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ABSTRACT

Deep Reinforcement Learning-Based Coordinated Beamforming

for mmWave Massive MIMO Vehicular Networks

Pulok Tarafder

Advisor: Prof. Wooyeol Choi, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

With the increase in the number of connected devices, to facilitate more

users with high-speed transfer rates and enormous bandwidth, millimeter-wave

(mmWave) technology has become one of the promising research sectors in

both industry and academia. As a critical enabler for beyond fifth-generation

(B5G) technology, mmWave beamforming for mmWave has been studied for

many years. Multi-input multi-output (MIMO) system, which is the baseline

for beamforming operation, rely heavily on multiple antennas to stream data

in mmWave wireless communication systems. Moreover, high-speed mmWave

applications face challenges such as blockage and latency overhead. Furthermore,

the efficiency of the mobile systems is severely impacted by the high training

overhead required to discover the best beamforming vectors in large antenna

array mmWave systems. In order to mitigate the stated challenges, in this

thesis, we propose a novel deep reinforcement learning (DRL) based coordinated

beamforming scheme where multiple base stations (BSs) serve one mobile

station (MS) jointly. The constructed solution then uses a proposed DRL model

v



and predict the suboptimal beamforming vectors at the BSs out of possible

beamforming codebook candidates. This solution enables a complete system

that facilitates highly mobile mmWave applications with dependable coverage,

minimal training overhead, and low latency. Numerical results demonstrate that

our proposed algorithm remarkably increase the achievable sum rate capacity for

the highly mobile mmWave massive MIMO scenario while ensuring low training

and latency overhead.
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한글요약

mmWave대규모MIMO차량네트워크를위한

심층강화학습기반빔형성기술연구

타라프더플록

지도교수:최우열

컴퓨터공학과

조선대학교대학원

연결 장치의 수가 증가함에 따라 더 많은 사용자가 고속 전송 속도와 엄청난

대역폭을사용할수있도록밀리미터파(mmWave)기술은산업계와학계모두

에서 유망한 연구 분야 중 하나가 되었습니다. 5세대 이상(B5G) 기술을 위한

중요한인에이블러로서 mmWave용 mmWave빔포밍은수년동안연구되어왔

습니다.빔포밍동작의기준이되는MIMO(Multi-Input Multi-Output)시스템은

mmWave 무선 통신 시스템에서 데이터를 스트리밍하기 위해 다중 안테나에

크게 의존합니다. 또한 고속 mmWave 애플리케이션은 막힘 및 대기 시간 오

버헤드와같은문제에직면해있습니다.또한모바일시스템의효율성은대형

안테나어레이mmWave시스템에서최상의빔포밍벡터를발견하는데필요한

높은교육오버헤드에의해심각한영향을받습니다.이러한문제를해결하기

위해 이 논문에서는 여러 기지국(BS)이 하나의 이동국(MS)에 공동으로 서비

스하는 새로운 DRL(Deep Reinforcement Learning) 기반 조정 빔포밍 방식을

제안합니다. 그런 다음 구성된 솔루션은 제안된 DRL 모델을 사용하여 가능

한 빔포밍 코드북 후보 중에서 BS에서 차선책 빔포밍 벡터를 예측합니다. 이

솔루션은신뢰할수있는적용범위,최소한의교육오버헤드및짧은대기시간

으로이동성이높은mmWave애플리케이션을용이하게하는완전한시스템을

vii



가능하게 합니다. 수치 결과는 제안된 알고리즘이 낮은 교육 및 대기 시간 오

버헤드를보장하면서이동성이높은mmWave대규모MIMO시나리오에대해

달성가능한합계속도를크게높일수있음을보여줍니다.
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I. INTRODUCTION

With the recent advancements in 5G, it is not ambitious to expect that 5G

will enable 1000× more data traffic than the wideley established current 4G

standards [1], [2]. Foreseeing the rise is users in increased traffic demands,

facilitating these massive users and serving great quality cellular networks require

high frequency waves. Recently, millimeter wave (mmWave) communication has

attracted significant interest in designing 5G wireless communication systems

owing to its advantages in reducing spectrum scarcity and enabling high data

speeds [3]. The ranges of mmWave frequency band lies between 30 GHz to

300 GHz. This higher frequencies however travels very short distance due to

their physical limitations in the spectrum and demonstrates high path loss [4].

