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ABSTRACT

Aggregated multiscale self supervised denoising

Shafkat Khan Siam

Advisor: Prof. Jung, Ho Yub, Ph.D.

Department of Computer Engineering

Graduate School of Chosun University

In typical image denoising approaches, both supervised and unsupervised

learning methods does not take account of individual image’s particular image

prior, the noise statistics, or both. The networks learned from external images

inherently suffer from a domain gap problem as the image priors and noise

statistics can be significantly different from the training and test images. So,

it is difficult if the methods primarily requires clean images to train denoising.

Furthermore, some images inherently generate significant noise (satellite images

of distant galaxies, medical images like MRI images, CT scans, X-Ray images,

etc.), and there are no clean images for training. Here the problems dominantly lie

with the data delivery system. Our approach takes the noisy images and creates a

new version of them with specific pre-processing; by doing so, we make the target

pseudo clear image for the deep neural network. We generate multiple versions

of these noisy images using interpolation of arrays and train the network to the

extent where the network can learn the information on the images without the

noises. In practice, the noisy pictures are blurred on three different scales. These

blurred versions and the original noisy images are combined together to create

v



a single set. This set captures all the necessary information from all of the four

groups. The network architecture uses the concatenation of the module concept

to learn the clear images from a versatile perspective. Then we trained the model

using the main noisy set as input and the newly created set as the target to predict

a much cleaner image from a regular noisy image. This method creates an output

image where the structural integrity image is sustained and the noise component

is removed from the image.
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한글요약

멀티스케일집합을사용한자기지도디노이즈기법

시암샤프캇칸

지도교수:정호엽

컴퓨터공학과

조선대학교대학원

일반적인 지도 또는 비지도 학습 이미지 노이즈 제거 접근법에서는 개별 이

미지의특정 prior이나이미지특정노이즈통계를고려하지않는다.노이즈없

는이미지로학습된네트워크에서는학습이미지에서의노이즈통계가테스트

이미지와 크게 상이할 수 있기 때문에 본질적인 domain 격차 문제로 어려움

을 겪는다. 따라서, 깨끗한 이미지만을 가지고 노이즈 제거를 훈련하는 것에

는다양한어려움이따른다.게다가,일부이미지는내재적으로상당한노이즈

(먼 은하의 위성, 의학에서의 MRI, CT, X-ray 사진 등)을 발생시키며, 훈련하

기 위한 깨끗한 이미지가 존재하지 않는다. 그리고 이런 노이즈는 주로 데이

터전송시스템에의해발생한다.제안하는접근법은노이즈가많은이미지를

취하여특정사전처리를통해학습에필요한새로운 psudo-clean이미지를만

드는것이다.우리는집합체를사용하여이러한노이즈가많은이미지의여러

psudo-clean버전을생성하고네트워크가이미지노이즈정보를학습할수있는

범위까지 네트워크를 학습한다. 구체적으로는 노이즈가 많은 사진들은 세 가

지 다른 척도로 smoothing을 하고. 이처럼 smooth 버전과 원래 노이즈가 많은

이미지가결합하여하나의샘플세트를만들어낸다.이집합은네개의그룹모

두에서 필수적인 정보를 캡처한다. 네트워크 아키텍처는 모듈 개념의 연결을

사용함으로써 다목적 관점에서 선명한 이미지를 학습한다. 그 이후 일반적인
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노이즈 이미지에서 훨씬 깨끗한 이미지를 예측하기 위해 메인 노이즈 세트를

입력으로사용하여새로생성된세트를대상으로모델을교육시켰다.이방법

은 구조 무결성 이미지가 유지되고 노이즈 요소가 이미지에서 제거되는 이미

지를생성한다.
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I. Introduction

The task of denoising an image is a well-studied topic in computer vision.

Researchers have developed different types of methods to solve this problem.

The significant challenges for image denoising are to make the all part of the

image free of noisy components, keep the edges intact, preserve the textures

of the various parts of an image, and not introduce new artifacts in the image.

It is difficult to maintain balance among these targets in all cases. There are

many cases like as images of sequencing tens of thousands of DNA, images of

molecules taken with an electron microscope, images of very low-illumination,

etc. These are some of the most difficult cases to remove the generated noise

from the image. The performance of denoising methods significantly effect

the performance of downstream tasks. The computer vision tasks like super-

resolution, semantic segmentation, and object detection’s result can be drastically

changed based on if the denoiser is run on the image before. Novel denoising

methods have few goals, such as producing more clear and lossless imagery than

previous methods’.

Traditional methods have various processes to remove different types of noise

from an image. As noise is commonly presented in a higher frequency spectrum,

many previous studies used spatial filters to remove the noisy components

presented in the image. Variational denoising methods use image priors, and

minimize energy function to obtain the denoised image. Some method worked

based on removing the pixel values with the weighted average of neighboring

pixel values[1]. There are some methods which developed on the prior knowledge

of the signal structures. These methods are domain specific. If a different type

of data is provided these methods does not work properly. There is also a

1



requirement of calibration for these methods. The scale of self-similarity, or the

rank of the matrix have various different type of impacts on performance of the

method. These non-learning based methods do not have any need for ground

truths.

In a typical supervised method for denoising tasks, the main emphasis is on

the neural networks. So that, the clean image (y) and the noisy image (X) were fed

to the neural network as ground truth and as noisy input, respectively [2]–[12].

A neural network that is trained on noisy/clean pairs learns to predict the clean

signal. There is a problem with supervised methods; they perform well in specific

type of noise and data they are trained on. But if the noise type or the data type

changes, these methods perform poorly. In so many cases, there is no clear ground

truth available for noisy images (e.g., MRI images, satellite images, microscopic

images, etc.) In these sectors of images, it is difficult to collect the appropriate

number of image pairs to create a training dataset. That is why, many recent

studies are not using clear images as ground truth to avoid this obstacle[13]–[19].

Most of them use different versions of the noisy image as ground truth, which

increases the methods’ ability to remove noises from various types of images

and, at the same time, keep the information as intact as possible. Some of these

methods do not provide any target image and apply window based masking to

generate the target image.

For the self-supervised methods, Noise2Noise applies basic statistical

reasoning to image reconstruction using deep learning. This study’s main goal

was to “learn bad images into good images by only looking at bad images”

[13]. The Self2Self[15] method of denoising trains the neural network using

Bernoulli-sampled instances of the input image. The result of the neural network

is estimated by averaging the prediction generated from multiple instances of the
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trained model with dropout. Using a self-prediction loss and a blind spot strategy,

Noise2Void[16] avoids identity mapping. The Noise2Void and Noise2Self[14]

methods use processed noisy images with noisy images for ground truth and

input. As blind spots in inputs contains a large area, the predicted pixels’

receptive field losses much valuable context. This degrades the performance of

denoising. For the motion scenarios or medical imaging, heavy computational

burden and artifact generation in denoised image limits the application.

