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ABSTRACT 

A study on old image and video artifact 

and noise generation using generative 

adversarial network (GAN) 

 
 

Sadat Hossain 

Advisor: Prof. Bumshik Lee 

Dept. of Information and Communication Engineering 

Chosun University 

 

In an early age, a large number of images as well as videos were taken and 

stored in unfavorable conditions. As a result, the old images and videos have 

uncertain and different noise patterns compared to the modern ones. Denoising 

for old images is an effective technique that helps to reconstruct a clean image 

containing crucial information.  However, it is difficult and challenging to 

obtain noisy-clean image pairs for supervised learning, and preparing such a 

pair is exorbitant and burdensome even if existing denoising approaches 

require a considerable amount of noisy-clean image pairs. To address this 

issue, this study proposes a robust noise-generation generative adversarial 

network (NG-GAN), which utilizes unpaired datasets to replicate the noise 

distribution of degraded old images based on the CycleGAN model. In the 

proposed method, the Perception-based Image Quality Evaluator (PIQE) 

metric to effectively control noise generation is utilized. An unpaired dataset 

is generated by selecting clean images with matching features from old images 

to train the proposed model.  Experimental results show that the dataset 

generated by the proposed NG-GAN can better train the state-of-the-art 

denoising models through denoising the old videos effectively. The difference 
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in terms of the peak signal-to-noise ratio (PSNR) and structural similarity 

index measure (SSIM) are 0.37 dB and 0.06 in average, respectively.  

Keywords: Generative adversarial network, image denoising, recurrent 

residual channel and spatial attention, noise generation, perception-based 

image quality evaluator. 
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초    록 

적대적 생성망을 이용한 고전 영상 

노이즈 생성 기법에 관한 연구 

 
 

 호세인 사다트 

지도 교수: 이범식 

정보통신공학과 

조선대학교 

 

수십년 전에는 사진뿐만 아니라 수많은 동영상을 촬영해 불리한 

조건에서 오랜 기간 동안 보관했다. 결과적으로, 오래된 영상과 

비디오는 현대의 것과 비교하여 불확실하고 다른 노이즈 패턴을 가지고 

있다. 오래된 이미지에 대한 노이즈 제거는 중요한 정보를 포함하는 

깨끗한 이미지를 재구성하는 데 도움이 되는 효과적인 기술이다. 

그러나 지도 학습을 위한 노이즈-고화질 이미지 쌍을 얻는 것은 어렵고 

도전적이며, 기존 노이즈 제거 방법이 많은 양의 노이즈-고화질 이미지 

쌍을 요구하더라도 이러한 쌍을 얻는 것은 많은 어려움이 존재한다. 이 

문제를 해결하기 위해 본 학위 논문에서는 성능이 저하된 오래된 

이미지의 노이즈 분포를 복제하기 위해, 쌍을 이루지 않는 데이터 

세트를 활용하는 CycleGAN 모델을 기반으로한 강력한 노이즈 생성 

적대 네트워크(Noise Generation Generative Adversarial Network, 

NG-GAN)를 제안한다. 제안된 방법에서는 노이즈 생성을 효과적으로 
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제어하기 위한 PIQE (Perception-based Image Quality Evaluator) 

메트릭을 사용한다. 제안된 모델을 훈련시키기 위해 오래된 이미지에서 

특징이 일치하는 깨끗한 이미지를 선택하여 쌍을 이루지 않은 데이터 

세트를 생성한다. 실험 결과는 제안된 NG-GAN에 의해 생성된 데이터 

세트가 이전 비디오의 노이즈를 효과적으로 제거하여 최신 노이즈 제거 

모델을 더 잘 훈련시킬 수 있음을 보여준다. 평균적으로 제안 방법으로 

생성한 데이터셋은 PSNR (Peak Signal-to-Noise Ratio)과 SSIM 

(Structural Similarity Index Measure) 각각 0.37dB와 0.06의 성능 

향상을 보였다.  

키워드: 생성적 적대 네트워크, 이미지 노이즈 제거, 반복 잔류 채널 

및 공간 주의, 노이즈 생성, 인식 기반 이미지 품질 평가기. 
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1. INTRODUCTION 

1.1. Overview 

Image denoising primarily focuses on eliminating unwanted signals from the 

given noisy observations. Considerable research has been conducted in this 

field, which is considered one of the most fundamental vision issues [1, 2, 3]. 

Significant advances have been made in image denoising with the advent of 

deep learning. Although deep convolutional neural networks (CNNs) for 

image enhancement have shown promising results [4–8], [34–40], several 

crucial obstacles prohibit their deployment in real-world applications. Because 

learning-based techniques are typically data-driven, training on a given dataset 

does not always ensure generalization to real-world scenarios. For various 

reasons, noise that instantiates from a camera pipeline differs from the 

theoretical noise assumption. For example, common additive white Gaussian 

noise (AWGN) implies that the given term is signal-independent [9, 10], which 

differs from actual noise. Hence, when a denoising algorithm is trained on 

synthetic data, such as AWGN, generalizing it to image restoration is difficult. 

Executing learning-based algorithms on a significant number of high-quality 

datasets is crucial. Most conventional learning-based denoising methods focus 

on the traditional Gaussian denoising problem and pay more attention to the 

architecture design of deep learning networks because creating a pair of noisy 

and noise-free images is simple using additive synthetic noise. 

In [11-12], well-aligned noisy and clean image pairs with real-world noise 

were collected, allowing denoising algorithms to be learned in a supervised 

manner. Although such a technique successfully addresses real-world noise, 

obtaining large-scale pairings remains challenging due to two main practical 

difficulties. First, this is because of the lack of denoised or enhanced versions 
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of old images. In addition, old images are more likely to degrade in a more 

complicated manner than modern images. Second, no degradation model can 

accurately depict the artifacts of old images because the network cannot ap-

proximate them because of the domain disparity between synthetic and actual 

old images. 

