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ABSTRACT

Deep Reinforcement Learning-Based RIS-Aided Wireless Communication Systems

K M Faisal

Advisor: Prof. Choi, Wooyeol, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

Reconfigurable Intelligent Surface (RIS) can offer a customizable wireless

transmission and is regarded as an incredibly crucial enabling technology when

used as reflectors for current wireless base stations (BSs) to overcome the

blockage challenges of millimeter wave (mmWave) wireless communications

systems. It is a promising sixth-generation (6G) and beyond wireless services

strategy to offer Gbps data throughput for networks operating at frequencies

beyond 28 GHz. Furthermore, RIS has a tremendous opportunity to mitigate

the blockage impact and significantly lower the needless switching because of

its capacity to enhance the scattering environment and produce reflecting signal

multipath. However, because there are so many RIS elements, optimising the

BS and reflector RIS configuration is complex and will result in performance

loss. Due to the growing popularity of deep reinforcement learning (DRL)

in this thesis, we employ a twin-delayed deep deterministic policy gradient

(TD3) approach to solve non-convex optimization problems where the BS gets

state data from the RIS, composed of feedback from the channel states of

users. Consequently, for real-world systems with continuous phase-shift and

beamforming matrix control, the BS ensures optimal action constituted of

v



the transmission power allotment of BS and phase-shift configuration in the

Nakagami-m fading environment. The experimental findings demonstrate that the

suggested solutions outperform other existing benchmarks.
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한글요약

심층강화학습기반 RIS지원무선통신시스템연구

파이살케이엠

지도교수:최우열

컴퓨터공학과

조선대학교대학원

재구성 가능한 지능형 표면(RIS)은 맞춤형 무선 전송을 제공할 수 있으며 밀

리미터파(mmWave)무선통신시스템의차단문제를극복하기위해현재무선

기지국(BS)의 반사경으로 사용될 때 매우 중요한 활성화 기술로 간주됩니다.

28GHz 이상의 주파수에서 작동하는 네트워크에 Gbps 데이터 처리량을 제공

하는것은유망한 6세대(6G)및무선서비스를넘어서는전략입니다.또한 RIS

는산란환경을개선하고반사신호다중경로를생성할수있는능력때문에막

힘영향을완화하고불필요한전환을크게낮출수있는엄청난기회를가지고

있습니다. 그러나 RIS 요소가 너무 많기 때문에 BS 및 반사경 RIS 구성을 최

적화하는것이복잡하고성능손실이발생합니다.이백서에서심층강화학습

(DRL)의인기가높아짐에따라우리는 BS가피드백으로구성된 RIS에서상태

데이터를가져오는비볼록최적화문제를해결하기위해쌍지연심층결정적

정책 기울기(TD3) 접근 방식을 사용합니다. 사용자의 채널 상태에서. 결과적

으로 연속 위상 편이 및 빔포밍 매트릭스 제어가 있는 실제 시스템의 경우 BS

는 Nakagami-m페이딩환경에서 BS의전송전력할당및위상편이구성으로

구성된최적의동작을보장합니다.실험결과는제안된솔루션이기존의다른

벤치마크를능가함을보여줍니다.

vii



I. INTRODUCTION

Web-enabled gadgets, such as smartphones, have emerged as vital tools for

global communication, information transfer, and entertainment. The academia

and industry are now focusing on sixth generation wireless technology as the

wireless sector is in a highly exciting moment where the fifth generation (5G)

technology has been largely standardized and commercialized. According to the

Cisco Annual Internet Report (2018-2023), mobile connectivity is expected to

be available to more than 70% of the global population by 2023 and the number

of overall mobile subscribers is expected to increase from 5.1 billion in 2018

to 5.7 billion in 2023 [1]. Inter-cell synchronization approaches have been built

to solve the interference as cellular networks have become denser owing to

more aggressive frequency reuse. However, the bandwidth of a network is still

constrained owing to the irregularity of wireless transmission and accessible

spectrum [2].

The limited availability of spectrum for communication systems is

encouraging a gradual migration towards the higher frequency bands with

abundant unoccupied spectra. However, as the radio frequency increases, the

electromagnetic (EM) waves become more susceptible to obstruction from

objects such as buildings in metropolitan regions. Adding more relays and base

stations (BSs) to minimize communication distances and provide better network

coverage consumes more energy. As a result, employing traditional cellular

methods to assure wireless service coverage is challenging. To deal with the

spectrum scarcity of communication systems,reconfigurable intelligent surfaces

(RISs) have evolved as an important wireless network resolution for attaining

high spectrum and energy efficiency [3]. For upcoming wireless communication
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networks such as beyond 5G, the RIS is projected as viable technology with

the potential to significantly increase link quality and minimize the possibility

of blockages. Small, low-cost passive components are piled together in the RIS

to reflect incoming signals with a controllable phase shift toward the receiver.

The comparatively simple deployment of RIS-assisted communications with

affordable passive parts makes them valuable in smart radio contexts.

However, some certain challenges must be addressed before obtaining

the advantages of RISs. To enhance the phase-shift configuration, several

investigations are being undertaken. The majority of currently used methods are

built on the convex optimization concept, which can lead to poor performance

and requires a lot of time because the method needs to go through several

rounds before it converges. The performance of the network would surely benefit

from adjusting the reflection coefficients of every component on a continuous

basis. However, doing so would be cost-prohibitive given the intricate design

and high-tech nature of the massive high-precision components and with more

reflecting components, their complexity would rise as well. Thus the first

difficulty in establishing 6G networks with RIS support is the layout of adjustable

components.

Owing to their ability to learn and the requirement of operating over wider

search areas, machine learning (ML) techniques have attracted attention in

wireless communications [4]–[8], especially in the field of RISs. Over the last

few years, several researchers have attempted to overcome these obstacles.

They have been working with various ML algorithms for the communication

sector so that the infrastructure can independently solve all challenges. Most

ML methods work by learning the parameters and constructing an optimization

model from the input information for the goal function. In the present arena,

2



as a massive amount of data must be handled, the efficiency and effectiveness

of mathematical optimization procedures significantly impact the popularity and

application of ML models [9]. Theoretically challenging nonlinear and non-

convex problems can be solved using artificial intelligence (AI) approaches.

Machine learning strategies have been used to accomplish phase control in

wireless systems with RIS assistance and are more adaptable to stochastic system

models than optimization techniques [10]. Specifically, deep reinforcement

learning (DRL), which is regarded as an incredible potential contender in the

future communication network confronting a variety of requirements, pursues the

ideal approach through an agent-environment interaction learning process[11].

DRL occupies an important place for optimizing the RIS phase shifts with no

need for offline training and dataset with labeling.

