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초록 

생물정보학을 이용한 카이네이즈 신약설계: 

3 차원 QSAR, 자유에너지 계산(MM-PBSA, 

우산샘플링)  

수팔나 고스          

지도교수: 조 승 주, Ph.D. 

의과학과 

조선대학교 대학원 

 

결합자리에서 기존 화합물의 화학 그룹을 대체하는 리간드 변형은 

카이네이즈 약물 개발의 중요한 전략이다. 이를 위해서는 수용체와 

소분자 사이의 결합 친화도에 대한 정확한 평가와 순위 결정이 

필요하며, 이는 약물 발견 연구의 개발 비용을 크게 줄인다. 두 생체 

분자 간의 결합 친화도 측정을 위한 신뢰할 수 있는 방법을 확립하는 

것은 현재 이 분야에서 각광을 받고 있다. 이를 위하여 우리는 FMS 

유사 티로신 키나아제-3(FLT3) 및 사이클린 의존성 키나아제 

2(CDK2)를 포함한 다양한 키나아제 표적에 대한 생물물리학 및 구조 

모델링 기술을 사용했다.  FLT3 의 과발현 및 빈번한 돌연변이는 중증 

급성 골수성 백혈병(AML) 질환에서 다중 세포내 신호 전달 경로의 

조기 활성화를 유도한다. 경쟁적인 ATP 억제제를 사용한 FLT3 의 

선택적 억제는 지난 수십 년 동안 인기를 얻었다. 그러나 약물 내성 

및 표적 외 효과가 여전히 우려 사항으로 남아 있어 지속적인 약물 

개발 프로세스가 필요합니다. 도킹, 분자 동역학, Poisson-

Boltzmann/일반화된 Born 표면적(MM-PB/GBSA), FPL(빠른 풀링 리간드) 

시뮬레이션, 선형 상호 작용 에너지(LIE), 우산 샘플링(US) 및 자유 

에너지 섭동(FEP) 등의 시뮬레이션 연구와. 비교 분자장 분석(CoMFA) 

및 비교 분자 유사성 지수 분석(CoMSIA)을 사용한 구조-활성 관계(SAR) 

연구를 수했고, 그 결과를 SAR 방식으로 강조했다. 계산된 결합 

에너지는 여러 계산 방식에서 실험적 결합 에너지와 잘 상관되어 계산 

방식이 신뢰할 수 있고 성공적으로 활용될 수 있음을 나타낸다. CoMFA 
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및 CoMSIA 모델 모두에서 관찰된 억제 활성과 예측된 억제 활성 

사이에 만족스러운 상관 관계 통계를 얻었다.  CoMFA 및 CoMSIA 

모델에서 계산된 등고선 지도는 화합물의 억제 활성을 증가 또는 

감소시킬 수 있는 화학 그룹 치환의 유리한 위치와 불리한 위치에 

대한 귀중한 정보를 제공한다. 앞서 언급한 접근 방식은 몇 가지 

새로운 화합물을 설계하기 위해 공동으로 활용되었으며 결합 친화도 

및 억제 가능성이 결정되었다. 이 연구들은 AML 치료의 합리적인 리드 

발견을 위한 포괄적인 이론적인 방향성을 제공할 수 있다.  
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Free Energy Calculation (MM-PBSA, Umbrella 
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         Suparna Ghosh 

         Advisor: Prof. Cho Seung Joo, Ph.D. 
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Ligand modification by substituting chemical groups of the existing lead compounds 

within the binding pocket is a popular strategy for kinase drug development. This 

necessitates the accurate assessment or ranking of the binding affinity between the 

receptor and small molecules, which significantly reduces the development cost in 

drug discovery research. Establishing the reliable methods for binding affinity 

determination between two biomolecules is of great interest. In this work, we 

employed combined molecular modeling techniques for biophysical and structural 

studies of inhibitors that target FMS-like tyrosine kinase-3 (FLT3) and cyclin-

dependent kinase 2 (CDK2). Overexpression and frequent mutations in FLT3 induce 

premature activation of multiple intracellular signaling pathways in severe acute 

myeloid leukemia (AML) disease. Selective inhibition of FLT3 using competitive 

ATP inhibitors has gained popularity over the past few decades. However, drug 

resistance and off-target effects remain a concern, necessitating the continuous drug 

development process. We determined protein-ligand binding affinity by employing 

physics-based docking, molecular dynamics (MD), molecular mechanics, Poisson-

Boltzmann/generalized Born surface area (MM-PB/GBSA), fast pulling ligand 

(FPL) simulation, linear interaction energy (LIE), umbrella sampling (US), and free 

energy perturbation (FEP) scoring functions. The structure-activity relationship 
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(SAR) study was conducted using comparative molecular field analysis (CoMFA) 

and comparative molecular similarity indices analysis (CoMSIA), and the results 

were emphasized as an SAR scheme. In both the CoMFA and CoMSIA models, 

satisfactory correlation statistics were obtained between observed and predicted 

inhibitory activity. The contour maps derived from the CoMFA and CoMSIA models 

could explain valuable information on the favorable and unfavorable positions for 

chemical group substitution, which can increase or decrease the inhibitory activity of 

the compounds. The aforementioned approaches were co-utilized to design several 

new compounds, and the binding affinity and inhibitory potential were determined. 

The overall study could provide valuable theoretical guidance in the rational lead 

discovery process targeting FLT3. 
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1. Introduction 
FLT3 belongs to the type III tyrosine kinase receptor together with KIT, FMS, and 

platelet-derived growth factor receptor (PDGFR), which are involved in the 

differentiation, proliferation, and survival of hematopoietic progenitor cells [1]. It is 

expressed by the stromal cells of bone marrow, placenta, and CD34+ cells, as well as 

the myeloid and B lymphoid cell lineage [2]. The FLT3 structure comprises five 

extracellular domains similar to immunoglobulin (Ig) at the N-terminal, followed by a 

single transmembrane (TM) domain, a cytoplasmic juxtamembrane domain (JMD), 

and a tyrosine kinase domain (TKD) separated by a kinase insert (KI). An intracellular 

domain was located at the C-terminal end. FL is the endogenous ligand of FLT3, which 

is also expressed in bone marrow stromal cells, exists in a soluble form, or is bound to 

the membrane. Predominantly, FLT3 is found in an unbound form as an 

unphosphorylated monomer coordinated by an inactive kinase domain. The JM 

domain interacts with the KD to block the ATP binding to the active site. After binding 

to the ligand FL in the extracellular Ig domains, FLT3 undergoes dimerization and 

exposes its dimerized domain [6–8]. This event triggers the activation of tyrosine 

kinase, followed by the phosphorylation of the FLT3 intracellular domain at its various 

sites. The phosphorylation of FLT3 propagates multiple intracellular signaling 

pathways, which are essential for phospholipid metabolism, transcription, 

differentiation, proliferation, cell survival, and apoptosis [9]. 

FLT3 is overexpressed in patients with AML, which is considered an aggressive 

hematologic malignancy. Active mutations in FLT3 have been reported in ~30% of 

total AML cases. These mutations can be subdivided into internal tandem duplicates 

(FLT3-ITD) and point mutations in the tyrosine kinase domain (FLT3-TKD), which 

are approximately 25% and 5% of the total AML, respectively [10,11]. Therefore, 

inhibition of FLT3 is an ideal therapeutic choice. Many inhibitors have been subjected 

to preclinical and clinical trials and have shown promising results. The tyrosine kinase 

inhibitors such as Tandutinib, Sunitinib, Midostaurin, Lestaurtinib, and Sorafenib 

were used as first-generation FLT3 inhibitors [12]. Due to the lack of sensitivity and 
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selectivity of first-generation inhibitors, second-generation inhibitors, such as 

Gilteritinib, Quizartinib, and Crenolanib, have been approved [13,14]. Although, their 

poor bioavailability and off-target effects often increase drug toxicity in patients, 

which remains a concern. Patients undergoing AML treatment have often developed 

resistance to lead compounds through on-target secondary mutations in the kinase 

domain [13]. Two of the most common mutations have been found in the gatekeeper 

residue F691L and the activation loop D835Y, as shown in Figure 1c. Mutations in 

residues I836, D839, and Y842 are also found in the FLT3 kinase domain in patients 

with AML [14]. 

Inevitably, the rational development of new FLT3 inhibitors based on existing lead 

compounds is an ideal choice for achieving therapeutic efficacy in AML. Computer-

aided drug design (CADD) has emerged as a promising tool for discovering new FLT3 

inhibitors [15]. In a prior study, Bensinger et al. [16] used virtual screening and 

docking to identify lead compounds that were covalently bound to the DGF-in 

conformer of FLT3 receptor. These lead compounds were chemically modified to 

increase cytotoxicity and inhibitory efficacy against wild-type and mutant (D835Y) 

FLT3, suggesting that they could be a suitable starting point for discovering 

irreversible inhibitors [16]. In another study by Smith et al. [17], residue D835 plays 

a critical role in maintaining the DFG-out configuration by acting as an amino terminal 

capping residue for the αC-helix and serving as an essential space for type II inhibitor 

binding. However, the mutations in the D835 remain sensitive to type I inhibitors. 

Herein, we performed computational modeling studies such as docking, molecular 

dynamics (MD), free energy calculation, and three-dimensional structure-activity 

relationship (3D-QSAR) to a series of 40 pyrimidine-4,6-diamine derivatives, which 

are reported as type II-like inhibitors of FLT3 by Bharate et al. [18]. In their docking 

study, the most active compound 13a bound to the hinge loop by forming two H-bond 

interactions with C694. The compounds exhibited a diverse inhibitory activity range 

(IC50 13.9 nM-15111 nM) against FLT3. The molecular docking and molecular 

dynamics revealed the critical interactions with the inhibitors inside the binding 
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pocket. We calculated the MM-PB/GBSA and LIE binding energy terms to evaluate 

the protein–ligand binding affinity. We manually induced the F691L and D835Y 

mutations in FLT3 and performed MD simulations to understand the mutagenic effect 

in terms of binding affinity to the inhibitor compound. Finally, we conducted CoMFA 

and CoMSIA studies of the 40 compounds to produce the 3D-QSAR contour map and 

established the structure–activity relationship. The CoMFA and CoMSIA contour 

maps described how modification of chemical groups could enhance the inhibitory 

activity of the compounds. 

2. Mathodology 
2.1. Protein structure preparation and molecular docking 
The FLT3 protein structure with a resolution of 2.20 Å was retrieved from the Protein 

Databank (PDB: 6JQR) [8]. The water molecules and ligands from the 

crystallographic solution were removed from the protein crystal. The missing residues 

were remodeled using Modeler-10.1 (University of San Francisco, San Francisco, CA, 

USA) in UCSF Chimera-1.14 (RBVI, UCSF, San Francisco, CA, USA), and the final 

model was endorsed in a DFG-out configuration. The model with the lowest DOPE 

score was selected and the entire protein structure was verified using the PROCHECK 

(DOE-MBI service, UCLA, Los Angeles, CA, USA) server. 

Compound M01 was the most active compound in the dataset and was thus chosen for 

the docking study, as described in the previous study [35–37]. Compounds M03, M17, 

M20, M24, and M34, with different subgroups at their positions R1 and R2 exhibiting 

a diverse range of activity, were also included for the docking study. Briefly, the 

protein was prepared by assigning polar hydrogens and Kollman charges in 

AutoDockTools (AutoDock 4.2, Scripps Research, La Jolla, CA, USA). The ligand 

was sketched and minimized, and hydrogens were added in SYBYL-2.1, followed by 

the addition of Gasteiger charges. The number of rotatable bonds was fixed at six to 

the ligands to avoid conformational explosion. We assigned the active site according 

to the X-ray structure of Quizertinib-bound FLT3 (PDB: 4XUF). The grid box size 
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was set to 50 × 60 × 50 in the X, Y, and Z directions, respectively, with a grid spacing 

of 0.375 and a grid center of X = −34, Y = −10, and Z = −25 to compute the grid 

parameters using AutoGrid. For the conformational search, the Lamarckian Genetic 

Algorithm (LGA) was employed. Finally, AutoDock-4.2 was used to perform 100 

docking runs. This protocol was repeated for the remaining compounds. 

AutoDockTools, Pymol (Schrodinger, Inc., New York, NY, USA), and Maestro 

(Schrodinger, Inc., New York, NY, USA) were used to analyze the docking results. 

All protein–ligand docked complexes were taken for the MD simulation study. 

2.2. Molecular dynamics 
The MD simulation was carried out with GROMACS 2019.5 [38] using the 

Amber14SB [39] force field. The topology and parameters of the small molecules 

were generated using ACPYPE [40]. The system was prepared by placing the protein–

ligand complex in a cubic periodic box. The complex was then wrapped with the 

TIP3P water model in such a way so that the minimum thickness of the water wall was 

maintained at 10 Å from the protein atoms. An adequate amount of NA+ and Cl- ions 

were added to neutralize the system. 

