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1. Introduction

It is known that the increase in the incidence of various types of cancer creates a
constant need to develop new anticancer drugs, including synthetic compounds of
different chemical classes, possessing cytotoxic properties. Boron neutron capture therapy
(BNCT) is a binary treatment modality for cancer involving the selective accumulation
of chemical agents containing the isotope ''B in cancer cells followed by irradiation
with thermal neutrons. Capture of a thermal neutron by a ''B nucleus initiates a
nuclear reaction in which decay of an excited ''B nucleus produces a high linear
energy transfer o-particle and lithium nucleus. Because of the short trajectory of these
heavy particles (5-9 um; approximately one cell diameter), radiation damage is limited
to those cells containing '’B. Thus, if ''B agents can be selectively targeted to tumor

cells, side effects typically associated with ionizing radiation can be avoided.'™

For successful BNCT, a high level of accumulation and selective delivery of '°B into
cancer cells are required. The design of effective BNCT agents requires the following
criteria: (1) low systemic toxicity and higher uptake in tumor tissue than in normal
tissue [tumor to blood (T/B) ratios should be greater than 3]; (2) "B must be retained
in the tumor tissue but also be rapidly cleared from blood and normal tissues; and (3)
the concentration of boron inside or near tumor cells must be >10° "B atoms/cell (20

—35 pg/gram of tumor tissue).” "

In this context, only two compounds, sodium
mercaptoborate (BSH)'* and L-4-boronophenylalanine (BPA)'>'® have been used for the
clinical treatment of cancers such as malignant glioma, malignant melanoma, and
recurrent head and neck cancer, which are not enough for treatment of multiple tumor

types (Chart 1).'"2
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To date, numerous boron-containing analogues including amino acids,” ™ biochemical

34-45 46-61 62-71 72-79

precursors of nucleic acids, carbohydrates, amines, porphyrins, peptides,®*

84-88 . . -
and monoclonal antibodies have been developed.®®' However, most of

% liposomes,
them do not satisfy the above criteria for clinical applications. Therefore, more potent
boron agents are highly required in order to improve the therapeutic effect and to apply

to various tumor types.

Ionic liquids (ILs) are a class of low melting point ionic compounds, which have
attracted increasing attention for multiple applications.””*® The imidazolium-based ILs
possess excellent and advantageous properties over the conventional organic solvents and
they have been widely applied in chemical industry.”””® However, despite the great
number of published papers, still little attention has been paid to the BNCT agents. In
this study, we describe the synthesis of room temperature ionic liquids (RTILs)
containing a various alkyl-substituted imidazolium cation with BF;, BOB
[bis(oxalate)borate], and BMB [bis(malonato)borate] anions in their structure. As is well
known, one of the advantages of ionic liquids is their high solubility in polar solvents
such as water while maintaining a liquid phase at room temperature. Although
1-alkyl-3-methylimidazolium cation is known to increase cytotoxicity as the number of
carbon atoms in the alkyl chain increases, it may show sufficient potential as a
candidate agents for BNCT if it can show low cytotoxicity by controlling the number
of carbon atoms. To the best of our knowledge, this is the first time that to confirm
the potential as an agents for BNCT using an ionic liquids based on 1-methylimidazole
moiety. In view of their excellent water solubilities and controllable toxicities using
variations in the alkyl chain length and borate anions size, we have focused our interest

on boron-containing ionic liquids for use in BNCT.
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Experimental

General considerations

All manipulations were performed in a dry nitrogen or argon atmosphere using standard
Schlenk techniques. Acetonitrile, acetone, and tetrahydrofuran (THF) was distilled under
nitrogen from sodium/benzophenone. The elemental analyses were performed using a
Carlo Erba Instruments CHNS-O EA 1108 analyzer. 'H and "C NMR spectra were
recorded on a JEOL-JNM-AL300 spectrometer at 300.1 and 75.4 MHz, respectively. ''B
NMR spectra were recorded on a Bruker Ascend 400 spectrometer (Billerica, MA,
USA) (operating at 128.4 MHz) at the Korea Basic Science Institute (KBSI) Gwangju
Center. All "B chemical shifts were referenced to BF3;O(C;Hs), (0.0 ppm), where a
negative sign indicated an upfield shift. All '"H and "“C chemical shifts were measured
relative to internal residual peaks arising from the lock solvent (99.5% CDCls).
1-Butyl-3-methylimidazolinium  bromide, 1-pentyl-3-methylimidazolinium  bromide,
1-hexyl-3-methylimidazolinium bromide, potassium bis(oxalato)borate,” and potassium