Consequently, higher frequencies require smaller cellular cells to overcome

the challenges such as path loss and blockage [5]. The massive multiple-input

multiple-output (mMIMO) can use hundreds of antennas simultaneously to

propagate signal in the same time-frequency resource and serve tens of users at

the same time [6]. The mMIMO techniques can be utilized to perform highly

directional transmissions thanks to the short wavelength of mmWave, which

makes it physically feasible to equip a lot of antennas at the transceiver in a

cellular network and can significantly improve network capacity [7]–[10].

Vehicles are getting more sensors as driving gets more automated, resulting

in increasingly higher data rates. Beamforming in mMIMO makes it possible to

serve distance users with mmWaves, even users that are not stationary. Therefore,

the only practical method for large bandwidth connected automobiles is mmWave

mMIMO communication [11]. As a result, mmWave mMIMO systems can

serve mobile vehicles effectively considering the proper beam is selected. Due
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Figure 1: The mmWave frequency band.

Receiver

Massive 
MIMOmmWave 

Beam

mmWave 
Beam

mmWave 
Beam

Receiver
Figure 2: Illustration of mMIMO beamforming.

to the fundamental differences between mmWave communications and current

microwave-based communication technologies (e.g., 2.4 GHz and 5 GHz), the
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mmWave systems present difficulties, such as a high sensitivity to shadowing

and a significant signal attenuation[12]. In this thesis, in order to overcome

these issues and allow mMIMO environments where a highly non-stationary

active user is present, we introduce a coordinated beamforming scheme utilizing

deep reinforcement learning (DRL) to select the optimal beam for a vehicular

communication system. First, a deep Q-network (DQN) algorithm is created to

handle the beam selection problem as a Markov decision process (MDP). Then,

by ensuring that the limitations of the beam selection matrix are met, our goal is

to choose the best beams to maximize the sum rate for the user served.

A. Related Works

There have been few standard traditional approached for beamforming or beam

selection. In [13], Gao et al. followed an exhausting search approach for

beamforming which demonstrates very high complexities in the system. Pal et al.

[14] on the other hand followed a minor different approach where iterate through

the users and beams for determining the best possible beamforming matrices.

This approach is also executed with high complexity algorithm.

On the other hand, DL-based approaches shows promising results in terms

of application complexity and viability. Alkhateeb et al. [15] derived a high

mobility supported mmWave massive MIMO based DL enabled coordinated

beamforming scheme for an outdoor scenario. To formulate their design,

they utilized distributed BSs simultaneously to serve a mobile user. They

predicted the optimal beams using traditional DL approach, and compared

the achievable rate performance of their DL method with optimal achievable

rate of beamforming. Zhang et al. [16] proposed a multi-user massive

MIMO coordinated beamforming scheme for heterogeneous networks (HetNets)

3



focusing on energy efficiency (EE) based on convolutional neural network

(CNN) approach. They designed and used a multi-user huge MIMO HetNets

optimization challenge to maximize EE with less complexity and compute delay.

In order to accomplish end-to-end autonomous beamforming, [17] introduced

a constrained deep neural network (constrained-DNN) based beamforming

technique. This method uses a NN in place of the beamforming matrices used

in conventional beamforming. In [18], in-depth experiments for coordinated

multipoint transmission at 73 GHz were carried out in a downtown Brooklyn

urban open square setting. The results of the analysis showed that serving a

user jointly at the same time by many BSs can achieve a considerable coverage

improvement. Moreover, another work on BS coordination, where a user is

concurrently given access by many BSs, may be used to generate a significant

coverage increase and is demonstrated by Maamari et al. in an analysis of the

performance of heterogeneous mmWave cellular networks in [19]. Gupta et al.

in [20] investigated the scope of a minimum of one LOS case when the users are

served with line of sight (LOS) connections. The results showed that the density

of coordinating BSs should scale with the square of the blockage density in order

to maintain the same LOS connection. Although[18]–[20] established how BS

coordination significantly increased coverage, they lack the analysis of producing

coordinated beamforming vectors.

Beamforming challenges and training overhead management gets more

complicated when the high mobile system is incorporated into the mmWave

massive MIMO systems.

