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 Unmanned aerial vehicles (UAVs) have recently shown an ever-

increasing trend in many areas of civil applications as well as military 

applications such as surveillance, reconnaissance, augmented reality, etc. Due 

to ease of flexibility in terms of mobility and cost, UAVs can be deployed 

anywhere to provide seamless connectivity where terrestrial infrastructure is 

not available or damaged. However, both performing communication and 

executing computation-intensive tasks become huge burden for a UAV to 

perform a mission because of the battery lifetime being very limited. To 

mitigate this issue, mobile edge computing (MEC) is considered as a reliable 

and effective platform which can provide additional computational support at 

the edge of the network. Incorporating an MEC server enables to offload the 

computationally intensive tasks to be offloaded from UAVs to the edge server. 

This reduces the transmission delay significantly compared to a cloud server. 

However, based on the dynamic characteristics of different tasks, offloading 

decision is a major issue. Furthermore, most tasks have a stringent deadline 

that the task needs to be executed. 

UAV swarm-enabled MEC systems can be effectively leveraged to address 

this problem. Most of the existing studies consider the assumption that a 
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single-UAV system has sufficient communication and computation capacity 

to perform any mission which is very unlikely. In this thesis, we propose a 

deep reinforcement learning based computation offloading (DRLCO) scheme 

using double deep Q-learning for surveillance applications. DRLCO 

minimizes the total weighted cost by jointly considering task execution delay 

and energy consumption. The DRLCO technique can effectively address the 

dynamic environment and based on the task characteristics, effective 

offloading decisions are made. The performance of DRLCO is evaluated 

through computer simulation and compared with conventional offloading 

schemes. The simulation results show that proposed DRLCO mechanism can 

outperform the conventional offloading techniques in terms of total offloading 

cost, task execution delay and energy consumption. 
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요 약 

무인 비행체 활용 에지 컴퓨팅 시스템에서의 강화 학습 

기반 오프로딩 

 

      후다 아시풀 

                 지도교수: 모상만 

   컴퓨터공학과 

                 조선대학교 대학원 

 

 

무인 비행체(UAV)는 최근 감시, 증강 현실, 가상 현실 등과 같은 군사 

응용 분야뿐만 아니라 민간 응용 분야의 많은 영역에서 지속적으로 

증가하는 추세를 보이고 있다. 높은 이동성과 낮은 비용으로 인해 

UAV 는 지상 기반 시설을 이용할 수 없거나 손상된 곳에서 원활한 

연결을 제공하기 위해 어디에나 배치될 수 있다. 그러나 제한된 배터리 

용량 때문에, 통신과 계산 집약적 작업을 함께 수행하는 것은 UAV 임무 

수행에 큰 부담이 된다. 이 문제를 완화하기 위한 모바일 에지 

컴퓨팅(MEC)은 네트워크 에지에서 추가 컴퓨팅 지원을 제공할 수 있는 

안정적이고 효과적인 플랫폼으로 간주된다. MEC 서버를 활용하면 

계산 집약적인 작업을 UAV 에서 에지 서버로 오프로드하여 클라우드 

서버에 비해 전송 지연을 크게 줄일 수 있다. 그러나 서로 다른 작업의 

동적 특성에 따라 오프로드 결정이 주요 문제가 된다. 또한 대부분의 

작업에는 엄격한 실행 마감 시간이 있다.  

UAV 군집 지원 MEC 시스템을 효과적으로 활용하여 이 문제를 

해결할 수 있다. 대부분의 기존 연구는 단일 UAV 시스템이 임무를 
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수행하기에 충분한 통신 및 계산 용량을 가지고 있다는 가정한다. 본 

논문에서는 보안 감시 응용을 위한 심층 강화 학습 기반 계산 

오프로딩(DRLCO) 기법을 제안한다. DRLCO 기법은 이중 심층 Q-

학습을 사용하고 태스크 실행 시간과 에너지 소모량을 함께 

려함으로써 총 가중치 비용을 최소화한다. DRLCO 기법은 동적 환경을 

효과적으로 해결할 수 있으며 작업 특성에 따라 효과적인 오프로드 

결정이 내려진다. 컴퓨터 시뮬레이션을 통해 DRLCO 성능을 평가하고 

기존 오프로드 방식들과 비교한다. 시뮬레이션 결과에 의하면, 제안한 

DRLCO 메커니즘이 총 오프로드 비용, 작업 실행 지연 및 에너지 소비 

측면 등에서 기존 오프로드 기법들보다 우수하다. 
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1. Introduction 

1.1 Overview 

The increasing growth of smart devices has resulted in a dramatic change in 

society, which now heavily relies on cellular technologies. Online streaming 

services and social-networking sites have become popular and useful across 

all demographics. The resultant data increase has created intense burdens for 

mobile service providers. Without proper measures for storing and processing 

such workloads, cellular networks will become even more congested, resulting 

in deteriorated quality and slower download speeds. Hence, additional 

computational resources are necessary for mobile devices. Furthermore, the 

long-term evolution of 5G technology has inspired a wide range of services 

that require high computational tasks, for which the designated devices are ill-

equipped to handle [1]. 

Mobile edge computing (MEC) is a promising solution that leverages cloud 

servers deployed in support of mobile devices to mitigate computational 

workloads via process offloading. In 2009, the first edge-computing concept 

(i.e., cloudlet) was proposed. Cloudlets allow mobile users to take advantage 

of cloud services, but they require users to swap between Wi-Fi and cellular 

networks during use [2]. 

Tasks can also be executed locally on mobile devices by leveraging the 

concept of an ad hoc cloud [3]. It enables multiple user devices to combine 

their computational resources to process tasks. Notably, offloading to an edge 

server directly improves the quality of experience and battery lifetime [4]. In 

2012, Cisco proposed the concept of computation offloading [5]. Hence, any 

mobile device having constrained resources can wirelessly pass processing 
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tasks to other devices having sufficient resources. Those other devices then 

complete the tasks and transmit the results back to the mobile devices. 

Unfortunately, this method continues to fall short of expectations, owing to the 

characteristics of wireless networks in rural and mountainous areas. 

Furthermore, cases of emergency response should always take precedence. 

Thus, even in the most ideal environments, maintaining the quality of 

experience and energy efficiency while avoiding communication delays is 

difficult. 

Unmanned aerial vehicle (UAV)-enabled MEC servers have emerged as 

promising candidates for handling computationally intensive task loads in 

areas lacking ground infrastructure. Due to the high mobility and low cost, 

both academia and industry have shown interest in UAV research. There has 

been an enormous amount of studies that emphasizes on the effective 

communication and localization techniques for the UAV network [6]–[14]. In 

Ref. [6], the authors designed a routing protocol where UAVs are divided into 

cluster and presented a comparative study. The authors in [7], [8] proposed 

routing protocol using reinforcement learning (RL). UAVs can send raw 

images from affected areas to any base station (BS) for fast mobility [15]. It 

was recently noted that UAVs can also act as MEC servers or MEC relays. 

UAV-mounted MEC relay services use line-of-sight (LoS) links to transmit 

computational tasks to MEC servers situated on the ground as they hover over 

areas where it is otherwise challenging to set up a cloud or edge computing-

based solutions.  

In military applications, the vital task is to capture information from a given 

region and send it to the nearest BS to identify or track objects from a distance, 

which generally is very intricate and burdensome for any human. UAVs can 

also provide target-tracking geographical data-capture services. A UAV-aided 
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wireless sensor network is another promising paradigm to enhance the energy 

efficiency of the sensor nodes in collecting data in various areas of commercial 

applications [16] However, transmission delays are hindrances because longer 

processing times result in late responses. Integrating MEC servers into UAVs 

effectively eradicates this problem. Furthermore, UAVs can simultaneously 

operate as computation servers and relay nodes [17], resulting in faster 

decision-making during emergency scenarios while increasing efficiency with 

potential real-time computational capabilities. Notably in such scenarios, 

UAVs can either process computational tasks locally, or they can offload them 

to other edge servers. 

Despite being a promising approach, it has been less explored in the existing 

literature. For UAV-enabled MEC networks, the existing literature emphasizes 

localization [12], routing protocol [18], bandwidth allocation [19], path 

planning [20], area coverage [21], topology control [22], etc. These studies 

mostly focused on optimizing the rescue efficiency by minimizing the 

response delay and enhancing resource utilization. In a UAV-assisted 

surveillance system, UAVs perform the duty of covering a certain region and 

execute computationally intensive tasks in which both delay and energy 

consumption are crucial metrics [23]. In large-scale 3D areas, single-UAV 

systems often fail to successfully accomplish complex missions because of 

their limited energy capacity, although they provide sufficient coverage for a 

specific area. In such cases, a swarm of UAVs comprising many small and 

low-cost UAVs was observed to be effective in performing missions in large 

areas [21]. With the availability of a mobile edge server, the offloading 

computation task minimizes the task execution delay and energy consumption 

involved in offloading the task from the UAV.   

In the UAV-MEC system, one of the most crucial decisions is where the 
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task execution occurs (e.g., local execution, edge server). This may depend on 

various metrics such as the number of tasks, channel quality, UAV position, 

and edge nodes [24]. The UAV-enabled MEC system may fail to execute a 

task when the computational load increases significantly with a limited 

number of UAVs and insufficient computing resources. A promising solution 

is to utilize a UAV-enabled MEC system along with a base station (BS)-

assisted MEC to enable the UAVs utilize the MEC services provided by the 

BS [25]. The offloading decision becomes more challenging under dynamic 

environmental conditions, where the characteristics of the network are highly 

dynamic. Thus, capturing accurate information to determine an offloading 

decision becomes difficult. Offloading decision-making has been explored 

broadly which mainly focuses on using traditional optimization methods and 

heuristic methods. [4], [26], [27]. However, because of the complicated 

constraint conditions related to practical environments, these algorithms 

cannot obtain significant results. For example, global optimization methods 

require the problem formulation to be as simple as possible to enable it to be 

decomposed into subproblems. Reinforcement learning (RL) is considered a 

viable solution for such complex and dynamic environments, as it can model 

large and complex environments. Incorporating deep learning with RL yields 

deep reinforcement learning (DRL) algorithms such as a deep Q-learning 

network (DQN), that is able to obtain significant results in the absence of 

previous environment knowledge [28]–[30].  