The steepest descent algorithm was applied for 10,000 steps to minimize the system, 

followed by 200 ps of constant substance, volume, and temperature (NVT) simulation 

using the modified Berendsen thermostat (V-rescale) to attain a temperature of 300 K. 

Next, a 400 ps constant substance, pressure, and temperature (NPT) simulation was 

executed using the modified Berendsen barostat (V-rescale) to achieve 1 bar of 

pressure. The backbone and heavy atoms of the ligands were kept restrained during 

the minimization, NVT, and NPT simulation steps. Finally, the system was subjected 

to the 100 ns MD simulation run by un-restraining the backbone and heavy atoms. The 

Particle Mesh Ewald (PME) scheme was employed to maintain the electrostatic 

interactions, and the SHAKE algorithm was employed to deal with the bond length 

constraints. The cut-off distance was set at 12 Å to calculate the coulombic and van 

der Waals (vdW) interactions, respectively. The protocol was followed for the rest of 
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the docked complexes as described in the previous study [41]. RMSD and H-bond 

distances were calculated by the in-build ‘gmx rms’ and ‘gmx distance’ functions in 

gromacs. 

2.3. MM-PB/GBSA and LIE 
The MM-PB/GBSA is a useful technique for computing the end-state binding free 

energy between the protein and the ligand. In our study, the binding free energy of 

MM-PB/GBSA was calculated using the gmx_MMPBSA [42] package based on 

MMPBSA.py [43]. The protein–ligand binding free energy of MM-PB/GBSA can be 

expressed by Equation (1), 

ΔGbind =  ΔGcomplex −  ΔGprotein −  ΔGligand  (1) 

ΔGbind = ΔEMM + ΔGsol −  TΔS (2) 

ΔEMM = (ΔEvdW +  ΔEele)  (3) 

ΔGsol = ΔGGB + ΔGSA (4) 

where ΔGcomplex stands for the total binding free energy between the protein–ligand 

complexes. The total free energy of the protein and ligand in the solvent was expressed 

by ΔGprotein and ΔGligand. In Equation (2), the ΔEMM stands for the interaction energy 

between the protein–ligand complex under the gas-phase condition, which was 

estimated by calculating the van der Waals (ΔEvdW) and electrostatic (ΔEele) energies 

(Equation (3)). The ΔGsol stands for the free energy solvation, which was derived by 

calculating the polar solvation ΔGGB and non-polar solvation ΔGSA energy in Equation 

(4). The entropy contribution of the system is represented by TΔS. The entropy (-TΔS) 

calculation through nmode or Quasi-harmonic (QH) approximation is a 

computationally cumbersome process; therefore, the entropy term, (-TΔS) was not 

considered in this study. 

The final 2 ns trajectories from each system were taken for the CDJPB/GBSA total 

binding energy and per-residue binding energy decomposition analysis. 
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For the end-state LIE calculation, each of the docked ligands was simulated in an 

unbound state explicitly by keeping the same parameters as described in the MD 

simulation method. In the LIE method, the binding affinity (ΔGbind) can be written as: 

ΔGbind =  α(⟨Vlig−surr 
vdW ⟩bound - ⟨Vlig−surr 

vdW ⟩unbound) + β(⟨Vlig−surr 
ele ⟩bound - ⟨Vlig−surr 

ele ⟩unbound) (5) 

The Coulomb interaction (Vlig−surr 
vdw ) and electrostatic interaction (Vlig−surr 

ele ) values in 

unbound form were computed by the ‘gmx enemat’ function. These values were 

supplied in the final LIE calculation using the ‘gmx lie’ function. As described in these 

studies [44–46], we used the scaling factors α = 0.181 and β = 0.43 by assigning the 

neutral charge to the ligands. 

2.4. Dataset building, molecular alignment, and CoMFA-CoMSIA (3D-

QSAR) study 
The dataset of 40 pyrimidine-4,6-diamine-based compounds reported to be FLT3 

inhibitors was taken for this study. We selected the last 1 ns MD average structure of 

compound M01 as a template structure. Based on the template structure, the rest of the 

compounds were sketched, and partial charges were assigned by the Gasteiger method 

in SYBYL-X2.1 (Tripos, Inc., St. Louis, MO, USA). All compounds were then 

subjected to minimization by tripos forcefield using the 0.05 kcal/mol convergence 

criterion with a maximum iteration of 2000 runs. Molecular alignment is an essential 

step towards the development of the 3D-QSAR model. We used the ‘common 

substructure-based alignment’ and ‘database alignment’ functions available in 

SYBYL-X2.1 to align compounds over the template structure as described in earlier 

studies [47,48]. 

For the 3D-QSAR study, the IC50 values of the compounds were converted into 

logarithmic IC50 (pIC50) values. The dataset was divided into the training set of 30 

compounds to develop the model and a test set of 10 compounds to evaluate the 

external predictive capability. CoMFA and CoMSIA are the two widely established 

3D-QSAR approaches, which were used to establish the structure–activity relationship 

of the compounds in the dataset. In CoMFA, the steric fields (S) were calculated using 
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the Lennard–Jones potential function, whereas the electrostatic fields (E) were 

calculated using the Coulombic potential function. The compounds were placed one 

after another in a spatial grid box with a grid spacing of 2.0 by maintaining an energy 

tolerance of 30 kcal/mol. The sp3 carbon atom was assigned as a probe by setting the 

van der Waals radii at 1.52 Å, with a net charge of +1.0. The other parameters were 

accepted by default in SYBYL-X2.1. 

In the CoMSIA model, besides the steric and electrostatic fields, three additional 

descriptors, such as hydrophobic (H), H-bond acceptor (A), and H-bond donor (D) 

fields, were also adopted. The Gaussian-type functions were used to distinguish the 

distance between the probe atoms and the molecule’s atoms for all grid points. The 

rest of the parameters were kept similar to the CoMFA parameters. All descriptors 

were used in different combinations to get the best possible CoMSIA model. 

The partial least squares (PLS) method was adopted to analyze the internal validation 

of CoMFA and CoMSIA models. The leave-one-out (LOO) method was applied to 

obtain the cross-validation coefficient (q2) and the optimal number of components 

(ONC) with a column-filtering value of 2.0 kcal/mol. Subsequently, the non-cross-

validated correlation coefficient (r2), Fisher’s statistics (F value), and the standard 

error of estimation (SEE) were calculated, and finally, the pIC50 values were predicted 

for each compound of the test set. The value of q2 and r2 greater than 0.5 and 0.6, 

respectively, as well as r2-q2 not exceeding 0.3 well indicated the internal validity of 

the QSAR models. 

The fitness of the CoMFA and CoMSIA models were assessed by estimating the chi-

squared (χ2) and root-mean-squared error (RMSE) [29]: 

x2 = �
(yi − y�i)2

yi2

n

i=1

 (6) 

RMSE = �∑ (yi − y�i)2n
i=1

n − 1
 (7) 
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where 𝑦𝑦𝑖𝑖  and 𝑦𝑦�𝑖𝑖  are the observed and predicted activity, respectively, and n is the 

number of compounds being measured. The large χ2 (≥0.5) and RMSE (≥1.0) values 

reflect the poor predictive accuracy of the QSAR models. 

The external validation of the CoMFA and CoMSIA by test set compounds was a 

crucial step in determining the true predictive power of any QSAR models. The 

following criteria proposed by Roy et al. [30], Gramatica et al. [31], and Todeschini 

et al. [32] were used to externally validate the models. The progressive scrambling 

study was conducted as described in this study [49]. 

The applicability domain (AD) analysis of the QSAR models was done using the 

leverage approach as described in earlier studies [34]. The standardized residuals from 

the activity values of the training set and test set compounds were plotted against their 

leverage values in the Williams plot. The leverage value of any compound exceeding 

the warning leverage (h*), as shown with the red dotted line, was denoted as outliers 

and influenced the model quality. 

2.5. Contour maps analysis 
The contour maps were generated from CoMFA and CoMSIA to explain the structure–

activity relationship of the existing compounds. The most active compound M01 was 

placed in the center as a reference, and the contour maps were shown as 3D 

StDev*Coeff to elucidate the field effects of the descriptors. The green and yellow 

contours signify the favorable and unfavorable substitutions for steric groups [50,51]. 

The blue and red contours convey the favorable and unfavorable substitutions for an 

electropositive group in CoMFA and CoMSIA. Similarly, the favorable and 

unfavorable substitutions for the hydrophobic, H-bond acceptor, and H-bond donor 

are represented by orange-gray, magenta-slate, and cyan-purple color schemes. 

2.6. Designing of the new compounds 

Based on the SAR study, we designed 30 new compounds and predicted their activity 

by the CoMSIA (SEHD) model. Sixteen compounds out of them were predicted to be 

a higher pIC50 value than the most active compound M01. Thereafter, we analyzed 
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physicochemical properties, the synthetic accessibility (SA) score by the 

SWISSADME [52] webserver, and the absorption, distribution, metabolism, 

excretion, and toxicity (ADMET) properties by the pkCSM [53] webserver of these 

compounds. Finally, the designed compounds were subjected to MM-PB/GBSA 

binding free energy calculation. 

3. Results and discussion 
3.1. Molecular docking analysis 
As we conducted the MD simulation and 3D-QSAR study based on the docking pose, 

the verification of docking reliability is an important step. There were no compounds 

from the dataset available with the co-crystallized FLT3 form in the PBD database. 

Thus, we selected the N-phynylpyrimidine-4-amine substructure of the docked 

compounds and compared it with the existing FLT3 conjugated crystal ligand FF-

10101 (PDB ID 5X02) [19], and Quizartinib (PDB ID 4XUF) [20], and AWO with C-

kit (PDB ID 6ITT) [21] by overlapping them in the ligRMSD server. Since FLT3 and 

C-kit both are members of the tyrosine kinase family, we opted for the AWO bound 

C-kit to compare the ligand interactions. The FF-10101 formed the critical H-bond 

interaction with residue C694 by the amine(-NH2) group of N-phenylpyrazine-2-

amine. For the ligand Quizartinib, π–π interactions were found between its aniline ring 

and residue F691 and residue F830. We found the critical H-bond interaction between 

C694 and -NH2 of the N-(Pyrimidin-4-yl)thiazol-2-amine moiety, which anchored the 

ligand to the hinge loop. Similar interactions were observed with the docked 

compounds M01, M03, and M17. Compounds M20, M24, and M34 were anchored to 

the hinge loop by forming H-bond interactions between the residue C694 and the N-

phenylpyrimidine-4-amine-NH2 group and the π–π stacking with phenylalanine 

(F691). The final docked pose was selected from the lowest binding energy cluster, 

which also shared the lowest RMSD with the crystal substructure according to the 

ECIDALs norms [22,23]. The acceptable RMSD values suggest the overall docking 

reliability of the selected compounds. The BEs from the docking study were estimated 
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to be −11.31 kcal/mol, −11.68 kcal/mol, −9.88 kcal/mol, −10.54 kcal/mol, −9.68 

kcal/mol, and −10.09 kcal/mol for compounds M01, M03, M17, M20, M24, and M34, 

respectively. The 2D protein–ligand interaction is illustrated in Figure 1a. The 

surrounding residues within 3.5 Å are shown using a color scheme, which is based on 

the chemical properties of the amino acids. Figure 1b depicts the H-bond, π–π, and π–

anion interactions between M01 and residues inside the ATP pocket of FLT3. With 

residue C694, two H-bond interactions were found, while a third H-bond interaction 

was observed with catalytic lysine K644.  

 
Figure 1. Molecular docking analysis of compound M01 and FLT3. (a) Compound M01 surrounded 
by the active site residues. The residues are illustrated based on their chemical properties in 2D 
representation. H-bonds are shown by magenta arrows. (b) Docking interaction of M01 with FLT3 
residues. The H-bond interactions are shown by red dashed lines. The π–anion interaction is shown 
by green dashed lines. 

The gatekeeper residue E692 formed the π–anion interaction with the pyrimidine ring. 