Generation-based techniques have been developed to address these issues 

[13, 14]. These methods employ noisy target images to train a noise generator, 

producing pseudo-noisy images coupled with clean images that are then used 

for training a denoising model. Following the success of conventional 

synthetic noise reduction technologies, attempts have recently been made to 

adapt this technology to real-world noise [13]. However, no generation-based 

solution which properly replicates real-world noise is proposed without 

supplying associated clean pictures to the target noisy images. 

Gaussian and digital camera noise are insufficient for creating noise for the 

old film; generating global noise artifacts that can alter the contrast and 

brightness of the entire frame must be possible, as well as local noise that 

affects only a small area of the image. Actual old images are significantly more 

difficult to generate accurately because they frequently suffer severe 

deterioration from various unknown degradations. Furthermore, with 

technological advancements, current digital cameras are considerably more 

advanced in capturing the subtle characteristics of images than old cameras. 

Thus, images captured with modern cameras are unlikely to contain similar 

noise, distortion, or artifacts to those of old images. Hence, the collection of 

datasets for paired old and clean images is a challenging task. 

This study proposes a Noise-Generation Generative Adversarial Network 

(NG-GAN), a noise-generation framework that can be trained without paired 

datasets. Using the Perception-Based Image Quality Evaluator (PIQE) [24] 
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metric with a clean image, noisy images can be generated in a more elaborately 

controlled manner.  

1.2. Research Objective 

Image-to-image translation methods such as Pix2Pix, CycleGAN and 

DualGAN is well-known unsupervised image translation methods.  The basic 

working principle is that the models learn the translation using paired and 

unpaired images from distinct domains. When the models are utilized to 

generate realistic old image noise, they tend to focus on generating general 

translation, such as image color. However, they do not focus on generating 

detailed information such as noise information and texture of old photos, 

which are different from the synthetic dataset. Images generated by these 

models lose significant noise information and variation in the noise pattern. To 

overcome these limitations, the  generator architecture is designed carefully by 

providing additional information along with clean images, add loss functions 

as well as modify the discriminator architecture to be able to focus on 

generating realistic-looking old images. This work proposes a noise generation 

generative adversarial network (NG-GAN), a novel noise generation 

framework that can be trained without using a paired dataset. By passing the 

PIQE metric [24] with the clean image, noisy images can be generated in a 

controlled manner. The following is a summary of the contributions of this 

work: 

i. A robust framework, NG-GAN, has been introduced, which 

successfully imitates the noisy pattern of the degraded images. 

ii. A noise-generation framework for old images and videos using a no-

reference PIQE metric and an unpaired clean image to generate a noisy 

image based on the value of the PIQE metric is proposed.  
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iii. A recurrent residual convolutional and attention mechanism-based 

generator architecture is designed in the proposed NG-GAN method, 

which successfully imitates the noisy pattern of degraded images.  

iv. When state-of-the-art (SOTA) video restorers are trained on the 

datasets generated by the NG-GAN, they can effectively produce clean 

videos from noisy ones in terms of the peak signal-to-noise (PSNR) 

and structural similarity index measure (SSIM). 

1.3. Thesis Layout 

There are five chapters in this thesis. Following the introduction in Chapter 

1, Chapter 2 gives an overview of deep learning algorithms for noisy image 

and video generation. The suggested method and workflow are explained in 

Chapter 3, notably the NG-GAN architecture and fusion with the 

convolutional block attention module. The experimental results are compared 

with the data of recent algorithms in Chapter 4. Finally, Chapter 5 wraps up 

with a brief overview of the findings of the thesis. 
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2. RELATED WORKS 

2.1.  Noisy Image Generation 

In generative adversarial network (GAN)[16], a minmax game between the 

generator and the discriminator is defined. The purpose of the generator is to 

provide compelling samples that deceive the discriminator, allowing the 

generated samples to be distinguished from the ground truth. Then, GAN is 

used for visual enhancing and restoration, such as super resolution [42], image 

inpainting [43], and style transfer [44]. The first widely used GAN-based 

paired image-to-image translator is Pix2Pix GAN [19], unpaired image-to-

image translator is CycleGAN [18], and DualGAN [41], which converts 

images from one domain to the other. Though they are used to map images 

from one domain to the other, they show the difficulties of generating fine 

noisy images for given a clean image. Instead of employing a single model, 

generation-based approaches generally use a two-stage pipeline to solve the 

denoising problem [9, 13, 14 ,15]. First, an unsupervised noise generator is 

learned to replicate the distribution of provided actual noisy samples, allowing 

any clean picture to be translated to pseudo-noisy data. The synthesized input 

and target pairs may then be used to train a denoiser in a straightforward 

manner. This GAN, like most others, aims to approximate the probability 

distribution of real-world noisy images by treating images as samples. This 

image-level GAN produces coarse learning of the real noise distribution 

because it ignores the fact that each pixel of a real noisy image is a random 

variable and that the real noise is spatio-chromatically associated. The 

NTGAN [21] approach illustrates that noise maps created with a certain 

camera response function may be employed in the denoiser. The GAN2GAN 

[9] approach makes use of improved noisy-patch extraction to provide better 

realistic noisy images for training a denoising model. The DA-Net [20] also 
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learns the denoiser and generator translations by comparing them to the real 

noisy-to-clean joint distribution, but this model requires paired data to do so. 

All the papers mentioned above have worked with digital camera-captured 

images, whereas this study has worked to generate noisy images that match 

the old images noise and degradation. 