Neighbor2Neighbor[18], Blind2Unblind[17], and Recorrupted2Recorrupted[19]

use window based masking process to remove the clean image from the training

procedure. In the Neighbor2Neighbor method, they have trained with using sub-

sampled pair images. As the sub-sampled pairs are used for training, the training

leads to over smoothing the predicted image.

In our proposed method for self-supervised denoising, we have developed a

technique to tackle previously mentioned problems differently. We have created

a training procedure with the basic idea of image pair generation. Our framework

takes noisy images as input and generate pseudo-clean images as target for the

model to train. We used the interpolation of array technique on noisy images

to create multiple pseudo-clean (blurry) versions of the noisy image. We have

used scaling to make different sets of pseudo-clean images. In this way, we have

removed the clean ground truth from the training procedure. If we assume that

noise of different pixels in image are a different layer of values, then downscaling

and repopulating the image with neighborhood pixel’s value will somewhat

remove that noisy layer from the image. This process helps our method to remove

any over-fitting problem presented with clean ground truth training procedure.

This process of generating target images has done before the training period

started. Then we applied different augmentation on these images to increase

3



the number of training images. We have used a custom U-Net[20] architecture

for training these noisy images as input and pseudo-clean images as the target.

Our training procedure is similar to Noise2Noise[13]. Here the noisy images

are the input and pseudo-clean images work as the ground truth. This process

removes the noisy high-frequency components from a noisy image. Our training

procedure only takes noisy images as input. This reconstruction network also

performs well in extracting the information presented in the image. We have

applied our custom loss function, which works by combining the pixel-to-pixel

distance between two images, keeping a check on the signal-to-noise ratio, and

keeping the structural integrity of the image intact. As our pseudo-clean image

generation process introduces the changing values of pixels in the image pairs.

The pixel-to-pixel based loss functions such as mean-square-error, peak-signal-

to-noise-ratio loss works well to remove the noisy component from the image.

The structural-similarity index loss helps to remove blurriness, and maintain the

structural integrity in the predicted image as much as possible. Combining all

of these in our training procedure helps us generate output images where the

structural integrity of images is kept intact, the signal-to-noise ratio is high, and

no new artifacts are added.

The main difference of our proposed method to other self-supervised methods

is how we have trained the neural network. Some method developed data for

training by using different levels of noisy images. Other method have created

a mask to generate block of noisy images. A few method have developed sub-

sampled images for training procedure. Similar to different noise level, different

versions of corrupted noisy images are also as training procedure. The blind spot

in the receptive field of the network has also changed by some method to increase

the performance of the neural network for denoising. Our method has used a
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single set of noisy images and create pseudo-clean images as target by using

scaling and interpolation. Most of these previously described methods have used

regularization in their loss function to improve the performance of the method.

We have developed our own combination of losses to remove the noise from the

image, keep the information and quality of the image intact in the output of the

model. These are the main differences among our proposed method and other

self-supervised methods.

We have evaluated our proposed method in different contexts. We have

performed a series of different experiments on both synthetic and real noisy

images. We have used AWGN and Poisson noise for synthetic noise experiment.

Different experiments on different datasets shows that our method perform very

well among self-supervised methods. These results shows the effectiveness of our

method in different types of situations.

A. Contributions

In our proposed thesis, we have developed and implemented a new technique

of self-supervised image denoising. The contributions of proposed denoising

scheme are described as follows:

• We have generated pair of images from a single set of noisy images

applying interpolation. Using different scales we have created multiple sets

of pairs. In this process we can generate pair of images in an optimal way,

which is independent of the neural network.

• We have created a better performing loss function combining commonly

used loss functions like mean-square-error, PSNR values, and SSIM values.

This combined loss function monitors the quality based parameter like the
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signal-to-noise-ratio, structural integrity and removes the noise presented

from the image.

• We have developed a training procedure where the combination of

pseudo-clean data generation in different scales from noisy data and

combining different types of loss functions together to extract the noise-less

image have improved performance of self-supervised denoising method

regardless of the network it is trained on. Our training procedure takes

noisy images as input of the model and pseudo-clean images generated

from these noisy images as target. With the help of the loss functions our

model learn to remove noise from the image. By this procedure, our model

also learn to keep the information presented on the image intact.

B. Thesis Layout

The thesis is organized as follows. In Chapter II, we present previous works

done in image denoising. Then in chapter III, we describe in details the problem

statement, our proposed solution. Next in Chapter IV, we describe the different

variation of experiments done based on our proposed solution, results of the

experiments, and ablation study based on the proposed solution. And finally, we

have concluded our thesis in Chapter V.
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II. Related Work

A. Traditional image denoising methods

Many studies have been done based on filtering and transformation in the early

stages of image denoising. Linear and non-linear-based filters are developed to

remove noise by calculating the value of each pixel based on the correlation

between pixels or image patches in the original image[21]. These filters have

successfully removed most of the noise from an image. But the early linear filters

tend to over smooth the image texture.

Mean filtering[22] was developed to remove the Gaussian noise from an

image. But similar to early linear filter, if the image’s noise level was high it

can over smooth the image. In order to overcome this over smoothing problem,

Wiener filtering[23] was applied. But it can easily blur the sharp edges in the

image. Then non-linear median filter[22], [24] and weighted median filter[25]

are used to suppress noise from image. Bilateral filter[1] is another filter used

for image denoising. It is developed as noise-reducing, non-linear, and edge-

preserving smoothing filter. In bilateral filtering the value of a pixel is replaced

by the average values of the neighboring pixels in a specific window. Bilateral

filter applied on images work as a brute force method as it has to calculate all

the values in the window, average it and replace the targeted pixel’s value. This

process of pixel-wise calculation is not always efficient. If the kernel size of the

window rises it also increases the time needs to change the pixel values.

Various image patch-based denoising methods have low time complexities.

But when the noise level is high these methods performances drops. The weighted

filtering of non-local self-similarity (NSS) prior to the non-local mean creates

a point-wise image estimation. Each pixel is the weighted average of pixels

7



centered at the estimated pixel. Improvement was made by learning from image

patches and low-rank property weighted nuclear norm minimization.[26]

The idea for the k- singular value decomposition (k-SVD) algorithm[27], [28]

is to learn the dictionary of sparse image patches following a joint optimization

problem. This method doesn’t follow the correlation among different image

patches in cases of high noise. The differences in local information can be

seriously distort the output image. Low-rank minimization formats the image as a

matrix of patches. Every column of this matrix is considered as a stretched patch

vector. By exploiting the low-rank prior of the matrix, this method can remove

most of the noise in an image[29], [30]. This type of iterative boosting also has

a high computational cost and also time consuming. Independent component

analysis (ICA) and Principal component analysis (PCA) are two data-driven

methods to remove Gaussian noise. As they use sliding windows, the drawback

is highly computational cost.

CBM3D[31] is an extension of the NLM approach. Similar patches are

stacked into 3D groups by block matching, then transformed into the wavelet

domain. Applying to filter and inversing the image, noise is removed in this

procedure. But when there is high noise in the image, CBM3D introduces new

artifacts in the image, especially in the flat areas.[26] These patch-based methods

filter the noisy images properly based on patches and create a clear image.