A. Related Works

The phase shift optimizations in the communication systems with RIS support

have been researched in various early works of literature. The received signal will

considerably affect the phase alterations on the RIS.The study in [12] focused

on a single-user multi-user multiple-input, single-output (SU-MISO) system

supported by RIS and determined the values of the phases to optimize the overall

signal level obtained at the user end. The adaptive transmission situation of a

RIS-aided uplink orthogonal frequency division multiplexing (OFDM) system

was explored by the authors of [13], which relied on semidefinite relaxation

technology to increase the mean achievable rate. By enhancing the RIS with

discrete phase shift and transmit beamforming which is continuous of the BS, the

study in [14] examines a RIS-aided downlink system architecture that reduces

the transmit power of BS. Adjusting the incoming wave characteristics while

3



taking into account realistic reflection coefficients and constrained RIS operating

connection, a passive beamformer is suggested in [15] to attain an an asymptotic

optimum result. Using statistical channel state information, the authors of [16]

address the issue of optimising downlink capacity to build the ideal RIS phase

shift. The authors of [17] take into account a comparable MISO downlink

system with RIS assistance. Manifold optimization and fixed point iteration

approach, which have been demonstrated to be beneficial in overcoming the unit

modulus limitations of RIS-aided system, are used to resolve the collaborative

optimization of the phase shifts and the access point transmit beamforming,

respectively.

To increase the attainable rate of OFDM, it was suggested by [18] to

optimize reflection coefficients of the RIS and allocation of transmit power. The

performance of Spectral Efficiency in MISO systems with zero-forcing in RIS-

assisted systems was evaluated by the authors in [19]. In order to maximize SE,

nonlinear proportional rate constraints are applied to both the phase shift at the

RIS and the transmission power allotment at the BS. A mathematical structure

for understanding the error performance of communication networks relying on

RIS is offered in [20].

By simultaneous phase shifts optimization at the RIS and precoding matrices

at the BS under the power and unit modulus limitations imposed on each

BS, [21] focused on enhancing the weighted sum rate. The authors of [22]

investigated the through the optimal linear precoder (OLP), which enhances the

minimal level SINR related to a specified power restriction for specified phase

matrix of RIS and developed deterministic approximations for asymptotically

OLP parameters, to have better the RIS phase matrix. To optimize the WSR

while adhering to the BS transmit power restriction, a combined passive and

4



active beamforming issue is focused in a multiuser downlink MISO system

with RIS assistance using a fractional programming technique in [23]. In

[24], convex radio resource allocation was dealt with by integrating alternating

optimization and majorization-minimization to produce a low-complexity and

convergent method in a sum-rate maximization approach for a RIS-based,

multiuser MIMO system. The RIS phase components and the BS transmit

beamforming vector were optimized for the purpose of maximization of the

secrecy rate using the alternative optimization (AO) algorithm by the authors

in [25] and [26]. However, their concepts were not extended to secure multi-

user RIS-assisted communication systems. The reflecting beamforming at RIS

and the beamforming at BS in RIS-aided communication networks, which are

less suitable for extensive systems, were optimized primarily using conventional

optimization approaches in the research above. The processing demands of large-

scale heterogeneous communication networks are challenging for complicated

numerical optimization and mathematical calculation techniques. The model-

free machine learning approach has emerged recently as an outstanding tool for

addressing theoretically unsolvable non-linear difficulties and high-dimension,

complex EM environments of communication systems [27]–[30]. ML Methods

can be utilized in upcoming 6G wireless communication systems to cope

with non-trivial difficulties caused by extraordinarily high dimensions in big-

scale MIMO systems, according to an enormous body of research concerns

and findings [31]. A minimal variance unbiased estimator-based RIS channel

estimation approach is utilized in [32]. By assigning the arriving pilots to the

cascaded and direct channels, a supervised learning architecture was employed

in [33] for the estimation of channel. Utilizing methods from both supervised

and unsupervised deep learning, the authors of [34] suggested strategies to

5



the overhead problem of beam training. However, the solutions in [32]–[34]

considered that RIS does not operate independently and is managed by a different

base station. Moreover, supervised deep learning necessitates a significant

dataset-gathering stage prior to training. Owing to its effectiveness in actual

environments,reinforcement learning has, most recently, gained much interest

in the subject of study [35]. The combined non-convex optimization issue was

addressed in [11] by using the DRL while taking into account beamforming

interference management restrictions and intricate resource allocation. The

optimization of network coverage [36] and hybrid beamforming matrices

[37] for mmWave systems was developed using DRL.In the RIS-assisted

communication system, an optimization-driven DRL approach was investigated

for the optimization issue of joint beamforming [38] and optimizing the user SNR

[39]. Subject to the worst budget power restriction of RIS and the least desirable

data rate demand of the receiver, a power reduction problem in a MISO system

with RIS assistance was solved using the DRL technique in [40].

B. Contributions

The Rayleigh fading model is well acknowledged to be a sound concept for

the fading that occurs in several wireless systems for communication [41],

[42]. However, it might not be a viable option in case of a realistic RIS-

aided communicative context as the RISs are deliberately located for taking the

advantage of line-of-sight (LoS) connections between the endpoints. Numerous

assessment projects [43], [44] demonstrate that considering the Nakagami-m

distribution provides a much better match for the fading channel distribution.

There is greater freedom with the Nakagami-m distribution due to the extra
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variable. Earlier attempts to enhance phase shift and transmit beamforming in

RIS-aided communications relied on DRL algorithms such as DDPG, which

are unsteady and strongly rely on determining the appropriate hyperparameters.

These conventional DRL algorithms consistently overestimate the Q values of

the critic value network, and when estimation errors accumulate over time,

the agent may eventually find itself in a local optimum. With the help of the

TD3 approach, we propose a collaborative design of phase shifts and transmit

beamforming to optimize the sum rate in RIS-aided systems, which would

overcome the shortcomings of the current DRL algorithm. The employment

of the TD3 approach in a Nakagami-m fading environment has not yet been

discussed in the literature, despite the fact that there have only been a few research

on the application of DRL for the optimization of phase shift and transmit

beamforming in RIS-aided communication systems. The contributions of this

thesis are described as follows:

• To optimize the average sum rate of the users, we formulate an

optimization problem that aims to appropriately allocate the downlink

transmit beamforming and effectively determine the phase shifts of the

RIS components in RIS-aided communication systems. With the assistance

of RIS, the suggested framework is able to serve users who experienced

blocked conditions, hence enhancing the overall data rate.

• The sum rate maximization problem is a non-convex problem owing to

multiuser interaction. We elicit an effective algorithm-based TD3 approach

that tackles the drawbacks of traditional DRL by concentrating on lowering

the overestimation bias and eradicating the requirement for gathering

massive training datasets in order to resolve this NP-hard problem of

7



continuous action space.