Motivated by the above discussion, in our thesis, we consider a hierarchical 

UAV-enabled MEC architecture comprising a head UAV (H-UAV), a team of 

member UAVs (M-UAVs), and a BS-assisted MEC to enhance the task 

execution time and energy efficiency for surveillance application scenarios. 

The M-UAV senses the area and generates a computing task to be processed. 
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When the number of tasks increases significantly and the processing capacity 

of the local edge server is at a maximum, the M-UAV can offload the task to 

either the H-UAV or ground edge server. The decision to offload the task 

depends on various factors, such as the task type and computation capacity at 

the H-UAV. 

1.2 Research Objective 

The collaboration between the H-UAV and ground edge server enables a 

minimizing the energy consumption as well as task delay. Based on the above 

discussion, we formulate a weighted sum cost minimization problem by jointly 

considering task execution delay and energy consumption. In our study, we 

emphasize both on energy consumption and task execution delay because 

UAV have limited energy and tasks may have stringent deadline. The major 

contributions of this study are summarized as follows: 

• We design a network consisting of a UAV swarm and a ground MEC 

server in which the swarm is divided into individual coalitions. In each 

coalition, the M-UAV senses a plane area and generates a computation-

intensive task that can be processed directly at the aerial edge server or 

can utilize additional MEC resources from the BS. 

• Considering the limited energy of the UAV, communication and task 

execution delay, we design the computation offloading decision-making 

problem of the M-UAV as a weighted cost minimization problem 

considering both the energy consumption of the UAV and the task 

execution time. 

• We formulate the weighted cost minimization problem leveraging deep 

reinforcement learning (DRL) scheme. The state, action, and reward of 
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the DRL are designed. Each agent (M-UAV) acts with the environment 

and selects an action that provides a reward. The optimal offloading policy 

is achieved by maximizing the cumulative reward. 

• To maximize the expected cumulative reward (by minimizing the 

weighted sum cost), we propose a DDQN-based decentralized DRLCO 

scheme in which each M-UAV is considered to be an agent and can make 

the offloading decision using local observation. 

• We performed a comprehensive numerical simulation to verify the 

convergence of the proposed method and compare our results with those 

of other conventional schemes (local computing, edge execution, and 

DQN) with varying parameter configurations. The superiority of the 

proposed scheme was investigated using different performance metrics. 

1.3 Thesis Layout 

Rest of the thesis is organized as follows:  

Existing offloading techniques are summarized next. The system model of 

our proposed work is described in Section 3. The proposed DRLCO technique 

is demonstrated in detail along with the devised algorithm in Section 4. The 

performance of the proposed algorithm is then evaluated through computer 

simulation and compared with conventional offloading schemes in Section 5. 

Finally, the study is concluded in Section 7. 
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2. Related Works 

2.1 Existing Offloading Techniques in UAV-MEC 

With the drastic increase of Internet of Things (IoT) devices and emerging 

computation-intensive and delay-sensitive applications (e.g., augmented 

reality, face recognition, virtual reality) MEC have become a promising trend 

which enables the end-users to offload the heavy computation-intensive tasks 

to enhance the overall system performance. With edge servers installed at the 

edge of the network, the end-users have the option to offload the task to the 

edge server rather than offloading to the cloud. Thus, the overall task execution 

delay can be reduced significantly. Furthermore, the tasks having different 

requirements demands to be executed considering the dynamic task 

characteristics. For example, tasks that have strict deadline with less 

computational requirement may be executed in the UAV than sending to the 

edge server. Similarly, tasks having less strict deadline and high computation 

can be well executed to the edge server. The major drawback with the 

introduction of next-generation wireless networks is going to be limited 

battery lifetime and computation resource of the mobile users for performing 

the task with low latency requirements, which are introduced by the services 

and applications such as virtual reality, telesurgery, autonomous driving, and 

UAVs [31]. UAV-MEC systems can comfortably handle such emergent 

situations where terrestrial MEC servers are out of service or overloaded [32]. 

Having said that, existing studies have greatly emphasized on the computation 

offloading aspects of UAV-enabled MEC to enhance the system efficiency by 

considering different practical scenarios in their study.  

RL-based algorithms have been used widely in various fields of wireless 

communication, owing to the uncertain behavior of the communications 



 

8  

 

environment. Because the network entities must act on those uncertain 

behaviors, RL is a near-perfect solution; it enables agents to take random 

actions to reach an optimal policy, especially in complex environments [33]. 

Existing studies show that RL algorithms can deal with massive amount of 

offloading request generated by mobile devices autonomically. In such a 

scenario, offloading decision is a very complex task because it involves several 

metrics such as availability of resource, resource demand, and current network 

status [34]. 

A hierarchical and cooperative coalition formation-based offloading 

algorithm was proposed in [35] wherein the authors placed UAVs as players 

in a game scenario acting in such a way that the overall payoffs were 

maximized. They presented a hierarchical structure in which the first level 

resulted in a coalition that could act cooperatively. However, to demonstrate 

the noncooperative manner of individual stations owned by different service 

providers, the second level comprised identical subgames. The authors showed 

that their algorithm reached an optimal state wherein the formation was stable, 

and the BSs followed a combined strategy to produce an offloading strategy. 

The authors proposed a game-theory-based RL approach that could find an 

optimal strategy for BSs via a Markov decision process. They demonstrated 

that BSs and UAVs can adapt mixed strategies, even when the players are not 

aware of the actions taken by other BSs. To evaluate performance, they 

compared their proposed strategy to other benchmark methods in terms of the 

numbers of users and payoffs achieved when reaching an optimal state. 

A novel algorithm for offloading computational tasks to UAVs was 

presented in Ref. [36] which focuses on the cooperative behavior of UAVs, 

enabling them to offload tasks to other UAVs. The authors showed that UAVs 
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can collaboratively work with others to maximize total network utility and to 

equalize and reduce computational and communication costs. To achieve this, 

they focused on limited computational resources and proposed a Markov 

decision process combined with a deep RL (DRL) to optimize target 

parameters, assuming that the UAV could also perform as a computational 

server alongside an edge server. This research showed that the system does not 

need to send all information to the central operator. This allows the 

implementation of such systems in areas where there is an immense task load 

generated from IoT devices. 

A Space Air-Ground Integrated Network (SAGIN) network was 

demonstrated in Ref. [37] for offloading computational tasks, where UAVs 

provide additional computational support as edge servers. The authors 

considered a remote area with IoT devices on the ground performing heavy 

computationally intensive tasks, such as surveillance and monitoring. Because 

the area lacked cellular communications, the SAGIN network was equipped 

with complete caching, edge computing, and network provisioning 

capabilities. Their work helped to determine the allocation of resources 

alongside the scheduling of offloading tasks in a dynamic network. They 

further investigated the Markov decision process to better understand 

uncertain system dynamics. Utilizing the Markov decision process has a 

significant advantage in deciding upon uncertain system entities. To better 

handle the dynamicity of the network, the authors suggested an on-the-fly 

approach for DRL. They utilized common policy-gradient methods to act in 

the complex action space, and for fast convergence to the optimal, an actor-

critic technique was adopted. This study revealed that such a system could 

generate optimal performance by jointly allocating resources in a virtual 
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machine as well as via task assignment. The system minimized the total cost 

better than other benchmark methods. 

A DRL-based hybrid load-balancing strategy was presented in Ref. [38] 

wherein the authors investigated the mitigation of limited computational 

resources by introducing UAVs as MEC nodes to improve computational 

capabilities. The authors suggested a DE-based UAV deployment algorithm 

that optimized task execution time. Initially, they considered that all UAVs 

were at randomly assigned positions. Then, they allocated the maximum load 

to each depending on its location. To tackle the intercommunication burdens 

among UAVs and IoT devices, they utilized a GAP, and an approximation-

based algorithm was presented to determine the connections between IoT 

nodes and the UAV. To manage incoming tasks, they proposed a DRL 

algorithm for assigning tasks to the UAV. They demonstrated that it could 

adapt to dynamic system environments while controlling the effective 

allocation of network resources, enabling more effective handling of recently 

arriving tasks. The decision to either offload at a UAV or process the task 

locally created a binary offloading problem. 

A novel cooperative technique for offloading tasks to other UAVs to tackle 

power consumption, total delay, and job loss was presented in Ref. [39]. Here, 

the authors considered a situation wherein there was a significant amount of 

latency caused by ground-generated data taking up a long time to reach the 

UAV. In the proposed system, the UAVs were equipped with a computational 

facility similar to an edge server. Owing to the excessive number of 

computational resources onboard and the limited power of the UAV, the 

authors introduced a system controller that could decide whether to turn the 

central controller on or off. Furthermore, the controller could offload tasks 
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from the overloaded UAV to an underloaded one by leveraging RL to reach 

an optimal policy under uncertain and dynamic conditions in large and 

complex action space. The authors presented three offloading approaches 

using greedy and traversal-based algorithms as evaluation benchmarks. Their 

method minimized the total system cost for computing and reached the Nash 

equilibrium. 

The authors of Ref. [40] attempted to reach an optimal offloading state by 

concentrating on total system costs. They considered a system having multiple 

wireless users and UAVs having limited capacities. Optimally, wireless users 

can offload tasks to UAVs. The authors considered that the UAVs could be 

recharged wirelessly using solar panels. Under this scenario, the authors 

formulated an optimization problem, wherein the focus was on minimizing the 

total cost of offloading by combinedly considering energy consumption, 

bandwidth costs, and total delay. Considering the large action space, the 

authors used the K-means algorithm to classify several types of computational 

tasks, resulting in the reduction of the dimensionality of the action space 

because a large action space can slow down the learning rate. 