Similarly, NLM[32] works with patches. There were many variations of this

patch-based method developed using CBM3D and NLM as the basis. Such as

SADCT[33], SAPCA[34], NLB[35], and INLM[36]. These methods look for

self-similar patches in various transformed domains.

There are a few algorithms worked on statistical prior for denoise an image.

These algorithms have demonstrated that by using a clean external database,

8



these methods can remove most of the noise from the image[37]–[40]. These

algorithms are also class-specific.

B. Supervised image denoising methods

After the development of neural network, the next step for denoising was to use

deep learning methods to optimize the difference between clear and noisy images.

These deep learning methods can be categorized as MLP model-based and

convolutional neural network (CNN)-based methods. Usually, MLP model-based

optimization schemes have time-consuming iterative inferences. But these feed-

forward based MLP methods can work well because they has fewer complicated

calculation in parameters. On the other hand, CNN-based methods try to learn by

mapping the features by optimizing loss functions onto the training set. The use

of CNN in image denoising started with[41] a five layer neural network.

In MLP based denoising method, auto-encoders developed by Vincent et

al.[42], and Xie et al.[43] are few. In MLP based method the optimization

algorithms[44] can generate different type of noise specific architecture. They

can interpret the noise of the image better. It also has a downside, which is that it

restricts the learned priors and the inference process. So, the model tends to have

over-fitting behaviour.

Trainable Nonlinear Reaction-Diffusion (TNRD)[10] is another deep neural

network created for image denoising. In this algorithm, several inference

steps extend the non-linear diffusion parameters into a set of trainable linear

parameters. The main problem with this method is it requires a lot of data to train

this method properly. Also, a considerable number of tuning in hyper-parameters

needs to be done to train this network.

9



Most of these neural networks were generated using noisy and clear dataset

pairs. Using these datasets, the model learns what a clean counterpart of a noisy

image looks like. Some examples of these methods will be[2]–[8]. Among these

methods, DnCNN[6] is one of the most prominent ones where the residual

learning method is used for denoising an image. It uses a mapping function,

combining with batch normalization. The residual learning method and the batch

normalization help each other to reach their potential. This integration helps the

training procedure. It can also help with the compression of the image or the

interpolation error. But a DnCNN model trained in images with Gaussian noise

is not suitable for images with Poisson noise or real-life noise. So if the model

is trained specifically with image generated from Gaussian noise, it will perform

very well in testing scenario where there are only images with Gaussian noises

are provided.

For the unknown noise level scenario, the model should be able to adaptively

choose between suppressing the noise and protecting the texture of the original

image. In order achieve this, fast and flexible denoising convolutional neural

network (FFDNet)[8] was developed. FFDNet model is usually trained on down-

sampled sub-images. In this process, the training procedure works much faster

than DnCNN’s training time. IrCNN[9] is another network-based algorithm for

denoising developed based on DnCNN. In this method, the residue of a noisy

image uses the ground truth as target according to the loss function. But both

DnCNN and IrCNN are developed without considering the underlying structure

of the noisy image itself. IrCNN’s multiple denoising neural networks have

been developed based on DnCNN. Jiao et al.[11] has created a neural network

with two sub-networks. They are called “FormatingNet” and “DiffResNet.” The

difference between these two networks is in the loss layers. The “FormatingNet”

10



uses the variational loss, and the “DiffResNet” uses the l2 loss as the primary loss

function. Combining the work of these two sub-network the method can generate

good results.

C. Self-supervised image denoising methods

In recent years, a few neural networks for denoising have been created,

particularly targeted for blind denoising. The DnCNN[6], IrCNN[9], TNRD[10],

FormatingNet[11], DiffResNet[12] these models can perform well enough in

regular synthetic noise. But if the image is a real noisy image, these methods

cannot properly remove the noise from the image. Deep neural networks trained

with noisy-clean pair also have a problem where it fails to remove real-life noises

from images because of the data domain gap[18].

Researchers of computer vision created some methods with self-supervision

in mind as they don’t need noisy/clean pair for training. Such as Noise2Noise[13],

Self2Self[15], Neighbour2Neighbour[18], Noise2Void[16], Blind2Unblind[17],

Recorrupted2Recorrupted[19]. These methods are trained and prepared in

specific way, so that no clean ground truth is necessary for them. They have used

a set of noisy images can be used as a target for the models to train without any

clean images provided to the model. These distinctions help the models be trained

in a better format and create better results in the blind-noise test. In this way,

Noise2Noise[13] has already reached close results to noisy/ground truth paired

images. Cha et al.[45] have used the GAN (generative adversarial network) to

analyze the structures of noisy images. The problem of Noise2Noise is identity

mapping.

This identity mapping problem is removed in the work Noise2Void[16]. This
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method only makes the noisy images’ predictions by their relative pixel values.

A pixel is randomly chosen from a noisy image, then another randomly chosen

neighbor pixel’s value is applied in the previous position. After that, the loss is

calculated with each iteration. Similar work is done in Self2Self[15]. In the self-

supervised method of Noise2Self[14], they have used a group of features which

work best in condition where noise is independent of the original ground truth. In

this way, every features helps the model to learn different kind of scenario which

in turns reflects in good performance. In the same way, it is possible to apply

these features onto method such as median filters, non-local means etc.

Neighbor2Neighbor[18] is a training technique where the noisy image is

sub-sampled and provided to the model. They did not use any target images.

They have compared the losses among sub-sampled inputs and the inferred

outputs. They have created these sub-sampled images from the noisy image using

randomly choosing two pixels from a four pixel window. They have used U-

Net[20] architecture as their base denoising model. They have performed custom

reconstruction and regularization loss on these sub-sampled input and output.

Combining these losses and training technique they have achieved very good

performance in removing noise from an image and keeping the original texture

intact.

In Blind2Unblind[17] method, a window for masking is applied. This

window for masking work in similar way a Neighbor2Neighbor window works.

They have also applied re-visible loss with regression based loss similar to

Neighbor2Neighbor. In place of sub-sampled noisy image, they have used a

global-aware mask mapper. Which will generate mask for the noisy image and

increase the number of training images. Similar to Neighbor2Neighbor they did

not provide any target image to the neural network. In the place of target image,
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they have measured the losses between regular inference of the model and the

masked images’ inferences of the model. Using a regularization parameter they

have controlled the output without providing any target images.

For Recorrupted2Recorrupted[19], the main technique is based on corrupting

the noisy images. It has used an unsupervised learning technique for denoising.

The main idea behind this method is based on Noise2Noise[13]. For Noise2Noise

the training dataset contain two version of the same image with different noise

level. In similar way, Recorrupted2Recorrupted corrupts a single noisy datasets

with different level of corruption. One of the corrupted set used as noisy input

and the other one is used as the target of the neural network. In their training

procedure they have used DnCNN as their base denoising model.