• We investigate a real-world RIS-aided communication system assuming

Nakagami-m fading between the RIS and the user as well as between

the BS and the RIS. To analyze the performance of the system under

consideration, we select helpful metrics. The simulation results show that

our suggested DRL approach effectively solves the joint optimization issue

and outperforms the other benchmarks.

C. Thesis Layout

The thesis is organized as follows. In Chapter II, an overview of the structural

design of the RIS is discussed. Section III introduces RL designs that have

been applied in the literature. Then in chapter IV, we describe the system model

and problem formulation of joint beamforming and phase shift design. Next in

Chapter V, we describe the proposed solution and simulation analysis of RIS-

TD3 framework. And finally, we conclude the thesis in Chapter VI.
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II. Overview of Reconfigurable Intelligent

Surface

RIS models are primarily created using metamaterials, which are periodically

aligned subwavelength elements capable of providing complete control over EM

actions of the metasurface and consist of unit cells [45]–[47]. This man-made

EM material surface can be controlled electrically via integrated electronics

and has unique wireless communication characteristics [48]. More precisely,

an RIS functions by the placement of a large number of low-cost antenna

components with the goal of controlling re-radiation and capturing energy. In the

literature, varactor-centered and positive-intrinsic-negative diode based control

methods were the standard techniques used [49]–[51]. To enhance the user

communication quality and improve the properties of incident waves, control

signals are transmitted by a BS to an RIS controller in an RIS-supported wireless

network. The RIS does not perform digitizing because it operates as a reflector.

Consequently, if properly implemented, the energy consumption of the RIS will

be significantly lower than that of standard relays such as amplify-and-forward

relay [52]–[54]. As illustrated in Figure 1, the practical EM wave-based tasks that

RISs can employ in wireless communications are as follows:

• Reflection: An impacting radio wave is reflected in a particular direction,

which may not be in the same direction as the incidence wave direction.

• Refraction: An impacting radio wave is refracted which may not be in the

same direction as the incidence wave.

• Absorption: This entails creating a smart surface that cancels the refracted

and reflected radio waves corresponding to a certain incident radio wave.

9



Reflection Refraction

Absorption Focusing

Figure 1: Electromagnetic wave-based activities of a reconfigurable intelligent surface.

• Focusing: It entails directing an impinging radio beam to a certain point.

A. Perspective of physics

EM waves encounter dispersed particles while traveling across space, which

attenuates the signal. The physics-based bedrock of surface electromagnetism

is the surface equivalence theorem. The Huygens principle asserts that each point

across a wavefront is a generator of spherical wavelets, and additional wavelets

emerging from various sites overlap. The wavefront is formed by the addition of

several spherical wavelets. The EM field radiated by an RIS can be computed and

analyzed based on the Huygens principle.

Figure 2 (a) [55], [56] illustrates a volume V occupied by several EM radiation

sources consisting of charges qi and currents Ji. Just outside the volume V ,

10



these sources generate a magnetic induction field B and an electric field E.

The arrangement of scatterers can be substituted by an arbitrarily thin layer of

particular magnetic currents Jm and electric currents Je that completely covers the

volume V , as per the Huygens principle. Magnetic currents can only be created

by cycles of electric currents with a limited depth. Hence, the layer thickness can

be electrically negligible but not zero. EM fields are scattered exclusively outside

the volume V by the corresponding surface currents Jm and Je, and all these EM

fields are identical to those formed by the original sources. Huygens’ surfaces

that are related to currents that disperse EM fields solely with one side may be

extended to metamaterials.

The boundary conditions are based on the fact that when an average tangential

field is applied to a thin sheet of polarizable objects, it induces magnetic Jms

and electric Jes surface currents, which may be linked to the applied fields using

magnetic surface admittance Ym and electric surface impedance Ze. Figure 2(b)

[57]–[59] shows a magnetic surface admittance Ym(x,y) and an electric surface

impedance Ze(x,y), which define the physical configuration of a generic sheet of

the metasurface. The mean applied field induces magnetic and electric currents

on the metasurface, creating a discontinuity between the fields above and below

the surface, thereby allowing wavefront modification.

B. Interaction between the cells

The RIS modulation is dependent on the intercell connection of tunable

chips, which regulate the scattering components of the metasurface to provide

the desired tunable functions. Wireless or cable communication is possible

among the underlying chip controllers. Because wired communication is easier

11
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Figure 2: Representation of (a) surface equivalent theorem scattered EM source and (b)

physical layout of the metasurface.

to combine with the controllers on the same chip, it is a better option;

however, in a significantly compact or large sized metasurface, wireless intercell

communication is an effective solution. With strict robustness requirements and

energy latency, the design guidelines for inter-communication procedures must

be practiced [18]. The exact application is determined by either the size of the

tile or the desired wavelength. Two separate connection pathways are shown in

the Figures 3 (a), (b) [24]. In case (a), the metasurface layer, which is the gap

between the plane at the back and the metasurface patches, is the first channel.

The antenna is a part of the chip, whereas the role of the waveguide is performed

by the plane at the back and metasurface patches. In case (b), a separate control

12



(a)

(b)

Figure 3: Communication channels: (a) metasurface substrate, (b) waveguide with

specific parallel plates.

plane is constructed by inserting additional metal slabs beneath the chip for the

second channel. As in the aligned-plate waveguide, monopoles supplied from the

chip could generate waves that travel in this barrier condition.

C. Relationship between the metasurface and the RIS

Metasurface is a two-dimensional planar metamaterial with EM properties.

Metamaterials have not been discovered in natural supplies, and they are

composed several tightly placed subwavelength resonating structures known as

meta-atoms or pixels [20]. The distinguishing characteristics are their ability to

shape EM waves in a variety of ways. Owing to their petite size, a significant

number of these closely packed atoms provide large degrees of freedom in

altering the incident EM waves. For instance, a metasurface can impose arbitrary

quasi-continuous [60] amplitude or phase profiles on the incident wavefronts

and exert fine-grained control over the dispersed electric field by carefully

incorporating its meta-atoms.
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In general, software and meta-atom oriented controllers are essential elements

of the RIS that influence the metasurface reconfiguration rate. The related power

consumption of static and reconfigurable metasurfaces is significantly different

because no active electrical circuits are required for static metasurfaces; they

can be completely passive. As energy is required to control the received signals

and switches for reconfiguration, metasurfaces with reconfigurable properties can

only be virtually passive. However, a specialized power supply is not required for

signal transmission after the metasurface has been appropriately calibrated.

D. Passive beamforming and RIS

When multiple antennas produce identical signal copies of the postponed signal,

beamforming occurs. Constructive interference occurs in geographic places

where the signal copies are collected simultaneously, whereas at other places,

destructive interference occurs. When multiple antenna send signals, the receiver

will collect better signals than when a single antenna transmits signals while

consuming the same total power. The time delays at the transmitting antennas are

set to create constructive interference at the receiver. This traditional array gain

demonstrates that the beamformed signal becomes more spatially concentrated if

there is an increase in array size. The received signal strength and surface area

are proportional, and depend on the number of elements of the transmitter. With

the delay in time, when the RIS re-radiates the chosen signal, an array gain is

produced to beamform the signal at the receiver, similar to the traditional manner.