An optimized deep-Q-network (DQN) for DRL-based offloading, called 

double DQN (DDQN), which minimizes the total cost by solving the 

overestimation problem was proposed in [41]. The author compared the 

performance of the proposed method in terms of task arrival probability, 

cumulative reward delay cost, and the rate of arrival of renewable resources. 

They then compared their proposed method to four other benchmark 

techniques, wherein the location of offloading was considered. The proposed 

UACODRL technique significantly outperformed the other benchmarks in 

terms of average cumulative reward. Although the algorithm performed 
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significantly well, with an increase in users, performance was negatively 

affected because it also increased the power consumption. Hence, in a large 

and dense network, system performance will suffer. The proposed scheme can 

be applied to heterogeneous wireless networks, and the UAVs can be charged 

wirelessly using a renewable energy supply. 

The Multi-agent RL (MARL) approach was proposed in Ref. [42] where 

two RL agents performed two different tasks individually in a UAV-mounted 

edge-computing architecture. The novelty of this study lay in its consideration 

of the interdependency of the task and its dynamicity. At each time slot, when 

a task arrives at the queue, the two agents are responsible for deciding the 

target device for execution and the amount of bandwidth needed. The main 

goal is to minimize the average response time by determining an optimal 

policy that incorporates task assignment and bandwidth allocation. 

In urban areas, UAVs are used primarily for tracking and monitoring city 

areas. From the perspective of object detection in surveillance and monitoring 

applications, the UAV’s next action depends on the results obtained from 

object detection. Therefore, delays in task execution are crucial performance 

determinants [24]. To address this, a system that considers network load 

parameters was established to minimize the sum of energy expense and delay. 

The network comprises a UAV, an edge server, and an access point that 

connects the UAV to the server. The authors formulated the optimization 

problem by utilizing a semi-Markov process to minimize total costs. The 

authors defined the Markov process states as primary, termination, data 

transmission, and queuing types. The binary decision was made by the UAV, 

referring to either local computing or offloading. Performance was evaluated 

using parameters that depend on server load and wireless channel quality. 
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Simulations showed that the agents who were aware of system dynamics had 

advantages over agents lacking this information because they could not make 

decisions based on channel situation. Furthermore, the trajectory of the UAV 

is crucial, and the authors illuminated the average delays over the trajectory 

concerning system load. The study was concluded by demonstrating a good 

delay reduction. However, The system does not consider the UAV mobility 

model. In monitoring and tracking systems, the UAV will monitor certain 

areas wherein obstacles are unpredictable. These considerations make the 

study much more complex and require further attention. 

Preventing eavesdropping and data transmission interception between UAVs 

and MECs is critical. The authors of Ref. [43] presented a method that 

considered this scenario. To mitigate the latency caused by the limited 

computational capacity of mobile devices, the authors aimed to reduce total 

energy consumption by allocating resources and ratios. To achieve this, the 

study proposed a DQN, which falls short of dynamically optimizing multiple 

performance metrics. The proposed method converged at ~8,000 iterations. To 

evaluate the effectiveness, they compared their method with two others: a local 

computing scheme and an offloading method based on total weighted cost, 

MEC processing capability, weight factoring, and total users. Simulations 

showed that the proposed method achieved a much lower cost when the 

number of users was set to five. It also demonstrated adaptivity when 

determining tradeoffs between communications and computational resources 

while reducing the eavesdropping threat. 
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2.2 Comparison of Existing Offloading Algorithms in UAV-

MEC  

The existing offloading techniques in UAV enabled MEC are compared 

based on the operational characteristics in Table 1. From the comparison, we 

observe that most offloading techniques consider binary offloading 

mechanism which is either the task is locally computed or is offloaded to the 

edge server. UAV played the role of edge server in most studies, however, 

some studies consider the option of relay node as well. Minimizing the energy 

consumption and total delay is the most significant metric, which is not 

surprising. Offloaded tasks deteriorate the battery storage of the UAV, and the 

inability to successfully execute tasks and return the results impacts the overall 

system. Consideration of successful task completion, task arrival, task 

deadline can be crucial to enhance the overall task completion performance. 

Additionally, in a multi-UAV network, because the UAVs have dynamic 

topologies owing to their high mobility, ensuring reliable, secure, and effective 

communications amongst nodes is a major challenge. Hence, most studies 

focused on either military or civilian applications in densely populated areas 

for joint metrics, offloading delays, effective UAV deployments, trajectories, 

mission completion times, and resource allocations to enhance overall system 

performance. For example, for crowd surveillance, video capturing, video 

processing, face recognition, and face matching, tremendous overhead is 

generated in a single UAV–MEC system. In such cases, collaborative 

methodologies may provide potential solutions because they enable 

cooperative task execution. 

To leverage the computing facilities provided by the MEC server, an 

optimization approach for DL-based target-tracking UAVs, which is widely 
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used in urban areas, was proposed. To perform this type of task effectively 

using the limited computing resources and battery lifetime, offloading a 

portion of the task to a MEC server is required. For this reason, the authors in 

Ref. [44] proposed a hierarchical architecture in which one portion of DL 

execution is executed at the UAV, and another portion is executed at the edge 

server. The study emphasized several crucial performance metrics, such as 

interference error rate, input data quality, and transmission bandwidth. To 

meet objectives, the authors considered a MEC system with multiple UAVs to 

track either a person or a vehicle. While executing the task, the lower level of 

the DL model was executed to save bandwidth for transmission. Subsequently, 

the next portion of the model was executed at the MEC to enhance the 

inference error rate. Offloading can either be binary or partial. The constraint 

under consideration fulfills both types. 

This study also emphasized the availability of the wireless channel because 

its unavailability makes it impossible for the task to be offloaded. The 

offloading decision depends on image quality. For example, if it is good, object 

tracking is executed at the UAV, otherwise, it is executed at the MEC node. 

The proposed method was evaluated in terms of total cost and interference 

error rate according to the offloading ratio and total number of UAVs. 

Simulation results demonstrated that with total offloading, the tasks were 

executed at the MEC server, which supports the correctness of the proposed 

method. 

The authors of Ref. [26] considered the allocation of data and trajectory 

optimization intending to minimize the total energy consumption in a hovering 

UAV-enabled MEC system to provide computational services to ground 

mobile terminals (MTs). Specifically, the authors considered different energy 
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consumption rates of specific MTs when individual devices consumed more 

computational resources, and most of the computing occurred at the devices 

instead of the flying edge server. In the system model, the authors considered 

that all tasks were independent and could be divided into several portions to 

be offloaded. 

To effectively optimize both the UAV trajectory and the allocation of bits, 

the authors divided the problem into two subproblems and formulated them as 

convex optimization problems. The authors proposed the JTDATO algorithm, 

which solves the individual subproblems while jointly optimizing both the 

trajectory and data allocation. To evaluate system performance, the authors 

presented an optimized trajectory alongside a data transfer and maximum 

energy consumption scheme. The proposed method-maintained speed while 

traversing trajectory when the distance between the UAV and the MTs was 

minimal. Therefore, more MTs can offload tasks to edge servers, thus 

conserving energy. To further investigate the performance of the proposed 

method, the authors also considered the random deployment of MTs. In this 

case, the energy consumption was much lower than baseline methods. 

However, the mobility of MTs can change the energy consumption scenario 

assumed in this study. High mobility adds more dynamicity to the system. 

However, there are several challenges associated with collaborative UAV 

deployments. Communication links can drop between UAVs, owing to battery 

drainage, malfunctions, and terrain. Overlapping areas must be controlled to 

maximize coverage. Most studies utilized a traditional optimization method in 

which the overall network information is obtained by the UAV and utilized to 

make an offloading decision. A central controller was also assumed in some 

studies to collect the required network information, channel information, etc. 
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In contrast, in coalitional UAV systems, the decision is made by each member 

by interacting with others, enabling them to collaboratively decide upon an 

optimization plan in a distributed fashion [45]. 

Most studies consider tasks generated from IoT devices or mobile users 

considering the data-intensive task requirement. However, the task generated 

from a vehicular network in surveillance applications poses a different 

challenge because UAVs need an efficient mobility plan to support the 

extremely dynamic nature. Furthermore, the consideration of topology 

formation depending on the dynamic nature of the environment is overlooked 

by most studies. Thus, further research is needed to design robust offloading 

algorithms for such complex application scenarios. 

Table 1.   Operational characteristics of offloading techniques for UAV-

MEC. 

Algorithm Offloading 

type 

UAV 

role 

Performance 

metrics 

Application 

scenario 

Optimization 

objectives 

 

HGTRL  

 

Binary 

 

Edge 

server   

 

Offloading delay, 

Energy 

consumption 

 

Mobile 

device  

 

Maximizes the long-

term payoff (inversely 

proportional to delay 

and energy cost) 

COUMEC  Binary Edge 

server   

Service drop rate, 

Network utility  

Mobile 

device  

Maximizes the total 

utility by deciding 

optimal offloading and 

resource allocation 

policies. 