In Laine et al.[46], they have developed a blind-spot architecture based on

U-Net. In this model, they have created four denoiser network branches, where

every one of them has their own respective field fixed to a different direction. So,

there image is rotated in four directions and then put through the network. Here a

single pixel offset in every branch differentiate each branches. This offset is done

by a window technique where the center pixel dictates the offsetting function.

Another architecture was developed by them where they rotated the image in

four direction and put them as input of a single receptive field-restricted branch.

Here the four different rotated output comes as inverse image. In this way Lain et

al.[46] has solved the problem with blind spots in the receptive field of the neural

network. All of them are aligned together and generated a single denoised image.
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III. Methodology

A. Dataset Creation

The basic idea of self-supervised denoising developed from Noise2Noise[13]

and Noisier2Noise[47]. In the Noise2Noise method, authors used a clean set of

image and applied two different level of noise to it. Then used the lower noise

level images as target and the higher noise level images as input of the training

network. The main idea behind it similar to “learn to turn bad images into good

images by only looking at bad images”. In supervised methods, we know the

clean target. In the Noisier2Noise method, the authors have used a noisy image

set and applied more noise to it. Then use those two noisy variations as input

and target of the neural network. According to Fig. 1, we can assume it’s in the

center if all the distribution of the variants of that specific image. Now if we

select another position from this distribution we will achieve noisy variation of

that image. In self-supervised technique we don’t know the center or the clean

variation of the image. But we can generate different variation of the noisy image

from this distribution. Then we can use these multiple variants as target of the

neural network to train. Convolutional neural network tends to reach towards

the average point of the target distribution. In Fig. 1 we can see that the clean

distribution lies in the middle where the neural network tends to go. Based on

this theory, we have developed our self-supervised method.

The main part of our work is to create the necessary data to work as a target for

self-supervised learning techniques. In supervised methods, they have used clean

ground truth as their target for deep learning. In our method we do not provide

any clean images. The necessary noise for training images is made by additive

white gaussian noise (AWGN), which can be distributed evenly on an image.
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Figure 1: Basic idea for supervised denoising and self-supervised denoising.

We have added AWGN to the clean training data to create the noisy input for

the model. For the testing of images with Poisson noise, we have also generated

training images using Poisson noise. Even if both of them are synthetic noises,

they work well enough to be used as an alternative to real-life noise scenarios.

In a real noisy image, we do not know how much actual noise is presented in

an image. The noise level of a real-life noisy image is always dependent on the

perspective, and vision of the observer.

A noisy image can be described as,

X ′ = X +n. (1)

The AWGN we have used is a normal distribution applied to the image at

random variation somewhat uniformly. AWGN follows the Gaussian distribution,

which is independent of the pixel values of the image. In a similar way, we have

applied Poisson noise to create the dataset for Poisson noise removal. We have

used these noisy images as the input for the denoising model.
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Original Noisy 1.2 scaled 1.5 scaled 1.8 scaled

Figure 2: Visual representation of a sample of created dataset containing three sets of

same images with AWGN noise level σ = 50.

The next part is the creation of the pseudo-clean or blurry dataset, which

we have used as the target for training. We have applied bicubic interpolation in

order to create this target dataset. Using bicubic interpolation, we can estimate the

updated pixel values when we upscale the image from the downscaled version.

These pixel values can be considered by using Eq. 2, 3, 4, and 5. Using these four

equations as the pivotal point, the image we generate can be smoother and blurry.

These images contain much less noisy components on the image.

Bicubic interpolation is a process applied to a 2D array to rescale or

reshape the array using cubic interpolation or other polynomial techniques. This

interpolation process takes neighboring 16 pixels (4 × 4) into account when

it upscales or downscales an array. As there are more values generated from

a limited number of values, bicubic interpolation fills up the gap much for

efficiently and smoothly. These estimations of values are the process done by any

kind of interpolation. Bilinear interpolation uses a single equation to populate

these values. But in bicubic interpolation, sets of neighboring pixels’ values are

considered to generate these unknown values. If we consider the noise of the

image as a different layer, when the image is downscaled, most of the noise

components get removed. But, the upscaling using bicubic interpolation creates
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new values from the neighboring pixels. That is why the output of bicubic

interpolation can create a smoother low-frequency-based array or a little blurry

image containing less noise than the input image.

If a 4 pixels (2×2) unit square is interpolated using bicubic interpolation the

equation for every pixels will be,

p(x,y) = ∑
3
i=0 ∑

3
j=0 ai jx

iy j. (2)

As this 4 pixels will be interpolated to be 16 pixels, there has to be 16

coefficients ai j for every p(x,y) based on the function f , and it’s respective

derivatives are fx, fy, and fxy. The following function provides the p(x,y) for

the derivatives as,

px(x,y) = ∑
3
i=1 ∑

3
j=0 ai jix

i−1y j. (3)

py(x,y) = ∑
3
i=0 ∑

3
j=1 ai jx

i jy j−1. (4)

pxy(x,y) = ∑
3
i=1 ∑

3
j=1 ai jix

i−1 jy j−1. (5)

As an image consists of a matrix, these(Eq. 2, 3, 4, 5) equations will work on

height and width of this matrix. When the images are downscaled, every channel’s

pixel values are affected. In this way, the noisy component is mostly removed.

Then the image is upscaled where these equations generate the values necessary.

Following this method, the image becomes blurry and somewhat noiseless. The

sharpness and blurriness of images can be controlled by the co-efficient ai j. All

these co-efficient can be confined in a single vector α . The functions for achieving

these pixel values can be considered into a vector x. The relation between these
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functions and coefficients can be comprised in a matrix Aα = x. This matrix can

easily extract the values of α and, in terms, can clearly estimate the pixel values

of the changed shape of the array. Applying this method, we have created pseudo-

clean images into three different sets. These images are then randomized to create

a more generalized and varied dataset.

We can see a clear image in (Fig. 2). Then AWGN of level 50 was added

onto it. We have scaled the image down with a 1.2 ratio and upscaled it back to

the previous size again. In the same way, we have downscaled the same noisy

image to 1.5, and 1.8 scales and upscaled it to the original shape. For scaling co-

efficient, we have used different values to make these pseudo-clean images more

diversified. From visual representation, we can see the scaled versions are much

less noisy and more blurry than the real noisy image. We have used this way to

create our dataset. For our training dataset, we have added the noise in random

values in levels 50 to 70 for AWGN and 40 to 60 for Poisson noise.

B. Training Procedure

As described in the dataset creation section, we can generate different versions

of noisy images. Using bicubic interpolation, we can generate the target images.

First, we have downscaled the noisy images. When the images are downscaled, it

changes the pixel values as only a single values of the window is considered. As

the noise layer are mixed with pixel values, many of the noise components get

lost by downscaling. Then applying bicubic interpolation on these downscaled

images, we upscaled these images. For returning to the previous size there are

gaps that needed to be full-filled. In times of upscaling, we have generated

the remaining gap values. We have used the pixel-wise equation of bicubic
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Figure 3: Overview of proposed multiscale target denoising framework.

interpolation to generate these pixel values. These values are generated using

neighborhood pixels’ values. Considering the neighboring pixels’ these images

become blurry and less noisy. The blurriness of the image can be controlled by

managing the ai j coefficient of new pixel value generation.