100.100 " were synthesized by literature procedure. 1-Methylimidazole,

bis(malonato)borate
NaBF,, butyl bromide, pentyl bromide, and hexyl bromide were purchased from Aldrich

Chemicals.

Cell viability assay (MTT assay)

The boron compound (20 mg) was dissolved in DMSO (1.0 mL) and the resulting
solution was either diluted with MEM (Modified Eagle Medium) (10% FCS) or BPA
was directly dissolved in the same medium. In a Falcon 3072, 96-well culture plate,
A549 and HCT116 cancer cells (1 x 10° cells/well) were cultured in five wells with
the medium containing boron compounds at various concentrations (1-100 ppm) and
incubated for 72 h at 37 °C in a CO; incubator. DMSO is typically non-toxic at the
concentrations less than 0.5% and control experiments confirmed that DMSO was

non-toxic at the concentrations used in the present experiments. After incubation, the

_3_
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medium was removed, the cells were washed three times with phosphate-buffered saline
[PBS (-)], and the CellTiter 96 AQueus Non-Radioactive Cell Proliferation Assay [MTT,
3’-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was used for counting cells
on a Microplate reader. The results are presented in Table 3 as the concentration of
agent that resulted in a cell culture with 50% of the cell number of the corresponding

untreated group (ICso).

In vitro boron incorporation into A549 and HCTI116 cancer cells

A549 and HCTI116 cancer cells were cultured in Falcon 3025 dishes (150 mm). When
the cell population had increased to fill the dish (3.6 x 107 cells/dish), the boron
compounds and BPA (10 pM) were added. The cells were incubated for 3 h at 37 °C
in a medium of MEM and 10% FBS (20 mL). The cells were washed thrice with
Ca/Mg-free PBS (-), collected by a rubber policeman, digested with a mixture of 60%
HCl04-30% H,0, (1:2) solution (2 mL), and then decomposed for 1 h at 75 °C. After
filtration through a membrane filter (Millipore, 0.22 mm), the boron concentration was
determined by ICP-OES (Perkin Elmer. Ltd, Optima 7300). Each experiment was
performed in triplicate. The average boron concentration of each fraction is indicated in

Figure *.

Synthesis of 1-alkyl-3-methylimidazolinium borates (1-9).

General procedure 1-Alkyl-3-methylimidazolinium bromide (20.0 mmol) was dissolved
in 30 mL of acetone and 1.2 equiv. of NaBF,, KBOB, or KBMB, in 10 mL of
acetone and 1 mL of water, were added. The mixture was stirred at 25 °C for 24 h,
then the precipitate was filtered off with aluminum oxide, washed with cold acetone
(10 mL x 3) and dried under reduced pressure. The target compounds were obtained as

colorless liquid.
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1-Butyl-3-methylimidazolinium tetrafluoroborate (1): Yield: 81% (3.7 g). 'H NMR
(DMSO-ds) & 1.25 (t, *Juu = 6.0 Hz, -CH,—~CH3), 1.61 (sextet, *Jyu = 6.0 Hz, —CH,—
CH,—CH3), 2.12 (quintet, *Jyy = 6 Hz, -CH,~CH,—CH3), 4.21 (s, N-CH3), 4.52 (t, *Ju
u = 6 Hz, N-CH,), 8.05, 8.12 (s, H-C=C-H), 9.46 (s, N=C—-H). “C NMR (DMSO-d;)
8 13.23 (-CH,-CHs3), 18.78 (-CH,—CH3), 31.38 (~CH,—CH,—CH3), 35.75 (N-CHs), 48.56
(N-CH,), 122.43, 123.78 (H-C=C-H), 136.68 (N=C-H). ''"B NMR (DMSO-ds) & —1.30.