Image-to-image translation methods, such as Pix2Pix, CycleGAN, and 

DualGAN, are well-known unsupervised image translation methods. The basic 

working principle is that the models learn the translation using paired and 

unpaired images from different domains. When such models are utilized to 

generate realistic old image noise, they tend to focus on generating general 

translations, such as image color. However, they fail to generate detailed 

information, such as the noise and texture of old images, which significantly 

differ from that in the synthetic dataset. Therefore, images generated by these 

models lose significant noise information and variation in the noise pattern. To 

overcome these limitations, the generator architecture is carefully designed by 

providing additional information with clean images, added loss functions, and 

modified the discriminator architecture to focus on generating realistic-

looking old images. 

2.2. Channel and Spatial Attention 

At present, deep learning uses attention algorithms frequently to improve 

feature extraction [45]. ECANet [46], which employs a local cross-channel 

connection method without downscaling and adaptive kernel selection for one-

dimensional convolutional networks. There are several dual-attention 

mechanisms in addition to these single-channel ones. Using a channel attention 

and a spatial attention mechanisms, a convolutional block attention module 

(CBAM) [29] was introduced to enhance relevant information and eliminate 

pointless information. 
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3. PROPOSED METHOD 

3.1. Problems in Old Degraded Images 

Figure 3-1 shows the histogram comparison between AWGN and realistic old 

image noise. A smooth region is extracted from the AWGN-added image and 

the actual old noisy image and then plotted the histogram to show the 

difference between the distributions. The histogram shows that the AWGN has 

a bell-shaped distribution, whereas the old image noise does not have a smooth 

distribution and contains small peaks in the distribution. The smooth region is 

defined as pixel areas where the mean pixel value in the region approximates 

the pixel value itself. That is, 𝑅 is a region in the image defined by 𝑅 ∈ 𝑅𝑀×𝑁, 

and, if the intensity values of 𝑅 are denoted by 𝐼𝑅(𝑥, 𝑦), a smooth region is 

defined as any region satisfying ∑ ∑ |𝐸(𝑁
𝑦=1

𝑀
𝑥=1 𝐼𝑅)  −  𝐼𝑅(x, y)|  ≈  0. Assume 

that regions 𝑅1, 𝑅2 and 𝑅3  are smooth regions corrupted by a certain type of 

noise in the old images, and, in the AWGN-added image, they are corrupted 

by Gaussian noise. Distribution of noise in these regions is approximated using 

a histogram because these regions provide us with noise information. 

 

AWGN added image Smooth 

region (𝑅1)

Smooth 

region (𝑅2)

Smooth 

region (𝑅3)

Noisy image 

histogram (𝑅1)

Noisy image 

histogram (𝑅2)

Noisy image 

histogram (𝑅3)

Real old noisy image Smooth 

region (𝑅1)

Smooth 

region (𝑅2)

Smooth 

region (𝑅3)

Noisy image 

histogram (𝑅1)

Noisy image 

histogram (𝑅2)

Noisy image 

histogram (𝑅3)
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Figure 3-1. Histogram comparison between AWGN and realistic old image 

noise. 

It is important to know the attributes and statistical characteristics of complex 

real noise for developing realistic noise using deep learning networks. Noise 

in old image usually emanates from sources in low-performance cameras in 

the early stage, such as artifacts related to compression, quantization, photon 

noise, and in-camera amplifiers. When all of these components are combined, 

the pixel-wise distortion is blended with a baseline clean signal to produce a 

noisy distorted image as:  

𝐼𝑛 = 𝐼𝑐 + 𝑦                                                      (1) 

Where 𝐼𝑛 is noisy image, 𝐼𝑐 is clean image and y is pixel-wise distortion. The 

noise component y is commonly approximated as an AWGN in traditional 

deep denoising approaches [4, 5]. In [11], although the noise model can offer 

a reasonable estimate of actual noise, many investigations have r that actual 

scenarios are significantly more intricate [22, 23]. Therefore, a learning-based 

strategy is used to imitate real-world noise rather than handmade approaches 

to solve the problem without employing paired data. To imitate the pattern of 

real-world noise, our architecture fully exploits the benefit of unsupervised 

learning. 
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3.2. Proposed Network Architecture 

 

 

A denoising network attempts to recover the clean data from the given noisy 

image if sufficient data pairs are used in supervised learning. However, for old 

F
ig

u
re

 
3
-2

. 
S

u
m

m
ar

y
 

o
f 

N
G

-G
A

N
 

fr
am

ew
o
rk

. 
It

 
co

n
ta

in
s 

tw
o
 

g
en

er
at

o
rs

 
an

d
 

tw
o
 

d
is

cr
im

in
at

o
rs

. 
𝐺

1
 g

en
er

at
es

 d
eg

ra
d
ed

 i
m

ag
es

, 
w

h
er

ea
s 

𝐺
2
 r

ec
o
n
st

ru
ct

s 
th

e 
cl

ea
n
 v

er
si

o
n
 o

f 
th

e 

im
ag

e.
 𝐷

1
 a

n
d
 𝐷

2
 d

et
er

m
in

es
 h

o
w

 m
u
ch

 c
le

an
 o

r 
fa

k
e 

a 
g
iv

en
 i

n
p
u
t 

is
. 



10 

 

image denoising, collecting clean-old noisy image pairs is challenging. First, 

clean images were collected from multiple sources, such as the REDS, 

PASCAL VOC, and DIV2K datasets [49, 51, 52]. Then, our proposed NG-

GAN model is used to generate the target noise distribution, which can be 

obtained from the actual old images. In our proposed method, old images were 

also collected from the frames of old movies, such as D.O.A. (1949), Midnight 

Intruder (1938), A Matter of Life and Death (1946), and Bonjour Tristesse 

(1958).   