We have generated three sets of pseudo-clean images for training using a

single set of noisy images. If the noisy image is y then we can call the pseudo-

clean image of this noisy image as fscaled(y). As the y has gone through the

interpolation, most of the high-frequency noise components are removed from

these images. The output images are also become a little blurry. So these images

contains more information that was presented in the clean version. In this way,

the generated images can be used as the target part of the noisy/pseudo-clean
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pair to train the neural network. In the Fig. 3, we have presented our whole

training procedure in a simple format. There we can see the denoising model is

an interchangeable part of a self-supervised training procedure. Here we calculate

the losses for a single noisy image with three different target images.

Our target is to extract structural and noiseless information from these images.

After entering the model, the output of the model can be described as, fm(y). So,

if we write this process in equation,

λ1LMSE( fm(y), fscaled(y)) = 0. (6)

λ2LPSNR( fm(y), fscaled(y)) = 0. (7)

λ3LSSIM( fm(y), fscaled(y)) = 0. (8)

Minimizing these three losses (Eq. 6, 7, and 8) in training can achieve better

performance than regular self-supervised methods.

Here we use the previously generated data in random sets of noisy and

pseudo-clean images as the y and f1(y), f2(y), and f3(y), respectively. The model

here learns the difference between the pseudo-clean version and the noisy version

of the image with respect to the typical mean-square-error (MSE), the structural

similarity index (SSIM), and peak signal-to-noise ratio (PSNR) as a custom loss

function. In this way, the neural network learns the best way to remove the noise

from a regular image and generate a clearer version of that image without any

noise, at the same time not removing its structural integrity.

We efficiently run the noisy image to the target clear image using a U-Net as

our denoising model. The model trains itself to achieve the best possible outcome
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for any input image. As we are using the pseudo-clean target in different scales

for training a denoising model, our total procedure can be described as a self-

supervised training procedure.

C. Loss Function

A regular end-to-end neural network has blind spots in their receptive fields.

Because of this type of blind spots, the inference of a regular end-to-end type

model can cause different artifacts on images. This can also generate pixelation

effect on the output images. If the loss function is not applied properly, there

can be issue how the model is learning to remove the noise. As there is no clean

ground truth present in the model, the tendency of over-fitting is low. Here we

describe how our combination of losses can help in self-supervised denoising.

Mean-square-error loss is very common to use in image generation type model.

But typical mean-square-error loss (LMSE) thinks every pixel is independent. That

means the changes of values in the neighboring pixel does not effect the distance

of selected pixels. That is why applying only meas-square-error loss (LMSE)

can generate artifacts on the image. To remove that effect, we are applying a

customized loss combining PSNR, SSIM, and MSE together in different ratio.

Ltotal = λ1LMSE +λ2LPSNR +λ3LSSIM. (9)

Here the LMSE loss indicates the pixel-wise euclidean distances. It is a very

effective loss to make the inference image to get more closer to the target

image. In this loss the effect of neighboring pixel is not considered. As the LMSE

considers every pixel independent of each others. This loss helps to make the

output identical towards the target images. In the Eq. 10 we have provided how
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the pixel-wise distance is calculated.

LMSE = 1
n ∑

n
j=1(yg − yp)

2. (10)

LPSNR is the loss calculated to reduce the noise as it suggests the peak-signal-

to-noise-ratio. PSNR values always depends on the presence of noise. As our

prepared target image has visually lower noise than input, keeping the PSNR

values in check helps the model to learn how to remove the noise from any image.

The calculation of PSNR values are also dependent on the pixels similar to LMSE .

But the reason behind using LPSNR separately is that this calculation helps the

model to reduce the noise component presented in the output. As we know PSNR

values are ratios, so we have formulated the Eq. 11 to integrate the PSNR value

as loss into the model.

LPSNR = (100−PSNR(yg,yp))/100. (11)

Also, the LSSIM is the loss where the inter-pixel dependency is taken into

account. The SSIM calculation indicates the structural integrity of a noisy image

with a clear image. In SSIM calculation, the luminance, contrast, and structure

these three quality of an image is considered. Using the values presented in the

pixel SSIM values calculate these quality based parameters. Considering these

parts of the image equations the neural network is encouraged to keep the correct

luminance, contrast, and structure intact in the predicted output. As the inference

image gets more and more of it’s noise removed the structural integrity also

increase. We have formulated the SSIM loss (Eq. 12) to keep the SSIM values

in check. It helps to create visually pleasing images from end-to-end neural

networks.
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LSSIM = 1
n ∑

n
j=1 1−SSIM(yg,yp). (12)

The structural-similarity-index loss (Eq. 12) is center-heavy because of the

typical structure of a convolutional neural network. So, there is a possibility

of being biased toward the center pixel of the image. As SSIM loss is image

quality based loss, it helps the neural network to generate more structurally sound

and higher quality based images. Each of these three losses perform different

operations. In our experiments we have found that each one of them performed

their role in removing noise from images and generate high quality structurally

sound clean image. That is why we have needed the most benefit we can get from

all of these losses. We have created a custom loss by combining all three losses

to perform better together.

For the customized loss function combination we empirically tuned the

parameters λ1, λ2, and λ3 respectively to 0.25, 0.85, and 0.3. These parameters

are obtained by trial and error of various combinations. These values injects

the influences of each loss functions successfully towards training the model

so that the neural network can learn properly to remove noises from a noisy

image. Together with our created datasets for training and loss functions our self-

supervised training procedure can generate good results.
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IV. Experiments

This section demonstrates the proposed method’s performance compared to seven

different studies. Here, five of them are self-supervised denoising methods,

CBM3D is a prior-based method, and DnCNN is the supervised denoising

method. We have compared AWGN and Poisson noise as synthetic noise. In the

following, we present the experimental settings and then show the qualitative and

quantitative evaluation of six widely used datasets in synthetic and real noisy

scenario.

A. Experimental Setup

In our training process, we use a modified U-Net architecture. For optimizer we

have used GCRMSprop custom optimizer based on Adam with a learning rate of

0.0001. We have implemented early stopping measurement to avoid over-fitting

problem. We monitor the validation loss with the previous best loss and update if

any comes better. We use the batch size of 8, where all the images are normalized

between 0 and 1. We have selected 5000 images from ILSVRC2012 validation

dataset. We have applied our described dataset creation on these images so for

one input images there are now three different target images. For the hyper-

parameters of the losses we have tuned these empirically at λ1 = 0.25, λ2 = 0.85,

and λ3 = 0.3. We have also applied the usual data augmentation procedure to

all the training data. The images selected for training has a balance of different

classes. There are different types of indoor and outdoor images of different

subjects. They are high-resolution images so that the patches can be much more

apparent than any typical image. We have trained our model on a server using

Python 3.8.10, TensorFlow 2.8.0, and 3 NVIDIA 3090Ti GPU.
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Noisy image

Noisy Original CBM3D[31] DnCNN[6] Noise2Noise[13]

Blind2Unblind[17] Noise2Self[14] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]

Proposed

Figure 4: Visual quality comparison for “ Snake ” from the BSD300 dataset with AWGN

noise level σ = 50.