In order to enable high-speed, long-range, and reliable transmission in

millimeter-wave 60 GHz wireless personal area networks (60 GHz WPANs),

Wang et al. [21] introduced a beamforming approach applied in the media

4



access control (MAC) layer on top of various physical layer (PHY) designs. [11]

suggested a new strategy to lower the overhead for beam alignment by utilizing

DSRC and/or sensor information as side information. Afterwards, they provided

detailed examples of how to leverage location data from dedicated short-range

communication (DSRC) to lessen the overhead of beam alignment and tracking

in mmWave vehicle-to-everything (V2X) applications.

Va et al. on the other hand proposed a multipath fingerprint database using

the vehicle’s position (for example, as determined by GPS) to gain information

of probable pointing directions for accurate beam alignment. The power loss

probability is a parameter used in the method to measure misalignment precision

and is used to enhance candidate beam selection. Moreover, two candidate beam

selection techniques are created, one of which uses a heuristic, and the other aims

to reduce the likelihood of misalignment. In addition, Zhou et al. [22] proposed a

DQN-based algorithm to train and determine the optimal receiver beam direction

with the purpose of maximizing average received signal power (RSP).

However, there are various drawbacks to designing beamforming vectors

solely based on location data and RSP. First, narrow-beam systems may not

function effectively with position-acquisition sensors like GPS because of

their poor precision, which is typically in the range of meters. Second, these

technologies are unable to handle indoor applications, since GPS sensors perform

poorly inside of structures. Additionally, the beamforming vectors depend on

the environment’s shape, obstructions, etc. in addition to the transmitter and

receiver’s locations. Also, RSP can experience severe penetration power loss

because of the vehicle’s metal body.
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B. Contributions

In this thesis, for highly mobile mmWave applications, we provide a novel DRL

approach for highly mobile mmWave communication architecture. As part of

our suggested method, a coordinated beamforming system is used, in which a

number of BSs concurrently provide access to a single non-stationary user. In

this approach, a deep learning (DL) network exclusively utilizes beam patterns

and learns how to anticipate the BSs beamforming vectors from the signals

obtained at the scattered BSs. Here, the idea behind this is that the propagated

waves collectively acquired at the scattered BSs indicate a distinctive multi-path

signature of both the user position and its surroundings. There are several benefits

to the suggested approach. First, the suggested technique can accommodate not

only LOS but non LOS (NLOS) framework without the need for specialized

position-acquiring devices because beamforming prediction is based on the

uplink received signals rather than position data. Second, only omni received

pilots, which may be retrieved with minimal overhead training, are needed for the

determination of the best beams. Furthermore, because the DL model trains and

responds to any environment, it does not need any training before deployment

in the suggested system. The proposed deep learning model also inherits the

coverage and reliability improvements of coordination, since it is coupled with

the coordinated beamforming mechanism.

The contributions of the proposed beamforming scheme are summarized as

follows:

• We develop a simple coordinated beamforming scheme where several

BSs that employ RF beamforming and are connected to a central cloud

processing unit that uses baseband processing, which serves a mobile user

6



at once. To increase the platform’s effective achievable rate, we define a

training and design issue for the central baseband processing and for BSs

RF beamforming vectors. The trade-off between the beamforming training

overhead and the achievable sum rate using the proposed beamforming

vectors is taken into account when determining the effective achievable

rate for highly mobile mmWave systems.

• For the selected system, we construct a fundamental coordinated

beamforming technique that relies on uplink training for creating the

RF and baseband beamforming vectors. The BSs choose their RF

beamforming vectors from a predetermined codebook as part of this

baseline approach. The baseband beamforming is then designed by a

central processor to guarantee consistent incorporating at the user. We

demonstrate that the standard beamforming technique achieves the best

attainable rates in a few unique but crucial situations. However, this

technique has a significant training cost, which encourages the use of

machine learning models.

