑉 FC layers. We denote the total amount of training sample as 𝛨 and the

total number of epochs as 𝐹. 𝑖𝑞 and 𝑖𝑛 represents the input layer dimension

and neuron number in layer 𝑞, respectively, where 𝑞 ≥ 2 and 𝑞 ∈ 𝑉. Hence,

the time complexity of the proposed DRLCO is 𝑂(𝛨 ∗ 𝐹 ∗ 𝑖𝑞 ∗ (𝑉 − 1)𝑖𝑛).

Because there is only one output layer, and 𝑂(𝑖𝑞) is the complexity of the total

number of activation functions, the complexity of these two metrics has been

ignored with regard to the overall complexity.

39

5. Performance Evaluation

In this section, we evaluate the performance of the proposed DRLCO

scheme and compare it with that of conventional schemes through a simulation

study.

5.1. Experimental Setup

We verified the correctness of our proposed DRLCO using Python and

TensorFlow 1.15 on a computer with an AMD Ryzen 5 processor with a

processor speed of 3.60 GHz and RAM of 8 GB. We considered five H-UAVs

and 15 M-UAVs in our UAV swarm-enabled edge-computing scenario in an

area of 1000 m × 1000 m. To simulate the DRLCO algorithm, we set that for

each M-UAV, the neural network of the DRLCO algorithm consisted of one

input layer and output layer with two FC layers. The sizes of the two hidden

layers were 400 and 350. We used ReLU in the hidden layers, as the activation

function and AdamOptimizer to optimize the loss function. For training, we

set the maximum number of iterations to 2000. The size of the replay memory

was 50000. To emphasize future rewards, we set the discount factor value to

0.9. Because 𝛼 = 0.001 yielded a higher reward and stable training, in the

simulation environment, we set the value of the learning rate as 𝛼 = 0.001.

The weights of energy consumption and task execution delay were set as

𝛼1
𝑙 = 𝛼1

ℎ = 𝛼1
𝑒 = 𝛽2

𝑙 = 𝛽2
ℎ = 𝛽2

𝑒 = 0.5 to obtain equivalent importance on

evaluating the total cost. The computational task size varied randomly between

2 to 20 MB. The computational capacities of the M-UAV, H-UAV, and ground

40

edge server were 1.5, 15, and 20 GHz, respectively. The major simulation

parameters are listed in Table 2.

Table 2. Simulation parameters.

Parameter Value

Number of H-UAVs 5

Number of M-UAVs 15

Bandwidth (B) 20 MHz

Bandwidth at the edge server (𝐵𝑢) 0.5 MHz

Transmission power (𝑃𝑗,𝑡) 20 dBm

Channel power gain (η) 1.42 × 10−4

Power spectrum density (℘) -174 dBm

Path loss exponent (ℊ) -50 dB

Noise power (𝜇) -100 dB

Computation task size of each M-UAV 2 – 20 Mb

Required CPU to complete input task 0 – 1.5 GHz

Computation capacity of M-UAV (𝑓𝑗,𝐾) 1.5 GHz

Computation capacity of H-UAV (𝑓ℎ,𝐾) 15 GHz

Computation capacity of ground edge server (𝑓𝑒)

Effective switched capacitance of M-UAV and H-UAV (𝑘, 𝑘𝐻)

20 GHz

10−28

Weights (𝛼1
𝑙 = 𝛼1

ℎ = 𝛼1
𝑒 = 𝛽2

𝑙 = 𝛽2
ℎ = 𝛽2

𝑒) 0.5

1st hidden layer size 400

2nd hidden layer size rand (3, 5)

Learning rate (𝛼) 1 × 10−3

Mini batch size 100

Experience replay size (𝜒𝑗) 50000

Discount factor 0.9

41

Total episode (𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥)