The process of passive beamforming by the RIS between the BS and the user

by reflecting the signals to aid in communication is shown in Figure 4. The

RIS reflection coefficients can be modified by the BS using an RIS controller.

14



BS

Link : R
IS- BS

Link : Direct

Link : RIS-User

Reflecting element

Controller

User

RIS

Figure 4: Passive beamforming using an RIS.

Furthermore, passive beamforming at the RIS and transmit beamforming at the

BS must be developed together to increase communication performance [61].
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III. Reinforcement learning

The section of science that studies the theory and characteristics of learning

algorithms, their performance, and associated systems is known as ML. ML is

a wide multidisciplinary area that draws concepts from a variety of domains,

including information theory, AI, statistics, optimal control, optimization theory,

and a variety of other scientific, mathematical, and engineering disciplines

[27]–[30]. ML has touched nearly every scientific subject owing to its deployment

in diverse applications, which has a significant influence on research and society

[36]. Currently, ML is predominantly applied in autonomous systems, suggestion

engines, informatics, data mining, and recognition systems [31]. The ML

technique typically comprises two major phases: training and decision making.

In the training phase, a dataset is used to train and understand the model of the

system. During the decision-making process, the trained model is employed to

derive the projected output for every new input given to the system. This is a

commonly applied and effective ML method that learns about the environment

by performing various actions and determining the best operation strategy. The

two fundamental factors of RL are the environment and the agent. By applying

the Markov decision process (MDP) [62], the agent investigates the surroundings

and determines the action that must be implemented for the optimum result.

Q-learning (QL) is a straightforward and effective RL method in which a

model of the environment is not required; the goal is achieved based on the

reward.

When action a is chosen, Q(s,a) is the current value of the state s; 0 < α < 1

is the learning constant and 0 < φ < 1 is the discounting factor. The algorithm

operates as follows: the agent chooses an action at some state s. Given that the
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action a is implemented, it discovers the highest feasible Q-value in the following

state (s+ 1) and changes the current Q-value. The discounting factor provides

the choice of either rewarding in the future (i f >> 0) or presenting immediate

rewards (i f φ << 1). To improve the convergence and stability of the algorithm,

a constant is used to adjust the learning rate. QL has been previously used in

various wireless situations, such as in wireless sensor network routing [63]–[65].

It is simple to set up and exhibits an acceptable balance between memory and

energy needs.

A. Deep reinforcement learning

A subset of ML is deep learning (DL), which allows an algorithm to generate

projections and classifications without being explicitly programmed based on

the decisions of input data. Some cases of DL include QL, k-nearest neighbor

classifiers, and linear regression. DL algorithms may extract information from

raw data in a hierarchical manner by utilizing nonlinear processing components

of multiple layers for forecasting outcomes based on the desired objective

[66]. Recently, DL has attracted more interest from the academic community

because of its superior performance in areas such as computer vision, information

retrieval, speech recognition, and language processing [67]–[70]. As computing

power and graphic processors are improving daily [71], it is increasingly

becoming important for areas involving big data sets to deliver projected analytic

solutions.
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1. Twin Delayed Deep Deterministic Policy Gradient

Reinforcement learning is an AI technology that tries to understand about the

environment by choosing the best operating policy depending on various actions.

The RL is made up of two parts: an environment and an agent. Utilizing the

Markov decision process (MDP), the agent analyzes the environment and chooses

the appropriate action. The learning goal of the agent is to find out the optimal

policy for maximizing future rewards. To establish the best policy, two types of

techniques are commonly used: policy-based and value-based approaches. The

value function, the state, the instant reward, the action, and the policy are a few

essential aspects necessary to define the RL learning process [72].

The tuple
(

A ,S ,Ra,Pa(s→st+1

))

represents various parameters in MDP:

at ∈ A is a finite action space at time t, st ∈ S is a finite state space at time

t, rt ∈ Ra is the instantaneous reward which is delivered by the environment

for action at at time t, Pa(s→st+1
) is the transition probability towards the next

state s→ st+1 after performing action at from the current state st [73]. At time

t, the state belonging to the environment will migrate from the present state

st to another state st+1 when the agent executes action at . The possibility of

performing an action at depending on the state st is represented by the policy

π . The policy function meets the condition ∑at∈A π = 1. The reward function

evaluates the instant result from the action a in a particular state s, but the value

function evaluates the forthcoming rewards obtained through the action a in that

state s taken by the agent. The total amount of forthcoming discounted rewards

can be written as:
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R =
∞

∑
τ=0

γτr(τ+t+1), (1)

where, the discount factor is denoted by γ that is set to be 0 ≤ γ ≤ 1.

Upcoming rewards are discounted in order to focus on the present reward. The

significance of long-term gains in the present state is determined by the respect of

γ . The Q value function is stated as follows in the perspective of a specific policy

π:

Qπ (st ,at) = Eπ [R | s = st ,a = at ] (2)

Adjusting the Q-table is the main goal of Q-Learning by employing Bellman’s

equation as

Qπ (st ,at) =Eπ [rt+1 | s = st ,a = at ]

+ γ ∑
st+1∈S

Pa(s→st+1
)

(

∑
at+1∈A

π (st+1,at+1)Qπ (st+1,at+1)

)

(3)

To find the most optimum policies π∗, the Q-learning method is employed.

For the best policy, the optimum Q function from (21) may be written as

Qπ∗ (st ,at) = rt+1 + γ ∑
st+1∈S

Pa(s→st+1
)

max
at+1∈A

Qπ∗ (st+1,at+1) (4)
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It is possible to solve the Bellman equation cyclically, and recapitulating (22)

produces the best Q function. As a result, the recursive solution upon this update

technique of the Q function may be written as

Qπ∗ (st ,at)←(1−α)Qπ∗ (st ,at)+α
(

rt+1

+γ max
at+1

Qπ (st+1,at+1)

)

, (5)

where, for updating the Q function, α is used as the learning rate.

Throughout a relatively limited state and action space, the Q-learning method

is effective. Nevertheless, when the action and state space are huge, the algorithm

gets more difficult. Due to the huge Q-table, the Q-learning technique cannot

provide an efficient strategy under this circumstance. As a result, function

estimation is developed for solving issues with large action and state spaces.

The function approximator contains deep Q-learning (DQL), which is designed

for substituting the Q-table with a deep neural network (DNN). DQL is a

deep reinforcement learning (DRL) technique that utilises Q-values in a similar

manner to Q-learning, but without the Q-table [74]. The DNN estimates the

system model, policy function, and the action and state value function as a

combination of multiple non-linear functions, in which both the action and Q

function are represented by DNN instead of using exact mathematical modeling.