• We introduce a system operation of machine learning modeling of a unique

combined DRL and coordinated beamforming solution. The main concept

of the suggested technique is to anticipate the RF beamforming vectors of

the coordinating BSs using just beam patterns, i.e., with very little training

overhead. The proposed approach also enables minimal coordination

overhead harvesting of coordinated beamforming improvements with wide

coverage and low latency, making the method a viable solution for highly

mobile mmWave applications.
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C. Thesis Layout

The thesis is organized as follows. In Chapter II, we present the system and

channel model of our communication system. Then in chapter III, we describe

the problem statement, fundamentals of RL and DRL. Next, in Chapter III, we

present our proposed solution and simulation analysis of priority-based joint

resource allocation with DQL. Then in Chapter IV, we describe the problem

statement, proposed solution and simulation analysis of DRL-Based coordinated

beamforming approach. And finally, we conclude the thesis in Chapter V.
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II. System and Channel Model

In this section, we elaborate our coordinated mmWave system and channel model.

Additionally, each model’s main assumptions are highlighted.

In this section, we discuss the chosen frequency-selective coordinated

mmWave system and channel models. Additionally, each model’s main

assumptions are highlighted.

A. System model

We analyze a mmWave enabled vehicular communication architecture shown in

Fig. 3, where N BSs are concurrently providing service to one mobile station

(MS). Each BS is equipped with M number of antennas, and each BS is linked

to a central processing unit in the cloud. In the interests of simplicity, we assume

that each BS utilizes analog-only beamforming with networks of phase shifters

and has a single RF chain [23]. In this thesis, we use the assumption that the MS

is equipped with only one antenna.

BS 1BS 2

BS 3 BS

Cloud  
processing 

unit

MS

Figure 3: A downlink mmWave massive MIMO vehicular beamforming system.

The signals are precoded using a N×1 digital precoder fk ∈ C
N×1. The

9



frequency domain signals are then converted into the time domain using N K-

point inverse fast Fourier Transforms (IFFTs). Afterwards, each BS n performs

a time-domain analog beamforming and then transmits the resulting signal. At

the receiver end, the received signal is converted to the frequency domain using a

K-point FFT, presuming perfect synchronization of frequency and carrier offset.

The received signal at kth subcarrier at nth BS is denoted by

yk =
N

∑
n=1

hT
k,nxk,n +nk, (1)

where xk,n is the transmitted complex baseband signal, hk,n is the M×1 channel

vector between the MS and BS, nk ∈ C
M×1 is the received noise at the BS

with independent and identically complex (i.i.c.) additive white Gaussian noise

(AWGN) distribution with zero mean and variance σ2.

B. Channel model

We consider a L clustered geometric wideband model for our mmWave cellular

channel [24]–[26]. For each cluster l, it is assumed that l = 1, · · · ,L contributes

one ray with a temporal delay τl ∈ R, and azimuth/elevation angles of arrival

(AoA) is θl,φl . Let prc(τ) be a pulse shaping function for TS-spaced signaling

assessed at τ seconds, and let ρn signify the path-loss between the user and the

nth BS [27]. The delay-d channel vector in this model hd,n between the user and

the nth BS, is as follows

hd,n =

√

M

ρn

L

∑
l=1

βl p(dTs− τl)an (θl,φl) , (2)

where an denotes the array response vector of the nth BS. Considering the delay-d

channel in (2), for subcarrier k, our frequency domain channel vector hkn can be

formulated as

10



hk,n =
D−1

∑
d=0

hd,n exp(− j
2πk

K
d). (3)

Our adopted block-fading channel model {hk,n}
K
k=1 is considered to remain

constant throughout the channel coherence time, abbreviated TC, and it is

dependent on user the mobility and the channel multi-path components [28].
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III. Fundamentals of Reinforcement Learning

To understand the proposed solution, we have to understand the fundamentals

of reinforcement learning (RL) and deep reinforcement learning (DRL). Thus,

we briefly discuss the internal structure, decision-making process, and the

convergence process of RL, DRL in this chapter.

A. Reinforcement learning

RL is different from traditional ML (supervised or unsupervised) models. RL

consists of a decision maker or agent that interacts with an environment that

is placed in.The agent will receive some representation of the environment’s

condition at each time step. The agent chooses an action based on this depiction.

The environment is then changed to a new state after that. As a result of its prior

action, the agent receives a reward during the process.

Agent

Environment

Action
Reward

State
St At

St+1

Rt+1

Rt

Figure 4: MDP Process for RL.