1-Pentyl-3-methylimidazolinium tetrafluoroborate (2): Yield: 78% (3.7 g). 'H NMR
(DMSO-ds) & 1.58 (t, *Juu = 6.0 Hz, -CH,—~CH3), 1.93 (sextet, *Jyu = 6.0 Hz, —CH,—
CH,-CHj3), 2.01 (quintet, *Jyy = 6 Hz, -CH>-CH,—CHs), 4.56 (s, N-CH3), 4.86 (t, *Ju_
u = 6 Hz, N-CH,), 8.38, 845 (d, *Juwu = 3 Hz, H-C=C-H), 9.77 (s, N=C-H). “C
NMR (DMSO-ds) & 13.66 (—CH,—CH;), 21.48 (-CH,—CHj), 27.61 (~CH,~CH,~CH),
29.05 (-CH-CH,-CH,), 35.70 (N-CHs), 48.81 (N-CH,), 122.38, 123.73 (H-C=C-H),
136.63 (N=C-H). "B NMR (DMSO-ds) & —1.29.

1-Hexyl-3-methylimidazolinium tetrafluoroborate (3): Yield: 87% (4.4 g). 'H NMR
(DMSO-d¢) & 1.58 (t, *Jun = 6.0 Hz, -CH,~CH;), 1.93 (m, —~CH,~CH,~CH3), 2.87
(quintet, *Jyu = 6 Hz, -CH,~CH,-CH,), 4.57 (s, N-CH;), 4.88 (t, *Jun = 6 Hz, N-
CH,), 8.40, 8.48 (d, *Juu = 3 Hz, H-C=C-H), 9.79 (s, N=C-H). "C NMR (DMSO-d)
8 13.81 (-CH,—CH3), 21.92 (-CH,—CHj), 25.17 (~CH,~CH,—CH,—CH3), 29.38 (—CH,—
CH,-CH,-CH,), 30.60 (-CH,-CH,-CH;), 35.74 (N-CH;), 48.80 (N-CH,), 12242,
123.77 (H-C=C-H), 136.66 (N=C-H). "B NMR (DMSO-ds) & —1.29.

1-Butyl-3-methylimidazolinium bis(oxalato)borate (4): Yield: 67% (4.4 g). 'H NMR
(DMSO-ds) & 1.61 (t, *Juu = 6.0 Hz, -CH,—~CH3), 1.97 (sextet, *Jyu = 6.0 Hz, —CH,—
CH,—CH3), 2.84 (quintet, *Jiy = 6 Hz, -CH,~CH,—CH3), 4.63 (s, N-CH3), 4.95 (t, *Ju
nw = 6 Hz, N-CH,), 8.56, 8.65 (d, *Jyy = 6 Hz, H-C=C-H), 10.17 (s, N=C-H). “C
NMR (DMSO-ds) 6 13.17 (-CH,—CHj3), 18.64 (—~CH>—CH3), 29.46 (oxalate ring), 31.32
(-CH,~CH,—CH3), 35.74 (N-CH3), 48.37 (N-CH,), 122.33, 123.58 (H-C=C-H), 136.63
(N=C-H), 208.71 (oxalate ring C=0). ''B NMR (DMSO-ds) & 6.35.
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1-Pentyl-3-methylimidazolinium bis(oxalato)borate (5): Yield: 61% (4.1 g). 'H NMR
(DMSO-ds) & 1.55 (t, *Jun = 6.0 Hz, -CH,-CH;), 1.94 (m, -CH,-CH,-CH;), 2.82
(quintet, *Jyy = 6 Hz, -CH,~CH,—CH,), 4.60 (s, N-CH;), 491 (t, *Jun = 6 Hz, N-
CH,), 8.51, 8.59 (s, H-C=C-H), 10.08 (s, N=C-H). "C NMR (DMSO-ds) & 13.69 (-
CH»—CH3), 21.47 (-CH»—CHs), 27.56 (-CH,—CH,—CH3), 29.08 (-CH,—CH»—CH»), 29.51
(oxalate ring), 35.76 (N-CHj), 48.66 (N-CH,), 122.37, 123.65 (H-C=C-H), 136.66
(N=C-H), 208.70 (oxalate ring C=0). ''B NMR (DMSO-ds) & 6.89.