The input recieved by the DNN is the state obtained from the surrounding, which

provides approximated Q-values for each action the agent can take. Additionally,

since the NN is trained with parameters θ to assess the Q-values, it can not be

desirable to describe the Q-function solely on action and state alone in many

DQL aspects. The Q function of the agent, which assesses the current state-action

combination according to a policy, can be given by
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Qπ(st ,at ;ω) = Eπ [R | s = st ,a = at ] (6)

where, θ denotes the weighting parameters of the DNN employed in DQN.

Instead of actively adjusting the Q function just like in (21), the ideal Q value

function can be addressed utilizing stochastic optimization techniques employing

DRL as

ω(t+1) = ω t−η∇ωL(ω) (7)

where, ∇ω denotes the gradient of the loss function L(ω) and η indicates the

learning rate for updating ω . DNN is used as an estimator for the Q-value function

in the DQN method, using the parameter of weight ω . The present state st is given

as the input of the DNN, and the anticipated action at is retrieved from the output

of the DNN. After every epoch, the DNN parameter ω is modified to provide a

more refined Q-value estimate. Through training, the DNN can decrease the loss

function. The distinctions between the anticipated value of NN and actual target

values is expressed by the loss function as

L(ω) = (y−Q(st ,at | ω))2
(8)

The target y is determined by

y = rt+1(st ,at)+ γ max
at+1

Q(st+1,at+1 | ω trg) (9)
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where, ω trg and ω are the target and training networks, respectively, having

similar configurations.

Built on the actor-critic algorithm, DDPG is just an RL framework capable

of supporting continuous action sets. DDPG originates and decides actions based

on a parametric technique rather than the usual way of producing actions based

on chances.This algorithm combines an actor-based on value functions and a

critic-based on policy searches. The critic network uses NNs for training to

imitate an actual Q-table while avoiding the dimensional constraint. Rather than

the policy gradient that picks an unexpected action out of a predetermined

distribution, the actor-network is taught to generate deterministic policies. To

boost the convergence speed and reduce superfluous computation, the DDPG

method employs experience target network and replay buffer approaches. In

comparison to DQN [75], DDPG may adapt explicitly from raw inputs and needs

minimal training stages. The goal of DNN training is to enhance value function

prediction by changing the parameterization strategy v explicitly in the way of

the gradient as

J(ϒ) = ∑
s∈S

sd ∑
a∈A

πϒ(a | s)Q(s,a | ω) (10)

where the Q value estimated by the DNN using parameter ω is Q(s,a | ω),

and according to the policy πϒ, static distribution of state is indicated by sd . The

gradient of (28) following the theorem of deterministic policy can be expressed

as

∇ϒJ(ϒ) = Es∼sd
[∇aQ(s,a | ω)∇ϒπϒ(s)|a=πϒ(s)

]

(11)
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The actor-critic architecture is driven by the policy gradient in (29) and

modifies the DNN parameters ω,ϒ independently. The Q-network is updated by

the critic network as

ω t+1 = Tdsω∇ωQ(st ,at | ω t)+ω t (12)

The policy parameter ϒ is updated by the actor-network in a gradient direction

as

ϒt+1 = ϒt + sϒ∇aQ(st ,at | ω t)∇ϒπϒ(s)|at=πϒ(s)
(13)

where, sω and sϒ indicates the sizes of the steps. The temporal difference

between y and Q(st ,at | ω t) is given by Td .

The actor-network can estimate the action that ensures the optimum Q value

function while upcoming state is provided. The actor network is updated as

follows:

ωa
upωa

t −αa∇aQ
(

ωc
trg | st ,at

)

∇ωa
trn

π (ωa | st) (14)

where, the gradient of the actor-network and target critic-network are

∇ωa
trn

π (ωa | st) and ∇aQ
(

ωc
trg | st ,a

)

respectively. Supplied with the input st and

parameter ωa, π (ωa | st) signifies the actor network.

The critic network updates can be expressed by
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ωc
upωc

t −αc∇ωc
trn

L(ωc) , (15)

L(ωc) =
(

rt + γQ
(

ωc
trg | st+1,at+1

)

−Q(ωc | st ,at))
2 , (16)

where, ∇ωc
trn

L(ωc) is the gradient, concerning the critic network ωc. at+1 is

the actor target network action output, and critic network is updated by learning

rate αc. The training network updates significantly faster than the target network.

As shown in (32), with regard to the action the target critic network influences the

update of the actor network. With τ as their soft update coefficient, target actor

and critic networks update may be represented as

ωa
trg← (1− τ)ωa

trg + τωa

ωc
trg← (1− τ)ωc

trg + τωc (17)
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IV. System model and problem formulation

In this chapter, we describe the proposed scheme to for the collaborative design

of beamforming matrix and Phase shift matirix in RIS-aided system under

multiple performance metrics. To describe the proposed solution, we derive the

system model and formulate the constraints of RIS-assisted system into a deep

reinforcement learning problem.

A. System model

We take into account a downlink system that includes a MISO configuration,

as shown in Figure 5. The reflecting RIS is used to address signal obstruction

between the user and the BS. Acting as a reflecting array, RIS causes phase

shifting of impinging signals, and might be smartly configured depending on

the wireless communication system by using the meta-surfaces embedded with

electronic circuits. In the proposed system, potential obstacles block the straight

path between the user and the BS. While the RIS uses N = Na×Nb passive phase

shifters, with Na and Nb denoting the number of passive components for every

row and column respectively, the BS uses a uniform linear array (ULA) with M

antenna array. Considering a crowded metropolitan condition, it is anticipated

that the line-of-sight (LoS) between the BS and users is absent. The channels are

HBR ∈CN×Mand and hRU ∈CN×1 for the BS-RIS and RIS-user respectively. The

Nakagami-m distribution models both of them as independent random variables.

An intelligent controller is used to configure all phase shifters on the RIS. At

the user, the received signal with the constraint of total transmit power can be

expressed as:
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Figure 5: RIS-aided multiuser communication system

y = HBRΨhT
RUk

)Bu+wk

B ∈CM×K, (18a)

E {Λ} ≤P, (18b)

where, P represents the total BS transmit power and B denotes beamforming

matrix for the system. The transmitted signal is indicated by u fulfilling E
[

u2
]

=

1. The additive white Gaussian noise (AWGN) is states by wk with variance of σ2

i.e wk ∼ C N
(

0,σ2
)

. Λ = Bu(Bu)H is the conjugate transpose of beamforming

matrix and transmitted signal. The phase shift matrix of the RIS is defined as:
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Ψ = diag
(

e jϕ1 ,e jϕ2 ,e jϕ3 , . . . ,e jϕN
)

, (19)

The n-th element phase shift angle of the RIS is represented by ϕi ∈ [0,2π]

and diag(x1,x2, . . . ,xn) signifies a diagonal matrix with diagonal entries x1, ...,xn.