Another gatekeeper residue F691 accomplished the π–π stacking with the phenyl ring 

of M01. Other residues, such as L616, M665, V675, L856, L576, and I801, 

participated in hydrophobic interaction inside the hydrophobic cleft between the N-

lobe and the C-lobe. The docked complexes of compounds M03, M17, M20, M24, and 

M34, which also comply with the ECIDALs norms during the docking process. The 

best performing protein–ligand single-docked coordinate of each complex was taken 

for further MD simulation study. 
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3.2. MD analysis 
The MD simulations were conducted to evaluate the overall stability of the protein–

ligand complexes. During the 100 ns MD run, the protein–ligand complexes achieved 

convergence within the first 10 ns. The RMSDs of proteins were found in the range of 

1.0–4.0 Å, and the RMSDs of ligands were found in the range of 0.5–4 Å, as shown 

in Figure 2. We observed a low RMSD for compounds M01, M03, and M20, while 

compounds M17, M24, and M34 had a higher RMSD. In particular, the RMSD of the 

compounds M24 and M34 reached 4 Å during the simulation. Since the two H-bond 

interactions with residues K644 and C694 played a critical role in the binding of the 

ligand inside the ATP pocket, we compared these two interacting H-bond distances 

for 100 ns in Figure 3. For compound M34, the H-bond distance with K644 was found 

to be unstable and a major fluctuation was observed, in contrast to the other 

compounds. Overall, this specific H-bond distance was found to be within the range 

of 2–3.8 Å in Figure 3a. When comparing the H-bond distance between the ligands 

and N atom of residue C694, compounds M17 and M34 showed a slightly higher H-

bond distance to ~3.7 Å in Figure 3b. However, this H-bond interaction was intact for 

the remaining compounds. Following that, we compared the average MD structure of 

protein–ligand complexes from the last 1 ns to their final docked position in Figure 5. 

Figure 5a,b,e shows that N-phenylpyrimidine-4-amine substructures of M01, M03, 

and M24 closely retained their docking pose and molecular interactions until the end 

of the MD run. For M17, we observed that the dimethylamine with the pyrimidine ring 

was displaced from its initial docked position, which might increase the critical 

distance for H-bond formation as shown in Figure 5c. Compound M20 formed the H-

bond interactions to the C694 with its N atoms of the pyridine ring, while another H-

bond interaction remained intact with K644 (Figure 4d). The piperazine ring in M34, 

on the other hand, shifted forward from its initial docking position inside the ATP 

pocket (Figure 4f), which could be a reason for the extension of the distance from 

residue C694. We also observed the rotational and translational displacement of the 
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piperidine ring and the pyrrolidine ring of compounds M03 and M20 by comparing 

their respective MD trajectories and docking positions. 

 
Figure 2. RMSD graphs of protein–ligand complexes. The protein and ligand RMSDs of (a) FLT3-
M01, (b) FLT3-M03, (c) FLT3-M17, (d) FLT3-M20, (e) FLT3-M24, and (f) FLT3-M34 are shown 
in slate and pink colors, respectively. 

 
Figure 3. H-bond interaction distance analysis from (a) residue K644 and (b) C694 to the ligands 
during the production simulation. 
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Figure 4. Average MD pose of the ligands in the FLT3 active site. The last 1 ns average MD poses 
of (a) M01, (b) M03, (c) M17, (d) M20, (e) M24, and (f) M34 inside the binding pocket are shown 
in pink color. The corresponding docked pose is shown in cyan color. The H-bond interactions are 
shown by red dashed lines. 

3.3. MM-PB/GBSA and LIE estimation 
We implemented the MM-PB/GBSA and LIE estimation to investigate the binding 

affinity of FLT3 to selected ligands. To calculate the MM-PB/GBSA and LIE binding 

energy, we used the final 2 ns or 200 frames of each protein–ligand MD trajectory. 

The final ΔTOTAL BEs were found to be −62.80, −60.27, −47.32, −60.68, −59.56, 

and −49.31 kcal/mol for compounds M01, M03, M17, M20, M24, and M34, 

respectively. The final ΔGbind from the LIE estimation was found to be −18.39, −13.43, 

−12.56, −21.37, −9.75, and −8.14 kcal/mol for compounds M01, M03, M17, M20, 

M24, and M34, respectively. The detailed MM-PB/GBSA energy and LIE terms are 

shown in Table 1. We estimated the per-residue BE decomposition by selecting 

residues within 4.0 Å from the ligand atoms. The common residues with positive or 

negative BE decomposition are compared in Table 2. We found that residues L616, 

V624, A642, K644, M665, I674, V675, F691, Y693, C694, G697, L818, C828, D829, 
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and F830 were the key interacting common residues, contributing the critical BE to 

the ligands shown in Figure 6a. We acquired the substantially equilibrated 80th ns 

wild-type (WT) FLT3-M01 complex and manually mutated D835Y, F691L, and both 

(D835Y and F691L) at the same time. The newly prepared three different FLT3-M01 

complexes were subjected to standard 20 ns MD simulations, followed by MM-

PB/GBSA and LIE calculations from the last 2 ns trajectory. The ΔTOTAL binding 

energy of MM-PB/GBSA was found to be −63.55, −62.03, and −62.79 kcal/mol for 

the D835Y, F691L, and both mutants of FLT3 variants to compound M01, 

respectively. However, we were unable to observe any significant changes in 

ΔTOTAL BE terms with M01.  

 
Figure 5. MM-PB/GBSA binding free energy comparison between M01 and FLT3 variants. (a) 
Common residues that contributed to the ΔTOTAL BE to the ligands are shown in the sphere 
representation. (b) Point mutations were manually performed at D835 and F691 in Pymol to compare 
the MM-PB/GBSA binding energy. (c) Comparison of the MM-PB/GBSA binding energy terms 
between WT, D835Y, F691Y, and both (F691L, D835Y) mutant FLT3 and M01. 
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Table 1. MM-PB/GBSA and LIE energy estimation of the FLT3 inhibitor complexes 

VDWAALS: van der Waals contribution from MM; EEL: electrostatic energy as calculated by the 
MM force field; EPB/GB: electrostatic contribution to the solvation free energy; ESURF: non-polar 
solvation free energy; ΔGgas: ΔG in gas phase; ΔGsolv: ΔG in solvation state; ΔTOTAL: total binding 
free energy from MM-PB/GBSA; ΔGbind: final LIE binding energy; LIE: linear interaction energy. 

Table 2. Per-residue MM-PB/GBSA binding free energy decomposition in kcal/mol 

Residues 

Compounds 

M01 M03 M17 M20 M24 M34 
M01 

(F691L) 

M01 

(D835Y) 

M01 

(F691L, D835Y) 

K614 NA NA NA NA NA NA −1.92 −0.66 −0.93 

L616 −2.53 −1.90 −2.20 −2.20 −1.13 −2.44 −2.35 −2.38 −2.63 

V624 NA −1.61 −0.60 −1.50 −1.54 NA −1.68 −1.60 −1.48 

A642 −1.25 −1.26 NA −1.04 −1.00 −1.05 −1.24 −1.30 −1.38 

Complexes 

MM-PB/GBSA binding energy terms in kcal/mol 
LIE 

(kcal/mol) 

VDWAALS EEL EPB/GB ESURF ΔGgas ΔGsolv ΔTOTAL ΔGbind 

FLT3-M01 −71.17 −51.49 68.69 −8.82 −122.66 59.86 −62.80 −18.39 

FLT3-M03 −72.23 −275.18 295.32 −8.72 −347.42 286.60 −60.27 −13.43 

FLT3-M17 −53.77 −21.27 34.20 −6.48 −75.04 27.72 −47.32 −12.56 

FLT3-M20 −69.48 −222.37 240.20 −9.02 −291.85 231.17 −60.68 −19.35 

FLT3-M24 −62.38 −28.98 39.64 −7.83 −91.36 31.80 −59.56 −9.75 

FLT3-M34 −56.90 −248.23 262.59 −6.76 −305.14 255.82 −49.31 −8.14 

FLT3(D835Y)-M01 −70.94 −51.33 67.31 −8.58 −122.28 58.72 −63.55 −18.39 

FLT3(F691L)-M01 −69.99 −53.10 69.92 −8.86 −123.09 61.05 −62.03 −17.95 

FLT3(D835Y,F691L)-

M01 
−70.43 −50.96 67.16 −8.56 −121.39 58.60 −62.79 −17.95 
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K644 −2.15 −2.26 0.36 −1.43 −0.75 −0.38 −1.84 −1.24 −2.24 

M665 −1.48 −1.63 −0.96 −0.99 −1.39 −0.46 −1.46 −1.40 −1.42 

I674 −1.03 −1.26 NA −0.98 NA NA −0.92 −1.29 −0.91 

V675 −1.81 NA NA −0.98 −1.64 −0.93 −1.69 −1.67 −1.62 

F691 −2.44 −2.80 −3.63 −2.54 −2.76 −2.15 −1.40 * −2.63 −1.09 * 

Y693 −1.99 −2.04 −0.68 −1.73 −2.04 −1.38 −1.77 −1.98 −1.98 

C694 −2.82 −2.24 −0.13 −0.74 −2.41 −0.77 −2.77 −2.72 −2.81 

G697 −1.39 −0.77 −1.47 −1.29 −0.39 −1.72 −1.33 −1.41 −1.40 

L818 −1.76 −1.67 −1.89 −1.67 −1.56 −1.70 −1.78 −1.68 −1.64 

C828 −2.81 −2.86 NA NA −4.17 −0.96 −2.79 −3.27 −2.42 

D829 −1.22 −1.41 −2.21 −1.12 −0.94 −2.08 −1.19 −1.29 −1.73 

F830 −0.78 −2.35 −1.63 −1.71 −1.17 −1.61 NA NA NA 

NA: Distance of the residues that are more than 4 Å from the compounds or contributed negligible 
binding energy to the ligand; (*): BE decomposition from the mutated residue. 

During the calculation process, we restricted the analysis of per-residue MM-

PB/GBSA decomposition within the 4.0 Å distance from the ligand atoms. The per-

residue BE decomposition between the F830 of FLT3 mutants and compound M01 

was not generated, suggesting that the distance between M01 and F830 increased to 

more than 4.0 Å, whereas the appearance of BE decompositions from residue K614 

signify its proximity to compound M01. However, rather lower free energy values 

were observed in the VDWAALS and EEL energy terms with the FLT3(F691L)-M01 

complex, as shown in Figure 6b, c. Minor energy differences could occur due to the 

substitution of the bulky hydrophobic residue F691 with a non-bulky leucine residue, 

as F691 is the key gatekeeper residue and had a strong π–π interaction with the phenyl 

ring of M01. The LIE values were found to be −18.39, −17.75, and −17.95 kcal/mol 

for F691L, and both mutant variants of FLT3 to compound M01, respectively. Residue 

D835Y mutation in the activation loop was 14.1 Å away from the active site. This 

mutation in the DFG-out FLT3 did not influence the final BE to the type II-like M01 

in the estimation of MM-PB/GBSA or LIE. Therefore, we assumed that the F691L 

mutation could partially affect selectivity and ligand interaction by changing the 
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hydrophobic property of the nucleotide-binding pocket. This could also decrease the 

relative competitiveness of M01 against ATP and induce drug resistance [24,25]. In 

contrast, the D835Y mutation in the activation loop is strongly associated with the 

resistance mechanism of the active conformation (DFG-in) tyrosine kinase inhibitors 

(TKI). A pathway of the allosteric network has been proposed between the activation 

loop and the DFG motif [26], which plays an important role in stabilizing the 

adenosine triphosphate (ATP) molecule by chelating the Mg2+ ions at the catalytic site. 

The D835Y mutation could trigger an alteration of the allosteric mechanism in FLT3 

by forming a dead mutant of kinases or disfavoring inhibitor binding by increasing 

entropy, ultimately influencing the entry of the ligand into the ATP-binding pocket 

[27]. 