The proposed NG-GAN is inspired by the CycleGAN framework [18]. 

Figure 3-1, shows the overall framework of the proposed NG-GAN. 

CycleGAN has shown promising performance in color transformation and 

image transformation from one domain to another, such as sketch-to-photo 

photograph-to-Monet applications, as well as object transfigurations, such as 

in transfiguring a horse into zebra. In addition, CycleGAN helps obtain paired 

datasets using unpaired datasets. However, when CycleGAN was applied to 

generate old noisy images, our experimental investigation observed that the 

generated image showed a lack of variety in noise patterns and was likely to 

change the image geometry from the original image. It also struggled to 

separate an object from the context owing to its generator architecture and loss 

functions [55]. To eliminate the problem of unpaired image generator 

networks in generating realistic-looking noisy images, as mentioned above, 

the PIQE metric [24], a no-reference Perception-based Image Quality 

Evaluator, to guide the network on the degradation quality of the old images 

has been utilized. VGG-19 [27] and SSIM [28] loss were used to guide the 

network in generating noisy images while maintaining the visual quality and 

structure of the images. Recurrent residual network strategy is used to aid in 

deep architectural training and better feature representation is ensured by 
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feature accumulation with recurrent residual convolutional layers. 

Additionally, Convolutional Block Attention Module (CBAM) [29] is used in 

place of skip connections to prevent the network from learning unnecessary 

background information, and to force it to learn and concentrate more on the 

key information. Moreover, this enables our network to accurately capture 

various features to pay attention to the most informative features to generate 

degraded images. 

First, PIQE values [24] of the noisy images are obtained. The PIQE uses 

block-wise distortion estimation to compute the no-reference quality score of 

an image. Initially, the Mean Subtracted Contrast Normalized (MSCN) 

coefficient for every pixel in an image is calculated.  Then, the image is divided 

into uniform-sized 16×16 blocks. Based on the variance of the MSCN 

coefficients, high spatially active blocks are identified. Then, utilizing the 

recognized spatially active blocks, an activity mask is generated, representing 

the regions of input image areas with higher levels of spatial variability caused 

by noise and compression artifacts. 

After that, it uses the MSCN coefficients to analyze distortion caused by 

blocking artifacts and noise in each block. A threshold criterion is used to 

differentiate distorted blocks with blocking artifacts, undistorted blocks, and 

distorted blocks with Gaussian noise. Later, the spatial quality mask of 

noticeable artifacts is generated from the distorted blocks with blocking 

artifacts and the spatial quality mask of Gaussian noise from the distorted 

blocks with Gaussian noise. Finally, the PIQE score of the input image is 

computed as the mean of scores in the distorted blocks. 

The computed PIQE score of the noisy image is spatially replicated through 

all pixel positions of  𝐼𝐶 . The noisy image generator 𝐺1 generates a blurry 

noisy version of the clean image depending on the PIQE value. The higher the 
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PIQE value, the higher the amount of noise it generates. The PIQE value 

ranges from [0-100]. The clean image generator 𝐺2 reconstructs the clean 

image from the fake noisy image generated by 𝐺1. Two discriminators 𝐷1 and 

𝐷2 provides an approximation of how real or fake the generated noisy and 

clean image is, respectively. The losses to train NG-GAN can be represented 

as:  

𝑙1  = |𝐼𝑐 – 𝐺2(𝐼𝑔)|                                                     (2) 

 

𝑙𝑉𝐺𝐺/𝑖.𝑗
𝑅𝑒𝑐 =

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
 ∑  

𝑊𝑖,𝑗

𝑥=1  ∑  
𝐻𝑖,𝑗

𝑦=1   (𝜙𝑖,𝑗(𝐼𝑐)𝑥,𝑦 −𝜙𝑖,𝑗(𝐺2(𝐼𝑔))
𝑥,𝑦

)
2

     (3) 

𝑙SSIM =  1 –  𝑆𝑆𝐼𝑀 (𝐼𝑐𝑙, 𝐺2(𝐼𝑔))                           (4)                                                          

Equations (2), (3), and (4) show the losses required to train the noise 

generator architecture. The generated noisy images should be as close as 

possible to the clean input images in terms of structure. Hence, in this study 

adopt the 𝑙1, 𝑙𝑉𝐺𝐺/𝑖.𝑗
𝑅𝑒𝑐 , 𝑙SSIM, loss, were adopted, where 𝑙1 is a content loss that 

measures the 𝑙1norm distance in between reconstructed image 𝐺2(𝐼𝑔) and the 

original clean image 𝐼𝑐. 𝑙𝑉𝐺𝐺/𝑖.𝑗
𝑅𝑒𝑐  loss is based on the pre-trained 19-layer VGG 

network's ReLU activation layers. The indices i and j indicate that the 𝑖𝑡ℎ 

maxpooling layer and 𝑗𝑡ℎ convolution (after activation) within the VGG19 

network, respectively. 

The Euclidean distance between the features extracted from a reconstructed 

image and the reference one is then defined as the VGG loss. Mean Squared 

Error treats every pixel as a separate entity, ignoring all spatial interactions 

between pixels. As a result, SSIM is utilized as a loss between 𝐼𝑐 and 𝐺2(𝐼𝑔). 