The probability density function (PDF) for the Nakagami-m distribution [76] of

|HBR| and

∣

∣

∣
hT

RUk

∣

∣

∣
are as follows

f|HBR||hRUk
|(x) =

2mm

Γ(m)Ωm
x2m−1e−

m
Ω

x2

, (20)

where |.| stands for the absolute value, Ω denotes the spread and m is the

shape of the parameters. The interference portion of the received signal with the

beamforming vector bl can be regarded as

I =
K

∑
l,l ̸=k

(HBRΨhT
RUk

)blul +wk (21)

At the kth user, the SINR obtained from the signal received can be represented

as

γk = |(HBRΨhT
RUk

)bk|
2/

K

∑
l,l ̸=k

|(HBRΨhT
RUk

)bl|
2 +σ2 (22)

1. Problem formulation

With the goal of improving the performance of the RIS-aided communication

system, the phase-shift matrix Ψ of RIS and the transmit beamforming matrix B

are collaboratively addressed using a framework for optimizing it. The objective
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of this framework is to maximize the sum rate R, subject to the constraints of

transmit power, by formulating it as an optimization problem. Accordingly, the

problem is formulated as:

(P1)max
Ψ,B

R(Ψ,B)

R =
K

∑
k=1

log2 (1+ γk) (23a)

s.t. |Ψn|= 1, ∀n = 1, · · · ,N (23b)

B(B)H ≤P (23c)

where the n− th diagonal component of Ψ is represented by Ψn. The unit

modulus restrictions and non-convexity of the objective function make (6a)

an NP-hard problem. Conventional phase shift optimization strategies for RIS-

assisted systems need fully updated channel information. Using the traditional

mathematical methods to find the best solutions becomes unfeasible to do,

especially for massive networks. Instead of tackling the problematic optimization

issue theoretically, the purpose of the thesis is to develop optimal phase shift and

transmit beamforming matrix that can be modified continuously in the setting of

a sophisticated TD3 framework to comply with P1 effectively.
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V. Solution based on DRL

In this part, we explain the RIS-TD3 structure in-depth and its rationale.

Eventually, for the suggested RIS-TD3 framework, we present the learning

technique.

A. RIS-TD3 framework

Applying DQN, policy gradient, and Q-Learning techniques, the RIS

beamforming policy may be quantitatively accomplished. The policy gradient

approach can handle continuous state-action spaces, although this may settle to

an inferior outcome. Moreover, Q-Learning has a poor learning time and cannot

handle the continuous state space, so it is not a productive learning method.

Furthermore, solving the optimization issue in a high-dimensional input state

space is difficult for Q-learning and policy gradient techniques. While DQN

excels at policy learning in state spaces with high-dimension, the non-linear

Q-function approximator can cause the learning operation to become unsteady

[77]. With the succeeding adjustments, the TD3 algorithm enhances the DDPG

technique and covers some of the gaps left by DDPG. Target networks are

employed to limit error propagation by postponing the update of the policy

network till the Q-value converges, hence reducing the high variance and noisy

gradients and minimizing the value error for each update. Since the policy

network updates are less frequent, more reliable policy changes are made

possible. Target policy smoothing is carried out using the regularisation approach,

where clipped noise is introduced to the target action deduced from the policy in

order to decrease the variation in the target action values. The notion of clipped

double Q-learning is utilized to tackle the problem of overestimation bias. Two
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Figure 6: TD3 framework for RIS

different critic networks are used by TD3, forming the targets using the smallest

of the two values as shown in Figure 6.

State space: The agent exclusively understands local data since it engages

with the environment to improve the sum rate. At the time step t, the channel

matrix HBR and hRU , previous step action, transmit and received power makes

up the state space. With the unit variance of symbols, the received power Rp and

transmit power Tp for the kth user are stated as

30



Rp = |(HBRΨhT
RUk

)B(l)|2 (24)

Tp = ∥Bk∥
2 =

∣

∣BH
k Bk

∣

∣

2
(25)

The following definition applies to the situation at tth time step:

st =
[

HBR,hRUk
,Tp,Rp,a

(t−1)
]

(26)

Action space: The phase shifts and transmit beamforming prompted by the

RIS within the present channel conditions are updated by the agent using the

input of state st at time interval t. The action vector at is stated as follows

at =
[

Ψt ,Bt
]

(27)

Reward: Whenever an action is chosen by the agent in real-time, the reward

serves as a marker to assess how effective is the policy. When every learning

step of the reward function aligns with the intended outcome, the performance

of the system will be improved. Therefore, it is critical to provide an effective

incentive mechanism to raise overall satisfaction. In this study, the optimization

target is represented by the reward function, and our goal is to increase the system

sum rate R. The reward function may be represented as follows using the goal

mentioned above:

rt = R
t (28)
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B. Operational steps

In the beginning, six networks are created, consisting of actor-network ωa, target

actor network ωa
trg, critic networks ωc1, ωc2 and target critic networks ωc1

trg, ωc2
trg

with uniformly distributed parameters. The target networks’ parameters are built

by copying the coefficients of the actor and critic networks. In addition, a memory

|B| for experience replay with a specified cardinality is constructed. The phase

shifts of all components are, without losing generality, determined at random

at the start of each episode, ranging from 0 to 2π . Every episode starts with

information on all the channels at work. Following the initial state s1 observation,

action at is chosen from the actor-network and assigned with noise.

at = ωa(st)+ρ (29a)

ρ ∼N (0,σ) (29b)

where ρ denotes the exploration noise. The next state st+1 and instant reward

rt can be determined by modifying the action into a transmit beamforming matrix

Λ and a phase shift matrix Ψ. Preserving (st , at , rt , st+1) as a transition towards

experience replay memory |B|. Transitions (st , at , rt , st+1) from the experience

replay |B| are sampled into a minibatch MB. The deterministic action an
t for each

state st+1 is output by each target actor network, and this action is then given a

clipped noise.

an
t = ωa

trg(st+1)+ρ (30a)

ρ ∼ clip(N (0,σ ′),−c,c) (30b)
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where σ and c are the policy noise variance and the noise clip, respectively.

The target Q-network receives the state st and the target action an
t as inputs and

estimates the target Q value. Then the target value y is determined by choosing

the smaller value of the two Q values.

y← rt + γ min
i=1,2

Qωc
trg
(st+1,a

n
t ) (31)

Using the stochastic gradient descent (SGD) optimizer, the critical loss is

backpropagated before updating the two critical models’ parameters. The critic

networks are updated by

ωc
upi

= argminωc
i
MB
−1 ∑

(

y−Qωc
i
(st ,at)

)2

i = 1,2 (32)

The deterministic policy gradient updates the actor network if it is time to

update (t mod p) the policy network.