Length of each slot

2000

1 s

5.2. Convergence Analysis

To show the convergence of the DRLCO algorithm, we compared the

DRLCO scheme with the DQN algorithm as shown in Figure 3. We observed

that both the DRLCO and DQN techniques converge after a certain time, and

the reward is stable. This means that agents can obtain an optimal offloading

policy. Furthermore, we observed that DRLCO reaches a steady state earlier

than DQN. Initially, because the M-UAV has no knowledge of the system

environment, the two techniques fluctuate at a very low value because of the

agent’s random action selection. Gradually, the M-UAV acts on the

environment, begins to collect samples, and trains the network when the

experience replay memory has sufficient samples. As mentioned earlier,

because the DRLCO scheme solves the overestimation problem of Q-values

by separating the estimation into two networks, it can learn valuable states

without observing the impact of each action at every state. Thus, we observed

that the reward of the DRLCO scheme is significantly higher than that of the

DQN scheme. In contrast, the DQN algorithm consists of a single neural

network, that is, a value function network that utilizes a random policy for

training. Thus, we observed that the reward gained in DRLCO scheme is

significantly higher than that of the DQN scheme and it requires almost 1000

episodes to converge for the DQN scheme. However, our DRLCO scheme

requires approximately only 250 episodes to reach a stable state and it provides

a higher reward compared with the DQN scheme because of the introduction

42

of the target network in DRLCO, which aids in converging faster. Thus, the

proposed method can save time and obtain an optimal offloading decision.

Figure 3. Convergence of DRLCO and DQN

5.2. Performance Metrics

After completing the training process of the proposed DRLCO, we verified

our proposed scheme to validate our model by performing experiments on

various performance metrics. Intuitively, the main objective of the proposed

multi-agent computation offloading algorithm is to successfully execute the

task with the lowest total cost. Because the M-UAV can execute the task

locally or through offloading into the H-UAV or the ground edge server, the

energy consumption as well as delay involved in the transmission and

computation of the task were considered in our performance analysis along

with the total offloading cost. This is because both energy consumption and

delay are crucial offloading metrics, and determining the optimal offloading

policy, which has less delay and consumes less energy, indicates the optimal

offloading policy. Before quantitatively verifying the performance of the

proposed DRLCO with other benchmarks, we briefly discuss the performance

metrics below.

43

• Average offloading cost: We discuss the average offloading cost in terms

of offloading task data size, computation capacity of the H-UAV, and

number of M-UAVs. This is the average cost of all the agents (M-UAVs)

for performing the task.

• Task execution delay: Delay is another crucial metric for determining the

network performance and improving the quality of service of the system.

Reducing the delay involved in the offloading and execution of a task

can significantly reduce the total system overhead. Thus, to demonstrate

the effectiveness of this study, we formulated task execution delay as the

sum of both transmission and processing delays and compared it with

conventional schemes.

• Energy consumption: In a UAV-enabled edge computing system, the

total energy consumption for offloading a task is the most important

metric because it has low computing energy to improve the offloading

performance. Thus, inefficient task allocation may result in high

overhead and tasks being dropped. The total energy includes both the

energy required for the transmission and the execution of the task.

To validate the effectiveness of the proposed DRLCO scheme, we considered

the following three conventional methods and compared the performance of

our study with these methods.

• Local: In this setup, tasks were executed locally by each M-UAV in each

time slot to the maximum computation capacity.

• Edge: All tasks were executed on a ground edge server, which had

sufficient computing capacity.

44

• DQN: We applied the DQN algorithm in our proposed scenario as a

benchmark technique because the action space is also discrete in the

DQN.

5.2. Simulation Results and Discussion

In this section, we present the simulation results of the proposed DRLCO

algorithm and compare the with benchmark techniques. First, we analyze the

average cost with respect to the number of M-UAVs, computation capacity of

the H-UAV, and offloading task size.

Figure 4(a) shows the impact of increasing the number of M-UAVs on

minimizing the average cost. We observed that with an increase in the number

of agents (M-UAV), the average cost also increased gradually. This was

because increasing the number of agents increased the number of sensing

tasks. Thus, to manage a large number of tasks, the transmission and execution

delays also increased. The DRLCO algorithm reduced the average cost by

55.13%, 48.08%, and 29.21% compared with the local, edge, and DQN,

respectively. Thus, we can conclude that, with an increasing number of agents,

the DRLCO scheme outperforms the three benchmarks in terms of the number

of agents.

Figure 4(b) shows the impact of the computation capacity on the average

cost. The figure shows that increasing the computational capacity of the H-

UAV reduced the average cost by a significant margin. This was because, with

an increase in the computation capacity, the H-UAV obtained adequate

computing resources. Because of this, the agents considered offloading the

computation-intensive tasks to the H-UAV as the capacity increased instead

of offloading to the ground edge node to minimize the total cost. This reduced

45

the transmission and processing delays of the task. The proposed DRLCO

algorithm outperformed the three benchmark techniques and reduced the cost

by 27.15%, 20.86%, and 15.70% compared with the local execution, edge

execution, and DQN, respectively.