3.4. Dataset building, 3D-QSAR model development, and model 

validation 
Coherence selection of the training set and test set compounds is a vital step toward 

the development of a 3D-QSAR statistical model. The chemical structures and their 

respective pIC50 values, which were well spanned over three log units, are illustrated 

in Table 3. Initially, we classified the compounds into high, medium, and low activity 

groups. Next, we chose compounds at random from each group to form the test set 

while maintaining structural diversity. We developed two sets of 3D-QSAR models, 

and their statistical validation is summarized in Table 4. The final 1 ns MD average 

structure of compound M01 was regarded as a 3D bioactive conformer and selected as 

a template molecule, as described here [28]. The rest of the compounds were modeled 

based on the template molecule and aligned with the common skeleton of N-

methylpyrimidine-4-amine. The maximum common substructure (MCS) functionality 

was used to find the common core. The alignment of the dataset compounds inside the 

hydrophobic cleft and their unique chemical core are shown in Figure 6a,b.  
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Table 3. Structure and activity (pIC50) values of N-methylpyrimidine-4-amine based 
FLT3 inhibitors 
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11* A 

S
O

O

 

O

N
H

ON
H
N

 

7.20 

12 A F
F

F

 

O

N
H

ON
O

 

6.24 

13 A F
F

F

 

O

N
H

ON
H
N

 

5.92 

14 A 
N  

O

N
H

ON
H
N

 

5.98 

15 
O

N
H

ON
H
N

NN

O

Br
 

4.82 

16 
O

N
H

ON
H
N

NN

O
N

 

6.40 

17* 
O

N
H

ON
O

NN

N

 

5.05 

18* A H3C
 

O

N
H F

F

F

H
N

 

6.38 

19 A 

S
O

O

 

O

N
H F

F

F

H
N

 

6.06 

20* A 
N  O

N
H

O
F

F

F
H
N

 

6.04 

21* A 
O

O

 
O

N
H F

F

F

H
N

 

5.87 

22 A H3C
 O

N
H

S
O

O

H
N

 

5.67 

23* A 
N  

O

N
H

O

F  

5.34 

24* A H3C
 

O

N
H

O

 

5.29 

25 A 
N  

O

N
H

O
F

F

F
H
N

 

5.18 
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26* A H3C
 

O

N
H

O
F

F

F
H
N

 

5.13 

27 A 
S

O

O

 

O

N
H

F

O

 

5.10 

28 A 
N  

O

N
H F

F

F

H
N

 

5.03 

29* A 

S
O

O

 

O

N
H

F

O

 

4.93 

30 A H3C
 

O

N
H

O

F  

4.89 

31 A 
S

O

O

 

H
N

N
H

O

 

5.25 

32 A F
F

F

 

H
N

N
H

O

 

5.09 

33 A 
O

O

 

H
N

N
H

O

 

4.97 

34 
O

N
H

H
N

NN

N
N

 

4.86 

35 
O

N
H

H
N

NN

O
N

 

4.82 

36 A 
 

O

N
H

S

N

O

 

5.12 

37 A 
N  

O O

O

N
H

O

 

4.86 

38 A 

S
O

O

 

H
N NN

N
H

O

N
H  

7.38 

39 A H3C
 

H
N NN

N
H

O

N
H  

7.41 

40* A 

S
O

O

 

H
N

N O

N
H

O

N
H  

7.53 

(*) Test set compounds. #Cpd.: Compounds 
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Figure 6. Common substructure-based molecular alignment. (a) Alignment of the compounds is 
shown inside the hydrophobic binding pocket of FLT3 by Z-plane clipping. Cyan to gold-yellow 
color bar indicate low (L) to high (H) hydrophobicity. (b) Common substructure of the compounds 
in the dataset. 

The first model was built by taking 40 compounds altogether. We strictly adhered to 

the statistical parameters listed in the threshold values column, as well as those 

described in the Methodology Section when validating each model. In the first 3D-

QSAR model, we obtained the best q2 and r2 values of 0.735 and 0.956, respectively, 

at an ONC of 6 in the CoMFA scheme. The SEHA produced the best statistical 

CoMSIA model with q2 and r2 values of 0.725 and 0.912, respectively at an ONC of 5 

among the different combinations of descriptor fields. The q2 and r2 values of both 

CoMFA and CoMSIA appeared to be greater than the accepted threshold value (q2 > 

0.5 and r2 > 0.6), which indicated a good agreement for the internal validation of both 

models. The χ2 and RMSE values were found to be 0.052 and 0.219, respectively. In 

CoMSIA, the χ2 and RMSE values were found to be 0.078 and 0.265, respectively. 
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The χ2 and RMSE values are within the acceptable threshold value, which signifies the 

fitness and accuracy of the models. However, any QSAR model would be uncertain 

without being validated externally. Therefore, the second model was developed using 

the training set of 30 compounds. The remaining 10 compounds were used as a test set 

to analyze the external predictivity. In the second 3D-QSAR model, the training set 

compounds generated the best q2 and r2 values of 0.802 and 0.960, respectively, at an 

ONC of 6 in the CoMFA scheme. The χ2 (χ2 = 0.012) and RMSE (RMSE = 0.119) 

values were determined within the acceptable range of <0.3 and <0.5 [29], indicating 

for a good internal validation and model’s fitness. For external validation, we 

calculated multiple statistical parameters described in these studies [30–32]. The k and 

k’ were found to be 1.033 and 0.962, and the |r0
2-r’0

2|, (r2-r0
2)/ r2, rm

2, and Δrm
2 were 

predicted to be 0.109, 0.041, 0.724, and 0.059, respectively. In addition, we acquired 

the QF3
2  and Qccc

2  metrics determination to evaluate the predictive ability of the 

CoMFA model. The QF3
2  value was found to be 0.698, which greater than the 

acceptable range (>0.6), and a high Qccc
2  value of 0.821 signifies the true predictive 

power of the model. To generate the best possible CoMSIA model, we applied five 

molecular descriptor fields i.e., steric (S), electrostatic (E), hydrophobic (H), H-bond 

acceptor (A), and H-bond donor (D) in different combinations. The combination of 

SHD produced the best statistical q2 values (q 2 = 0.730) at an ONC of 5. However, the 

best q2 value does not necessarily indicate a good predictivity. Instead, the best 

CoMSIA model was selected based on the highest QF3
2  metrics value. We found that 

the SEHD combination produced q2 and r2 values of 0.725 and 0.965, respectively, at 

an ONC of 5. The model had the QF3
2  value of 0.665, the highest among all. Despite 

this, the model successfully passed all other statistical parameters. The k and k’ were 

found to be 1.033 and 0.961, and the |r0
2-r’0

2|, (r2-r0
2)/ r2, rm

2, and Δrm
2 were predicted 

to be 0.109, 0.041, 0.724, and 0.059, respectively. Thereafter, the SEHD combination 

was selected as the final CoMSIA model. Overall, the second QSAR model, including 

CoMFA and CoMSIA (SEHD), produced the highest statistically significant values; 

therefore, we selected these models for contour map generation and SAR analysis. The 
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PLS regression graph of CoMFA and CoMSIA is shown in Figure 7a,c, which 

described that our 3D-QSAR model could adequately predict the pIC50 values of the 

test set compounds. The contribution of the steric and electrostatic field was found to 

be 54.4% and 45.6% in the CoMFA model, respectively, while the contributions of 

the steric, electrostatic, hydrophobic, and H-bond donor were found to be 20.5%, 

29.9%, 32.8%, and 16.8%, respectively, in the CoMSIA model. Both models 

established good agreement between experimental activity and predicted activity by 

showing acceptable criteria (q2 > 0.6, r2 > 0.8) while having a satisfactory predictive 

performance (QF3
2  > 0.5). 

 
Figure 7. PLS scatter plot, Williams plot, and CoMFA-CoMSIA contour maps analysis. (a) Scatter 
plot of actual vs. predicted pIC50 values from the CoMFA and the corresponding Williams plot for 
AD analysis. (b) The green and yellow contours from CoMFA indicate the favorable and unfavorable 
substitution for the steric groups. The blue and red contours indicate the favorable and unfavorable 
positions for the electropositive groups. (c) Scatter plot of actual vs. predicted pIC50 values from the 
CoMSIA and the corresponding William’s plot for AD analysis. (d) From CoMSIA, green and 
yellow contours signify the favorable and unfavorable positions for the steric group, whereas the 
blue and red contours show the favorable and unfavorable substitutions for electropositive groups. 
The orange and gray contours show the favorable and unfavorable positions for the hydrophobic 
groups. The cyan and purple colors signify the favorable and unfavorable positions for the H-bond 
donor groups. 
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Table 4. Statistics of the CoMFA and CoMSIA models 

Statistical 

Parameters 

3D-QSAR 

(All Compounds) 
3D-QSAR (Training Set Compounds) 

Threshold 

Values 
CoMFA 

CoMSIA 

(SEHA) 
CoMFA 

CoMSIA 

(SHD) 

CoMSIA 

(SEHA) 

CoMSIA 

(SEHD) 

CoMSIA 

(SEHAD) 

q2 0.735 0.725 0.802 0.730 0.726 0.725 0.721 >0.5 

ONC 6 5 6 5 5 5 5  

SEP 0.502 0.503 0.452 0.517 0.521 0.522 0.525  

r2 0.956 0.912 0.983 0.960 0.962 0.965 0.956 >0.6 

SEE 0.204 0.284 0.134 0.199 0.194 0.186 0.209 <<1 

F-value 119.97 70.84 216.62 114.54 121.34 131.90 104.16 >100 

χ2 0.052 0.078 0.012 0.028 0.027 0.023 0.028 <0.5 

RMSE 0.219 0.265 0.119 0.181 0.176 0.169 0.189 <0.3 

MAE <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ≈ 0 

RSS 1.873 2.744 0.412 0.953 0.904 0.834 1.046  

k NA NA 1.033 1.022 1.032 1.033 1.037 
0.85 ≤ k ≤ 

1.15 

k’ NA NA 0.962 0.969 0.962 0.961 0.958 
0.85 ≤ k’ ≤ 

1.15 

|r02-r’02| NA NA 0.109 0.307 0.250 0.224 0.192 <0.3 

(r2-r02)/ r2 NA NA 0.041 0.002 0.012 0.006 0.117 <0.1 

rm2 NA NA 0.724 0.603 0.635 0.649 0.664 >0.5 

𝐫𝐫𝐦𝐦    𝟐𝟐����� NA NA 0.694 0.449 0.492 0.511 0.623 >0.5 

Δrm2 NA NA 0.059 0.307 0.286 0.274 0.083  

𝐐𝐐𝐅𝐅𝐅𝐅𝟐𝟐  NA NA 0.698 0.604 0.656 0.668 0.660 >0.6 

𝐐𝐐𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐  NA NA 0.821 0.746 0.778 0.787 0.787  
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S (%) 52.9 20.2 54.4 28.9 18.5 20.5 16.2  

E (%) 47.1 29.9 45.6 NA 28.8 29.9 24.5  

H% NA 37.0 NA 47.3 33.9 32.8 28.3  

A% NA 13.0 NA NA 18.8 NA 16.0  

D% NA NA NA 23.8 NA 16.8 15.1  

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: 
standard error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; 
F-value: F-test value; RMSE: root-mean-squared error ; MAE: mean absolute error; RSS: residual 
sum of error; k: slope of the predicted vs. observed activity at zero intercept; k’: slope of the observed 
vs. predicted activity at zero intercept; r02: squared correlation coefficient between predicted and 
observed activity; r’02: squared correlation coefficient between predicted and observed activity; 𝐐𝐐𝐅𝐅𝐅𝐅𝟐𝟐 : 
Q2 metrics for external test set validation; 𝐐𝐐𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐 : concordance correlation coefficient ; S: steric; E: 
electrostatic; H: hydrophobic; A: H-bond acceptor; D: H-bond donor; NA: Not applicable. 

Table 5. Progressive scrambling results from the CoMFA and CoMSIA (SEHD) 

training set compounds 

Components 
CoMFA CoMSIA (SEHD) 

Q2 cSDEP dq2/dr2yy’ Q2 cSDEP dq2/dr2yy’ 

1 0.191 0.828 0.175 0.230 0.807 0.306 

2 0.358 0.750 0.731 0.429 0.707 0.996 

3 0.477 0.689 0.855 0.491 0.662 1.052 

4 0.489 0.696 1.480 0.550 0.652 1.221 

5 0.479 0.711 1.821 0.518 0.770 0.982 

6 0.502 0.713 1.198 0.410 0.709 1.513 

7 0.518 0.718 1.663 0.400 0.796 2.285 

 

The progressive scrambling method was applied to evaluate the additional stability of 

the CoMFA and CoMSIA models, as shown in Table 5. We ran 100 independent 

scrambles with minimum and maximum bin sizes of 2 and 10. At component number 

6, scrambling Q2 and cSDEP were measured to be 0.502 and 0.713, respectively. The 

dq2/dr2
yy’ did not exceed the value 1.2 (dq2/dr2

yy’ = 1.198) in the CoMFA. In the 

CoMSIA, the scrambling Q2, cSDEP, and dq2/dr2
yy’ were found to be 0.518, 0.709, and 
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0.982, respectively. Progressive scrambling helps to identify the optimal number of 

components of the model. In addition, it detects the model’s sensitivity over a small 

perturbation when applied to the data. 

The QSAR models are generated by a limited number of compounds and can predict 

inhibitory activity for an unknown chemical that has a very similar chemical 

constitution. To assess the reliability of the CoMFA and CoMSIA models and specify 

the outliers, we used the applicability domain analysis by distance-based Williams plot 

as described in previous work [33]. The CoMFA and CoMSIA PLS plots, and the 

corresponding Williams plots, portrayed the standardized residuals of the training set 

and test set compounds against their leverage values. Compounds with a high leverage 

(hi) value greater than the warning leverage (h*) can be detected as outliers and have 

a substantial impact on the fitness of the model. We used the Applicability Domain 

toolbox, a MATLAB package developed by Sahigara et al. [34] to perform the AD 

analysis. In our study, all the compounds fell within the ±3 standardized residuals and 

the estimated warning leverages in CoMFA (h* = 0.16) and CoMSIA (h* = 0.42), 

confirming the overall predictive reliability of the models. 