SAG-IOT 

 

Binary, 

cloud 

processing 

Edge 

server   

Average total 

delay, Total cost 

IoT user  Minimizes the total 

system cost in terms of 

delay, energy 

consumption of IoT 

user, edge, and server 

usage cost  

DE-GAP-

DRL  

Binary Edge 

server  

Task Load 

balance, Average 

transmission cost  

Ground IoT 

device  

Minimizes the average 

slowdown of tasks in 

UAVs 

GTCO 

 

Binary Edge 

server  

Mean delay, Loss 

probability, Power 

consumption gain  

Ground 

device  

Maximizes an objective 

function defined in 

terms of power 

consumption, delay, and 
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loss probability by 

offloaded and non-

offloaded jobs 

UACODRL  Binary Edge 

server, 

load 

relay  

Cumulative 

reward  

Wireless 

user  

Minimizes the weighted 

sum of the delay, energy 

consumption, and 

bandwidth cost 

MARL  Binary Edge 

server  

Average mission 

response time, 

Communication, 

and processing 

time of the 

missions 

Surveillance  Minimizes the mission 

response time  

DP-DRL  Binary Edge 

server   

Offloading and 

local computing 

probability, 

Average delay 

Building 

inspection  

Minimizes the weighted 

sum of delay and energy 

expense  

DDQN  Partial Edge 

server, 

load 

relay  

Total weighted 

cost, Latency, 

Energy 

consumption 

IoT device  Minimizes the weighted 

cost of latency and 

energy consumption  

HMTD Partial Edge 

server  

Total cost, 

Inference error. 

Target 

tracking  

Minimizes the total cost. 

UMEC  Partial Edge 

server  

Energy 

consumption, 

Computation load 

Surveillance  Minimizes the energy 

consumption of UAVs  

JTDATO  Hybrid Edge 

server  

UAV Trajectory 

Energy 

consumption 

among Mobile 

terminals 

Mobile 

terminals  

Minimizes the energy 

consumption of all 

mobile terminals                                  

CCCP  Hybrid Edge 

server  

UAV trajectory, 

Energy 

consumption of 

UAV, 

Transmission 

power of all users 

User device  Minimizes the total 

transmission energy 

consumption of all users 
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3. System Model 

3.1. Motivation Scenario 

In this thesis, we focus on the implementation of a UAV swarm-enabled 

MEC system consisting of a multi-UAV network and a ground BS-enabled 

MEC that provides computational support to the UAVs. The UAV swarm is 

assumed to perform a video surveillance task to avoid unexpected occurrences 

during the event. Owing to their high mobility, UAVs are deployed around the 

venue to capture videos using an onboard camera for face recognition tasks. 

Owing to such tasks being highly computation intensive and UAVs having a 

limited battery lifetime, in this thesis, we address the minimization of the 

energy consumption of the UAV and the task completion delay by exploiting 

the benefits of additional computation service provided by the ground BS-

MEC server. Thus, this system can replace human involvement with reduced 

costs and faster response times. 

3.2. Network Model and Assumptions 

We consider a UAV swarm-enabled MEC system in which the UAVs are 

assumed to perform a surveillance mission in an urban area as shown in Figure 

1. We envision a widely used application scenario dedicated to public venue 

use (e.g., stadium) based on the ETSI framework [46]. Typically, ETSI 

considers stadiums as a potential use case requiring MEC services  
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Figure 1. Practical use case of unmanned aerial vehicle (UAV) swarm-enabled 

mobile edge computing system for surveillance applications. 

owing to the additional arrangements conducted during large sports events 

[47]. We assume that UAVs are divided into 𝑁  coalitions, i.e., 

{𝑄1, 𝑄2 , … , 𝑄𝑁}. Each coalition consists of one coalition head and several 

coalition members. Each UAV in the coalition is equipped with a computing 

unit to perform computationally intensive tasks. Here, we consider that 

coalition heads have a high computing performance compared with M-UAVs. 

The M-UAVs function as sensing UAVs by sensing a particular area and 

capturing videos to process them using face recognition algorithms.  

When the computing resources are exhausted and computing tasks are 

prolonged in the M-UAVs, the task can be either offloaded to the H-UAV or 

to the ground edge server to assist the M-UAVs depending on the task 

characteristics. The tasks are classified into two types: computationally 

intensive or delay tolerant task and delay sensitive task. If the task is delay 
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sensitive and must be computed before a certain time period, the task is 

offloaded to the H-UAV to avoid transmission delay. Otherwise, if the task is 

delay tolerant and requires high computational power and more energy, the 

task is offloaded from the M-UAVs to the ground edge server via a wireless 

link that has a sufficient computing capacity. Our objective is to minimize the 

overall computational energy and transmission latency involved in this 

computation offloading scenario. We assume that the topology of the UAV 

has been optimized according to the task requirements; therefore, the M-UAVs 

remain in a quasi-static scenario during offloading the task [48]. 

We consider that the required energy of all UAVs is sufficient to perform 

the mission and wireless communication during a flight period of 𝐽, which is 

divided into 𝑇  time slots equally. We denote the set of time slot as ℱ =

{1, 2, ⋯ , 𝑡, ⋯ , 𝑇}. The M-UAVs and H-UAVs are considered to fly at different 

altitudes to avoid collisions. We represent the coalition members and coalition 

head as ℳ = {1,2, ⋯ , 𝑀} and ℋ = {1, 2, ⋯ , 𝐻}, respectively, where 𝑀  and 

𝐻 represents the number of M-UAVs and H-UAVs in a coalition 𝑄𝑁. 

We denote the horizontal coordinates of M-UAV 𝑗 as 𝑤𝑗
𝑀 = (𝑥𝑗 , 𝑦𝑗 , ℎ), where 

𝑗 ∈ ℳ . The H-UAV flies through a predefined trajectory to minimize the 

transmission delay. The horizontal coordinate of the H-UAV in time slot t is 

denoted by 𝑤𝑡
𝐻 = (𝑋𝑡, 𝑌𝑡, 𝐻). 

3.3. Communication Model 

   We consider that the communication channels between the M-UAVs and 

H-UAV are characterized by line-of-sight communication, wherein the 

channel quality heavily relies on the communication distance [49][50]. The 

distance between the H-UAV and M-UAV 𝑗 in time slot 𝑡 is denoted as 
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                       𝑑𝑗,𝑡 = √∥∥𝑤𝑛
𝐻 − 𝑤𝑗,𝑡

𝑀
∥∥

2
, ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ.                               (1) 

We assume that the channel gain between the H-UAV and M-UAVs in 

coalition 𝑄𝑁 follows the free-space path loss model as follows:  

                   ℎ𝑗,𝑡 = η𝑑𝑗,𝑡
−2 =

η

∥
∥𝑤𝑛

𝐻−𝑤𝑗,𝑡
𝑀

∥
∥2 , ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ,                              (2) 

where η denotes the channel gain, which is located at 1 m and relies on the 

antenna gain and carrier frequency. 

We consider that between the time intervals, all the M-UAVs are served by 

the H-UAV by following frequency division multiple access (FDMA) [51]. 

The total bandwidth of system B is partitioned into M sub-bands without 

overlapping. In each time slot, each M-UAV is allocated 
𝐵

𝑀
 subbands. 

Following this, as shown in [52], the signal-to-noise ratio is derived as follows:  

 

𝑆𝑁𝑅𝑗,𝑡 =
ℎ𝑗,𝑡𝑃𝑗,𝑡

℘𝐵/𝑀

=
η𝑃𝑗,𝑡

℘𝐵

𝑀∥∥w𝑡
𝐻 − w𝑖,𝑡

𝑀
∥∥

2

, ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ,
 

   (3) 

where 𝑃𝑗,𝑡 denotes the transmit power of the 𝑗𝑡ℎ M-UAV, and ℘ indicates the 

spectrum density of the white Gaussian noise (WGN) in W/Hz at the H-UAV. 

Following Shannon’s formula, the uplink data rate of M-UAV j in time slot t 

is given by 
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              𝑅𝑗,𝑡 =
𝐵

𝑀
log2 (1 +

η𝑃𝑗,𝑡

℘𝐵/𝑀∥
∥w𝑡

𝐻−w𝑗,𝑡
𝑀

∥
∥2) , ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ.                 (4) 

 Similarly, when the 𝑗𝑡ℎ  M-UAV offloads the task to the ground edge 

server, we assume that the location of the edge server is fixed, and the 

horizontal coordinate of the edge server is denoted as 𝑤t
𝐸𝐶 = (𝑥𝐸𝐶 , 𝑦𝐸𝐶 , 0). 

Subsequently, the distance between the 𝑗𝑡ℎ M-UAV and edge server in time 

slot 𝑡 is defined as 

                                       𝑑𝐸𝐶,𝑡 =  ∥∥w𝑗,𝑡
𝑀 −  𝑤t

EC
∥∥.                                        (5) 

Because the UAV offloads computationally intensive tasks to the ground 

edge server, the channel gain between the 𝑗𝑡ℎ M-UAV and edge server in time 

slot t is denoted by 

                                         ℎ𝐸𝐶,𝑡 =  
ℊ

[𝑑𝐸𝐶,𝑡]2                                                 (6) 

where ℊ denotes the power gain and the reference distance is considered to be 

1 meter. Therefore, the transmission data rate between the 𝑗𝑡ℎ M-UAV and 

edge server in time slot 𝑡 is defined as 

              𝑅𝐸𝐶,𝑡 = 𝐵𝑢𝑙𝑜𝑔2 (1 +
ℎ𝐸𝐶,𝑡 𝑃𝑗,𝑡

𝜇2 ) , ∀𝑡 ∈ ℱ, 𝑗 ∈ ℳ                    (7) 

 

Where 𝐵𝑢 is the bandwidth pre-assigned to the edge server and 𝜇 is the noise 

power. 

 

 

3.4. Task Computation Model 
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In this paper, we assume that each M-UAV 𝑗 in a coalition 𝑄𝑁 has a sensing 

task  that can be computed locally in the 𝑗𝑡ℎ M-UAV or either in the H-UAV 

or the ground edge server that is co-located with the BS at time slot t, where 

𝑡 ∈ ℱ . Let 𝑎𝑗
1  define the computation offloading decision of the M-UAV, 

where 𝑎𝑗
1 = 1 indicates that the M-UAV offloads the task, whereas 𝑎𝑗

1 = 0 

indicates that the task is computed locally. We define each task as 𝛫𝑗
𝑡 =

(𝐿𝑗
𝑡, 𝑑𝑗

𝑡), where 𝐿𝑗
𝑡 indicates the CPU cycles required to perform task of the 𝑗𝑡ℎ 

M-UAV, and 𝑑𝑗
𝑡 indicates the data size that must be computed at time slot 𝑡. 