1-Hexyl-3-methylimidazolinium bis(oxalato)borate (6): Yield: 67% (4.7 g). 'H NMR
(DMSO-ds) & 1.55 (t, *Jun = 6.0 Hz, -CH,~CH3), 1.96 (m, -CH,~CH,~CH3), 2.83 (m,
~CH,-CH,—CH,), 4.61 (s, N-CHs), 4.92 (t, *Juu = 6 Hz, N-CH,), 8.51, 8.61 (d, *Juu
= 3 Hz, H-C=C-H), 10.16 (s, N=C-H). “C NMR (DMSO-ds) & 13.68 (-CH,—CHa),
21.77 (-CH,~CH3), 25.03 (~CH,~CH,-CH,~CH3), 29.32 (~CH,~CH,~CH,-CH,), 29.44
(oxalate ring), 30.46 (~CH,~CH,~CHs), 35.73 (N—CH3), 48.64 (N-CH,), 122.32, 123.57
(H-C=C-H), 136.63 (N=C-H), 208.62 (oxalate ring C=0). "B NMR (DMSO-ds) &
7.30.

1-Butyl-3-methylimidazolinium bis(malonato)borate (7): Yield: 94% (6.7 g). 'H NMR
(DMSO-ds) & 0.82 (t, *Juu = 6.0 Hz, -CH,~CHs), 1.20 (sextet, *Juy = 6.0 Hz, -CH,—
CHy—CHj;), 1.73 (quintet, 3Jun = 6 Hz, —CH,—CH,—CHj3), 3.47 (s, malonate ring —CH,
-), 3.88 (s, N-CH;), 4.21 (t, *Jyuu = 6 Hz, N-CH,), 7.84, 7.93 (d, *Juu = 3 Hz, H-
C=C-H), 9.47 (s, N=C-H). *C NMR (DMSO-d¢) & 13.19 (-CH,~CHs), 18.64 (~CH,—
CH;), 31.34 (-CH,~CH,—CH3), 35.76 (N-CH;), 48.34 (N-CH,), 49.41 (malonate ring C—
H), 122.23, 123.57 (H-C=C-H), 136.63 (N=C-H), 171.4 (oxalate ring C=0). "B NMR
(DMSO-ds) 8. 2.93

1-Pentyl-3-methylimidazolinium bis(malonato)borate (8): Yield: 91% (6.7 g). 'H NMR
(DMSO-ds) & 0.83 (t, *Jyuu = 6.0 Hz, -CH,~CH;), 1.18 (m, -CH,~CH,—CH3), 1.27 (m,
—~CH,-CH,-CH3), 1.77 (quintet, *Jyy = 6 Hz, -CH,~CH,—CH,), 3.39 (s, malonate ring
~CH,-), 3.87 (s, N-CHs), 4.19 (t, *Juu = 6 Hz, N-CH,), 7.79, 7.88 (d, *Juu = 3.0
Hz, H-C=C-H), 9.37 (s, N=C-H). *C NMR (DMSO-ds) & 13.69 (-CH,~CH3), 21.47 (-
CH,-CH3), 27.55 (-CH,—CH,—CH3), 29.07 (—-CH,—CH,—CH»), 35.76 (N-CHj), 48.65 (N—

_6_
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CH,), 49.39 (malonate ring), 122.36, 123.65 (H-C=C-H), 136.65 (N=C-H), 171.2
(malnate ring C=0). ''B NMR (DMSO-ds) 5. 2.84