The decision-making process in RL is formulated with Markov decision

process (MDP). MDP provides sequential stochastic control for the agent in the

decision-making process [29]. In general, MDP has four components, (S,A,R,P)

where S is the state, A is the action, R is the immediate reward for an action

taken, and P is the state transition probability. As illustrated in Fig. 4, in any

time step t, the agent interacts with the environment, and observes a current state

12



St and performs an action At . After that, the agent is awarded a reward Rt . At

the same time, the agent experiences a new transition of the state St to St+1

and so on. Meanwhile, the agent tries to meet its primary aim, which is finding

a policy π that returns the possible maximum accumulated reward. The agent

eventually aims in maximizing the anticipated discounted total reward indicated

by max[∑T
t=0 δRt(St ,π(St))], where the discount factor is δ ∈ [0,1]. This is the

discounted reward which forms the Bellman equation otherwise known as Q-

function as follows

Q(St ,At) = (1−α)×Q(St,At)+ [R+δ (maxQ(St+1,At))], (4)

where α denotes the learning rate.

Algorithm 1 RL Algorithm with Q-learning

1: Q(S,A) = 0

2: Init α,δ ,ε

3: for t = 1,2, ...,T do Select At for St , according to ε

4: Get immediate Rt

5: Get St+1

6: Update Q(S,A) via MDP

7: St ← ST+1

8: π(s) = arg max Q(S,A)

Q-learning is another name for RL with a Q-function. The agent first explores

each state of the environment while performing numerous actions, and then uses

the Q-function to create a Q-table for each state-action pair. Afterwards, the

agent starts executing actions for the highest Q-value possible from the Q-table to

exploit the environment. Subsequently, the agent begins exploring or exploiting

13



the environment based on the likelihood, and this strategy is referred to as the

ε-greedy policy. A representation of an example is presented in Algorithm 1.

Input

Input 
Layer

Hiden Layers

Output 
Layer

Weights

Figure 5: Neural Network.

B. Deep reinforcement learning

The regular Q-learning algorithm is mostly suitable in an environment where

the action space and state space is comparatively small. As a result, the Q-

learning system starts to become complicated and starts to perform poorly

as the state and action space becomes larger. Consequently, even though this

algorithm became very widely accepted and implemented in recent years as

a result of its effectiveness in solving complicated sequential decision-making

issues Q-learning still has some limitations such as tackling very large state space.

To handle difficult sequential decision-making issues for such systems, DRL

14



combines DL techniques with RL. DL is especially helpful for solving issues with

high-dimensional state spaces. As a result of its capacity to learn many levels of

abstraction from data, DL enables RL to handle more challenging problems with

less prior information. For applications in real works scenarios, tackling iteration

complexities and large state space does not bring sufficient performance when

applying RL alone. To overcome the challenges of RL, researchers implemented

a deep neural network (DNN) in place of Q-table and called it deep Q-leaning

(DQN) [30]. We illustrate a standard DQN algorithm in Fig. 7. By learning

from the data, the DNN’s primary objective is to eliminate manual computation.

Technically, any DNN is a non-linear structure which mimics the structure of the

human brain and can train to carry out tasks including classification, prediction,

visualization, and decision-making [31]. It is made up of neurons stacked at

different levels. A layer of input, two layers of hidden and one layer of output

are normally included, all of which are coupled as depicted in Figure. 5 [32]. The

initial layers or known as input layers takes input and pass it to the deep inside

layers or hidden layers with the assistance of the input neurons. Consequently, the

output layer receives the data once it has been conveyed from the hidden layer.

During this process, all the neuron accumulate a weighted input, an activation

function, and an output. Depending on the neuron’s input, the activation function

dictates the output [33]. According to this definition, the activation function acts

as a trigger that is dependent on the weighted input.

The agent uses backpropagation during the training phase to adjust the

weighted values of the input of the neurons depending on the outputs of the

output layer. The agent compares the policy DNN model’s output to the target

DNN model and calculates the error [34]. The agent then uses backpropagation

to update the policy DNN. The usual term for this procedure is optimization with
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gradient descent. The agent uses policy DNN to update the target DNN after a

certain amount of time. ERM is added to the DQL framework to help the optimal

policy converge more steadily [35], [36]. The agent performs various actions and

records the current states, rewards received, upcoming states, and ERM actions

[35], [36]. Afterwards, the agent trains the policy DNN using a small batch of data

from the device [37]. As a result, the agent uses the learned DNN to carry out its

decision-making activity efficiently and promptly. We illustrated the mechanism

of DQN simply in Fig. 7 and Algorithm 2 to have a better understanding.