3.5. CoMFA and CoMSIA contour map analysis 

We generated 3D contour maps around the most active compound M01 in the SYBYL-

X2.1 suit to elucidate the structure–activity relationships. The information collected 

from the contour map could be useful to improve the inhibitory potency of small 

molecules by altering the chemical groups. Figure 7b displayed the contour maps of 

the CoMFA analysis. The green and yellow contours around the pyrazole ring 

represent the favorable and unfavorable substitutions for the bulky and steric chemical 

groups. Specifically, the location of the green contour arrived near the residues M665 

and V675, with which M01 formed the hydrophobic interaction in the docking study, 

and these residues contributed a BE of −1.48 and −1.81 kcal/mol, respectively. 

Compounds M01–M06, M11, and M38–M40 had steric groups in their R2 position at 

the green contour, which could explain why its inhibitory activity is higher than that 

of compounds M31–M35. 
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In contrast, compounds M07, M08, and M10 had the steric phenyl ring facing the 

yellow contour at the R2 position, which could decrease their inhibitory potency due 

to the probability of the steric hindrance effect. In Figure 8b, the blue and red contours 

show the favorable positions for the electropositive and electronegative groups. 

Compounds M01–M05, M38–M39, and M40 had the N atom in their pyrazole ring in 

the R2 position and exhibited a higher inhibitory activity. Besides, a blue contour near 

the red contours at the R2 position was found to show an unfavorable position for an 

electronegative group. Compounds M12–M16, M36, and M37 bearing the oxygen 

atom on their isoxazole ring and compounds M23, M27, M29, and M30 bearing the 

electronegative fluorine atom in the position R2 exhibited a lower inhibitory activity 

than M01–M05. For the same reason, compound M40 had less inhibitory potency than 

compound M01. Another blue contour was present near the phenyl ring at the R1 

position, showing the favorable position of an electropositive chemical group. For 

compounds M15, M22, M24, and M35, an electropositive group was absent and 

showed lower inhibitory activity than compound M16. 

Figure 7d illustrates the contour maps from the CoMSIA model analysis. We found 

that the steric and electrostatic descriptors yielded contour maps similar to those 

produced by CoMFA model. As a result, they are not discussed further. It also 

provided additional information on the hydrophobic and H-bond donor descriptors 

fields, making it preferred for SAR study. The favorable and unfavorable substitutions 

for hydrophobic chemical groups are shown by an orange-gray color scheme. A large 

orange contour at position R2 around the pyrazole ring indicated that a hydrophobic 

chemical group would be beneficial in increasing inhibitory activity. In compounds 

M18–M21, M25, and M28, the methyl groups were replaced by fluorine atoms, and 

the presence of the methylsulfonyl group in M22 may affect the inhibitory activity of 

these compounds. 

Similarly, the favorable and unfavorable positions for the H-bond donor groups are 

shown by cyan and purple contours. For this reason, compound M36 had an N atom 

in the R2 position toward the purple contour and exhibited less inhibitory activity. 
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From the analysis of the CoMFA and CoMSIA contour maps, we summarized an ideal 

SAR scheme in Figure 8. A positive charge group and an H-bond donor group on the 

methyl phenyl sulfone ring at position R1 could enhance the potency of M01. At that 

position, residue C694 formed two H-bond interactions with the M01 and contributed 

−2.82 kcal/mol MM-PB/GBSA ΔTOTAL binding free energy. As a result, a 

hydrophobic group next to this residue would most likely hinder the formation of an 

H-bond, lowering the binding free energy decomposition. 

 
Figure 8. The three-dimensional structure–activity relationship by taking compound M01 as a 
reference. 

Besides, the substitution of a smaller electron-donating group and the addition of a 

bulky hydrophobic group on the methylpyrazole ring in R2 could improve the 

bioactivity of the compounds. However, the docking and MD study suggested that the 

steric substitution at the R2 position was not infinite. A larger hydrophobic substitution 

could cause steric clashes with the hydrophobic residues in the αC-helix. Thereby, a 

smaller chemical group with steric and hydrophobic properties would be the preferred 

alteration strategy for an efficient interaction. 

3.6. Designing of new compounds 
In the context of SAR analysis, we designed 30 new compounds using M01 as a 

template and evaluated their predictive activity in the CoMSIA-SHED model. Of 

these, 16 designed compounds were predicted to have higher inhibitory activity 

(pIC50) than the most active compound M01 (Table 6). We re-docked these 
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compounds against FLT3 and determined their physicochemical property and SA 

score. An SA score predicts the difficulty level in synthesizing the unknown chemical 

compounds. An SA score of 1 indicates the easy synthesis route, while an SA score of 

10 signifies the difficult synthesis route. The SA score of the newly proposed 

compounds ranged from 3 to 5, suggesting that the compounds would be simple to 

moderately challenging to synthesize.  

Table 6. Designed new compounds with higher predicted pIC50 values than the most 

active compound M01 

Compounds Structure Predicted pIC50 

D01 
O

N
H

N N
F

F

F
H
N

NN

H
N

S
O

O

 
7.90 

D02 O

N
H

N N

FF

H
N

NN

H
N

S
O

O

 
7.93 

D03 O

N
H

N

FF

H2NH
N

NN

H
N

S
O

O

 
7.92 

D04 
O

N
H

FF

H2NH
N

NN

H
N

S
O

O

 
7.93 

D05 
O

N
H

H2NH
N

NN

H
N

S
O

O

 
7.86 

D07 
O

N
H

H2NH
N

NN

H
N

C
Cl

Cl

Cl  
7.84 

D08 
O

N
H

NH2NH
N

NN

H
N

S
O

O

 
7.84 

D09 
O

N
H

NN
H
N

NN

H
N

S
O

O

 
7.91 

D10 
O

N
H

NN
Cl

Cl

Cl
H
N

NN

H
N

S
O

O

 
8.10 

D11 
O

N
H

NN
H
N

NN

H
N

S
O

O

 
7.80 

D12 
O

N
H

CH

O
N

H
N

NN

H
N

S
O

O

 
7.86 
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D14 
O

N
H

O
N

H
N

NN

H
NH2N

 
7.87 

D15 
O

N
H

O
N

H
N

NN

H
N

N

NH2  
8.00 

D17 O

N
H

NN
F

F

F
H
N

NN

H
N

H
N

S
O

O

 
7.89 

D21 O

N
H

C
N N

C
H

H
N

NN

H
N

S
O

O

 
9.43 

D22 
O

N
H

C
N N

C
H

H
N

NN

H
N

S
O

O

 
9.30 

                  D: Designed 

The designed compounds with FLT3-bound complexes converged well within the 50 

ns of the MD simulation; therefore, they were not extended further. We calculated the 

MM-PB/GBSA binding free energy of the last 2 ns of each trajectory (Table 7 and 

Figure 9). The designed compounds, D02–D08, D12, D15, and D22 showed a higher 

binding free energy compared to the most active compound. The results strongly 

suggest that SAR-assisted newly designed compounds could have a better binding 

affinity for FLT3. 

Table 7. MM-PB/GBSA binding energy estimation between FLT3 and designed 

compounds 

Complexes 
MM-PB/GBSA binding energy terms in kcal/mol 

VDWAALS EEL EPB/GB ESURF ΔGgas ΔGsolv ΔTOTAL 

FLT3-D01 −71.01 −45.14 66.81 −8.84 −116.16 57.96 −58.19 

FLT3-D02 −70.82 −32.90 49.71 −9.17 −103.73 40.53 −63.19 

FLT3-D03 −71.38 −55.60 71.34 −9.04 −126.98 62.30 −64.68 

FLT3-D04 −72.37 −54.24 71.68 −9.30 −126.62 62.38 −64.24 

FLT3-D05 −76.94 −63.43 79.81 −9.90 −140.38 69.90 −70.47 
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FLT3-D07 −73.59 −48.56 60.95 −9.45 −122.15 51.49 −70.66 

FLT3-D08 −72.79 −33.30 50.01 −8.72 −106.10 41.29 −64.81 

FLT3-D09 −74.03 −54.80 78.07 −9.34 −128.84 68.73 −60.10 

FLT3-D10 −69.67 −49.27 71.01 −9.41 −118.94 61.59 −57.35 

FLT3-D11 −80.40 −37.05 71.92 −10.24 −117.45 61.68 −55.77 

FLT3-D12 −76.69 −27.84 46.29 −9.39 −104.53 36.90 −67.63 

FLT3-D14 −80.42 −28.40 56.25 −10.07 −108.82 46.17 −62.65 

FLT3-D15 −78.07 −57.04 70.96 −9.45 −135.11 61.50 −73.61 

FLT3-D17 −66.50 −64.74 81.42 −8.66 −131.24 72.75 −58.49 

FLT3-D21 −72.32 −17.78 46.93 −9.08 −90.11 37.84 −52.27 

FLT3-D22 −73.23 −25.85 45.39 −9.44 −79.08 35.94 −63.14 

VDWAALS: van der Waals contribution from MM; EEL: electrostatic energy as calculated by the 
MM force field; EPB/GB: electrostatic contribution to the solvation free energy; ESURF: non-polar 
solvation free energy; ΔGgas: ΔG in gas phase; ΔGsolv: ΔG in solvation state; ΔTOTAL: total binding 
free energy from MM-PB/GBSA. 

 
Figure 9. Comparison of the final ΔTOTAL binding energy terms of the newly designed compounds. 
Compounds D02–D08, D12, D15, and D22 were estimated to have higher binding free energy 
compare to M01 (red dashed line) and the standard deviation sign is shown in blue. 
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4. Conclusions 
The development of FLT3 inhibitors is a promising strategy for achieving the 

therapeutic goal of the treatment of AML. In this work, we used molecular docking 

and MD simulations to better understand the crucial interaction and stability of the 

ligands inside the binding pocket. The protein–ligand affinity was estimated by 

computing the MM-PB/GBSA and LIE-binding energy, including the mutant FLT3 

complexes. In a previously conducted docking study, residues Q575, L576, Q577, 

K644, F691, C694, L818, and L832 alongside the DFG-motif (D829, F830, and G831) 

formed the fundamental docking interface for a group of diverse inhibitors. In our 

study, the combination of docking and MD study exposed several key residues, such 

as L616, M665, F691, E692, N701, L818, and F830 inside the ATP-binding pocket, 

which could be responsible for the affinity and selectivity of the type II inhibitors. 

K644 and C694 are the two important residues that form H-bond interactions. 

Subsequently, we established the CoMFA (q2 = 0.802, r2 = 0.983) and CoMSIA (q2 = 

0.725, r2 = 0.965) models, both of which show a reasonable statistical correlation 

between actual and predictive activity and internal verification ability. The models 

also showed satisfactory stability and sensitivity in progressive scrambling analysis. 

The QF3
2  metrics from CoMFA and CoMSIA were found to be 0.698 and 0.668, 

respectively, indicating the external predictive power. The models could predict the 

activity values of new compounds having a similar scaffold. Following that, we 

developed the CoMFA and CoMSIA contour maps for the SAR study. Contour maps 

could provide crucial information regarding how chemical group substitution may 

improve the inhibitory activity of chemical compounds, which may be explained 

further by their docking and MD poses. Finally, we designed 30 new compounds, 16 

of which had a higher predictive pIC50 than compound M01. In addition, free energy 

calculation of the selected designed compounds revealed a greater binding affinity to 

the FLT3. Compounds D02–D08, D12, D15, and D22, in particular, might offer 

potential inhibitory activity against FLT3. 
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In this study, several effective computational approaches and reliable statistics were 

used, and they may provide several key mechanistic interpretations at the molecular 

level. The overall findings of this work may be beneficial in delivering theoretical 

guidance in the future development and synthesis of N-phenylpyrimidine-4-amine-

based FLT3 inhibitors. 
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1. Introduction  
FLT3 is best described for its pivotal role in the constitutive activation and 

development of acute myeloid leukemia (AML) in humans[1]. It is primarily 

expressed in murine and hematopoietic stem cells and is responsible for the natural 

development of the immune system. Structurally, FLT3 consists of five 

immunoglobulin (Ig)-like extracellular domains, a single transmembrane (TM) 

domain, a juxtamembrane (JM) domain inside the cytoplasm, a cytoplasmic tyrosine 

kinase domain (TKD) separated by a kinase insert (KI), and a C-terminal intracellular 

domain (Figure 1a)[2, 3]. In the inactive state, FLT3 exists in its unbound, monomeric, 

and unphosphorylated forms. Upon binding to the indigenous ligand FL, FLT3 

undergoes a conformational change. This conformational change occurs by unfolding 

the receptor and subsequent receptor-receptor homodimerization, bringing the kinase 

domain in proximity to the intracellular module, allowing phosphorylation of the 

tyrosine residues (Y589, Y591, and Y599) in the JM domain. This leads to a cascade 

of phosphorylation and activation of secondary mediators, including STAT5, 

PI3K/Akt/mTOR, and Ras/Raf/MAPK oncogenic signal transduction (Figure 1b)[4, 

5]. Premature activation of transcription factors triggers cell proliferation and impedes 

cell differentiation and apoptosis in leukemia cells. As simplified in Figure 1c, the 

autoinhibited kinase domain (KD) consists of an N and C bi-lobal structure with an 

activation loop and a JM domain (PDB ID 6JQR)[6]. The interaction between the KD 

and JM domains prevented ATP binding. The N-lobe has an α-helix (αC-helix) and 

five antiparallel β-sheets, namely, β1-β5. The C-lobe, on the other hand, has seven α-

helices and three β-sheets, namely, αD - αI and β6 to β8. The activation loop comprised 

two twisted β-sheets (β10 and β11). An additional β-sheet is present in the JM domain, 

termed as βJ2. The N and C lobes are connected by a polypeptide stretch, called the 

hinge loop, which allows the rotational movement of the two lobes relative to each 

other.  