Noisy Image

Noisy Original CBM3D[31] DnCNN[6] Noise2Noise[13]

Blind2Unblind[17] Noise2Self[14] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]

Proposed

Figure 5: Visual quality comparison for “ Bike ” from the Kodak dataset with AWGN

noise level σ = 50.
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Noisy Image

Noisy Original CBM3D[31] DnCNN[6] Noise2Noise[13]

Blind2Unblind[17] Noise2Self[14] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]

Proposed

Figure 6: Visual quality comparison for “ Monarch ” from the Set14 dataset with AWGN

noise level σ = 50.

Noisy Image

Noisy Original CBM3D[31] DnCNN[6] Noise2Noise[13]

Blind2Unblind[17] Noise2Self[14] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]

Proposed

Figure 7: Visual quality comparison for “ Building ” from the BSD300 dataset with

Poisson noise level λ = 30.
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Noisy image CBM3D[31] Noise2Noise[13] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]
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Figure 8: Visual quality comparison for SIDD dataset.

Noisy image CBM3D[31] Noise2Noise[13] Neigh-
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Recor-

rupted2Recorrupted[19]

Proposed

Noisy image CBM3D[31] Noise2Noise[13] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]

Proposed

Figure 9: Visual quality comparison for the PolyU dataset.
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Noisy image CBM3D[31] Noise2Noise[13] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]
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Noisy image CBM3D[31] Noise2Noise[13] Neigh-

bor2Neighbor[18]

Recor-

rupted2Recorrupted[19]

Proposed

Figure 10: Visual quality comparison for CC dataset.

B. Testing Datasets

After training we have applied our method into rigorous testing. For synthetic

noise we have used AWGN and Poisson noise. Using these two noises we have

performed our evaluation. For synthetic noise dataset we have used BSD300[48],

Kodak[49], and Set14[50]. The BSD300 dataset contain 100 images, Kodak

dataset contain 24 images, and Set14 dataset contain 13 images.

For real life noise, we have used three different datasets. SIDD[51] is a dataset

commonly used as a real-life noisy image dataset. It contains 40 large images for

testing where every images are broken into 31 patches, containing total 1280

image patches. All of these patches are of 256×256 shape. They have provided

a mat file containing all these data. PolyU[52] is another real-life noisy dataset.

It contain 100 noisy images for testing. CC dataset provides 15 real-life noisy

images. We have performed test on these methods and provided the results here.
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Proposed

σ = 25

Noisy image

σ = 50
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Noisy image
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Figure 11: Visual quality comparison for BSD300, and Kodak datasets for AWGN noise

level σ = 15, 25, and 50.
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Figure 12: Visual quality comparison for BSD300, and Kodak datasets for Poisson noise

level λ = 30.
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C. Visual comparison analysis

For comparisons in synthetic noises, we have performed testing on

following methods: CBM3D[31], DnCNN[6], Noise2Noise[13], Noise2Self[14],

Blind2Unblind[17], Neighbor2Neighbor[18], and Recorrupted2Recorrupted[19].

In Fig. 4, 5, 6, and 7 we have selected a patch from the main image, and its visual

representation has been presented in all of these previously mentioned methods.

There is also a noisy patch and a original ground truth patch provided for visual

comparison. The visual representation of multiple methods shows the strengths

and weakness of these methods in separating the noises from the image. Here

Fig. 4, 5, and 6 contains images with AWGN, and Fig. 7 contains images with

Poisson noise.

Fig. 4 demonstrate the output generation by different methods for a image

of BSD300 dataset. This image contain a snake and straws laid on the ground.

The patch we are discussing is a patch containing the straws. In the CBM3D

method’s output is over-smoothed. The straws presented here are not clear. The

patch of DnCNN contains the straws, but the ground is smoothed in some places.

The output of Noise2Noise method contains some noise. Here the straws and the

dirt on the ground is more present than DnCNN. In Blind2Unblind’s output patch

we can see the noise is more present. The patch of Noise2Self is blurry and there

is artifacts of pixelation. Here we cannot properly see the straws and ground.

Neighbor2Neighbor has removed the noise partially, so the straws are visible.

Recorrupted2Recorrupted method’s generated patch has successfully removed

the noise from the image. But there are some blurriness present on the ground

part of the image. Here our proposed method’s output has removed most of the

noise from the noisy image. But it also removed some of the straws and dirt those
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are presented in the original image patch.

We have presented a image of bikers in Fig. 5. Here in the visual comparison

we can see that CMB3D, DnCNN have removed the noise from the biker’s helmet

but these method has over-smoothed the patch. The output of Noise2Noise,

Blind2Unblind, Neighbor2Neighbor, and Recorrupted2Recorrupted has partially

removed noise from the helmet. But in Recorrupted2Recorrupted the output

patch has become blurry. The output patch of the helmet in Noise2Self contains

pixelation effect. Our proposed method’s output has removed the noise partially

from the image but there are some artifacts are present in the background of the

helmet. In Fig. 6 a image of a monarch butterfly is presented as noisy image. The

represented outputs show a part containing flowers and head of the butterfly. Here

DnCNN, Noise2Noise, Blind2Unblind have removed most of the noise from the

patch. The output of our proposed method is almost noise-free. Also the shapes

of the flowers are clearly visible.

In these three visual comparisons we have provided results for AWGN applied

on image. Here, the structure of the images’ subjects and the contrast changes

in the some of the methods in some cases. In our proposed method’s pictures,

the noise is reduced, and the structure of subjects, color, and contrasts are more

similar to the original ground truth patch.

We have similarly added a sample result for poisson as synthetic noise on

clean image. In Fig. 7 we have provided result for a single image in BSD300

dataset with Poisson noise which contain a shadow of a building on a pond. Here

we can observe that most of the methods have successfully remove most of the

noise from the presented image but Noise2Self and CBM3D have made the image

smoother. We can observe the smoothness in the leaves presented here. The patch

for Noise2Self contains some type of pixelation effect presented on the bridge and
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the leaves. The output of Blind2Unblind has introduced some pixelation artifacts.

For the method of Neighbor2Neighbor there are some blurriness on the image

patch. The output of Recorrupted2Recorrupted method has generated a almost

noiseless and structurally sound image patch, which is very close to the original

patch of bridges and leaves of the trees. Our proposed output has removed most

of the noise and kept the structure of the image more accurate to the original

ground truth.

The performance of our model with real-life noisy images are done on SIDD,

PolyU, CC test datasets. These visual representations are provided in Fig. 8, 9,

and 10 respectively. In these figures we have provided two samples from each

datasets. From these images we can see that our model removed the presented

noise in the image without admonishing the image in any way. In the Fig. 10,

we can see that even the texture is also presented in our image without the noise.