Next, we derive the computation cost in terms of the task delay as well as 

energy consumption for local and edge computing. 

1) Local computing: We denote the computation capability, i.e., the clock 

frequency of the CPU chip, of M-UAV  𝑗  for task 𝐽𝑗
𝑡  as 𝑓𝑗,𝐾 . The local 

execution time of task 𝐾 on M-UAV j is given by 

                                                   𝑇𝑙𝑜𝑐,𝑒𝑥𝑒  =
𝐿𝑗

𝑡

𝑓𝑗,𝐾
                                          (8) 

while the energy consumption of M-UAV j for executing task 𝐾𝑗
𝑡 is given by 

 

                                            𝐸𝑗,𝑚
𝑙𝑜𝑐,𝑒𝑥𝑒 = 𝑘𝐿𝑗

𝑡𝑓𝑗,𝐾
2                                             (9) 

where 𝑘 indicates the switched capacitance of a specific chip architecture of 

the device. In accordance with previous studies, we consider that 𝑘 = 10−28 

[53]. Consequently, the total cost for executing task 𝐾𝑗
𝑡 locally is defined by 

the sum of the local execution time and energy consumption during execution. 

That is, 
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                           𝑈𝑗,𝐾
𝑙𝑜𝑐𝑎𝑙 = 𝛼1

𝑙 𝑇𝑙𝑜𝑐,𝑒𝑥𝑒 + 𝛽
2
𝑙 𝐸𝑗,𝑚

𝑙𝑜𝑐,𝑒𝑥𝑒
,                                  (10) 

where 𝜗1 and 𝜗2 are the weights that control the importance of the latency 

and energy consumption. 

2) Task offloading: With an increasing number of tasks, the computation 

capacity of the M-UAV is exhausted owing to the shortage of computing 

resources. Thus, the tasks generated after a certain time are continuously 

rejected. Hence, whether an M-UAV should offload its tasks has a significant 

impact on the performance of the overall network. In our paper, we consider 

that the M-UAV can offload the task to either the H-UAV or the ground edge 

server, depending on the task characteristics. As discussed earlier, we consider 

that tasks can be classified into two different categories: delay sensitive and 

energy sensitive tasks. The intuition for such a consideration is that deep-

learning-based image recognition techniques involve many phases, such as 

noise removal, pre-processing, resizing, training, and classification. Thus, the 

tasks are of various types, with varying sizes and computational requirements. 

Therefore, for any task 𝐾𝑗
𝑡, 𝑎𝑗

2  ∈ {0, 1} represents the action that the 𝑗𝑡ℎ M-

UAV can perform. When the task is delay-sensitive, it is offloaded to the H-

UAV, i.e., 𝑎𝑗
2 = 1; hence, the total delay consists of the transmission and 

computation delays at the H-UAV. 

Thus, the transmission delay for offloading the task to the H-UAV is given 

by 

                                                 𝑇
𝐾𝑗

𝑡 
𝑡𝑥 =

𝑑𝑗
𝑡

𝑅𝑗,𝑡
.                                                 (11) 

Because the H-UAV has a higher computational capacity than the M-UAV, 

each H-UAV can execute the offloaded task locally using the computing unit 
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onboard. Here, we assume that the H-UAV can run several virtual machines 

to compute tasks from different M-UAVs [54][55]. Thus, we consider tasks 

from different M-UAVs are executed simultaneously. Hence, we ignore the 

computation capacity allocation in this paper [48][17]. Therefore, when the H-

UAV functions as a server, the computation delay of the H-UAV is given by 

                                             𝑇𝐻,𝑒𝑥𝑒  =
𝐿𝑗

𝑡

𝑓ℎ,𝐾
                                                (12) 

where 𝑓ℎ,𝐾 denotes the clock frequency of the H-UAV on task K. Meanwhile, 

the energy consumption during task execution can be calculated by 

                                        𝐸𝐻,𝑒𝑥𝑒  = 𝑘𝐻𝐿𝑗
𝑡𝑓ℎ,𝐾

2                                             (13) 

where 𝑘𝐻 represents the effective switched capacitance of the H-UAV related 

to the chip architecture; we set 𝑘𝐻 = 10−28 [53]. The total completion time of 

the task 𝛫𝑗
𝑡 is defined by the sum of transmission delay from M-UAV j to the 

H-UAV and the execution delay at the H-UAV. 

 

                                    𝑇𝑗,𝐾
𝐻−𝑈𝐴𝑉 = 𝑇𝐻,𝑒𝑥𝑒 + 𝑇

𝐾𝑗
𝑡 

𝑡𝑟𝑎.                                     (14) 

We are now ready to define the total cost for executing the task on H-UAV, 

which is given by 

                               𝑈𝑗,𝐾
𝐻−𝑈𝐴𝑉 = 𝛼1

ℎ𝑇𝑗,𝐾
𝐻−𝑈𝐴𝑉 + 𝛽

2
ℎ𝐸𝐻,𝑒𝑥𝑒.                           (15) 

However, because deep learning techniques often require extensive 

computation (e.g., matching face images from existing datasets), tasks can be 

computationally intensive and require more time, executing such tasks at the 

H-UAV may degrade the overall network performance. Thus, we consider that 



 

27  

 

the M-UAV can also offload the task to the edge server for edge execution 

with a strong computation capacity, i.e., 𝑎𝑗
2 = 0. In this case, execution occurs 

in three phases: (i) Task transmission stage, (ii) edge computing stage, and (iii) 

result transmission stage. 

In the first phase, we derive the total cost by considering the energy 

consumption during the transmission and execution of the task. The 

transmission time and energy consumption of the task 𝛫𝑗
𝑡 at the edge server 

are given by 

                                            𝑇
𝛫𝑗

𝑡
𝑒𝑑𝑔𝑒,𝑡𝑥

=
𝑑𝑙

𝑡

𝑅𝐸𝐶,𝑡
.                                             (16) 

and 

                                      𝐸
𝛫𝑗

𝑡
𝑒𝑑𝑔𝑒,𝑡𝑥

=  𝑃𝑗,𝑡 𝑇
𝛫𝑗

𝑡
𝑒𝑑𝑔𝑒,𝑡𝑥

.                                     (17) 

For edge execution, the computing task execution time is denoted by 

 

                                            𝑇𝑒𝑑𝑔𝑒,𝑒𝑥𝑒 =
𝐿𝑗

𝑡

𝑓𝑒
,                                              (18) 

where 𝑓𝑒 denotes the CPU frequency of the ground edge server. 

We assume that the frequency remains constant during task execution. 

Owing to the high computational capacity and sufficient power of the ground 

edge server, the edge server can easily complete the offloaded task. 

Corresponding with other studies, e.g., [56] and [57], we omit the result 

receiving delay because the size of the returned data is exceedingly small. We 

also ignore the edge energy consumption in the total offloading cost 
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calculation because the energy consumption of the ground edge server is 

negligible. Thus, the total duration for completing the execution of the task 𝛫𝑗
𝑡 

in the edge server is given by 

                                      𝑇𝑗,𝐾
𝑒𝑑𝑔𝑒

= 𝑇
𝐽𝑙

𝑡 

𝑒𝑑𝑔𝑒,𝑡𝑥
+ 𝑇𝑒𝑑𝑔𝑒,𝑒𝑥𝑒.                            (19) 

The total cost of edge execution is given by 

                𝑈𝑗,𝐾
𝑒𝑑𝑔𝑒

= 𝛼1
𝑒𝑇𝑗,𝐾

𝑒𝑑𝑔𝑒
+ 𝛽

2
𝑒𝐸

𝐽𝑙
𝑡 

𝑒𝑑𝑔𝑒,𝑡𝑥
.                         (20) 

Because of the computation capacity among the three computation nodes, 

based on where the task is being executed, we introduce different weights to 

enable diversity in the delay and the energy consumption calculation of the 

three cases. This means 𝛼1
𝑙  is different from 𝛼1

ℎ and 𝛼1
𝑒. The same applies for 

𝛽
2
𝑙 , 𝛽

2
ℎ, and 𝛽

2
𝑒.  

3.5. Problem Formulation 

In this thesis, our aim is to minimize the normalized weighted cost by 

considering both task execution delay and energy consumption. When all tasks 

are locally computed, an M-UAV cannot complete all tasks owing to its 

limited energy and computational capacity. In addition, latency is another 

crucial metric in an edge-computing environment that can significantly 

deteriorate performance. Thus, an optimal task allocation strategy (M-UAV, 

edge server) is required by considering execution time and energy 

consumption. Therefore, we jointly consider the energy consumption and 

execution delay during transmission and computing. Because we have a multi-

objective optimization problem, we consider a popular multi-objective 
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optimization method: the linear weighted sum method [51][58]. This method 

combines multiple objectives into a single objective function. 