It was implemented and tested utilizing perceptual quality metrics in 

connection to visual perception in the human brain. Human subject ratings 
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provided validation for it. SSIM assesses picture quality from the standpoint 

of human visual perception, making it more suitable for loss function. The 

SSIM index is derived using common-size windows 𝑥  and 𝑦  between the 

pictures. Combining Equations (2), (3), and (4), the total loss for the generator 

is optimized as: 

𝐿𝐺 = 𝜆𝑙1𝑙1 + 𝜆𝑝𝑒𝑟𝑙𝑉𝐺𝐺/𝑖.𝑗
𝑅𝑒𝑐 + 𝜆𝑃𝐼𝑄𝐸𝑙𝑃𝐼𝑄𝐸 + 𝜆𝑆𝑆𝐼𝑀𝑙𝑆𝑆𝐼𝑀 + ℒ𝐺𝑅𝑎        (5) 

where ℒ𝐺𝑅𝑎  is the adversarial loss, which is discussed in Section 2.4, and 𝜆𝑙1
, 

𝜆𝑝𝑒𝑟 , and 𝜆𝑆𝑆𝐼𝑀  are the coefficients used to balance the various loss terms. 

3.3. Proposed Generator Architecture 

The generator architecture of R2U-Net [26] is modified and used in our 

method. Figure 3-3, shows the overall architecture of the generator in the 

proposed NG-GAN. Similar to the GAN application [48], a random gaussian 

noise from 𝑁(0, 12) has been sampled, which is zero mean and one standard 

deviation, then add to pixel coordinates of the clean image to produce a random 

distribution that generates various noisy photos of the same scenario. Two 

recurrent residual convolutional blocks were proposed within the Recurrent 

Residual Convolutional Layer (R2CL) of the proposed generator. In the 

encoding path, five R2CL blocks has been designed to extract features from a 

given image, within each R2CL block, there are two blocks, each containing a 

3x3 convolutional layer followed by a batch normalization and a ReLU 

activation,features extracted from the first convolutional layer are passed 

through a channel attention block, which contains a global average pooling 

layer followed by a 1-D channel attention layer, it is used to effectively capture 

channel correlation and prevent information loss in the features. The attention 

calculated features are the passed to the second convolutional layer to extract 

more feature maps. A recurrent convolutional block with a residual unit 
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without a channel attention block was used in the decoding stages. Second, the 

CBAMs are used for adaptive feature refinement instead of skip connections. 

Finally, in the up-sampling process, batch normalization (BN) was employed 

to improve the stability of the network and accelerate convergence [30]. Every 

stage in the encoding process includes a recurrent residual convolutional unit 

In addition, residual connections were introduced to construct more efficient 

and deeper models. The set of feature maps was doubled, and the size was 

reduced by half each time a recursive residual convolutional unit was 

processed. In the R2CL, recurrent convolutional layers are applied in discrete 

time steps, as specified by the recurrent convolutional neural network 

(RCNN). 
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The recurrent convolutional block with the residual unit without channel 

attention block is utilized in the decoding stages. Second, for adaptive feature 

refinement, the skip connections are replaced with CBAM. Finally, BN [30] is 

employed in the up-sampling process to improve the neural network's stability 

and quicken its convergence speed. Every stage in the encoding process 

includes a recurrent residual convolutional unit, which is made up of two 3×3 

convolutions and incorporates recurrent connections to every convolutional 

layer to improve the model's capacity to integrate contextual data. To construct 
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better efficient and deep models, residual connections are also introduced. The 

set of feature maps doubles and the size is reduced in half each time a recursive 

residual convolutional unit is processed. In R2CL, the recurrent convolutional 

layers are applied in discrete time steps as specified by RCNN. Consider the 

𝑝𝑙  as an input sample at the l-th layer of a block in the recurrent residual 

convolutional layer (R2CL) and (i, j) as a pixel located in an input sample of 

the k-th feature map in the recurrent convolutional layer (RCL). The output 

𝑋𝑖𝑗𝑘
𝑙 (𝑡) at time step t is denoted as: 

𝑋𝑖𝑗𝑘
𝑙 (𝑡) = (𝑤𝑘

𝑓
)

𝑇
𝑝𝑙

𝑓(𝑖,𝑗)
(𝑡) + (𝑤𝑘

𝑟)𝑇𝑝𝑙
𝑟(𝑖,𝑗)

(𝑡 − 1) + 𝑏𝑘           (6) 

here, 𝑝𝑙
𝑓(𝑖,𝑗)

(𝑡)  and 𝑝𝑙
𝑟(𝑖,𝑗)

 are standard convolutional layers and the input 

sample to the l-th RCL, respectively. The RCL generated from the k-th feature 

map and the standard convolutional layers are weighted by 𝑤𝑘
𝑟  and 𝑤𝑘

𝑓
, 

respectively, where bias is denoted 𝑏𝑘. The standard ReLU function  activates 

the output of RCL as (7). 

𝐹(𝑝𝑙, 𝑤𝑙) = 𝑓(𝑋𝑖𝑗𝑘
𝑙 (𝑡)) = 𝑚𝑎𝑥 (0, 𝑋𝑖𝑗𝑘

𝑙 (𝑡))                    (7) 

The output generated by the R2CL unit is given as: 

𝑝𝑙+1 = 𝑝𝑙 + 𝐹(𝑝𝑙, 𝑤𝑙)                                       (8) 

where the input of the R2CL layer is denoted as 𝑝𝑙 and 𝑝𝑙+1 which represent 

both the results derived from the downsampling layer as well as a result from 

upsampling layer from the encoding and decoding path, respectively. The 

basic building blocks of the R2CL layer are illustrated in Figure 3-4. 

The upsampling operation related to the output derived from the R2CL unit 

is performed by each phase of the decoding path. After implying the up-

sampling technique, the feature maps will be reduced by fifty percent, and the 
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size is increased twice. The feature map size is reconstructed to the actual input 

image size in the final layer of the decoding path. 