Where as, other methods either changed the color or failed to successfully remove

the noise from these presented images.

In Fig. 8 top row, it contain a patch of SIDD images. We can observe that

there are some noise still available in our proposed output. We can also see that

CBM3D, Noise2Noise methods also contain some noise in the output. The output

of Recorrupted2Recorrupted has removed the noise from the image but also

introduce the pixelation effect which distorts the structures of the image. For the

second row, it is another patch provided in the SIDD images, there is noise present

in the output of CBM3D. The output of Noise2Noise also contains the noise

from the original input. The neighbor2Neighbor method’s output has removed

some noise. The output generated by Recorrupted2Recorrupted has successfully

removed the noise from the image. But the output is also became blurry. The

output of our proposed method in the second row has removed most the noise but
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introduced a little blurriness, so the patch is not totally clear.

In Fig. 9 first row contains a image of wires on a table. CBM3D and

Noise2Noise could not remove the noise properly. Neighbor2Neighbor and

Recorrupted2Recorrupted methods have removed the noise completely although

there are some blurring present in the image. In our proposed method’s output

we can observe that the noise is removed from the image and the structure of

the wires in the image is intact. The second row contains a reading of a meter.

Here the CBM3D and Noise2Noise method has removed the noise partially. The

output of Neighbor2Neighbor has removed most of the noise from the switch

of the meter in the image, but there is a blurriness to the image. Similarly

in the Recorrupted2Recorrupted method’s output contain almost no noise, but

blurriness is present in the image of the meter. In our proposed method’s output,

there is still some noise left on the background, and switch parts but there was no

blurriness introduced here in this image.

For the CC dataset in Fig. 10 first row, we can observe that the

Recorrupted2Recorrupted and Neighbor2Neighbor methods have removed the

noise from the image. Also these two methods have partially removed some

information from the “Biscuit” in this image. The Noise2Noise method could

not remove all the information presented in the image. Here, our proposed

method have removed most of the noise also kept the information presented

on the “Biscuit” intact. In the second row of the images in Fig. 10 there is a

image of a cloth. In this row, the Noise2Noise method’s output still contains

some noise. The output of Neighbor2Neighbor method has some blurriness

introduced on the cloth. Recorrupted2Recorrupted method’s output contains

almost no visible noise. But in the image there are more blurriness present

than Neighbor2Neighbor’s method. In our proposed output the cloth can be seen
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almost noise-free and without new artifacts.

Here in Fig. 11 we have added a few visual demonstration of denoised image

for synthetic noise. We have provided results for Gaussian noise, σ = 15, 25,

and 50. Here we can see visually how our method performed in different noisy

images. In the first row, there is a image of a sailboat. On this image different

levels of AWGN noise has been applied. As we can see in the even column of

first row the image of the boat gets a little blurry as the noise increase. Because

the input to the model gets higher noise the model tends to struggle a little. That’s

why the denoised images gets blurry. The second row contains a image of a vase,

similar to the first row, as the noise gets higher the image gets a little blurry. The

design presented on the vase which we can see clearly in the noise level σ = 15 is

not properly visible in the noise level σ = 50. The statue of the third row present

details in the noise level σ = 15. In the output of noise level σ = 25, the image

contains all the information presented. In our output most of the noises were

removed. But in the output of noise level σ = 50, the image contain blurriness.

In the Fig. 12, we have provided various samples for images with Poisson

noise. Here we have shown images from BSD300 and Kodak datasets. In the

first image, there is a building near a pond. The reflection of the building is

also present on the water. In our proposed method there are some noise present

in the reflection of the image. The second image is a image of a fireman. In

our generated output there are no noise present. But there are some blurriness

at the debris. In our generated goat image there are some noise still visible.

For the mushroom image, our generated output creates some blurriness in the

background. The noise presented in the mountain image was tough for the model.

As we can see there are still some noise present in the output. The output for the

model image is almost noise-less. But there are some blurriness in the hair area
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of the model. In the human image, our proposed method has generated a visibly

noise-less output. The second human image contains some pixelation effect in the

dress of the human. The last image contains a view of the sky with a watchtower.

Our generated output is mostly noise-free. But the cloud in the sky contains some

blurriness and some pixelation effect as artifacts.
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Table 1: Quantitative comparison, in PSNR(dB)/SSIM, of different methods for AWGN

removal on BSD300, Kodak24, and Set14. The compared methods are categorized

according to the type of training samples.

Noise Type Method BSD300 Kodak24 Set14

Gaussian Noise, σ ∈ [5,50]

CBM3D[31] 30.56/0.847 32.02/0.860 30.94/0.849

DnCNN[6] 31.07/0.866 32.51/0.875 31.41/0.863

Noise2Noise[13] 28.72/0.815 29.67/0.899 31.37/0.868

Blind2Unblind[17] 30.86/0.861 32.34/0.872 31.14/0.857

Noise2Self[14] 29.79/0.832 30.56/0.809 29.92/0.822

Neighbor2Neighbor[18] 30.73/0.861 32.10/0.870 31.05/0.858

Recorrupted2Recorrupted[19] 28.25/0.808 29.98/0.906 31.32/0.865

Proposed 30.14/0.887 30.19/0.830 29.67/0.876

Gaussian Noise, σ = 50

CBM3D[31] 24.48/0.568 27.02/0.682 26.32/0.813

DnCNN[6] 25.92/0.718 28.56/0.763 26.08/0.825

Noise2Noise[13] 25.77/0.700 25.85/0.730 30.21/0.763

Blind2Unblind[17] 25.61/0.765 26.59/0.698 25.98/0.723

Noise2Self[14] 28.12/0.792 29.24/0.903 27.96/0.759

Neighbor2Neighbor[18] 26.13/0.709 27.12/0.849 26.03/0.813

Recorrupted2Recorrupted[19] 26.01/0.798 26.65/0.801 26.12/0.749

Proposed 26.59/0.821 26.22/0.752 28.45/0.804

Poisson Noise, λ ∈ [5,50]

CBM3D[31] 27.48/0.698 28.56/0.767 28.65/0.813

DnCNN[6] 29.77/0.851 31.19/0.861 30.02/0.842

Noise2Noise[13] 29.65/0.844 29.78/0.848 29.86/0.798

Blind2Unblind[17] 29.98/0.868 29.89/0.858 29.83/0.857

Noise2Self[14] 28.93/0.823 28.08/0.808 28.62/0.835

Neighbor2Neighbor[18] 30.86/0.855 29.54/0.843 29.79/0.838

Recorrupted2Recorrupted[19] 29.14/0.732 29.14/0.732 28.77/0.765

Proposed 29.73/0.877 31.58/0.849 30.93/0.895
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Table 2: Real-image denoising results of several existing methods on SIDD, PolyU, and

CC dataset.