Active and inactive FLT3 kinase domains can be distinguished by their characteristic 

‘DFG-in’ and ‘DFG-out’ configurations. The phenylalanine residue of the DFG motif 
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flipped 180⁰ from its active configuration to an inactive conformation facing the active 

site. This creates an additional hydrophobic pocket for type II inhibitors with an 

elongated geometry to interact with the residues in the αC-helix[7]. Several clinical 

and preclinical studies have found that mutations and overexpression of FLT3 are 

associated with a poor prognosis of AML. One of the most common mutations, 

D835Y, has been detected in the kinase activation loop. Nevertheless, mutations in 

residues I836, D839, Y842, and the gatekeeper residue F691 adjacent to the active site 

pocket, were also found in patients with a lower frequency[8, 9].  

 
Figure 1: Structure, function, and inhibitory mechanisms of FLT3. (a) A model representation of 
the FLT3 receptor that is bound to the membrane, consists of five immunoglobulin-like domains 
(PDB ID 3QS9), a transmembrane domain (PDB ID 4I0U), a juxtamembrane domain, and two kinase 
domains (PDB ID 6JQR). (b) Down-signaling of FLT3 by Ras/ Raf/MAPK, STAT5, and Akt/mTOR 
pathways upon binding to the FL ligand. (c) X-ray structure of the gilteritinib (type I) bound FLT3 
kinase domain (PDB ID 6JQR). The binding modes of type I and type II (quizertinib) in the active 
(DFG-in) and inactive (DFG-out) configuration. The frequently found ITD and TKD mutations are 
listed in the inset box. (d) First generation and second-generation type I and type II (* sign) FLT3 
inhibitors displayed in green and grey C-atoms. 
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Mutations in TKD consecutively activate tyrosine kinase, which phosphorylates the 

intracellular domain at various sites and recruits many cytoplasmic adapter proteins 

for protein-protein interactions with the FLT3 receptor. As FLT3 involvement 

becomes more prevalent in oncogenic conditions, many small molecules that target 

FLT3 tyrosine kinase have been discovered. Midostaurin, sorafenib, and lestaurtinib 

were used as multikinase C inhibitors to improve clinical outcomes in patients with 

AML[10]. However, their antileukemic activities were limited when used as 

monotherapy, and adverse cytotoxicity was observed. Therefore, researchers are 

working to develop next-generation inhibitors that selectively target the FLT3 

receptor[11]. Many of them are currently being evaluated in clinical trials and have 

higher potencies than multikinase inhibitors, such as gilteritinib, quizartinib, and 

crenolanib. Crenolanib and gilteritinib fall into the category of type I inhibitors and 

target both active and inactive kinase states, whereas quizartinib is a type II inhibitor 

specific to inactive-state conformations (Figure 1d)[12]. On the other hand, type I 

inhibitors have an identical set of chemical interactions in the ATP pocket, forming 

one to three H-bond interactions similar to that of the adenine moiety of ATP 

molecules. In addition, they occupy the proximal A-loop or allosteric site, front pocket, 

and P loop, providing an additional selectivity property for the type I inhibitors 

compared to that of the type II inhibitors.  

Computational drug design is a popular choice for discovering small molecules 

targeting kinase receptors. In our previous study[13], we performed molecular 

modeling of pyrimidine4,6-diamine derivatives against inactive FLT3 as type II 

inhibitors. Here, we conducted the modeling study of 35 pteridin-7(8H)-one 

compounds as type I inhibitors targeting the active FLT3 conformer. The compounds 

exhibited a wide range of inhibitory activity (pIC50 5.26-8.80) against FLT3, which 

was studied by Sun et al. [14]. The molecular docking and MD simulation studies of 

the most active compound C31 were conducted together with other structurally 

diversified compounds from the dataset to study the critical interactions and binding 

stability of the complexes. We conducted MM-PB/GBSA, FPL, LIE, and FEP 
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calculations to evaluate protein-ligand binding affinity and build the scoring models. 

We also applied US methods to estimate the effective binding free energy of C31 in 

complexes with wild-type and mutant receptors through the unbinding pathway. The 

last 1 ns average MD structure of C31 was retrieved to develop the CoMFA and 

CoMSIA models for the SAR study. Several new compounds were designed, which 

were further investigated for inhibitory activity prediction using the CoMSIA model. 

The binding affinities of the newly designed compounds were evaluated by MM-

PB/GBSA, LIE, and FEP calculations. 

2. Methodology 
2.1. Structure preparation and molecular docking 
The Surflex-Dock module in Sybyl X 2.1 (Tripos Inc., St. Louis, MO, USA) was used 

to perform the molecular docking study. Before the docking experiment, the FLT3 

crystal (PDB ID 6JQR) with a resolution of 2.20 Å was retrieved from the RCSB 

protein databank. Water molecules, solvent ligands, and co-crystallized ligands were 

removed from the protein structure. Missing residues K634-G636, K649-A650, and 

G831-I836 were modeled using the web version of the MODELLER webserver 

(University of San Francisco, San Francisco, CA, USA) in Chimera-1.14 (RBVI, 

UCSF, San Francisco, CA, USA). Residue S711-L780 or KI domain was excluded 

during model development. The final model was selected based on the lowest DOPE 

score and Ramachandran plot from the PROCKECK (DOE-MBI service, UCLA) 

analysis. Compound C31 was the most active compound and was chosen as a 

representative candidate for the docking study. To prepare the 3D structure of C31, 

Sybyl X 2.1 was used to sketch, minimize, and assign gasteiger charges as described 

in earlier studies[15, 16]. The receptor was prepared using the structure preparation 

tool performed with the Amber7 99 force field. The docking cavity was defined using 

protomol generation, in which the gilteritinib-bound position was used as the 

reference. Finally, the docking score between the receptor and C31 was calculated 

using the empirical Hammerhead scoring function. Several parameters, such as the 
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polar, hydrophobic, repulsive, solvation, and entropy terms, were considered during 

the scoring assignment in Surflex-Dock. The final docking score was expressed in 

terms of -logKd units; where Kd stands for the dissociation constant of the ligand. The 

docking protocol was repeated for the compounds C01, C03, C06, C17, C22, and C28. 

2.2. MD simulation 
MD simulations were performed in GROMACS 2019.5 using the Amber14sb force 

field according to our previous studies[17, 18]. The topology and parameter files of 

the ligands were generated using ACEPYPE (or AnteChamber PYthon Parser 

interfacE)[19] with gasteiger charges. The complexes were placed in a cubic periodic 

box and solvated using the TIP3P water model. The minimum thickness of the water 

wall was maintained at ~10 Å from the protein atoms. Adequate amounts of Na+ and 

Cl- were added to neutralize the system and bring the salt concentration to 150 mM. 

Next, each system was energy minimized by the steepest descent integrator followed 

by a 200 ps constant volume ensemble (NVT) to achieve a temperature of 300 K and 

400 ps constant pressure ensemble (NPT) to achieve a pressure of 1 bar using the 

modified Berendsen (V-rescale) thermostat and barostat algorithms. During the NVT 

and NPT runs, the protein backbone and the heavy atoms of the ligand were restrained. 

Thereafter, the systems were subjected to 100 ns of MD production run by removing 

the backbone restraint. Particle mesh Ewald (PME) and LINCS algorithms with a cut-

off value of 12 Å were employed to control the electrostatic interaction and bond 

length constraints. Protein and ligand RMSDs were calculated using the built-in 'gmx 

rms' function in the gromacs. 

2.3. MM-PB/GBSA binding energy calculation 
According to our previous research[13], the gmx_MMPBSA package[20] was used to 

calculate the various MM-PB/GBSA terms. The binding energy (ΔGMM−PB/GBSA) of 

MM-PB/GBSA can be expressed by the following equation (eq-1): 
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ΔGMM−PB/GBSA =  ΔGCOM −  ΔGPROT −  ΔGLIG = ΔEMM + ΔEsol −  TΔS =

 ΔEvdW +  ΔEELE +  ΔEGB + ΔESA − TΔS (1) 

ΔGCOM , ΔGPROT and ΔGLIG stands for the free energy estimation from the protein-

ligand complex, protein, and ligand, separately, in the solvent condition. The ΔEMM 

expresses the interaction energy between the protein and ligand in the gas phase, which 

can be calculated using van der Waals (ΔEvdW) and electrostatic interactions (ΔEELE). 

The ΔGSOL represents the solvation free energy which was obtained by calculating the 

polar solvation (ΔEGB ) and non-polar solvation (ΔESA ) free energy. The −TΔS 

represents the entropy term, which was computed as a more rigorous and concise 

interaction entropy (IE) proposed by Duan et al.[21] using the same GMX_MMPBSA 

package. 

2.4. FPL simulation 
The unbinding pathway was determined using Caver 3.0.3 analysis[22]. The last 1 ns 

average protein-ligand complex from the MD trajectory was retrieved as the initial 

structure for the SMD simulation. The protein-ligand complex was placed in a periodic 

box of 12 Å×10 Å ×10 Å. The TIP3P water model was used to solvate the system, 

neutralize with Na+ and Cl- counterions, and gradually increase the ion concentration 

to 0.15 M. The system was then minimized using the steepest descent integrator for 

10,000 steps, followed by 200 ps of NPT simulation. The ligand was then pulled from 

the binding pocket to a distance of about 5 nm. A harmonic force constant of 250 kj 

mol-1 nm-2 in the X-axis direction was used in the FPL simulation for 500 ps. The 

pulling speed was maintained at 0.010 nm/ps and the ligand displacement was 

recorded through the unbinding pathway every 0.1 ps. Each FPL simulation was 

performed three times to guarantee sufficient sampling. The LIE approximation 

(ΔGLIE) from FPL simulation was calculated according to this study[23]: 

ΔGLIE = 1
2
∆Ecou + 1

2
∆EvdW (2) 
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where, ∆Ecou  = Eunboundcou −  Eboundcou  , and ∆Ecou  = Eunboundcou −  Eboundcou  were 

calculated from the vdW and electrostatic interaction of the bound and unbound states 

of the ligand, respectively. 

2.5. US simulation  
The US process was divided into two stages. In the first stage, the unbinding procedure 

was performed by SMD/FPL simulation. In the second stage, the initial structures for 

US simulation were extracted from the SMD trajectories with a spacing distance of 

0.2 nm[24]. However, four additional coordinates were assigned for the first 0.8 nm 

distance, resulting in the first eight windows having a spacing distance of 0.1 nm. A 

total of 25 protein-ligand conformations from bound to unbound process were 

collected as reaction coordinates. After that, each conformation was first equilibrated 

with a 200 ps NPT ensemble, followed by 2.5 ns of US simulation. The built-in ‘gmx 

wham’ function was used to analyze the potential mean force (PMF) along with its 

reaction coordinates using the weighted histogram (WHAM) method. Finally, the 

binding free energy (ΔGUS) was calculated by subtracting the lowest and highest 

values from the PMF curve. The computational error estimation was carried out by 

100 bootstrapping runs.  

2.6. Free energy perturbation 
The last 1 ns average MD structures of the receptor-ligand complexes were taken as 

the initial structure for the FEP simulation study, according to the previous 

literature[25, 26]. In this method, the ligand interaction was turned on over the two-

coupling process in the receptor-bound form and isolated form in the solvent. The 

ligands were transitioned from non-interaction (0) to the full-interaction state (1) by 

turning on vdW and coulombic interactions with the surrounding by changing the 

coupling parameter (λ). Nine λ values: 0.00, 0.10, 0.25, 0.35, 0.50, 0.65, 0.75, 0.90 

and 1.00 were used to change the vdW and coulombic interactions, respectively, and 

a total of seventeen alter-λ simulations of each 2 ns were performed. The total energy 
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change in the FEP process through the λ alteration was deduced using Bennet's 

acceptance ratio (BAR) method. 