1-Hexyl-3-methylimidazolinium bis(malonato)borate (9): Yield: 93% (7.1 g). 'H NMR
(DMSO-ds) & 0.79 (t, *Jun = 6.0 Hz, -CH,~CH;), 1.20 (m, —-CH,—~CH,—CH3), 1.75
(quintet, *Juy = 6 Hz, -CH,-CH,—CH,), 3.47 (s, malonate ring —CH,-), 3.88 (s, N—
CH;), 420 (t, *Juwu = 6 Hz, N-CH,), 7.84, 7.93 (d, *Jun = 3 Hz, H-C=C-H), 9.48 (s,
N=C-H). “C NMR (DMSO-ds) & 13.71 (-CH,~CH;), 21.79 (-CH,—CH3), 25.03 (~CH,-
CH,—CH,-CH3), 29.35 (-CH,-CH»—CH,—CH,), 30.48 (—-CH,—CH,—CHj3), 35.74 (N-CHa),
48.60 (N-CH,), 49.22 (malonate ring), 122.31, 123.56 (H-C=C-H), 136.63 (N=C-H),
170.62 (malonate ring C=0). ''B NMR (DMSO-ds) 5. 2.73
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Results and Discussion

The synthetic route used to prepare 1-alkyl-3-methylimidazolium salts is depicted in
Scheme 1. The imidazolium bromides [C,MIM]Br (C,: n = 4 butyl, n = 5 pentyl, n =
6 hexyl) are prepared in high yield from I1-methylimidazole and the appropriate alkyl
bromide in a modification to the literature procedure for the related
1-alkyl-3-methylimidazolium halides. The synthesis of [C.MIM]Br has been describe
previously using a somewhat more complicated method. The relatively electron
withdrawing effect of the bromide activates alkyl bromide, CH3;(CH,),Br, to such an
extent that it reacts smoothly with 1-methylimidazole in the acetonitrile solvent to give
target compound. However, as the alkyl chain in the alkyl bromide precursor increases

in length, the temperature and reaction time required to complete the reaction also

increases.
PN
S~
N© N+ R—Br
0 K@ 0
CH3CN, reflux
\N/\ﬁ/R \N/\N NaBFy \N/\%/R 5
/ & \—/ B
R = Cy, Cs, Cg R=C41,C52, Cs3
R=C;7,C58,Cs9
o o
0 0
I :Biei K®
@ 0 07 ¥y
0 0
@ O O
~N R A
e/ O/ \O
o 0

R=C.4, Cs5 Cs 6

Scheme 1. Preparation of 1-alkyl-3-methylimidazolium borates (1-9).
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Treatment of 1-alkyl-3-methylimidazolium bromides with sodium tetrafluoroborate
(NaBF,), potassium bis(oxalate)borate (KBOB), and bis(malonate)borate (KBMB) in
acetone gave the target compounds 1-9 in good yields (1 81%, 2 78%, 3 87%, 4 67%,
5 61%, 6 67%, 7 94%, 8 91%, 9 93%). For imidazolium borates were filtered off with
aluminum oxide (basic) in order to remove the NaBr or KBr salts formed during the
anion exchange reaction, then washed with cold acetone solvent. Unfortunately, in the
cases of KJ[bis(oxalate)borate] and K[bis(malonato)borate], the solubility in acetone was
so low that the reaction did not proceed unless a solvent mixed with water was used.
When the reaction was carried out using a mixed solvent, the bis(malonato)borate
coordinated 1-alkyl-3-methylimidazolium ionic liquids could be obtained with a very
high yields. The imidazolium borate ionic liquids synthesized in this way were then
dried under vacuum for 2 days using Schlenk technique. The salts 1-9 are liquid form
at room temperature and were further purified by filtration through silica and left at 60
°C for 2 days. They are stable in air and showed no signs of decomposition up to 100
°C. Compounds 1-9 showed the characteristic vibrational absorption bands of the C-H
unit and C=O unit in their infrared (IR) spectra between 3150 ~ 2950 cm' and
between 1708 ~ 1734 cm', respectively. Diagnostic signals for compounds 1-9 were
observed at around & 0.79 ~ 1.61 and 3.87 ~ 4.63 in the 'H NMR spectra and at
around & 13.17 ~ 13.81 and 35.70 ~ 35.76 in the "C NMR spectra of the terminal —
CH; and N-CH; units and at around & 4.19 ~ 4.95 in the 'H NMR spectra and at
around & 48.37 ~ 48.81 in the "C NMR spectra of the "N-CH, unit of the alkyl

chain.
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Determination of ICsy and Incorporation of Boron into A549 and HCT116 Cells