Figure 4(c) shows the impact of the offloading task size on the average cost.

As the task size offloaded from the M-UAV increased, the total cost also

increased. This was because the CPU cycles required to execute tasks with

large sizes also increased for the H-UAV.

(a) (b)

(c)
Figure 4. Average offloading cost in terms of (a) number of M-UAV, (b)

offloading task size, and (c) computation capacity of H-UAV.

Hence, the computational time increased significantly. However, compared

with other benchmarks, our proposed DRLCO scheme reduced the total cost

46

by 54.28%, 43%, and 31% compared with local computing, edge computing,

and the DQN approach, respectively. Therefore, the proposed DRLCO scheme

can obtain a higher reward to minimize the total cost.

Next, we studied the two most crucial performance metrics in the network:

energy consumption and task execution delay. Using the proposed DRLCO

scheme, agents can dynamically select a suitable computational node to

minimize the overall cost. To demonstrate the performance of our proposed

DRLCO algorithm, Figure 5 shows the impact of the number of agents,

computation capacity, and offloading task size on the energy consumption of

the agent. As shown in Figure 5(a), the overall energy consumption increased

when the number of agents (M-UAV) increased. This was because an

increased number of M-UAVs generated more computational tasks to be

executed. Thus, the computation node consumed additional power because the

agents showed interest in offloading tasks on a suitable computation node to

minimize the total cost. However, the local, edge, and DQN algorithms

exhibited higher energy consumption than our proposed scheme. Because the

proposed scheme dynamically allocated the computation task in terms of task

characteristics, the task execution delay reduced by 55%, 48.08%, and 29%

for the local, edge, and DQN approaches, respectively. In Figure 5(b) and 5(c),

we analyze the impact of the computation capacity and task size on the energy

consumption. With an increase in the computing capacity of the H-UAV, the

task execution time decreased, and the energy consumption also increased

shown in Figure 5(b). This meant that the increased computation capacity of

the H-UAV enabled the M-UAV to offload energy-sensitive tasks more often

than previously, which increased the node’s power consumption. The

47

proposed DRLCO scheme reduced the energy consumption by 4.45%,

12.50%, and 21.81% compared with the DQN, edge, and local execution,

(a) (b)

(c)
Figure 5. Energy consumption in terms of (a) number of M-UAV, (b)

offloading task size, and (c) computation capacity of H-UAV.

respectively. Increasing the task size also increased energy consumption

(Figure 5(c)). This indicated that a larger task requires more CPU cycles to

complete, thereby increasing the power consumption of the computation node.

Hence, the energy consumption also increased. However, the proposed

algorithm significantly minimized the energy consumption by 11%, 22.27%,

and 33.08% compared with DQN, edge, and cloud execution, respectively,

owing to the dynamic allocation of the task according to the task

characteristics.

48

Next, we focus on the delay performance of our proposed DRLCO scheme

in terms of the number of agents (MUAV), task size, and varying

computational capacity with the three other benchmark techniques. Figure 6(a)

shows that increasing the number of agents increased the task execution delay.

Because more M-UAVs generated tasks together, the computation node (H-

UAV or edge) required more CPU cycles and computation time to complete

the task. In addition, transmitting a task to the ground edge server incurred a

transmission delay. However, the proposed DRLCO obtained a comparatively

smaller delay than the other benchmarks. The proposed method reduced the

delay by 23%, 19%, and 7% compared with the local, edge, and DQN

approaches, respectively. Thus, the proposed DRLCO approach significantly

outperformed the three benchmarks.

Figure 6(b) and Figure 6(c) depict the delay performance of the proposed

DRLCO in terms of the computation capacity of the H-UAV and varying task

size. As shown in Figure 6(b), we observed that increasing the computational

capacity of the H-UAV reduced the task execution delay. Initially, when the

computation capacity of the H-UAV was 2.5 GHz, the task execution delay

was higher because the computation time was longer owing to the limited

capacity. However, with an increase in the computation power, the

computation time decreased further, and thus agents tended to offload more

energy-sensitive tasks to the H-UAV, which reduced both the transmission and

execution delays. The proposed DRLCO scheme reduced the task execution

delay by 22%, 18.51%, and 11.79% compared with the local execution, edge

execution, and DQN schemes, respectively.