Dataset Metrics CBM3D[31] Noise2Noise[13] Neighbor2Neighbor[18] Recorrupted2Recorrupted[19] Proposed

SIDD [51]
PSNR 25.65 27.68 34.75 34.78 33.73

SSIM 0.685 0.668 0.853 0.898 0.844

CC[53]
PSNR 25.19 32.77 36.43 37.78 36.76

SSIM 0.658 0.7381 0.9528 0.951 0.936

PolyU [52]
PSNR 27.40 36.59 37.46 38.47 35.82

SSIM 0.753 0.725 0.958 0.965 0.945

D. Performance comparison analysis

According to the table 1, in Gaussian noise, σ ∈ [5,50] category,

proposed method’s performance is lower than DnCNN[6], CBM3D[31],

Neighbor2Neighbor[18], and Blind2Unblind[17] in PSNR scores but the

SSIM scores for BSD300 and Set14 is higher. Even if our PSNR scores

were lower than the supervised method, they were still higher compared to

Recorrupted2Recorrupted[19], Noise2Self[14], and Noise2Noise[13] these self-

supervised methods. For Gaussian noise, σ = 50 category, we can observe

that our method perform well in Set14 dataset. Also the SSIM scores for all

three dataset was high compared to other methods. In this section, Noise2Noise

performed highest score in set14 dataset. Noise2Self performed best in BSD300,

and Kodak datasets. Our proposed method performed better than Blind2Unblind,

Neighbor2Neighbor, and Recorrupted2Recorrupted in this section. In the Poisson

noise, λ ∈ [5,50] category of table 1, we can observe that our method performed

highest PSNR scores in Kodak and Set14 datasets. Also the SSIM scores

are highest in BSD300 and Set14 datasets. If we compare our results with

Noise2Noise’s results then for Gaussian noise, σ ∈ [5,50] Noise2Noise achieve
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PSNR and SSIM scores as 29.92 and 0.861, and our proposed method achieves

30.00 and 0.864. For Gaussian noise, σ = 50 case Noise2Noise’s SSIM score

is 0.731, and ours is 0.792. In Poisson noise, λ ∈ [5,50] category, our proposed

method’s PSNR score is 30.75 and Noise2Noise’s PSNR score is 29.76. Our

proposed method’s SSIM score for this case is 0.874 and Noise2Noise’s SSIM

score is 0.830. Overall our proposed method’s PSNR and SSIM scores are 29.28

and 0.843, and Noise2Noise method’s PSNR and SSIM scores are 28.99 and

0.807. Here we can observe that our method based on the idea of Noise2Noise

method has outperformed Noise2Noise in different cases and in overall average.

We have identified the highest PSNR and SSIM scores with bold letters and the

second highest scores with underlining in table 1, and 2.

In the real-life noisy comparison of table 2, we can see that the highest scores

of PSNR, and SSIM are hold by Recorrupted2Recorrupted. The second highest

scores for SIDD and PolyU datasets are hold by Neighbor2Neighbor method.

Our proposed method holds the third highest scores for PSNR and SSIM. As

we can see in the real-life noisy scenario, our method is not the best performing

method. But the PSNR and SSIM scores of our method is high and the visual

representation shows that our method is capable of removing real-life noise.

39



E. Ablation Study

Ground truth Without MSE loss Without PSNR loss Without SSIM loss Proposed

Ground truth Without MSE loss Without PSNR loss Without SSIM loss Proposed

Ground truth Without MSE loss Without PSNR loss Without SSIM loss Proposed

Figure 13: Sample results for applying specific combination of losses.

Here in Fig. 13, we have provided demonstration of removing one loss each time.

We can observe that, when MSE loss is not used there are many noise left in the

image. As MSE calculate the pixel to pixel euclidean distance between images,

it helps to identify the noisy elements and remove it in the training process.

For removing the PSNR loss, we can observe that MSE and SSIM loss cannot

properly remove all the noise from the image. As we know, the PSNR value keeps

check of the amount of noise present on the image. Because of that reason, partial

values of MSE loss and SSIM loss cannot effectively remove the noise from the

image. The third loss SSIM mostly effect on the structure and the color contrast

of the image. That’s why MSE, and PSNR loss can remove most of the noise from

the image. Here we have shown that demonstration with three different image of

horse, house, and lake.
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Table 3: Removing different losses and observing the results for BSD300 dataset.

Noise type Metrics MSE Loss Removed PSNR Loss Removed SSIM Loss Removed Proposed

σ ∈ [5,50]
PSNR 26.39 25.47 28.65 30.14

SSIM 0.731 0.692 0.583 0.887

σ = 50
PSNR 24.64 23.86 25.17 26.59

SSIM 0.715 0.688 0.511 0.821

λ ∈ [5,50]
PSNR 25.65 26.33 28.93 29.73

SSIM 0.711 0.724 0.572 0.877

We have introduced the table 3, to show the results of applying various

combination of our basic losses. We have removed one loss at a time and trained

the model. Then generated results using those weights.

Here we can observe that, in case of training without MSE loss, the PSNR

scores dropped significantly for AWGN noise level [5,50], AWGN noise level

50, and poisson noise level [5,50] cases. As MSE calculate the distance between

pixels, the neural network failed to remove most of the noise components from the

image properly. But as SSIM loss and PSNR loss works together it can generate

the structure well enough to achieve good SSIM scores.

For the case of training without PSNR loss, according to table 3, the PSNR

scores drops for AWGN noise level [5,50], AWGN noise level 50, and poisson

noise level [5,50]. PSNR loss keeps the PSNR values in check that is why the

PSNR scores of these images have dropped. But as SSIM loss and MSE loss

works in the training, they keeps the SSIM scores relatively high.

When we have removed the SSIM loss, the scores of PSNR dropped slightly

for AWGN noise level [5,50], AWGN noise level 50, and poisson noise level

[5,50]. But here the SSIM scores have dropped much more than any other cases.
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The reason behind this is SSIM loss keeps the main information of the image

intact. So the noise removal is not it’s main priority. The loss of structural integrity

in an image can create new artifacts, and sometimes distort the image. SSIM loss

increases the structural integrity and helps to reconstruct the image as close to the

original ground truth.
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V. Conclusion

In this paper, our main target was to develop a system where the denoising

can be done by self-supervised method. In our method we did not provided

any clean image to the neural network. In order to achieve our target, we have

created multiple set of pseudo-clean images in different scales. These images

are created from various levels of noisy images. We have used these sets of

images as target images. By using these images, we can train the network to

extract the embedded features of the images while discarding the noise. Our

combination of losses keeps check of the signal-to-noise ratio, structural integrity

of the image, and pixel-wise differences. Applying all of these together the

model learns to remove the noise and keep the information in the image intact

without any necessity for clean ground truth. This training procedure keeps the

color and the structure of the images intact. To enhance the performance of our

self-supervised denoising, we have used a modified architecture built on U-Net.

Finally, we compared our results in real-life noisy and synthetically noisy images

with different denoising methods. Visible results with metric-based results show

our method’s performance in different scenarios. The results of our method might

not be best in every cases, but it perform very well in multiple cases in different

types of images. Also, the visual results confirm that our method is capable of

removing noise from images in different types of cases.
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