 

Figure 3-4. The R2CL block. 

As shown in Figure 3-4, the result from the BN layer is fed onto the 

convolutional block attention module (CBAM) [29]. The CBAM consists of 

two sequential modules: the channel and spatial modules. In order to inform 

the model about where to focus, the CBAM builds attention maps for spatial 

and channel information from the given input features and then then the 

attention map is multiplied by the input feature maps. The intermediary feature 

map is refined using the CBAM module in each block of the deep network. 

The refined feature map is then concatenated with the feature maps obtained 

from the transpose convolution operation, as shown in Figure 3-5. 

Conv 3 3, s=1

Batch normalization

ReLU

Batch normalization

ReLU

Conv 3 3, s=1

Output

Channel Attention

Input
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Figure 3-5. The Convolutional Block Attention Module (CBAM) block. It 

consists of channel and spatial modules. The features maps from encoding 

layers are refined through the CBAM block. 

3.4. Discriminator Architecture 

In the proposed architecture, the discriminator architecture was improved 

using a relativistic GAN [31], which differs from the standard discriminator 

𝐷. This was used to improve the discriminator performance. A relativistic 

discriminator aims to estimate the likelihood that a real image is more realistic 

than a fake one better than the conventional discriminator D, which predicts 

whether the likelihood that an input image is real. The relativistic discriminator 

aims to estimate the likelihood that real image 𝑖𝑟  is more realistic than 

generated image 𝑖𝑓. The architecture is shown in Figure 3-6. 

The standard discriminator is expressed as 𝐷(𝑥) = 𝜎(𝐶(𝑥)), where 𝐶(𝑥) is 

the non-transformed output from the discriminator and 𝜎  is the sigmoid 

function. The relativistic average discriminator 𝐷𝑅𝑎 is formulated as:  

𝐷𝑅𝑎(𝑖𝑟 , 𝑖𝑓) = 𝜎 (𝐶(𝑖𝑟) − 𝔼𝑖𝑓
[𝐶(𝑖𝑓)])                         (9) 
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in Equation 9, 𝑖𝑟 represents the real noisy image, 𝑖𝑓 is the fake noisy image 

and 𝔼𝑖𝑓
is an average operator on all generated data in a mini-batch, 

respectively the discriminator loss is defined as: 

ℒ𝐷𝑅𝑎 = −𝔼𝑖𝑟
[log (𝐷𝑅𝑎(𝑖𝑟 , 𝑖𝑓))] − 𝔼𝑖𝑓

[log (1 − 𝐷𝑅𝑎(𝑖𝑓 , 𝑖𝑟))]      (10) 

the generator adversarial loss is defined as: 

ℒ𝐺𝑅𝑎 = −𝔼𝑖𝑟
[log (1 − 𝐷𝑅𝑎(𝑖𝑟 , 𝑖𝑓))] − 𝔼𝑖𝑓

[log (𝐷𝑅𝑎(𝑖𝑓 , 𝑖𝑟))]       (11) 

The adversarial loss of generator includes both 𝑖𝑟  and 𝑖𝑓 . Consequently, in 

adversarial training, the generator updates itself according to the 

discriminators’ output of both fake and actual data. 

 

Figure 3-6. Discriminator architecture. 
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4. EXPERIMENTAL ANALYSIS 

4.1. Hyperparameters 

Table 1. List of simulation parameters. 

Hyperparameters Value 

𝜆𝑙1
 5.0 

𝜆𝑝𝑒𝑟  0.08 

𝜆𝑃𝐼𝑄𝑈𝐸  0.3 

𝜆𝑆𝑆𝐼𝑀  0.1 

𝛽1 0.5 

𝛽2 0.999 

Image size 64×64 

Learning rate 1×10-5 

  

In this thesis, the values of the coefficient are set to 𝜆𝑙1
= 5.0, 𝜆𝑝𝑒𝑟  = 0.08, 

𝜆𝑃𝐼𝑄𝐸 = 0.3 and 𝜆𝑆𝑆𝐼𝑀  = 0.1. All the sub-modules are trained with the Adam 

optimizer where 𝛽1 = 0.5 and 𝛽2 = 0.999. Images are cropped to size 64×64 

and fed into the model. The batch size is set to 1. 17,000 image patches were 

cropped with a size of 64 ×  64 pixels from clean and noisy images and 

sampled those images to train the model; horizontal and vertical flips and 

random rotations 90 ×  𝜃 , where 𝜃  = 0, 1, 2, 3, were performed for data 

augmentation. To collect more noisy images, noisy patches were extracted 

from old noisy images, and those noisy patches were added to the clean 

images. Noisy patches were extracted using the noise block extraction 

algorithm [50]. In the training stage, the learning rate was given as 1× 10−5. 

After every 14 epochs, the learning rate was reduced by multiplying with 0.8 
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for model stabilization. All models were trained on a GeForce RTX3090 GPU, 

G6X memory of 24 GB. The list of all the simulation parameters are given in 

Table 1.  

4.2.  Datasets 

To train the proposed model, high-quality clean images from REDS, PAS-

CAL VOC, and DIV2K datasets were used. REDS contains 240 videos, each 

video with 100 frames. Hence it contains a total of 24000 clean images. The 

PASCAL VOC dataset contains 17,125 high-quality clean images, and DIV2K 

contains 800 high-quality clean images. Noisy images were collected by 

extracting frames from old movies from the 1920s - 1970s as noisy samples, 

and clean images were also distorted by adding Gaussian blur, JPEG 

compression, and adding the noisy patches that were extracted from old videos 

using the noise estimation method [50]. 