A549 adenocarcinomic human alveolar basal epithelial and HCT116 human colorectal
carcinoma cells were treated with compounds 1-9 and BPA for 3 days, after which the
cell viability was determined by the MTT
[3’-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. As can be seen
from Table 1, compounds 1-9 showed higher cytotoxicity than BPA, with ICs, (the half
maximal inhibitory concentration) values in the range of 39.01-838.8 uM. Interestingly,
the BOB and BMB anion coordinated compounds (4-9) showed higher cytotoxicity than
the BF, anion coordinated 1-alkyl-3-methylimidazolium ionic liquids (1-3) in A549 and
HCT116 cells. As expected, as the number of carbons in alkyl chain and the size of

borates increased, the cytotoxicity increased.

Table 1. Cytotoxicity (ICs) of A549 and HCTI116 cells.

Cell Viability ICsy (uM)*

Comp.

AS549 HCT116
No.
1 231.98 £ 3.6 838.83 + 78.3
2 89.16 = 12.4 27027 £ 12.4
3 4481 = 1.3 106.06 + 13.4
4 169.18 + 1.8 709.33 + 89.3
5 89.36 = 5.7 154.57 £ 25.5
6 < 39.0625 77.57 £ 5.6
7 169.28 £ 11.4 458.71 + 100.1
8 64.58 + 0.6 167.49 + 26.1
9 < 39.0625 56.24 + 12.5
BPA 1180.1 + 57.3 964.6 + 269.6

“A549 and HCTI116 cells were incubated for 72 h in the presence of compounds 1-9
and BPA, and then the percentages of viable cells were determined by MTT assay. The
drug concentrations required to inhibit cell viability by 50% (ICs)) were determined
from semi-logarithmic concentration-response plots, and the results represent the means

+ s.d. of triplicate samples.
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We next examined the level of intracellular accumulation of the compounds 1-9 by
determining their boron concentrations via inductively coupled plasma optical emission
spectroscopy (ICP-OES). As shown in Table 2, although the toxicity increases as the
number of carbon atoms in the alkyl substituent increases, it can be seen that the
intracellular accumulation becomes better as the lipophilicity increases. On the other
hand, it was found that as the size of the boron anion increased, the concentration of

boron accumulated in cells decreased.

Table 2. Intracellular boron uptake of compounds 1 — 9.

Boron Concentration (ppm/3 x 10° cells/mL)*
Comp. No.
A549 HCTI116
1 0.784 £ 0.005 0.643 + 0.002
2 0.850 + 0.005 0.680 + 0.001
3 0.974 + 0.004 0.797 + 0.003
4 0.358 = 0.002 0.231 + 0.001
5 0.411 £ 0.001 0.354 + 0.001
6 0.545 + 0.002 0.551 + 0.001
7 0.331 + 0.001 0.201 + 0.001
8 0.382 + 0.003 0.330 + 0.005
9 0.477 + 0.003 0.463 + 0.001
BPA 4.47 £ 0.005 437 + 0.002

“HCT116 cells (3 x10° cells) were incubated for 3 h in the presence of compounds 1—
9 or BPA (10 ppm). After three washes, the accumulated boron concentrations were
determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). The

values are the mean = SD from three samples.
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Conclusions

In this study, we have described the synthesis, characterization, and biological
activities of a series of butyl-, pentyl-, and hexylimidazolium cation with various borate
anions for BNCT agents. We have developed a general and versatile method for the
preparation of  imidazolium-based ionic liquids with bromide anion.
1-Alkyl-3-methylimidazolium borate ILs were prepared by simple anion exchange and
were used to inhibit the growth of tumor cells. As above mentioned, the ionic liquid
was expected to show low toxicity due to its high solubility in polar solvents such as
water, but it showed higher toxicity than BPA due to the characteristics of the alkylated
imidazole cation. In addition, as the size of boron anion increased in the order of BF,,
BOB, and BMLB, toxicity increased, and intracellular boron concentration decreased.
Through the results of this study, it was confirmed that the composition and structure
of boron anion affect the toxicity and accumulation of boron concentration, and the
possibility of developing an effective ionic liquid for BNCT using various boron anions

was confirmed.
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