2.7. Dataset building and molecular alignment 
The 35 pteridin-7(8H)-one-based compounds that were reported to be FLT3 inhibitors 

were taken as a dataset for this study (Table 1). The last 1 ns average structure of the 

C31 from the MD simulation was selected as a representative structure from the 

dataset. The pteridin-7(8H)-one chemical entity was chosen as a common skeleton. 

Based on the common skeleton, the rest of the compounds were sketched and 

minimized with a convergence force of 0.05 kcal/mol at the maximum iteration of 

2000 run by the tripos force field and added Gasteiger-Hückel partial charges, in the 

Sybyl suit. The biological activities (IC50) of these compounds were converted into 

logarithmic IC50 (pIC50) values. The pIC50 values were well distributed across the three 

log units (pIC50 = 5.26 to 8.80). The entire dataset was categorized into low, medium, 

and high activity segments, as described here[27, 28]. The 9 compounds were 

randomly selected from each segment as the test set compounds in such a way that the 

compounds would cover different activity ranges while maintaining their structural 

variations. The training set consists of 26 compounds used as a dependent variable 

(Training set) to construct the 3D-QSAR model, while the 9 compounds were used as 

the independent variable (Test set) to access the model's predictive power. 

Table 1: Dataset compounds and their inhibitory activities. The test set 

compounds are shown by the (*) sign 

HN N

N

N

N

O

R1

R3

R2

1
2

3 4

1'
2'

3'

4'
 

#Cpds R1 R2 R3 pIC50 #Cpds R1 R2 R3 pIC50 

01* N
N  

3' N
H

O

 
H

 6.50 19 OMe  
4' NH2  H

 7.53 
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02 N

 
3' N

H

O

 
H

 5.81 20 N
N  

3' N
H

O

 
2-OMe  5.88 

03* N

 
3' N

H

O

 
H

 5.97 21 N
N  

4' N
H

O

 
2-OMe  6.81 

04 N

 
3' N

H

O

 
H

 5.75 22 N
N  

3' NH2  H
 8.21 

05 
NH

O  3' N
H

O

 
H

 5.54 23* N
N  

4' NH2  H
 8.05 

06 
CH3

O  3' N
H

O

 
H

 5.26 24 OMe  4' N
H

CH3

O

 
H

 6.89 

07* OMe  3' N
H

O

 
H

 5.72 25 OMe  4' N
H

S
CH3

O

O  
H

 6.59 

08 H
 3' N

H

O

 
H

 5.53 26 N
N  

4' N
H

CH3

O

 
H

 7.65 

09 Cl
 3' N

H

O

 
H

 5.44 27* N
N  

4' N
H

S
CH3

O

O  
H

 7.49 

10 N
O  

3' N
H

O

 
H

 5.94 28 N
N  

4' CH2NH2  H
 7.42 

11* N
N  

4' N
H

O

 
H

 7.32 29 N
N  

N
NH

4'

 
H

 
8.08 

12 OMe  4' N
H

O

 
H

 6.96 30 
OMe  

4' NH2  2 Me  6.45 

13* H
 4' N

H

O

 
H

 6.78 31 N
N  

4' NH2  3 Me  8.80 

14 Cl  4' N
H

O

 
H

 6.41 
31(D835

Y) 

,, ,, ,, 8.69 

15 N
O  

4' N
H

O

 
H

 6.76 32* N
N  

4' NH2  3 OMe  8.49 

16* OMe  3' N
H

O

 
H

 5.35 33 N
N  

4' NH2  3 Cl  8.28 

17 OMe  4' N
H

O

 
H

 6.73 34 N
N  

4' NH2  3 Cl  7.55 
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2.8. CoMFA and CoMSIA studies 
CoMFA and CoMSIA are two widely popular 3D-QSAR methods. Lennard Jones and 

Coulombic potential functions were used to compute the steric and electrostatic fields 

in CoMFA analysis[29, 30]. Each compound was placed in a spatial grid one after 

another during the calculation process with a grid spacing of 2.0 Å. To calculate the 

structural characteristics of the compounds, each grid space was assigned to the sp3 

carbon atom with the vdW probe radius of 1.52 Å and a net charge of +1. The energy 

cut-off of 30 kcal/mol was applied, and the rest of the parameters were set to default. 

In the CoMSIA model, additional descriptors such as hydrophobic, H-bond acceptor, 

and H-bond donor were also calculated using steric and electrostatic fields. To 

determine the distance between compound atoms and probe atoms, a Gaussian-type 

function was applied in CoMSIA with the default attenuation factor(σ) to 0.3. 

To produce statistically significant CoMFA and CoMSIA models, the partial least 

squares (PLS) method was employed to correlate the biological activity and 

descriptors of the compounds. The leave-one-out (LOO) method was applied in a 

cross-validation method to obtain the cross-validation coefficient (q2), the optimal 

number of components (ONC), and the standard error of prediction (SEP) by assigning 

different partial charges. Then the no validation method was applied to obtain the non-

cross-validation coefficient (r2), Fisher’s statistics (F value), and standard error of 

estimation (SEE). In the CoMSIA model, the descriptor fields, such as S, H, E, A, and 

D, were used in different combinations to produce the best possible statistical 

model[31]. To examine the internal and external validation of the 3D-QSAR model, 

we determined the χ2, RMSE, MAE, k, k’, |r0
2-r’0

2|, (r2-r0
2)/ r2, rm

2, rm    2����� , Δrm
2, r2

pred, 

QF1
2 , QF2

2 , QF3
2  , and Qccc

2  matrices as described in the previous literature[32-34]. 

 

2.9. Contour map analysis and design of new compounds 

18 OMe  
3' NH2  H

 7.46 35 N
N  

4' NH2  3 F  7.44 
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The field effects from CoMFA and CoMSIA models were presented by 3D 

StDev*Coeff contour maps with different color schemes. Each contour described the 

structural characteristic of the compound that could increase or decrease the inhibitory 

activity. The favorable and unfavorable regions for the steric, electrostatic, 

hydrophobic, H-bond acceptor, and H-bond donor were colored green, yellow, blue, 

white, magenta, orange, and cyan. The detailed CoMFA and CoMSIA contour maps 

have been summarized in a simplified SAR scheme. We designed novel compounds 

based on the MD and SAR and anticipated their inhibitory potency. Compounds with 

predictive pIC50 higher than C31 were subjected to binding affinity evaluation. 

3. Results and discussion 
The optimal ligand-binding orientation at the active site was predicted using the 

molecular docking study. Docking pose verification is a critical step since it is used in 

molecular simulation, MM-PB/GBSA binding energy evaluation, and lastly, the 

generation of 3D-QSAR models. The 2D structure of pteridin-7(8H)-one-based 

compounds that have been chosen for molecular docking studies is shown in Figure 

2a. None of the compounds in the dataset had FLT3 co-crystal forms; the most active 

compound C31 was cross-docked into the FLT3 binding pocket, which the gilteritinib 

molecule had previously occupied. The top-scoring ligand poses in a cross-docking 

experiment are not always accurate for evaluating the final docking result. Therefore, 

in addition to the top-scoring solution, we employed RMSD evaluation between the 

docked pose and gilteritinib crystal pose by the LigRMSD web server[35]. According 

to this study[36], RMSDs between the docked and crystal poses of 2.0-3.0 Å are an 

acceptable docking solution. The final docked complex should also comply with 

ECIDALs norms, in which the essential chemical interaction and binding 

configuration of the analogous ligands were thoroughly inspected across the same 

protein family from the PDB database. The docking interaction of the top-ranked 

FLT3-C31 within the binding pocket is shown in Figure 2b. Compound C31 and 

gilteritinib are designed to target active FLT3 in a type I inhibitor-like manner. The 
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RMSD between the docked ligand and crystal ligand gilteritinib was found to be 2.2 

Å. In addition, compounds C31 and gilteritinib have 2-phenylaminopyrimidine and 2-

phenylaminopyrazine moieties in their structure which share an identical chemical 

scaffold and form a bidentate H-bond interaction with the residue C694 at the hinge 

loop. C31 formed two additional H-bond interactions with residue L616 and the keto 

(-C=O) group of the DFG residue F830. Other notable interactions, such as π-π 

stacking and π-sigma interactions, were formed between the pteridine ring and 

residues Y693 and L818, respectively. Residues V624, A642, V675, and C828 formed 

hydrophobic interactions with the ligand. The RMSDs with giltertinib for compounds 

C03, C06, C17, C22, and C28 were found to be less than 3.0 Å, indicating reasonable 

docking accuracy. Overall, the docking analysis suggested a satisfactory docking 

solution that could be utilized in the binding study of new compounds. 

Since protein-ligand interaction is a highly thermodynamic process, a single docking 

experiment has several limitations. Besides, in the cross-docking experiment, the 

binding site was treated as a rigid body, and neither side-chain nor backbone 

movements were taken into account. Additionally, in the empirical scoring functions, 

water-mediated hydrogen bonding, de-solvation, and estimation of ligand binding 

energy by water swapping remain challenging. In many cases, the docked pose is not 

stable under physiological conditions. Thus, MD simulation studies were employed to 

validate the docking solutions and the overall stability of the protein-ligand 

complexes. We have manually mutated the residue D835Y in the FLT3 (Figure 1c) 

structure to make the FLT3D835Y-C31 complex. Therefore, eight total protein-ligand 

systems, i.e., FLT3-C31, FLT3D835Y-C31, FLT3-C01, FLT3-C03, FLT3-C06, FLT3-

C17, FLT3-C17, and FLT3-C28 were subjected to 100 ns production simulations. The 

oscillation of the backbone αC of proteins and the heavy atoms of the ligands were 

plotted with respect to the simulation time in Figure 2(d-k).  
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Figure 2. Molecular docking, MD simulation, and MM-PB/GBSA binding energy calculation 
studies. (a) 2D structure of pteridin-7(8H)-one-based compounds: C01, C03, C06, C17, C22, C28, 
and C31 that have been selected for molecular docking studies. (b) Binding pose orientation of C31 
within the ATP pocket. The ligand is anchored to the hinge by two H-bond interactions, as shown in 
red dashed lines, with residue C694. The π-σ interaction with L616 is shown in green dashed lines. 
(c) The global structure of the C31 bound FLT3 kinase domain, depicting the D835Y mutation site 
in the activation loop. (d) – (k) RMSD plots of the selected complexes, i.e., FLT3-C01, FLT3-C03, 
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FLT3-C06, FLT3-C17, FLT3-C22, FLT3-C28, FLT3-C31, and FLT3D835Y-C31, respectively. (l) A 
graphical comparison of the ETOTAL , TΔS , and ΔGMM−PB/GBSA The binding energy terms between 
the complexes are colored blue, firebrick, and gray, with the standard deviation (red). (m) Residues 
that contributed the critical binding energies to the ligands during the per-residue MM-PB/GBSA 
decomposition analysis are highlighted in the firebrick sphere representation. 
 
The RMSD plots stated that the systems were converged within the first 20 ns of the 

simulations. The RMSDs of the protein and ligand were in the range of 1.0-3.5 Å. The 

FLT3 complexes with compounds C31, C01, and C17 were stable after initial 

convergence. Although, the RMSDs of FLT3-C06 and FLT3-C28 suggested multiple 

state conversions during the MD run. The MM-PB/GBSA binding energy is a 

frequently used method for calculating the end-state binding free energy between 

protein-ligand complexes. We collected the last 2 ns trajectory or 200 snapshots from 

each system to compute the MM-PB/GBSA binding free energy. The entropy term 

(−TΔS) was calculated from the last 80 snapshots of the 2 ns trajectory. Finally, the 

−TΔS was subtracted from the ΔTOTAL term to obtain the final binding energy of the 

MM-PB/GBSA calculation. The ΔGMM-PB/GBSA was found to be −32.15 kcal/mol and 

−30.54 kcal/mol for the C31-bound wild-type and mutant FLT3 complexes, 

respectively. 

Compounds C01, C03, C06, C17, C22, and C28 were estimated to have the binding 

energies of −22.70 kcal/mol, −22.62 kcal/mol, −21.71 kcal/mol, −26.84 kcal/mol, 

−30.83 kcal/mol, and −30.97 kcal/mol, respectively. In addition, we computed the 

residue-specific binding energy contribution within the 4.0 Å distance from the ligand 

atoms. Residues K614, L616, G617, V624, A642, E692, Y693, C694, L818, and F830 

were found to be the major binding energy contributors in MM-PB/GBSA terms. The 

residue-specific binding energy decomposition analysis is graphical illustrated in 

Figure 1m. 