First, the execution time and energy consumption are normalized such that 

they are within the same range. To normalize, we divide the task execution 

delay and energy consumption by the delay and energy calculated from local 

computing. Since energy consumption and delay have different units, we have 

normalized execution delay and energy consumption to a range of the same 

size by dividing with the maximum energy and maximum execution delay that 

is obtained from local computing. Thus, we convert the two different metrics 

into the same number range. Subsequently, we apply different weights for both 

energy consumption and delay. These weights enable us to configure the video 

analysis based on task requirements. Based on the above discussion, the 

objective function for a sequence of tasks ℛ can be formulated as follows:  

𝑈𝑗 = ∑ 𝑈𝑗,𝐾
ℬ
𝐾=1 = ∑  𝑎𝑗

1𝑎𝑗
2𝑈j,K

𝐻−𝑈𝐴𝑉 +
 
𝑎𝑗

1
(1 − 𝑎𝑗

2)𝑈𝑗,𝐾
𝑒𝑑𝑔𝑒

+𝐼
𝑖=0

                                                       (1 − 𝑎𝑗
1)𝑈j,K

𝑙𝑜𝑐𝑎𝑙),                                         (21) 

where ℬ indicates the total size of set ℛ. Thus, the optimization problem can 

be formally derived as 

                                                  min
𝐴

∑ 𝑈𝑗𝑗 .                                                (22) 

s.t 𝑎𝑗
1𝑎𝑗

2𝑇𝑗,𝐾
𝐻−𝑈𝐴𝑉 +  𝑎𝑗

1(1 − 𝑎𝑗
2)𝑇𝑗,𝐾

𝑒𝑑𝑔𝑒
+  (1 − 𝑎𝑗

1)𝑇𝑙𝑜𝑐,𝑒𝑥𝑒𝑐 ≤  𝑇𝐾
𝑚𝑎𝑥 , ∀𝐾 =

 1, ⋯ , ℬ                                  (23) 

where A = { 𝑎𝑗
1, 𝑎𝑗

2| 𝑗 ∈ ℳ, 𝐾 ∈ ℛ}. This constraint states that all tasks must 

be completed by the total completion time, 𝑇𝐾
𝑚𝑎𝑥 . Because we use integer 

constraints (e.g.,  𝑎𝑗
1𝑎𝑗

2), this is a non-convex problem, and using traditional 
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optimization techniques is not useful owing to dynamic task requirements. 

Thus, we design a multi-agent reinforcement learning algorithm that can 

provide a simpler and more efficient solution in less time.                    

3.6. RL Framework 

In traditional RL, the problem is modeled as an MDP. In this section, we first 

discuss why the offloading problem can be solved using DRL. Subsequently, 

according to the RL framework, we provide the definitions of the state space, 

action space, and reward function of our stated problem. The state space is 

defined by the metrics used to determine the optimal action from all available 

actions in the action space. The ultimate objective of action selection is to 

maximize the reward function, which is designed based on the objective of our 

study. In DRL, neural networks are used to simulate the optimization function 

to obtain the optimal result by training the network parameters. Currently, 

conventional optimization methods (e.g., heuristic methods and convex 

optimization) are widely used to determine the optimal offloading decision in 

MEC environments. However, with an increase in optimization variables and 

slightly complicated constraints, these algorithms cannot obtain optimal 

results. For example, in convex optimization-based techniques, the first step is 

to divide the global optimization problem into subproblems. To apply 

heuristic-based solutions, we must simplify the problem sufficiently, and the 

MDP requires input data in a state transition matrix. In DRL, a neural network 

enables DRL algorithms to obtain near-optimal results when the state space 

becomes large and complex. Thus, DRL overcomes the limitations of 

traditional optimization techniques in computation offloading decision-

making problems. 



 

31  

 

1) State space sj
t: To make the offloading decision, each agent in the network 

is provided with a set of input metrics that they consider while making the 

offloading decision. Let 𝑠𝑗
𝑡  =  {𝐷, 𝑐, 𝑓, and 𝑑𝑡} denote the state space. The 

meanings of these symbols are provided by  

• D: size of the task 

• C: cycles needed to complete the task 

• f: computational capability of the H-UAV 

• dt: task type ∈ {0,1} (energy-sensitive or delay-sensitive) 

 

2) Action space aj
t: Each M-UAV selects a particular action after the tasks 

are generated in time slot 𝑡 ∈ ℱ in the coalition. The M-UAV can select an 

action from local information. In this paper, we consider binary offloading, 

which can either be executed at the H-UAV or offloaded to the ground edge 

server. 

3) Reward function rj
t: After selecting a certain action, the agent gains a 

reward that reflects the performance of the selected action by reinforcing the 

action performed by the agent. Designing a good reward function is crucial for 

network performance, because it can reduce the convergence time of the 

algorithm. In our UAV swarm enabled MEC system, the main objective is to 

complete the execution of the task with minimum task execution delay and 

energy consumption within the task deadline. According to the above 

discussion, the reward function is designed as follows: 

The aim of each agent is to maximize the total reward. Because action 

selection depends on the unique characteristics of the network dynamics in 

which the agent is interacting, defining the reward function directly from the 

obtained utility would affect the learning process. Thus, we consider the 
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difference between the utility value and the value obtained in the previous time 

step. The intuition for such a design is that a positive difference indicates an 

enhancement in the obtained reward value and, thus, that action should be 

emphasized. We assume that each agent has the same reward function. Based 

on the discussion above, the reward function is defined as follows: 

      𝑍𝑗,𝐾 =  −𝑎𝑗
2𝑎𝑗

1𝑈j,K
H−UAV −  𝑎𝑗

1(1 − 𝑎𝑗
2)𝑈𝑗,𝐾

𝑒𝑑𝑔𝑒
− (1 − 𝑎𝑗

1)𝑈j,K
local,        (24) 

where a higher cost results in a smaller reward, and vice versa. Thus, for each 

agent, the utility is 

                                            𝑍𝑗 =  ∑ 𝑍𝑗,𝐾
ℬ
𝐾=1 .                                             (25) 

Each agent aims to maximize this objective, which emphasizes the action 

that produces a better reward value. Because of the dynamic characteristics of 

the network in which the agent is interacting, the action evaluation can be 

ambiguous. Thus, the value obtained here cannot be directly utilized to define 

the reward [59]. Therefore, the difference between reward values in immediate 

timesteps are considered the reward in this paper. The intuition for such a 

consideration is that an increase in the reward denotes an improvement, such 

that a particular action should be emphasized. Based on the discussion above, 

the reward value is defined as follows: 

                                         𝑢𝑡
𝑗

= {

𝑝, 𝑖𝑓 𝑍𝑗
𝑡 − 𝑍𝑗

𝑡−1 < 0

𝑞, 𝑖𝑓 𝑍𝑗
𝑡 − 𝑍𝑗

𝑡−1 > 0

  0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

,                                (26) 

where 𝑍𝑗
𝑡  is the cumulative reward gained at timeslot 𝑡 . When the reward 

difference between two immediate timesteps is negative, it is considered an 

improvement because the reward is formulated as a negative value; thus, 𝑝 is 

a positive value, whereas a positive difference between the rewards obtained 
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from immediate timesteps yields 𝑞 which is a negative reward. For simplicity, 

we consider that each agent shares the same reward. 
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4. Deep Reinforcement Learning based Computation 

Offloading Algorithm (DRLCO) 

Based on the previous discussion, we designed a deep reinforcement learning 

based computation offloading (DRLCO) algorithm to solve this decision-

making problem as shown in Figure 2. In each time slot, when new tasks are 

generated to be computed locally or on the MEC server, each agent (M-UAV) 

acts on the environment by observing the state and selecting a specific action. 

Subsequently, each agent receives an immediate reward. During the entire 

time, each agent aims to determine an optimal offloading decision to maximize 

the cumulative reward. Owing to the integer constraint to determine on which 

device the task will be processed, conventional optimization methods fail to 

obtain an optimal solution in such scenarios. In addition, deep learning 

techniques occasionally fail to map the relationship between input and output 

efficiently and require a longer training time in new environments [60]. 

To address these challenges, we propose a DRLCO algorithm that 

incorporates a neural network and Q-learning to obtain an optimal offloading 

decision. By combining the perceptive characteristics of the neural network 

and decision-making capability of RL, we can determine the optimal 

offloading decision in a dynamic environment. Because the tasks to be 

computed are not known beforehand, the DRLCO algorithm was designed to 

fall under the category of model-free RL. Algorithm 1 presents the proposed 

DRLCO algorithm. 



 

35  

 

 

Figure 2. Block diagram of the proposed DRLCO scheme. 

Two identical neural networks, whose Q functions are denoted as 

𝑄𝑗
𝑡(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒) and 𝑄𝑗
𝑒(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒), are used to construct the overall structure of 

the DRLCO, which we call the target network 𝜑𝑗
𝑡 and evaluation network 𝜑𝑗

𝑒. 

To enhance the training efficiency and early convergence, we use the 

experience replay 𝜒𝑗(𝑡) to store past samples. The sample of experiences is 

defined as {𝑠𝑗
𝑡, 𝑎𝑗

𝑡 , 𝑢𝑡
𝑗
, and 𝑠′𝑗

𝑡} . The intuition for using experience replay 

memory is that consecutive samples are highly correlated, which may affect 

the learning process and result in sample inefficiency. To break this 

correlation, we use a mini batch of random samples to train the model, which 

is stored in the replay memory. As memory fills up, old experiences are 

removed to create space for newer ones. Each agent (M-UAV) leverages 

replay memory to determine the optimal mapping between the state and action. 

We consider that the agent selects a certain action 𝑎𝑗
𝑡 using the following 𝜖-

greedy policy:  
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                       𝑎𝑗
𝑡 = {

    𝑟𝑎𝑛𝑑𝑜𝑚,            𝜖

𝑎𝑟𝑔 max  𝑄𝑗
𝑒(𝑠𝑗

𝑡, 𝑎|𝜑𝑗
𝑒) ,   1 − 𝜖

}.                           (27) 

In DRLCO, two neural networks aim to determine the optimal action, as 

stated previously. In a typical DQN, the max operator is used to select and 

evaluate an action that results in the overestimation of values, causing 

overoptimistic value estimates [61]. Therefore, to address this challenge, we 

use two identical networks to separate the task of selecting and evaluating an 

action, which enables the evaluation of the greedy action taken. Based on this 

concept in DRLCO, the action that produces the highest Q-value is first 

selected by the target network. Subsequently, the evaluation network evaluates 

the selected action by calculating the Q-value of taking that action in that state. 

Thus, the value of the policy is evaluated evenly using the two neural 

networks. The expected cumulative reward of the target network can be 

derived as  

             𝑅𝑒𝑤𝑗 = 𝑢𝑡
𝑗

+ 𝜇𝑘𝑄𝑗
𝑡(𝑠′𝑗

𝑡, arg max𝑄𝑗
𝑒(𝑠′

𝑗
𝑡
, 𝑎𝑗

𝑡|𝜑𝑗
𝑒)|𝜑𝑗

𝑡).                 (28) 

where 𝜇𝑘  denotes the discount factor for controlling further rewards. 