Algorithm 2 The Deep Q-learning Algorithm with Q-learning

1: Init policy, target DQN with random w, w′

2: Init experience replay memory (ERM)

3: Init ε

4: for t = 1,2, ...,T do Select At for St , according to ε

5: Get immediate Rt

6: Get St+1

7: Put (St ,At ,Rt ,St+1)→ ERM

8: Form random sample mini batch of (St ,At ,Rt ,St+1) from ERM

9: Optimize w of DNN policy using MDP with gradient descent

10: w′← w after T
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IV. DRL-Based Coordinated Beamforming

In this chapter, we introduce a baseline DRL coordinated beamforming approach

for a highly mobile vehicular mmWave communication system. To present the

proposed solution, we first describe the problem formulation, then derive the

novel DRL based approach for beamforming. In this chapter, we also present the

environment setup, dataset generation, simulation parameters, and performance

analysis for our proposed scheme.

A. Problem Statement

1. Problem Formulation

For a vehicular mmWave based 5G network, serving any user or MS is

challenging because of the dynamic and varying environment characteristics.

When signal interference, fading effect, and network congestion are considered,

that we subsequently describe as the environment dynamics [38], it becomes

much more complicated to serve the receiver end by maintaining eMBB, mMTC,

and URLLC standards. As a result, traditional static schemes have become

obsolete when performing large-scale beamforming operations. To achieve

the highest level of sum rate, reduce the overhead, and tackle the large RF

beamforming vector arrays, adaptive beam selection approaches are best suited

for this specific task. With this motivation, in this paper, we exploit the DRL’s

capability of tackling varying environments to maximize the achievable data rate

by selecting the optimal beam for mmWave vehicular networks in a coordinated

approach.

In this paper, considering a set of beamforming vectors {fBF
n }

N
n=1, our focus

is to formulate a beam selection matrix to optimize the downlink achievable rate
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of the mmWave vehicular beamforming system. The user maximum achievable

rate can be derived as

Ra =
1

K

K

∑
k=1

log2



1+SNR
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N

∑
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∣

∣

2


 , (5)

B. Proposed DRL-based Beam Selection

In a multicell mmWave mMIMO downlink scenario, a large uniform planar array

(UPA) are installed on a BS. In this thesis, we select 4 BS with 32×8 UPA

resulting in M = 256 antenna arrays for each BS. We used publicly available

DeepMIMO [39] dataset to generate the channel matrices between the BSs and

the MS. For our model, we adopt the ‘O1 60’ dataset, which consists of an

outdoor setting with two streets and one intersection and the system operates

at 60 GHz mmWave band. The scenario holds 3 user grids (UGs): UG1, UG2,

and UG3 in the Cartesian coordinate system. Combining three UGs, this scenario

can employ 1,184,923 users where each user represents a possible position of our

MS. For our case, we generate the scenario for 54,481 user coordinate positions.

Moreover, each BS generates 64 beams, resulting V = 256 beams generation

altogether from 4 BSs. Our MS is mobile in nature and our goal is to serve the

MS with the best beam, coordinating with 4 BSs.

We propose a DRL framework which utilizes DQN to train and optimize

the beam selection assignment. Typically, the DQN technique consists of an

environment and an agent using a deep neural network (DNN). The agent engages

with the environment before performing any action. Here, the BSs acts as an

agent. At the beginning, the agent starts exploring the environment, moving

from one state to another, at that point it has very less information about the
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environment. As the agent explores the environment, it gathers information and

starts to take action by exploiting the environment with the help of reward

function. In any timestep t, if the current state is St , the agent will receive an

immediate reward Rt assessing the performed action At using the DNN. The agent

also get to take the next state St+1 as input from the environment in the same

timestep. Depending upon the performed At , the agent receives a reward Rt , if the

taken action can achieve good sum rate, then the agent will also receive a good

Rt . The agent gains knowledge of its surroundings and develops an ideal beam

selection assignment strategy by foreseeing future events. The DNN algorithm

learns this policy π at each timestep as it continues to move forward with the

next timesteps.
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Figure 6: Proposed DNN Architecture

Next, we formulate our state, action, and reward functions as follows:

• State: We utilize the channel matrices for all the BSs as the state of our
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environment. The complex channel matrices are constructed incorporating

the bandwidth, user position, noise figure, and noise power. If the

environment has Z states each having V beams, then, the state space with

Z×V can be represented as S = S̃1, S̃2, S̃3, · · · , S̃Z .