ωa
up = MB

−1 ∑∇at
Qωc1(st ,at)

∣

∣

at
∇ωaπωa(st)

at = πωa(st) (33)

Then the target networks get updates from ωc
trgi

, ωa
trg

ωc
trgi
← (1− τ)ωc

trgi
+ τωi

c i = 1,2 (34)

ωa
trg← (1− τ)ωa

trg + τωa (35)

The algorithm 1 outlines the steps of the RIS-TD3 framework.

33



Algorithm 1 RIS-TD3 framework

Input: Channel state (HBR., hRUk
) of all the users.

Initialize: learning rate α , soft update coefficient τ , batch size |B|, phase shift matrix

Ψ, empty experience replay memory R, discount factor γ , beamforming matrix Λ,

actor ωa and target actor ωa
trg networks, critic ωc1, ωc2 and target critic ωc1

trg, ωc2
trg

networks.

Output: Sum rate R and Optimal action a∗t

1: for each episode do

2: Get instant channel information HBR, hRUk
.

3: Randomly reset the environment.

4: Obtain the initial state s1.

5: for each time step do

6: Observe the initial state s1.

7: Select an action at = ωa(st)

8: Add noise ρ ∼ N(0,σ) to at .

9: Execute the action at = ωa(st)+ρ .

10: Observe the reward rt and next state st+1.

11: Store the transition(st , at , rt , st+1)

into |B|.

12: Sample a minibatch of MB randomly

from |B|.

13: Compute target action an
t = ωa

trg(st+1)+ρ

ρ ∼ clip(N(0,σ ′),−c,c).

14: Compute the target value

y← rt + γ mini=1,2 Qωc
trg
(st+1,a

n
t ) .

15: Update critics ωc
upi
.

16: if t mod p then

17: Update actor network by

DPG ∇ωaJ(∇ωa).

18: Update target networks ωc
trgi

,ωa
trg.

19: end if

20: end for

21: end for
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C. Numerical evaluation and discussion

This section discusses the experiment findings for different traditional DRL

techniques used in wireless communication networks supported by RIS, whose

top view layout is shown in Figure 7. To assess the suggested method, we ran

several simulations. We present the design of the networks and list the TD3

parameters in Table 1 to begin this section. The simulation treats a scenario with

one RIS, one BS, and multiple users. The channel matrices HBR. and hRUk
are

constructed at random using the Nakagami-m distribution. The critic and actor

networks in the suggested method are dense neural networks. The input of the

actor network is the number of states, and the output is the number of actions.

Using two fully linked hidden layers with [512, 512] neurons, we implement a

TD3-based algorithm, and to deal with the negative inputs, the activation function

employed in this architecture is tanh. Moreover, Adam optimizer is employed to

update parameters in both actor and critic networks. In analyzing the numerical

findings, we take into account the following methods.

• The suggested method: To solve the combined optimization problem of

the phase shift matrix and transmit power of the RIS, we implement the

TD3 algorithm.

• Soft actor critic (SAC) and DDPG: To optimize the combined design

of the phase shift matrix and transmit beamforming of the RIS panel, we

employ the SAC and DDPG algorithms.

• Random: With random phase shift matrix generation, we optimize the

combined phase shift and transmit beamforming matrix of the RIS-assisted

system.
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Table 1: Simulation parameters.

Parameter Value

Experience replay buffer size Rn 50000

Batch size Rb 16

Soft update rate τ 0.005

Policy noise variance σ 0.2

Noise clip c 0.3

Delay update parameter 2

Episode 3000

Training samples 60×104

Actor learning rate LRa 0.001

Critics learning rate LRc 0.001

Target actor learning rate LRat
0.001

Target critics learning rate LRct
0.001

Discount factor γ 0.99
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Figure 7: (Top view) RIS-assisted communication system

First, we evaluate the average network sum rate obtained by our proposed

methodology with that of other schemes, namely the DDPG, SAC, and random.

The environmental parameters are set as Pwrt= 25dBm, M = 16, N = 16 (Na =

4, Nb = 4) and K = 16 for the number of BS antennas, the reflecting components

of RIS, and the number of users, respectively. The average sum rate vs. the

number of training samples is shown in Figure 8. It is noted that the SAC and

DDPG algorithms are followed by the suggested TD3-based DRL method, which

produces the best reward and surpasses other techniques. The random approach

performs poorly considering the average of the average network sum rate.

The Nakagami-m fading shape parameter m determines the degree of fading.

In Figure 9, the shape parameter m is compared. The mean of the distribution

grows as the value of m increases, as can be observed, suggesting that the channel

is in better condition the higher the value of m.
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Figure 8: Comparison with the benchmarks
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Figure 10: Different transmit power effect

The average sum rate for different transmit power Pwrt= −5dBm, 5dBm,

15dBm, 25dBm, and 35dBm is illustrated in Figure 10. Setting the environmental

parameters to M = 8, N = 8 (Na = 4, Nb = 4) and K = 8 allows us to compare

the scenarios. When the transmission power of the base station is increased,

a rise in the average sum rate of the system can be seen. Convergence can

be attained faster using the suggested DRL approach. Under Pwrt= 15dBm,

however, performance degrades and affects convergence as well.

With varying numbers of RIS components Nr = 64,32,16,8 undergoing

continuous phase shifts, the average sum rate is depicted in Figure 11, with the

setting of Pwrt= 25dBm, M = 8 and K = 8 being the environment. The sum rate

of users rises as the number of RIS elements increases because the data rate of

each user rises as Nr increases.

The impact of Pwrt for BS transmission power on the system average sum rate

is demonstrated in Figure 12. To compare, we selected three distinct M = 8, N =
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Figure 11: Influence of the number of components in RIS

8 (Na = 4, Nb = 2) and M = 4, N = 4 (Na = 2, Nb = 2) environmental parameters.

When there is a variation in the transmission power of BS, a rise in the system

sum rate is seen. In order to increase performance using Pwrt , it is possible to

effectively eliminate channel interference by the simultaneous design of phase

shifts and transmit beamforming.