Therefore, the loss between 𝑄𝑗
𝑡(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒) and 𝑄𝑗
𝑒(𝑠𝑗

𝑡, 𝑎𝑗
𝑡|𝜑𝑗

𝑒) is calculated as 

follows:  

         𝐿𝑜𝑠𝑠𝑗(𝑄𝑗
𝑒, 𝑄𝑗

𝑡) = Ε
(𝑠𝑗

𝑡,𝑎𝑗
𝑡,𝑢𝑡

𝑗
,𝑠′

𝑗
𝑡
)~𝜒𝑗

[𝑅𝑒𝑤𝑗 − 𝑄𝑗
𝑒(𝑠′

𝑗
𝑡
, 𝑎𝑗

𝑡|𝜑𝑗
𝑒))]2.        (29) 

The two networks are alternated simultaneously to ensure stability in the 

training performance. The target network parameters are updated using the 

evaluation network until convergence. Thus, each agent can learn the optimal 

offloading policy in a distributed manner according to its own information. 

The DRLCO algorithm, as provided in Algorithm 1, has two major parts:  
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Algorithm 1 The algorithm is run in the M-UAV  

Input: Task feature {𝐷, 𝐶, 𝑓, 𝑑𝑡} 

Output: Optimal offloading location for a given input  

1:  Initialize parameters of target and evaluation networks for all M-UAV ∈ ℳ; 

2:   Initialize replay memory 𝜒𝑗 for each agent M-UAV ∈ ℳ;  

3:      for episode = 1 to 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥 do 

4:      Reset entire environment for each M-UAV ∈ ℳ; 

5:      for j = 1 to 𝑀 do 

6:          M-UAV acts on the dynamic environment; 

7:            for t = 1 to 𝑇 do 

8:                   M-UAV observes the state 𝑠𝑗
𝑡 parameters consisting of task size 𝐷, 

required cycles to execute the task 𝐶, computational capability of the H-UAV 𝑓, 

task type 𝑑𝑡  

9:                        M-UAV selects action 𝑎𝑗
𝑡 regarding offloading the task to the H-

UAV or the ground edge server following 𝜖-greedy policy;  

10:                         M-UAV obtains the reward 𝑢𝑡
𝑗
, next state 𝑠′𝑗

𝑡; 

11:                          Add sample {𝑠𝑗
𝑡 , 𝑎𝑗

𝑡 , 𝑢𝑡
𝑗
, 𝑠′𝑗

𝑡} into replay memory 𝜒𝑗  when replay 

memory is not full. 

                       if samples are sufficient in 𝜒𝑗, do 

10:                             Select a mini batch from replay memory 𝜒𝑗; 

11:                                 Calculate cumulative reward using (28); 

12:                             Calculate loss using (29); 

13:                             Update the evaluation network 

14:                   Alternate the parameters from evaluation network to target network 

(𝝋𝒋
𝒕  ←  𝝋𝒋

𝒆) 

15:                      end if 

16:         end for 

15:    end for 

16:  end for 

17: return offloading location for given input 

 

collecting data samples from the network environment and training based on 

the collected data. The parameters of the target network and parameters with 

initial weights are defined initially along with the replay memory size (lines 
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1−2). The number of episodes is then defined, and agent begins interacting 

with the network environment to collect data (lines 3−11). In this data-

collection phase, each agent (M-UAV) observes the state, selects an action, 

receives the reward, and receives a new state (lines 8−10). The replay memory 

stores the experience gained. Subsequently, in the training phase, a random 

mini batch from the replay memory is sampled to train the agent and calculate 

the loss (lines 12−14). 

4.1. Complexity Analysis 

In this section, we study the proposed DRLCO scheme in terms of its 

computational complexity. Each M-UAV 𝑗, where 𝑗 ∈ ℳ, has three types of 

neural networks: input layer, fully connected (FC) layers, and output layer. 

Each agent has a total of 𝑉 + 2 layers with one input layer, one output layer, 

and 𝑉 FC layers. We denote the total amount of training sample as 𝛨 and the 

total number of epochs as 𝐹. 𝑖𝑞 and 𝑖𝑛 represents the input layer dimension 

and neuron number in layer 𝑞, respectively, where 𝑞 ≥ 2 and 𝑞 ∈  𝑉. Hence, 

the time complexity of the proposed DRLCO is 𝑂(𝛨 ∗ 𝐹 ∗ 𝑖𝑞 ∗ (𝑉 − 1)𝑖𝑛). 

Because there is only one output layer, and 𝑂(𝑖𝑞) is the complexity of the total 

number of activation functions, the complexity of these two metrics has been 

ignored with regard to the overall complexity. 
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5. Performance Evaluation 

In this section, we evaluate the performance of the proposed DRLCO 

scheme and compare it with that of conventional schemes through a simulation 

study. 

5.1. Experimental Setup 

We verified the correctness of our proposed DRLCO using Python and 

TensorFlow 1.15 on a computer with an AMD Ryzen 5 processor with a 

processor speed of 3.60 GHz and RAM of 8 GB. We considered five H-UAVs 

and 15 M-UAVs in our UAV swarm-enabled edge-computing scenario in an 

area of 1000 m × 1000 m. To simulate the DRLCO algorithm, we set that for 

each M-UAV, the neural network of the DRLCO algorithm consisted of one 

input layer and output layer with two FC layers. The sizes of the two hidden 

layers were 400 and 350. We used ReLU in the hidden layers, as the activation 

function and AdamOptimizer to optimize the loss function. For training, we 

set the maximum number of iterations to 2000. The size of the replay memory 

was 50000. To emphasize future rewards, we set the discount factor value to 

0.9. Because 𝛼 = 0.001 yielded a higher reward and stable training, in the 

simulation environment, we set the value of the learning rate as 𝛼 = 0.001. 

The weights of energy consumption and task execution delay were set as 

𝛼1
𝑙 =  𝛼1

ℎ =  𝛼1
𝑒 = 𝛽2

𝑙 = 𝛽2
ℎ = 𝛽2

𝑒 = 0.5  to obtain equivalent importance on 

evaluating the total cost. The computational task size varied randomly between 

2 to 20 MB. The computational capacities of the M-UAV, H-UAV, and ground 
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edge server were 1.5, 15, and 20 GHz, respectively. The major simulation 

parameters are listed in Table 2.  

Table 2.   Simulation parameters. 

Parameter Value 

Number of H-UAVs 5 

Number of M-UAVs 15 

Bandwidth (B) 20 MHz 

Bandwidth at the edge server (𝐵𝑢) 0.5 MHz 

Transmission power (𝑃𝑗,𝑡) 20 dBm 

Channel power gain (η) 1.42 × 10−4 

Power spectrum density (℘) -174 dBm 

Path loss exponent (ℊ) -50 dB 

Noise power (𝜇) -100 dB 

Computation task size of each M-UAV 2 – 20 Mb 

Required CPU to complete input task 0 – 1.5 GHz   

Computation capacity of M-UAV (𝑓𝑗,𝐾) 1.5 GHz 

Computation capacity of H-UAV (𝑓ℎ,𝐾) 15 GHz 

Computation capacity of ground edge server (𝑓𝑒) 

Effective switched capacitance of M-UAV and H-UAV (𝑘, 𝑘𝐻) 

20 GHz 

10−28 

Weights (𝛼1
𝑙 =  𝛼1

ℎ =  𝛼1
𝑒 = 𝛽2

𝑙 = 𝛽2
ℎ = 𝛽2

𝑒) 0.5 

1st hidden layer size 400 

2nd hidden layer size rand (3, 5) 

Learning rate (𝛼) 1 × 10−3 

Mini batch size 100 

Experience replay size (𝜒𝑗) 50000 

Discount factor 0.9 
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Total episode (𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥) 

Length of each slot 

2000 

1 s 

 

5.2. Convergence Analysis 

To show the convergence of the DRLCO algorithm, we compared the 

DRLCO scheme with the DQN algorithm as shown in Figure 3. We observed 

that both the DRLCO and DQN techniques converge after a certain time, and 

the reward is stable. This means that agents can obtain an optimal offloading 

policy. Furthermore, we observed that DRLCO reaches a steady state earlier 

than DQN. Initially, because the M-UAV has no knowledge of the system 

environment, the two techniques fluctuate at a very low value because of the 

agent’s random action selection. Gradually, the M-UAV acts on the 

environment, begins to collect samples, and trains the network when the 

experience replay memory has sufficient samples. As mentioned earlier, 

because the DRLCO scheme solves the overestimation problem of Q-values 

by separating the estimation into two networks, it can learn valuable states 

without observing the impact of each action at every state. Thus, we observed 

that the reward of the DRLCO scheme is significantly higher than that of the 

DQN scheme. In contrast, the DQN algorithm consists of a single neural 

network, that is, a value function network that utilizes a random policy for 

training. Thus, we observed that the reward gained in DRLCO scheme is 

significantly higher than that of the DQN scheme and it requires almost 1000 

episodes to converge for the DQN scheme. However, our DRLCO scheme 

requires approximately only 250 episodes to reach a stable state and it provides 

a higher reward compared with the DQN scheme because of the introduction 
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of the target network in DRLCO, which aids in converging faster. Thus, the 

proposed method can save time and obtain an optimal offloading decision. 