Figure 6(c) depicts the impact of task size on task execution delay. We

observed that increasing the task size also increased task execution delay.

49

(a) (b)

(c)
Figure 6. Task execution delay in terms of (a) number of M-UAV, (b)

offloading task size, and (c) computation capacity of H-UAV.

Because a large task required more CPU cycles to execute, the computation

time was longer; thus, the delay increased. In addition, when the

computationally intensive task was offloaded from the M-UAV to the ground

edge server, transmission and processing delays were incurred. However, the

proposed DRLCO scheme can reduce the delay by allocating the task

dynamically to either the H-UAV or ground edge server based on the task

characteristics. The proposed DRLCO scheme reduced the task execution

delay by 22.72%, 18%, and 11.79% compared with the local execution, edge

execution, and DQN approaches, respectively. Therefore, the proposed

50

DRLCO is applicable to a multi-UAV-aided network system to reduce the total

offloading cost by reducing energy consumption and task execution delay.

51

6. Conclusion and Future Works

In this paper, we investigate the decision-making problem of computation

offloading in a UAV swarm-enabled edge-computing system. To support the

UAV in successfully executing all tasks, the ground edge server provides

assistance by enabling the UAV to offload computation-intensive tasks.

Specifically, we formulate the offloading problem as a weighted sum cost

minimization problem by jointly considering energy consumption and task

execution delay. We then propose a multi-agent reinforcement learning

framework called the DRLCO scheme to reduce the total system cost. Each

M-UAV acts as an agent to determine the optimal offloading policy and

performs offloading decisions based on the DRLCO scheme. Finally,

simulation experiments were performed to validate the performance of the

proposed DRLCO scheme. From the simulation results, we observed that the

proposed technique can learn the optimal offloading policy and can

significantly minimize the total cost, energy consumption, and task execution

delay. Compared with the local execution, edge execution, and DQN

techniques, the proposed method can reduce the total cost by 54.28%, 43%,

and 31%, respectively, in terms of offloading task size.

In our future research, we will consider incorporating blockchain technology

to ensure the privacy of the data and dependent task offloading in an edge

computing scenario.

52

Bibliography

[1] X. Diao, W. Yang, L. Yang, and Y. Cai, “UAV-Relaying-Assisted

Multi-access Edge Computing with Multi-antenna Base Station:

Offloading and Scheduling Optimization,” IEEE Trans. Veh. Technol.,

vol. 9545, no. c, pp. 1–1, 2021, doi: 10.1109/tvt.2021.3101298.

[2] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while

computing: Distributed mobile cloud computing over 5G

heterogeneous networks,” IEEE Signal Process. Mag., vol. 31, no. 6,

pp. 45–55, 2014, doi: 10.1109/MSP.2014.2334709.

[3] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani,

“Mobile ad hoc cloud: A survey,” Wirel. Commun. Mob. Comput., vol.

16, no. 16, pp. 2572–2589, 2016, doi: 10.1002/wcm.2709.

[4] X. Zheng, M. Li, M. Tahir, Y. Chen, and M. Alam, “Stochastic

Computation Offloading and Scheduling Based on Mobile Edge

Computing,” IEEE Access, vol. 7, no. 2, pp. 72247–72256, 2019, doi:

10.1109/ACCESS.2019.2919651.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” MCC’12 - Proc. 1st ACM Mob. Cloud

Comput. Work., pp. 13–15, 2012, doi: 10.1145/2342509.2342513.

[6] M. Y. Arafat and S. Moh, “A Survey on Cluster-Based Routing

Protocols for Unmanned Aerial Vehicle Networks,” IEEE Access, vol.

7, pp. 498–516, 2019, doi: 10.1109/ACCESS.2018.2885539.

[7] A. Habib, Y. Arafat, and S. Moh, “Routing Protocols based on

Reinforcement Learning for Wireless Sensor Networks: A Comparative

Study,” J. Adv. Res. Dyn. Control Syst., no. 14, pp. 427–435, 2018.

[8] M. Y. Arafat and S. Moh, “Routing protocols for unmanned aerial

vehicle networks: A survey,” IEEE Access, vol. 7, pp. 99694–99720,

2019, doi: 10.1109/ACCESS.2019.2930813.

[9] M. Y. Arafat and S. Moh, “Localization and Clustering Based on

Swarm Intelligence in UAV Networks for Emergency

Communications,” IEEE Internet Things J., vol. 6, no. 5, pp. 8958–

8976, 2019, doi: 10.1109/JIOT.2019.2925567.