Figure 4-1, shows five old noisy images collected from movies from the 

1920s – 1970s. The old images in the film are contaminated with complicated 

degradation noise, which is different from synthetic noise and difficult to 

model mathematically because of the uneven distribution of the noise. The 

noise types in the old movies include compression artifacts from compression 

algorithms, blur noise that occurs due to improper camera lens alignment, 

unstructured defects such as film grain, color fading, and structured defects, 

e.g., scratches and dust spots. Hence, replicating these noisy patterns is more 

difficult compared to the digital noise in modern images. 
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(a) D.O.A 

(1949) 

(b) The Jazz 
Singer (1927) 

(c) Battleship 
Potemkin (1925) 

(d) The Gold 
Rush (1925) 

(e) Taqdeer 

(1967) 

Figure 4-1. Examples of old noisy video frames collected from old movies 

from the 1920s – 1970s. 

4.3. Qualitative Comparison of Denoised Video 

The datasets generated by C2N [48], CycleGAN [18], and the proposed NG-

GAN were validated using SOTA denoising networks: BasicVSR [32] and 

BasicVSR++ [47]. These two SOTA denoisers exhibit the best performances 

in image denoising. The effectiveness of the architectures was validated 

through a qualitative comparison of the PSNR and SSIM values. For 

comparison, C2N, CycleGAN, and NG-GAN were trained under the same 

datasets and conditions, and the same number of paired datasets from each 

generating architecture was obtained. Finally, BasicVSR and BasicVSR++ 

were trained using the generated datasets, and the old videos were tested on 

the BasicVSR and BasicVSR++ trained by C2N, CycleGAN, and NG-GAN, 

as well as the pretrained BasicVSR.  
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(a) Input old 

noisy video 

frames 

PIQE: 26.47 

(b) Results on 

pre-trained 

BasicVSR 

PIQE: 20.65 

(c) Results on 

pre-trained  

BasicVSR++ 

PIQE: 19.38 

(d) Results on 

BasicVSR trained 

on  NG-GAN 

PIQE: 14.85 

(e) Results on 

BasicVSR++ 

trained on NG-

GAN 

PIQE: 15.73 

 

    

(f) Input old 

noisy video 

frames 

PIQE: 22.09 

(g) Results on 

pre-trained 

BasicVSR 

PIQE: 18.64 

(h) Results on 

pre-trained 

BasicVSR++ 

PIQE: 16.20 

(i) Results on 

BasicVSR trained 

on NG-GAN 

PIQE: 12.58 

(j) Results on 

BasicVSR++ 

trained on NG-

GAN 

PIQE: 11.17 

Figure 4-2. Examples of de-oldifying old videos using pretrained SOTA 

methods and SOTA methods trained on NG-GAN generated dataset. (a) Old 

video frames, (b) de-oldified output from pretrained BasicVSR, (c) de-

oldification output from pretrained BasicVSR++, (d) de-oldified output from 

BasicVSR trained on the C2N-generated datasets, and (e) de-oldification 

output from BasicVSR++ trained on NG-GAN-generated datasets. 
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  Figures 4-2 (a) and (f) are input images, and Figures 4-2 (b) and (g) are 

generated noisy images. Figure 4-2 shows that the video restorers trained on 

our model-generated datasets can produce significantly better-denoised 

images than those trained on REDS, which include synthetic noise with a 

Gaussian distribution. As shown in Figure 4-2, BasicVSR and BasicVSR++ 

trained on datasets generated by the proposed NG-GAN can retain the texture, 

details, and edges of the given images, whereas the pretrained models show 

lower-quality results, as shown in Figures 4-2 (b) and (c). This is because the 

pretrained models were trained using synthetic Gaussian and Poisson noise 

models, which do not reflect the actual old image noise and artifact patterns. 

Thus, they fail to capture the noise distribution of the old videos well. The 

marked region in Figure 4-2 highlights the restored region from the pretrained 

BasicVSR and BasicVSR++ and BasicVSR and BasicVSR++ trained on the 

datasets generated by the NG-GAN. The highlighted region in the first row 

clearly shows the delineation of the ear and neck region, maintaining edges 

and other structures intact. Notably, the restorers trained on our dataset 

generated by the NG-GAN can achieve smooth and highly denoised images 

compared with those pre-trained (Figure 4-2). 

4.4. Quantitative Comparison of Denoised Video 

In Figure 4-3, experiments were performed to test the results of the denoiser, 

trained using various datasets, including REDS, the C2N-generated, the 

CycleGAN-generated, and the proposed NG-GAN-generated datasets. The 

metrics used to measure the quality of the datasets are the PSNR and SSIM 

values. The images in Figures 4-3 (b), (h), and (n) show noisy images produced 

by the proposed NG-GAN model. The results in Figures 4-3 (c), (i), and (o) 

show the images denoised by the pretrained BasicVSR model. Then, these 

denoised outputs by the pretrained BasicVSR model were compared with the 
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outputs denoised by the BasicVSR trained on the datasets generated by the 

NG-GAN. in terms of the PSNR and SSIM metrics. As shown in the third and 

the sixth columns, the outputs trained using our NG-GAN-generated datasets 

show outperforming results in PSNR and SSIM values. Likewise, the outputs 

trained using the datasets using C2N-generated and CycleGAN-generated 

datasets show lower PSNR and SSIM values. In addition, the output images 

trained on the NG-GAN datasets show subjectively better results, as shown in 

Figures 4-3 (f), (l), and (r). This shows the effectiveness of the NG-GAN-

generated dataset. 
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Table 2. Comparison of old images denoised by state-of-the-art denoisers and 

image restorers trained on the dataset generated by our model. 