The average sum rate versus training samples for various learning rates

(10−5, 0.0001,0.001,0.01 and 0.1) is shown in Figure 13. It is apparent that

different learning rates affect the deep reinforcement learning performance of

the algorithm in distinct ways. We recognize there is no benefit to training when

the learning rate is 0.1. With the growth of the training samples, there is a rise in

the average sum rate with a learning rate of 0.01. If the learning rate reduces, the

reward often rises with minor variations. With a learning rate of 0.001, the model

can clearly learn the situation. As a result, we choose an appropriate learning rate

that is neither too high nor too low for our test, the value of 0.001. The average

40



0 5 10 15 20 25 30
Pwrt (dBm)

0

2

4

6

8

10

12

14

16

M
ax

 su
m

 ra
te

 (b
ps

/H
z)

M = 8, Nr = 8
M = 4, Nr = 4

Figure 12: Effect of power in max sum rate

0 10 20 30 40 50
Training samples (x104)

0

1.5

3

4.5

6

7.5

9

10.5

Av
er

ag
e 

su
m

 ra
te

 (b
ps

/H
z)

lr = 1e-05
lr = 0.0001
lr = 0.001
lr = 0.01
lr = 0.1

Figure 13: Hyperparameter effect on performance

sum rate will rapidly saturate at an unsatisfactory value if the learning rate is too

big. The outcome can develop more quickly within a suitable range if the learning

rate is larger. On the other hand, oscillations will be lessened at the expense of
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Figure 14: Convergence for different number of users

the pace of performance if the learning rate is lower. Therefore, it is important to

choose the right learning rate that is neither too high nor too low.

Finally, Figure 14 shows the convergence of the suggested method for

multiple users counts at a learning rate of 0.01 and Pwrt= 25dBm. The convergent

graphs represent the excellent adaptability and reliability of an expanding user

base under the RIS-aided system. Since each UE has a rate demand that must be

met, the sum rate falls as the count of users increases. The findings confirm that

the suggested method can deliver a performance with maximum effectiveness.
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VI. CONCLUSION

The principal focus of this thesis is on developing a collaborative design

for phase shifts and transmit beamforming that optimizes the sum rate while

complying with BS transmit power constraints in RIS-assisted communication

systems. To provide a more practical solution to the problem, we thought of

a multi-user MISO communication system while considering the effects of

Nakagami-m fading channels. The critical issue is how to appropriately manage

beamforming and phase shifts, which can not be resolved using conventional

optimization techniques since the system is so complicated and dynamic. This

non-convex optimization problem and the massive continuous action space can

be addressed by leveraging breakthroughs in machine learning technology. We

provide a practical DRL-based framework for optimizing the phase shifts induced

by the RIS MU-MISO system to address the non-trivial optimization problem. By

employing the TD3 technique, the limitations with the Q values of the critic value

network of traditional DRL traditional algorithms are also eliminated. Without

previous knowledge of the wireless network, the agent appropriately determines

the network parameters. Simulation findings reveal that our suggested technique

can perform better than traditional DRL benchmarks because after getting the

feedback from the reward the agent can correctly adapt the action converging

to the optimum value. Additionally, in our future works, we intend to expand

the scope of the solutions we have put forth while taking into account more

complicated scenarios in the MU-MIMO system for UAV and NOMA.
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[73] K. TUYLS and A. NOWÉ, “Evolutionary game theory and multi-agent

reinforcement learning,” The Knowledge Engineering Review, jourvol 20,

number 1, 63–90, 2005. DOI: 10.1017/S026988890500041X.

[74] N. C. Luong, D. T. Hoang, S. Gong et al., “Applications of deep

reinforcement learning in communications and networking: A survey,”

IEEE Communications Surveys Tutorials, jourvol 21, number 4,

pages 3133–3174, 2019. DOI: 10.1109/COMST.2019.2916583.

[75] K. Cho and D. Yoon, “On the general ber expression of one-

and two-dimensional amplitude modulations,” IEEE Transactions on

Communications, jourvol 50, number 7, pages 1074–1080, 2002. DOI:

10.1109/TCOMM.2002.800818.

[76] J. D. Parsons and P. J. D. Parsons, The mobile radio propagation channel.

wiley New York, 2000, volume 2.

[77] A. Gosavi, “Reinforcement learning: A tutorial survey and recent

advances,” INFORMS Journal on Computing, jourvol 21, number 2,

pages 178–192, 2009. DOI: 10.1287/ijoc.1080.0305.

58



ACKNOWLEDGEMENTS

I would like to express my gratitude to the Almighty Allah and all the individuals

who assisted me in completing my master’s degree and research. First of all, I

sincerely want to thank my supervisor, Prof. Wooyeol Choi, for letting me pursue

my master’s degree at Chosun University. His constant inspiration, support, and

insightful recommendations have led and pushed me throughout my studies and

research. His ongoing oversight and direction have helped me produce high-

quality research. I will be eternally grateful to him for instilling in me the values

of professionalism, organizational skills, and concentration. I also would like to

convey my heartfelt gratitude to Prof. Seok Joo Shin and Prof. Moon Soo Kang,

members of the thesis committee, for their constructive remarks and helpful

ideas. Furthermore, I am glad for the opportunity to work in the Department

of Computer Engineering at Chosun University with such a diversified batch of

students, teachers, and staff. I want to thank Smart Networking Lab for giving me

such an excellent opportunity and an environment to develop academically. My

lab mates have provided me with both moral and academic assistance. I also want

to thank all my Bangladeshi friends and seniors at Chosun University for their

kindness and support in making my time in South Korea enjoyable and simple.

Finally, I want to thank my parents, relatives, and friends for their continuous

support throughout my challenging times. I couldn’t have accomplished anything

without their inspiration and guidance.

59


	I. INTRODUCTION
	A. Related Works
	B. Contributions
	C. Thesis Layout

	II. Overview of Reconfigurable Intelligent Surface
	A. Perspective of physics
	B. Interaction between the cells
	C. Relationship between the metasurface and the RIS
	D. Passive beamforming and RIS

	III. Reinforcement learning
	A. Deep reinforcement learning
	1. Twin Delayed Deep Deterministic Policy Gradient


	IV. System model and problem formulation
	A. System model
	1. Problem formulation


	V. Solution based on DRL
	A. RIS-TD3 framework
	B. Operational steps 
	C. Numerical evaluation and discussion

	VI. CONCLUSION
	PUBLICATIONS
	A. Journals
	B. Conferences 

	REFERENCES
	ACKNOWLEDGEMENTS


<startpage>13
I. INTRODUCTION 1
 A. Related Works 3
 B. Contributions 6
 C. Thesis Layout 8
II. Overview of Reconfigurable Intelligent Surface 9
 A. Perspective of physics 10
 B. Interaction between the cells 11
 C. Relationship between the metasurface and the RIS 13
 D. Passive beamforming and RIS 14
III. Reinforcement learning 16
 A. Deep reinforcement learning 17
  1. Twin Delayed Deep Deterministic Policy Gradient 18
IV. System model and problem formulation 25
 A. System model 25
  1. Problem formulation 27
V. Solution based on DRL 29
 A. RIS-TD3 framework 29
 B. Operational steps  32
 C. Numerical evaluation and discussion 35
VI. CONCLUSION 44
PUBLICATIONS 45
 A. Journals 45
 B. Conferences  45
REFERENCES 58
ACKNOWLEDGEMENTS 59
</body>