[10] M. Y. Arafat, M. A. Habib, and S. Moh, “Routing protocols for UAV-

aided wireless sensor networks,” Appl. Sci., vol. 10, no. 12, pp. 1–23,

53

2020, doi: 10.3390/APP10124077.

[11] M. Y. Arafat, S. Poudel, and S. Moh, “Medium Access Control

Protocols for Flying Ad Hoc Networks: A Review,” IEEE Sens. J., vol.

21, no. 4, pp. 4097–4121, 2021, doi: 10.1109/JSEN.2020.3034600.

[12] M. Y. Arafat and S. Moh, “Bio-inspired approaches for energy-efficient

localization and clustering in uav networks for monitoring wildfires in

remote areas,” IEEE Access, vol. 9, pp. 18649–18669, 2021, doi:

10.1109/ACCESS.2021.3053605.

[13] M. Y. Arafat and S. Moh, “A Q-Learning-Based Topology-Aware

Routing Protocol for Flying Ad Hoc Networks,” IEEE Internet Things

J., vol. 4662, no. c, pp. 1–1, 2021, doi: 10.1109/jiot.2021.3089759.

[14] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on

Architecture and Computation Offloading,” IEEE Commun. Surv.

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017, doi:

10.1109/COMST.2017.2682318.

[15] M. Y. Arafat and S. Moh, “Location-Aided Delay Tolerant Routing

Protocol in UAV Networks for Post-Disaster Operation,” IEEE Access,

vol. 6, pp. 59891–59906, 2018, doi: 10.1109/ACCESS.2018.2875739.

[16] S. Poudel and S. Moh, “Medium Access Control Protocols for

Unmanned Aerial Vehicle-Aided Wireless Sensor Networks: A

Survey,” IEEE Access, vol. 7, no. July, pp. 65728–65744, 2019, doi:

10.1109/ACCESS.2019.2917948.

[17] X. Hu, K. K. Wong, K. Yang, and Z. Zheng, “UAV-Assisted Relaying

and Edge Computing: Scheduling and Trajectory Optimization,” IEEE

Trans. Wirel. Commun., vol. 18, no. 10, pp. 4738–4752, 2019, doi:

10.1109/TWC.2019.2928539.

[18] M. Y. Arafat and S. Moh, “A Q-Learning-Based Topology-Aware

Routing Protocol for Flying Ad Hoc Networks,” IEEE Internet Things

J., vol. 9, no. 3, pp. 1985–2000, 2022, doi:

10.1109/JIOT.2021.3089759.

[19] Y. Chen, Y. Chen, H. Zhang, and Y. Hu, “Optimal power and

bandwidth allocation for multiuser video streaming in UAV relay

networks,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6644–6655,

2020, doi: 10.1109/TVT.2020.2985061.

54

[20] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. S. Shu, “Path Planning for

UAV-Mounted Mobile Edge Computing with Deep Reinforcement

Learning,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5723–5728,

2020, doi: 10.1109/TVT.2020.2982508.

[21] W. You, C. Dong, X. Cheng, X. Zhu, Q. Wu, and G. Chen, “Joint

Optimization of Area Coverage and Mobile-Edge Computing with

Clustering for FANETs,” IEEE Internet Things J., vol. 8, no. 2, pp. 695–

707, 2021, doi: 10.1109/JIOT.2020.3006891.

[22] M. M. Alam and S. Moh, “Joint topology control and routing in a UAV

swarm for crowd surveillance,” J. Netw. Comput. Appl., p. 138954,

2022, doi: https://doi.org/10.1016/j.jnca.2022.103427.

[23] S. M. A. Huda and S. Moh, “Survey on computation offloading in

UAV-Enabled mobile edge computing,” J. Netw. Comput. Appl., vol.

201, no. May 2022, p. 103341, 2022, doi: 10.1016/j.jnca.2022.103341.

[24] D. Callegaro and M. Levorato, “Optimal Edge Computing for

Infrastructure-Assisted UAV Systems,” IEEE Trans. Veh. Technol.,

vol. 70, no. 2, pp. 1782–1792, 2021, doi: 10.1109/TVT.2021.3051378.