 

Figure 3. Convergence of DRLCO and DQN 

5.2. Performance Metrics 

After completing the training process of the proposed DRLCO, we verified 

our proposed scheme to validate our model by performing experiments on 

various performance metrics. Intuitively, the main objective of the proposed 

multi-agent computation offloading algorithm is to successfully execute the 

task with the lowest total cost. Because the M-UAV can execute the task 

locally or through offloading into the H-UAV or the ground edge server, the 

energy consumption as well as delay involved in the transmission and 

computation of the task were considered in our performance analysis along 

with the total offloading cost. This is because both energy consumption and 

delay are crucial offloading metrics, and determining the optimal offloading 

policy, which has less delay and consumes less energy, indicates the optimal 

offloading policy. Before quantitatively verifying the performance of the 

proposed DRLCO with other benchmarks, we briefly discuss the performance 

metrics below. 
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• Average offloading cost: We discuss the average offloading cost in terms 

of offloading task data size, computation capacity of the H-UAV, and 

number of M-UAVs. This is the average cost of all the agents (M-UAVs) 

for performing the task. 

• Task execution delay: Delay is another crucial metric for determining the 

network performance and improving the quality of service of the system. 

Reducing the delay involved in the offloading and execution of a task 

can significantly reduce the total system overhead. Thus, to demonstrate 

the effectiveness of this study, we formulated task execution delay as the 

sum of both transmission and processing delays and compared it with 

conventional schemes.  

• Energy consumption: In a UAV-enabled edge computing system, the 

total energy consumption for offloading a task is the most important 

metric because it has low computing energy to improve the offloading 

performance. Thus, inefficient task allocation may result in high 

overhead and tasks being dropped. The total energy includes both the 

energy required for the transmission and the execution of the task. 

To validate the effectiveness of the proposed DRLCO scheme, we considered 

the following three conventional methods and compared the performance of 

our study with these methods. 

• Local: In this setup, tasks were executed locally by each M-UAV in each 

time slot to the maximum computation capacity. 

• Edge: All tasks were executed on a ground edge server, which had 

sufficient computing capacity. 
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• DQN: We applied the DQN algorithm in our proposed scenario as a 

benchmark technique because the action space is also discrete in the 

DQN.  

5.2. Simulation Results and Discussion  

In this section, we present the simulation results of the proposed DRLCO 

algorithm and compare the with benchmark techniques. First, we analyze the 

average cost with respect to the number of M-UAVs, computation capacity of 

the H-UAV, and offloading task size.    

Figure 4(a) shows the impact of increasing the number of M-UAVs on 

minimizing the average cost. We observed that with an increase in the number 

of agents (M-UAV), the average cost also increased gradually. This was 

because increasing the number of agents increased the number of sensing 

tasks. Thus, to manage a large number of tasks, the transmission and execution 

delays also increased. The DRLCO algorithm reduced the average cost by 

55.13%, 48.08%, and 29.21% compared with the local, edge, and DQN, 

respectively. Thus, we can conclude that, with an increasing number of agents, 

the DRLCO scheme outperforms the three benchmarks in terms of the number 

of agents. 

Figure 4(b) shows the impact of the computation capacity on the average 

cost. The figure shows that increasing the computational capacity of the H-

UAV reduced the average cost by a significant margin. This was because, with 

an increase in the computation capacity, the H-UAV obtained adequate 

computing resources. Because of this, the agents considered offloading the 

computation-intensive tasks to the H-UAV as the capacity increased instead 

of offloading to the ground edge node to minimize the total cost. This reduced 
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the transmission and processing delays of the task. The proposed DRLCO 

algorithm outperformed the three benchmark techniques and reduced the cost 

by 27.15%, 20.86%, and 15.70% compared with the local execution, edge 

execution, and DQN, respectively. 

Figure 4(c) shows the impact of the offloading task size on the average cost. 

As the task size offloaded from the M-UAV increased, the total cost also 

increased. This was because the CPU cycles required to execute tasks with 

large sizes also increased for the H-UAV.  

  

(a) (b) 

 

(c) 
Figure 4. Average offloading cost in terms of (a) number of M-UAV, (b) 

offloading task size, and (c) computation capacity of H-UAV. 

Hence, the computational time increased significantly. However, compared 

with other benchmarks, our proposed DRLCO scheme reduced the total cost 
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by 54.28%, 43%, and 31% compared with local computing, edge computing, 

and the DQN approach, respectively. Therefore, the proposed DRLCO scheme 

can obtain a higher reward to minimize the total cost. 

Next, we studied the two most crucial performance metrics in the network: 

energy consumption and task execution delay. Using the proposed DRLCO 

scheme, agents can dynamically select a suitable computational node to 

minimize the overall cost. To demonstrate the performance of our proposed 

DRLCO algorithm, Figure 5 shows the impact of the number of agents, 

computation capacity, and offloading task size on the energy consumption of 

the agent. As shown in Figure 5(a), the overall energy consumption increased 

when the number of agents (M-UAV) increased. This was because an 

increased number of M-UAVs generated more computational tasks to be 

executed. Thus, the computation node consumed additional power because the 

agents showed interest in offloading tasks on a suitable computation node to 

minimize the total cost. However, the local, edge, and DQN algorithms 

exhibited higher energy consumption than our proposed scheme. Because the 

proposed scheme dynamically allocated the computation task in terms of task 

characteristics, the task execution delay reduced by 55%, 48.08%, and 29% 

for the local, edge, and DQN approaches, respectively. In Figure 5(b) and 5(c), 

we analyze the impact of the computation capacity and task size on the energy 

consumption. With an increase in the computing capacity of the H-UAV, the 

task execution time decreased, and the energy consumption also increased 

shown in Figure 5(b). This meant that the increased computation capacity of 

the H-UAV enabled the M-UAV to offload energy-sensitive tasks more often 

than previously, which increased the node’s power consumption. The 



 

47  

 

proposed DRLCO scheme reduced the energy consumption by 4.45%, 

12.50%, and 21.81% compared with the DQN, edge, and local execution,  

  

(a) (b) 

 

(c) 
Figure 5. Energy consumption in terms of (a) number of M-UAV, (b) 

offloading task size, and (c) computation capacity of H-UAV. 

respectively. Increasing the task size also increased energy consumption 

(Figure 5(c)). This indicated that a larger task requires more CPU cycles to 

complete, thereby increasing the power consumption of the computation node. 

Hence, the energy consumption also increased. However, the proposed 

algorithm significantly minimized the energy consumption by 11%, 22.27%, 

and 33.08% compared with DQN, edge, and cloud execution, respectively, 

owing to the dynamic allocation of the task according to the task 

characteristics. 
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Next, we focus on the delay performance of our proposed DRLCO scheme 

in terms of the number of agents (MUAV), task size, and varying 

computational capacity with the three other benchmark techniques. Figure 6(a) 

shows that increasing the number of agents increased the task execution delay. 

Because more M-UAVs generated tasks together, the computation node (H-

UAV or edge) required more CPU cycles and computation time to complete 

the task. In addition, transmitting a task to the ground edge server incurred a 

transmission delay. However, the proposed DRLCO obtained a comparatively 

smaller delay than the other benchmarks. The proposed method reduced the 

delay by 23%, 19%, and 7% compared with the local, edge, and DQN 

approaches, respectively. Thus, the proposed DRLCO approach significantly 

outperformed the three benchmarks. 

Figure 6(b) and Figure 6(c) depict the delay performance of the proposed 

DRLCO in terms of the computation capacity of the H-UAV and varying task 

size. As shown in Figure 6(b), we observed that increasing the computational 

capacity of the H-UAV reduced the task execution delay. Initially, when the 

computation capacity of the H-UAV was 2.5 GHz, the task execution delay 

was higher because the computation time was longer owing to the limited 

capacity. However, with an increase in the computation power, the 

computation time decreased further, and thus agents tended to offload more 

energy-sensitive tasks to the H-UAV, which reduced both the transmission and 

execution delays. The proposed DRLCO scheme reduced the task execution 

delay by 22%, 18.51%, and 11.79% compared with the local execution, edge 

execution, and DQN schemes, respectively. 

Figure 6(c) depicts the impact of task size on task execution delay. We 

observed that increasing the task size also increased task execution delay.  
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(a) (b) 

 

(c) 
Figure 6. Task execution delay in terms of (a) number of M-UAV, (b) 

offloading task size, and (c) computation capacity of H-UAV. 

Because a large task required more CPU cycles to execute, the computation 

time was longer; thus, the delay increased. In addition, when the 

computationally intensive task was offloaded from the M-UAV to the ground 

edge server, transmission and processing delays were incurred. However, the 

proposed DRLCO scheme can reduce the delay by allocating the task 

dynamically to either the H-UAV or ground edge server based on the task 

characteristics. The proposed DRLCO scheme reduced the task execution 

delay by 22.72%, 18%, and 11.79% compared with the local execution, edge 

execution, and DQN approaches, respectively. Therefore, the proposed 
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DRLCO is applicable to a multi-UAV-aided network system to reduce the total 

offloading cost by reducing energy consumption and task execution delay. 
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6. Conclusion and Future Works 

In this paper, we investigate the decision-making problem of computation 

offloading in a UAV swarm-enabled edge-computing system. To support the 

UAV in successfully executing all tasks, the ground edge server provides 

assistance by enabling the UAV to offload computation-intensive tasks. 

Specifically, we formulate the offloading problem as a weighted sum cost 

minimization problem by jointly considering energy consumption and task 

execution delay. We then propose a multi-agent reinforcement learning 

framework called the DRLCO scheme to reduce the total system cost. Each 

M-UAV acts as an agent to determine the optimal offloading policy and 

performs offloading decisions based on the DRLCO scheme. Finally, 

simulation experiments were performed to validate the performance of the 

proposed DRLCO scheme. From the simulation results, we observed that the 

proposed technique can learn the optimal offloading policy and can 

significantly minimize the total cost, energy consumption, and task execution 

delay. Compared with the local execution, edge execution, and DQN 

techniques, the proposed method can reduce the total cost by 54.28%, 43%, 

and 31%, respectively, in terms of offloading task size. 

In our future research, we will consider incorporating blockchain technology 

to ensure the privacy of the data and dependent task offloading in an edge 

computing scenario. 
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