Models 
PSNR 

(dB) 
SSIM 

BasicVSR 

Pretrained BasicVSR [32] 24.91 0.703 

BasicVSR (CycleGAN) [18] 24.93 0.698 

BasicVSR (C2N) [48] 25.27 0.736 

BasicVSR (Proposed NG-GAN) 25.48 0.739 

BasicVSR++ 

Pretrained BasicVSR++ [47] 25.21 0.727 

BasicVSR++ (CycleGAN) [18] 25.03 0.705 

BasicVSR++ (C2N) [48] 25.81 0.768 

BasicVSR++ (Proposed NG- GAN) 25.89 0.781 

Others GCBD [50] 24.22 0.726 

UIDNet [14] 25.17 0.694 

 

 The average performance of the SOTA denoising methods has been 

evaluated, BasicVSR, BasicVSR++, GCBD, and UIDNet on datasets 

generated by the proposed NG-GAN, C2N, CycleGAN. BasicVSR and 

BasicVSR++ are known as the best-performing denoiser among the supervised 

denoising architectures, and GCBD and UIDNet are the unsupervised denoiser 

to show the best results. This experiment is to investigate how the generated 

datasets can train the denoiser well. Table 1 shows PSNR and SSIM values on 

average for each denoising method when they are trained using various 

datasets. As shown in Table 2, BasicVSR and BasicVSR++ trained using the 

NG-GAN generated datasets achieve significantly better PSNR and SSIM 

values. 
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Figure 4-4. Effectiveness of various PIQE values as input for the generator. 

The impact of the PIQE value on the REDS dataset [33] has been investigated 

by testing various PIQE values. Figure 4-4 shows that, with a value of 10, the 

    

(a) Input clean 

image 

(b) Generated noisy 

image 

PIQE input: 10 

PIQE generated: 11.87 

(c) Generated noisy 

image 

PIQE input: 20 

PIQE generated: 26.47 

(d) Generated noisy 

image 

PIQE input: 30 

PIQE generated: 32.71 

    

(e) Input clean 

image 

(f) Generated noisy 

image 

PIQE input: 10 

PIQE generated: 12.85 

(g) Generated noisy 

image 

PIQE input: 20 

PIQE generated: 24.27 

(h) Generated noisy 

image 

PIQE input: 30 

PIQE generated: 37.36 

    

(i) Input clean 

image 

(j) Generated noisy 

image 

PIQE input: 10 

PIQE generated: 13.52 

(k) Generated noisy 

image 

PIQE input: 20 

PIQE generated: 24.48 

(l) Generated noisy 

image 

PIQE input: 30 

PIQE generated: 35.85 
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image shows a controlled amount of noise and distortion in Figures 4-4 (b), 

(f), and (j). With an increase in the PIQE value, the distortion and noise 

increased in proportion to the input PIQE value, as shown in Figure 4-4 (c), 

(g), (k) and Figures 4-4 (d), (h), (l). This is because the NG-GAN was trained 

using the PIQE value extracted from the old, degraded images. This helps the 

model to learn noise generation better. The PIQE values are provided to the 

generator as input with the clean images, resulting in the PIQE values of the 

generated distorted image. 
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  Figure 4-5 shows examples of noisy images generated by CycleGAN, C2N, 

and the proposed NG-GAN method, respectively. The images in Figures 4-5 

(a) and (f) are clean input images, Figures 4-5 (b) and (g) are actual old noisy 

images, and the images in Figure 4-5 (c), (d), (e), (h), (i) and (j) are the images 

generated by CycleGAN, C2N, and NG-GAN, respectively. As can be seen in 

Figure 4-5, the proposed NG-GAN can generate more realistic-looking old 

image noise, whereas other noise generation networks fail to generate old 

image noise with actual noisy patterns in the given clean images. The image 

generated by CycleGAN shows unclear output, and the edges of the objects 

are not retained well, as shown in the red-marked region in Figure 4-5. 

Table 3. Average Kullback-Leibler (KL) divergence values between 

generated and real noisy images. 

Metric CycleGAN C2N 
NG-GAN 

(Proposed method) 

KL-divergence 0.3436 0.2195 0.1879 

 

  Table 3 shows the KL-divergence [54] values calculated between the noise 

map of old images and the noise map of images generated by CycleGAN, 

C2N, and our proposed method. In general, it evaluates how unique one 

probability distribution P is from a second reference distribution. Q. Hence, 

the lower value of KL-divergence indicates a higher similarity between the 

two populations of images. As shown in Table 3, it is observed that our 

proposed method achieves the lowest KL-divergence between the actual old 

noisy images and generated noisy images. The lower KL-divergence 

indicates that the proposed model successfully generates the old image noise 

pattern. 
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  An experiment is conducted considering both PSNR and SSIM metrics to 

measure the superiority of the oldification. It is clear from the plot Figure 4-3, 

that the generator is able to produce images maintaining acceptable PSNR and 

SSIM scores. The qualitative results presented in Figure 4-2 and 4-3, supports 

the fact of oldification. 

 

Figure 4-6. PSNR and SSIM over iterations images by the NG-GAN. 
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5. CONCLUSION 

The main goal of this study is to build a model which can effectively produce 

old image noise with near-perfect noise distribution of ancient images. Since 

the amount of paired datasets of old images is quite scarce, it is very 

challenging to denoise such images. Thus, most of the existing studies did not 

consider solving this problem. Using datasets generated by the propsed model, 

video restorers can learn to denoise old degraded images better. It is shown 

that BasicVSR and BasicVSR++ can achieve a higher PSNR and SSIM value 

compared to the pretrained models. This approach can be a key solution to 

successfully imitate crucial degraded noise patterns for generating accurate 

noise from clean images. 
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