[25] B. Dai, J. Niu, T. Ren, Z. Hu, and M. Atiquzzaman, “Towards Energy-

Efficient Scheduling of UAV and Base Station Hybrid Enabled Mobile

Edge Computing,” IEEE Trans. Veh. Technol., vol. 9545, no. c, pp. 1–

16, 2021, doi: 10.1109/TVT.2021.3129214.

[26] X. Diao, J. Zheng, Y. Cai, Y. Wu, and A. Anpalagan, “Fair Data

Allocation and Trajectory Optimization for UAV-Assisted Mobile Edge

Computing,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2357–2361,

2019, doi: 10.1109/LCOMM.2019.2943461.

[27] Y. Liu et al., “Joint Communication and Computation Resource

Scheduling of a UAV-Assisted Mobile Edge Computing System for

Platooning Vehicles,” IEEE Trans. Intell. Transp. Syst., pp. 1–16, 2021,

doi: 10.1109/TITS.2021.3082539.

[28] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan,

“Deep Reinforcement Learning Based Dynamic Trajectory Control for

UAV-assisted Mobile Edge Computing,” IEEE Trans. Mob. Comput.,

vol. 1233, no. c, pp. 1–15, 2021, doi: 10.1109/TMC.2021.3059691.

[29] Y. Liu, J. Yan, and X. Zhao, “Deep Reinforcement Learning based

Latency Minimization for Mobile Edge Computing with Virtualization

55

in Maritime UAV Communication Network,” IEEE Trans. Veh.

Technol., vol. 9545, no. c, pp. 1–1, 2022, doi:

10.1109/tvt.2022.3141799.

[30] F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai,

“A Deep Reinforcement Learning-Based Dynamic Traffic Offloading

in Space-Air-Ground Integrated Networks (SAGIN),” IEEE J. Sel.

Areas Commun., vol. 40, no. 1, pp. 276–289, 2021, doi:

10.1109/jsac.2021.3126073.

[31] S. S. Yilmaz and B. Ozbek, “Multi-Helper NOMA for Cooperative

Mobile Edge Computing,” IEEE Trans. Intell. Transp. Syst., pp. 1–10,

2021, doi: 10.1109/TITS.2021.3116421.

[32] N. Nouri, F. Fazel, J. Abouei, and K. Plataniotis, “Multi-UAV

Placement and User Association in Uplink MIMO Ultra-Dense

Wireless Networks,” IEEE Trans. Mob. Comput., vol. 1233, no.

AUGUST, pp. 1–18, 2021, doi: 10.1109/TMC.2021.3108960.

[33] N. C. Luong et al., “Applications of Deep Reinforcement Learning in

Communications and Networking: A Survey,” IEEE Commun. Surv.

Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019, doi:

10.1109/COMST.2019.2916583.

[34] M. G. R. Alam, M. M. Hassan, M. Zi. Uddin, A. Almogren, and G.

Fortino, “Autonomic computation offloading in mobile edge for IoT

applications,” Futur. Gener. Comput. Syst., vol. 90, pp. 149–157, 2019,

doi: 10.1016/j.future.2018.07.050.

[35] A. Asheralieva and D. Niyato, “Hierarchical Game-Theoretic and

Reinforcement Learning Framework for Computational Offloading in

UAV-Enabled Mobile Edge Computing Networks with Multiple

Service Providers,” IEEE Internet Things J., vol. 6, no. 5, pp. 8753–

8769, 2019, doi: 10.1109/JIOT.2019.2923702.

[36] Y. Liu, S. Xie, and Y. Zhang, “Cooperative Offloading and Resource

Management for UAV-Enabled Mobile Edge Computing in Power IoT

System,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12229–12239,

2020, doi: 10.1109/TVT.2020.3016840.

[37] X. Cheng et al., “Space/Aerial-Assisted Computing Offloading for IoT

Applications: A Learning-Based Approach,” IEEE J. Sel. Areas

Commun., vol. 37, no. 5, pp. 1117–1129, 2019, doi:

56

10.1109/JSAC.2019.2906789.

[38] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-

UAV-Enabled Load-Balance Mobile-Edge Computing for IoT

Networks,” IEEE Internet Things J., vol. 7, no. 8, pp. 6898–6908, 2020,

doi: 10.1109/JIOT.2020.2971645.

[39] G. Faraci, C. Grasso, and G. Schembra, “Design of a 5G Network Slice

Extension with MEC UAVs Managed with Reinforcement Learning,”

IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2356–2371, 2020, doi:

10.1109/JSAC.2020.3000416.