• Action: The goal of the agent is to assign beam for serving from the action

space A. At each episode for a set of S, the agent has to take Z ∈ A actions

while maintaining one action per V elements from the S. Out of the Z×V ,

the target of the agent is choosing a beam which will maximize the data

rate.

• Reward: In our reward function, we first derive the data rate for each

channel as follows:

Rr = log2
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 , (6)

For every action the agent takes, we calculate the data rate of the chosen

action and feed it as the reward value. Our aim is to acquire the highest

possible cumulative reward as it obtains reward for each action, according

to

Rrmax = argmax
K

∑
k=1

log2



1+SNR
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With this state, action, and reward function, we propose the DNN architecture

as shown in Fig. 6 as the policy controller for the beam selection. The DNN takes

the place of the Q-table and calculates the Q-values for each environment state-

action pair. Deriving probabilities for each beam selection for each state space is

the primary objective of the DNN, and this probability can be defined by Q(S,A)
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Figure 7: DQN Framework.

of the DQN algorithm. We select the best beam out of V = 64 candidate beams,

coordinately with 4 BSs.

1. Training

For our training phase of our model, we used Adam optimizer [40] with a learning

rate of 0.0005. Our DRL model minimizes the error of our training in the DNN

using the SmoothL1 loss function [41]. If we have a batch of size N, the unreduced

loss can be described as following equations 8 and 9 [42].

ℓ(x,y) = L = {l1, . . . , lN}
T

(8)
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Table 1: Adopted DeepMIMO dataset parameters

Parameters Values

Scenario ‘O1 60’

Active BS 3,4,5,6

Receivers R1000 - R1300

Frequency band 60 GHz

Bandwidth 500 MHz

Number of OFDM subcarriers 1024

Subcarrier limit 64

Number of paths 5

BS antenna shape 1×32×8

Receiver antenna shape 1×1×1

where

ln =











0.5(xn− yn)
2 / beta, , if |xn− yn|< beta

|xn− yn|−0.5∗ beta, otherwise

(9)

The value of beta set to default 1. We have implemented the training and the

testing of our DRL scheme with PyTorch as a [43] backend. The initial data

generation of the outdoor scenario ‘O1 60’ was executed using MATLAB. We

implemented our system in an Intel Core i9-9900x CPU workstation powered

with 128 GB of ram and 2 NVIDIA Titan V GPUs.

C. Simulation Analysis

In this section, we evaluate the proposed DRL based coordinated beamforming

approach
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Figure 8: A figure containing 4 BSs serving one MS.

in different case studies by comparing it with traditional DL architecture [15].

The following subsections describe the simulation environment, preparation of

the dataset, and the performance evaluation.

1. Simulation Environment

Wireless InSite [44] is an industry grade ray tracing tool which is commonly used

in mmWave massive MIMO research. For our methodology, we used the popular

publicly available DeepMIMO [39] dataset generated by the Wireless InSite. We

used the ‘O1 60’ outdoor scenario of two streets and one intersection, which is a

mmWave communication scenario operating at 60 GHz as illustrated in Fig. 8.

On the other hand, Fig. 9 demonstrates a top view of the user grid

arrangements of the scenario. For this adopted scenario, 4 BSs are equipped

on the top of 4 lamp posts to concurrently provide beam coverage for one

MS coordinately. The lamps are located 60m away, side by side. For the ray
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Figure 9: The top view of the ’O1’ scenario.
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Table 2: Simulation parameters for the DRL model

Parameters Values

Beams per BS distribution 16

Total beams 64

Transmit power 30 dBm

Learning rate (LR) 0.0005

Discount factor (γ) 0.999

Epsilon (ε) [1, 0.1, 0.001]

Batch size 96

Number of episodes 250

Data instances 200

tracing, DeepMIMO used 60 GHz international telecommunication union (ITU)

standards for the materials used in the environment, in this case its buildings.