[40] H. Wang, H. Ke, and W. Sun, “Unmanned-aerial-vehicle-assisted

computation offloading for mobile edge computing based on deep

reinforcement learning,” IEEE Access, vol. 8, pp. 180784–180798,

2020, doi: 10.1109/ACCESS.2020.3028553.

[41] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double Q-Learning,” 30th AAAI Conf. Artif. Intell. AAAI 2016, pp.

2094–2100, 2016.

[42] S. Zhu, L. Gui, D. Zhao, N. Cheng, Q. Zhang, and X. Lang, “Learning-

Based Computation Offloading Approaches in UAVs-Assisted Edge

Computing,” IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 928–944,

2021, doi: 10.1109/TVT.2020.3048938.

[43] L. Chen and X. Kuang, “Intelligent Mobile Edge Computing Networks

for Internet of Things,” IEEE Access, vol. 9, pp. 95665–95674, 2021,

doi: 10.1109/ACCESS.2021.3093886.

[44] B. Yang, X. Cao, C. Yuen, and L. Qian, “Offloading Optimization in

Edge Computing for Deep-Learning-Enabled Target Tracking by

Internet of UAVs,” IEEE Internet Things J., vol. 8, no. 12, pp. 9878–

9893, 2021, doi: 10.1109/JIOT.2020.3016694.

[45] R. Chen et al., “Joint Computation Offloading, Channel Access and

Scheduling Optimization in UAV Swarms: A Game-theoretic Learning

Approach,” IEEE Open J. Comput. Soc., vol. PP, pp. 1–1, 2021, doi:

10.1109/ojcs.2021.3100870.

[46] E. I. S. Group, “GS MEC 003 - V2.2.1 - Multi-access Edge Computing

(MEC); Framework and Reference Architecture,” vol. 1, pp. 1–21,

2020.

57

[47] G. Brown, “Computation offloading game for an UAV network in

mobile edge computing,” Juniper White Pap., no. July, 2016, [Online].

Available:

https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000642-

en.pdf.

[48] J. Chen et al., “A Multi-leader Multi-follower Stackelberg Game for

Coalition-based UAV MEC Networks,” IEEE Wirel. Commun. Lett.,

vol. 2337, no. c, pp. 1–1, 2021, doi: 10.1109/lwc.2021.3100113.

[49] T. Yang and X. S. Shen, “Multi-vessel computation offloading

in maritime mobile edge computing network,” SpringerBriefs Comput.

Sci., vol. 6, no. 3, pp. 37–53, 2020, doi: 10.1007/978-981-15-4412-5_4.

[50] M. D. Nguyen, T. M. Ho, L. B. Le, and A. Girard, “UAV Trajectory

and Sub-channel Assignment for UAV Based Wireless Networks,”

IEEE Wirel. Commun. Netw. Conf. WCNC, vol. 2020-May, 2020, doi:

10.1109/WCNC45663.2020.9120814.

[51] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint Task Offloading and

Resource Allocation in UAV-Enabled Mobile Edge Computing,” IEEE

Internet Things J., vol. 7, no. 4, pp. 3147–3159, Apr. 2020, doi:

10.1109/JIOT.2020.2965898.

[52] J. Zong et al., “Flight time minimization via UAV’s trajectory design

for ground sensor data collection,” Proc. Int. Symp. Wirel. Commun.

Syst., vol. 2019-Augus, pp. 255–259, 2019, doi:

10.1109/ISWCS.2019.8877250.

[53] Z. Zhou, Z. Chang, and H. Liao, “Dynamic Computation Offloading

Scheme for Fog Computing System with Energy Harvesting Devices,”

IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 143–161, 2021, doi:

10.1109/JSAC.2016.2611964.

[54] Y. Du, J. Li, L. Shi, T. Liu, F. Shu, and Z. Han, “Two-Tier Matching

Game in Small Cell Networks for Mobile Edge Computing,” IEEE

Trans. Serv. Comput., vol. 15, no. 1, pp. 254–265, 2022, doi:

10.1109/TSC.2019.2937777.

[55] T. Fang, J. Chen, and Y. Zhang, “Content-Aware Multi-Subtask

Offloading: A Coalition Formation Game-Theoretic Approach,” IEEE

Trans. Serv. Comput., vol. 25, no. 8, pp. 2664–2668, 2021.