Every BS is installed on the 6m elevation having 32 × 8 antenna elements. The

MS is incorporated with a single antenna on top of the vehicle. During the uplink

training, we assumed a transmit power of 30 dBm for the MS. The adopted

DeepMIMO parameters for dataset generation and the simulation parameters

used in this work are summarized in the Table 1 and Table 2 respectively.
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2. Performance Analysis

In this subsection, we will evaluate our achieved performance in terms of sum

rate and will compare our rate with the traditional ML approach.
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Figure 10: A comparison of effective achievable rate without overhead consideration.

Fig. 10 represents the performance analysis of our proposed model having 3

performance matrices. We plot an effective achievable rate based on our DRL,

conventional DL, and optimal data rate. It is clear that our proposed DRL

outperforms by a large margin and demonstrates suboptimal performance. In

Fig. 10, we did not consider any beam training or latency overhead.

Communication system requires overhead. There are instances when

overhead is essential for interoperability and successful communications, yet

there are other occasions when overhead is unnecessary. For vehicular mmWave

communication, when the user is mobile, one of the most viable communication

overheads is velocity because the connectivity between the BS and the user gets

affected by the velocity. For fast-moving users, it needs fast beam switching from
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the BS, otherwise, because of the delay, the user might not get service on time

from the BS as it moves away from its current position.

In Fig. 11 we compare DRL and DL-based beamforming performance with

the optimal beamforming performance by incorporating overhead. In this stage,

we consider the 64 beam training overhead, with coherence time at 40 kmph

speed. It is visible that, even though our suboptimal performance experienced a

slight decrease, the DRL beamforming achievable rate is still significantly higher

than the DL approach.
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Figure 11: A comparison of effective achievable rate including overhead consideration

(40 kmph).

We also compared the achievable rate versus different user position at 80

kmph and 120 kmph speed in Fig. 12 and Fig. 13 respectively. The results

followed similar trends. Our DRL-based approach outperformed the DL approach

by a large margin and demonstrated suboptimal performance. As the user
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position moved, the achievable rate saw a slight but steady decrease over the

period. However, for the traditional DL-based approach, the performance was

inconsistent.
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Figure 12: A comparison of effective achievable rate including overhead consideration

(80 kmph).

Moreover, we compared our DRL-based average achievable sum rate for all

three overhead speed side by side in Fig. 14. The performance was similarly very

consistent throughout the plot, and the achievable rate of declination due to the

increased overhead was negligible.

We also compared the performance of our proposed DRL scheme by varying

SNR. In Fig. 15 it is demonstrated how the performance of our model varies at

two different SNR levels which are low SNR at 10 dB, and high SNR at 30 dB.

Previous results containing 38.65 dB SNR portrayed higher results. In the figure,

it is portrayed that after the SNR was reduced to 30 dB, the initial performance
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Figure 13: A comparison of effective achievable rate including overhead consideration

(120 kmph).

dropped by 14.27% in terms of the average sum rate for our DRL method. Also,

in Fig. 15, we have illustrated the performance of our DRL model at SNR of 10

dB. It is noticeable that, for another 20 dB of SNR drop, the performance declined

by another 38.51%.

Furthermore, in Fig. 16, we have illustrated the convergence of our proposed

algorithm. It can be seen that the achievable sum rate converges with a time step

t in terms of loss. It is observable from the loss plot that, after approximately

3.2×106 iterations, our model converged successfully.

Overall, we can state that the performance of our model significantly rises

as the SNR increases. Our proposed DRL architecture is robust and flexible in

various conditions such as different SNRs and different velocities.
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V. CONCLUSION

In this thesis, we propose a sub-optimal beam selection scheme with deep Q-

learning which enables high mobile applications in mmWave massive MIMO

systems. The key idea is to utilize the powerful exploration-exploitation strategy

of DRL to derive the optimal beam selection policy which learns the mapping of

omni-received uplink pilot and learn sub-optimal beam mapping. The presented

solution requires small training overhead and beam overhead while ensuring very

close achievable sum rate standards close to optimal performance. The proposed

solution also ensures reliable coverage and shorter latency while serving beam

towards the highly MS mmWave user end.
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