[56] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm

58

for mobile computing,” IEEE Trans. Wirel. Commun., vol. 11, no. 6,

pp. 1991–1995, 2012, doi: 10.1109/TWC.2012.041912.110912.

[57] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving

portable computer battery power through remote process execution,”

ACM SIGMOBILE Mob. Comput. Commun. Rev., vol. 2, no. 1, pp. 19–

26, 1998, doi: 10.1145/584007.584008.

[58] M. Ayoub Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci,

“Computation offloading game for an UAV network in mobile edge

computing,” 2017 IEEE Int. Conf. Commun., 2014, [Online]. Available:

https://doi.org/10.1109/ICC.2017.7996483.

[59] W. Li, F. Zhou, K. R. Chowdhury, and W. M. Meleis, “QTCP: Adaptive

Congestion Control with Reinforcement Learning,” IEEE Trans. Netw.

Sci. Eng., vol. 6, no. 3, pp. 445–458, 2018, doi:

10.1109/TNSE.2018.2835758.

[60] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A Deep Meta Reinforcement

Learning-Based Task Offloading Framework for Edge-Cloud

Computing,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp. 3448–

3459, 2021, doi: 10.1109/TNSM.2021.3087258.

[61] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double Q-Learning,” 30th AAAI Conf. Artif. Intell. AAAI 2016, no.

2, pp. 2094–2100, 2016.

59

Acknowledgement

First and foremost, I would like to express my profound and sincere

gratitude to my advisor, Prof. Sangman Moh. His invaluable support,

encouragement, supervision, and useful suggestions throughout the master’s

studies have provided strong base for the completion of my thesis. I would

always be indebted to him for his quintessential professionalism, persistent

guidelines, and continuous encouragement through his impeccable

mentorship.

Secondly, I want to express my warm and sincere thanks to the thesis

committee members, Prof. Seokjoo Shin and Prof. Moonsoo Kang for their

constructive comments and invigorating suggestions. All their insights

regarding my research works have helped me in improving and extending it in

different ways.

My sincere acknowledgement to the Department of Computer

Engineering and Mobile Computing Lab for providing me such a wonderful

opportunity and an atmosphere to grow me academically and otherwise. I must

be thankful to all my lab members for their moral as well as academic support.

I would like to heartily thank all my seniors and friends from society of

Bangladesh in Chosun University for their affection and cooperation that made

my life easier and cheerful in Korea.

At last but not the least, I cannot stop myself from thanking my parents

and family members. Without their encouragement and love, it would have

been impossible for me achieve anything. I would like to dedicate my work to

them.

	1. Introduction
	1.1 Overview
	1.2 Research Objective
	1.3 Thesis Layout

	2. Related Works
	2.1 Existing Offloading Techniques in UAV-MEC
	2.2 Comparison of Existing Offloading Algorithms in UAV-MEC

	3. System Model
	3.1. Motivation Scenario
	3.2. Network Model and Assumptions
	3.3. Communication Model
	3.4. Task Computation Model
	3.5. Problem Formulation
	3.6. RL Framework

	4. Deep Reinforcement Learning based Computation Offloading Algorithm (DRLCO)
	4.1. Complexity Analysis

	5. Performance Evaluation
	5.1. Experimental Setup
	5.2. Convergence Analysis
	5.2. Performance Metrics
	5.2. Simulation Results and Discussion

	6. Conclusion and Future Works
	Bibliography
	Acknowledgement

<startpage>14
1. Introduction 1
 1.1 Overview 1
 1.2 Research Objective 5
 1.3 Thesis Layout 6
2. Related Works 7
 2.1 Existing Offloading Techniques in UAV-MEC 7
 2.2 Comparison of Existing Offloading Algorithms in UAV-MEC 14
3. System Model 19
 3.1. Motivation Scenario 19
 3.2. Network Model and Assumptions 19
 3.3. Communication Model 21
 3.4. Task Computation Model 24
 3.5. Problem Formulation 28
 3.6. RL Framework 30
4. Deep Reinforcement Learning based Computation Offloading Algorithm (DRLCO) 34
 4.1. Complexity Analysis 38
5. Performance Evaluation 39
 5.1. Experimental Setup 39
 5.2. Convergence Analysis 41
 5.2. Performance Metrics 42
 5.2. Simulation Results and Discussion 44
6. Conclusion and Future Works 51
Bibliography 52
Acknowledgement 59
</body>