FPL simulation along with the unbinding pathway was conducted, which is based on 

the SMD principle. It is also a relatively straightforward approach for estimating the 

binding affinity between protein-ligand complexes. In this method, the ligands were 



Suparna Ghosh Ph.D. Thesis 

Chosun University, Department of Biomedical Sciences 

 

 

- 54 - 
 

forced to dissociate from the center of mass (COM) distance of the DFG residues 

through the caver-predicted unbinding tunnels at a distance of about 5 nm toward the 

X-axis (Figure 2a). Initially (T = 0 ps), the pulling force was minimal, and the ligand 

was bound to the active site cavity, referred to as the bound state. Over the simulation, 

the pulling force was gradually increased until the ligands began to dissociate from the 

binding pocket. At that time (T = Tmax), the pulling force reached its peak, the ligand 

was separated from the cavity, mobilized into the solvent, and termed rupture force 

(Fmax). The external force abruptly decreased and maintained a consistent plateau, 

referred to as the unbound state. Theoretically, the ligand with higher inhibitory 

activity poses a higher relative binding affinity. Thus, Fmax could be applied to rank 

the inhibitor compounds. The external pulling forces and separation distances over 

time are shown in Figure 2b. The average Fmax values for compounds C01, C03, C06, 

C17, C22, C28, and C31 were estimated to be 221.40, pN, 441.13 pN, 391.61 pN, 

428.75 pN, 475.17 pN, 441.13 pN and 537.07 pN, respectively. In contrast, a lower 

Fmax value (Fmax = 453.51 pN) was obtained for the FLT3D835Y-C31 complex compared 

to the C22 and C31 systems. Next, we calculated the LIE approximation over the two 

quasi-equilibrium states (bound and unbound) by computing the van der Waals and 

electrostatic interactions. For the compounds C01, C03, C06, C17, C22, C28, and C31, 

the absolute binding energy calculated using the LIE approximation was −28.76 

kcal/mol, −27.18 kcal/mol, −28.71 kcal/mol, −30.65 kcal/mol, −30.97 kcal/mol, 

−30.35 kcal/mol, and −28.92 kcal/mol, respectively. In comparison to the wild-type 

FLT3, compound C31 had rather lower absolute binding free energy (ΔGLIE = −28.17 

kcal/mol) to the mutant receptor. Following that, the US simulation was applied to the 

C31-bound FLT3 and FLT3D835Y complexes to evaluate the effective binding free 

energy profile along with their dissociation pathway. A total of 25 evenly distributed 

overlapping windows were extracted from the FPL trajectories and used biased 

sampling simulation as described in the methodology section. The binding free energy 

and sufficient sampling could be traced by analyzing the PMF curve and the umbrella 

histogram with respect to the reaction coordinates (ξ), as shown in Figure 2(c-f). 
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Figure 2. FPL and US simulation analysis. (a) Illustration of the FPL simulation setup. An external 
harmonic force is used to dissociate the ligand to a distance of 5 nm on the X-axis. (b) Graphical 
representation of the mean force evaluation (rupture force) and displacement of the ligands with 
respect to the time during the FPL runs. (c) PMF curve and (d) and histogram profile of the FLT3-
C31 system. (e) PMF curve and (f) histogram profile of the FLT3D835Y-C31 system. The errors are 
calculated by using 1000 bootstrapping runs. 

In PMF, the free energy began from zero and then dropped to a minimum value. After 

that, the energies were gradually increased to attain a stable value, where non-covalent 

interactions between protein and ligands were broken. The binding free energy (ΔGUS) 

of the most active compound C31 from the US was estimated to be −10.73 ± 1.27 

kcal/mol and −9.49 ± 0.57 kcal/mol for wild-type and mutant FLT3, respectively. The 
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convergence of the calculation could be validated by the histogram profiles of 

overlapping neighboring windows. 

The FEP simulation was carried out with the last 1 ns average MD structure of the 

protein-ligand complexes. The vdW and coulombic interactions of the ligands were 

sequentially turned on in the solute in a complex and isolated form by alter-λ 

simulations. The first 40% of the trajectory data were discarded to eliminate any 

convergence error. The final absolute binding free energy (ΔGFEP) from the FEP 

simulation was determined to be −14.83 kcal/mol, −14.64 kcal/mol, −13.68 kcal/mol, 

−16.77 kcal/mol, −15.04 kcal/mol, −17.61 kcal/mol and −17.87 kcal/mol for 

compounds C01, C03, C06, C17, C22, C28 and C31, respectively. Compared to the 

wild-type complex, the FLT3D835Y-C31 complex had lower binding free energy 

(ΔGFEP = −16.82 kcal/mol) in the FEP calculation. 

Table 2 emphasizes the final binding free energies of the protein-ligand complexes, 

which are derived using MM-PB/GBSA, FPL, LIE, and FEP methods. The 

experimental binding energies (ΔGEXP) of the compounds were deduced from their 

inhibitory activity (IC50) and attempted to correlate with the computed binding free 

energies. During the correlation analysis, the binding energies of the FLT3D835-C31 

complexes were ignored. The correlation plots between the experimental binding 

energies and computed binding energies of the seven compounds are shown in Figure 

3. A good correlation coefficient (RMM-PB/GBSA = 0.92) was obtained between the 

ΔGEXP and ΔGMM-PB/GBSA. However, the binding energies were overestimated by the 

MM-PB/GBSA method. In the FPL model, the Fmax values are poorly correlated with 

the ΔGEXP values (RFMAX = −0.55). The correlation coefficient (RLIE) between ΔGEXP 

and ΔGLIE was calculated to be 0.60. Thus, the observations suggested a significant 

limitation and required special attention when utilizing the FPL and LIE models for 

ligand ranking. Although, both models were able to distinguish differences in binding 

affinities between C31 and receptor variants. In the FEP model, the correlation 

coefficient (RFEP) between ΔGEXP and ΔGFEP was estimated to be 0.71, which is 
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statistically reasonable and could be used to assess the binding affinities of unknown 

compounds. 

Table 2. Experimental binding energies and calculated binding energies from MM-

PB/GBSA, FPL, LIE, and FEP calculations. Except for the rupture force (FMAX), all 

binding energy terms are expressed in kcal/mol 

Complexes ∆GEXP 
ΔGMM−PB/GBSA 

(±SD) 

FMAX 

(pN) 

ΔGLIE 

(±SD) 

ΔGFEP 

(±SD) 

FLT3-C01 -8.98 
-22.70 

± 4.32 
221.40 

-28.76 

±4.80 

-14.83 

±0.65 

FLT3-C03 -8.24 
-22.62 

± 3.06 
441.13 

-27.18 

±4.11 

-14.64 

±0.54 

FLT3-C06 -7.26 
-21.71 

± 3.25 
391.61 

-28.71 

±4.61 

-13.68 

±0.43 

FLT3-C17 -9.29 
-26.84 

± 4.01 
428.75 

-30.65 

±4.09 

-16.77 

±0.40 

FLT3-C22 -11.38 
-30.83 

± 3.68 
475.17 

-30.97 

±3.23 

-15.04 

±0.46 

FLT3-C28 -10.25 
-30.97 

± 3.46 
441.13 

-30.35 

±4.51 

-17.61 

±0.53 

FLT3-C31 -12.15 
-32.15 

± 3.13 
537.07 

-28.92 

±4.51 

-17.87 

±0.43 

FLT3D835Y-

C31 
-12.00 

-30.54 

± 3.47 
453.51 

-28.17 

±4.06 

-16.82 

±0.38 



Suparna Ghosh Ph.D. Thesis 

Chosun University, Department of Biomedical Sciences 

 

 

- 58 - 
 

 
Figure 3. Relationship between experimental and estimated binding energies. In addition to the 
correlation coefficients of each matrix, correlation plots of (a) ∆GEXP vs. ΔGMM−PB/GBSA, (b) ∆GEXP 
vs. FMAX (c) ∆GEXP vs. ΔGLIE and (d) ∆GEXP vs. ΔGFEP are determined. The experimental binding 
energies and the computed binding energies of FLT3D835Y-C31 are shown in pink. Standard errors of 
correlation coefficients are estimated using 1000 bootstrapping runs. 

The statistical analysis of CoMFA and CoMSIA is summarized in Table 3. The 

acceptable parameters of each statistical term are listed in the ‘Threshold values’ 

column based on the previously published literature. In CoMFA analysis, q2 and r2 

were obtained as 0.768 and 0.982, greater than 0.5 and 0.6, respectively, at the ONC 

of 3. The steric and electrostatic contributions of the CoMFA scheme were found to 

be 54.2% and 45.8%, respectively. To generate the best statistically significant 

CoMSIA model, we used five descriptor fields, such as steric (S), electrostatic (E), 

hydrophobic (H), H-bond donor (D), and H-bond acceptor (A) in the permutation-

combination process. The best q2 and r2 values of 0.844 and 0.972 were obtained in 

SH combination at ONC of 4, and, therefore, SH was selected as the final CoMSIA 

model. The final contributions of the steric and hydrophobic fields were found to be 

46.8% and 53.2%, respectively. However, any QSAR models are insufficient without 
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being externally validated by test set compounds that were not used during model 

development. Thus, the external validation was carried out by estimating the predictive 

correlation coefficient or rpred2 . In CoMFA and CoMSIA, the values of rpred2  were 

determined to be 0.919 and 0.918, respectively, greater than the constrained value of 

0.6, signifying that both models were statistically reliable and had good predictability. 

Figures 4a and 4e represent the PLS regression plots between the observed and 

predicted activity of compounds from the CoMFA and CoMSIA models. Besides, we 

also calculated other statistical parameters such as  rm2  or r′m2 , QFn
2 (n = 1, 2, 3), and 

Qccc
2  matrices, all of which were calculated to be within the well-accepted parameters.  

Table 3. Statistical results and validation of CoMFA and CoMSIA models 

Statistical 

parameters 
CoMFA 

CoMSIA Threshold 

values 

Statistical 

parameters 
CoMFA 

CoMSIA Threshold 

values SH SH 

q2 0.768 0.844 > 0.5 k Test 0.989 0.997 0.85 ≤ k 

or k’ ≤ 

1.15 
ONC 3 4 < 6 k’ Test 1.009 1.000 

SEP 0.523 0.439  r2
 Test 0.965 0.931  

r2 0.982 0.972 > 0.6 r02 
 Test 0.923 0.918 

≈ r2 
SEE 0.270 0.194 << 1 r′0

2 
 Test 0.938 0.929 

F-value 111.678 111.663  
|r02 − r′0

2 | 

Test 
0.009 0.011 < 0.3 

BS-r2 0.959 0.968  r2−r02

r2
 Test 0.008 0.008 

< 0.1 
BS-SD 0.018 0.016  r2−r0′2

r2
 Test 0.034 0.034 

χ2 0.056 0.066 < 1.0 rm2 
  Test 0.768 0.758 rm2 

  or r′m2  

> 0.5 RMSE 0.322 0.352 < 0.5 r′m2 
 Test 0.790 0.785 

MAE 0.033 0.038 ≈ 0 ∆𝑟𝑟𝑚𝑚2  0.022 0.027  

RSS 2.69 3.23  𝑟𝑟𝑚𝑚2 ���� 0.779 0.772 > 0.5 
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k Train 0.994 0.994 0.85 ≤ k 

or k’ ≤ 

1.15 

rpred2  0.919 0.918 

> 0.6 
k’ Train 1.002 1.002 QF1

2  0.919 0.918 

r02 
 Train 0.889 0.867 ≈ r2 QF2

2  0.919 0.918 

r′0
2 

 Train 0.877 0.842 
≈ r2 

< 0.1 

QF3
2  0.919 0.918 

|r02 − r′0
2 | 

Train 
0.011 0.024 Qccc

2  0.964 0.962 ≈ 1 

r2−r02

r2   Train 0.011 0.077 < 0.3 S (%) 54.2 46.8  

r2−r0′2

r2   Train 0.018 0.104 < 0.3 

rm2 
  or r′m2  

> 0.5 

E (%) 45.8 NA  

rm2 
 Train 0.683 0.686 H (%) NA 53.2  

r′m2 
 Train 0.664 0.646 

rm2 
  or r′m2  

> 0.5 
    

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: 
standard error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; 
F-value: F-test value; BS-r2: Bootstrapping squared correlation coefficient; BS-SD: standard 
deviation from 100 bootstrapping runs;  χ2: chi-square value; RMSE: root mean square error; MAE: 
mean absolute error; k: slope of the predicted vs observed activity at zero intercepts; k’: slope of the 
observed vs. predicted activity at zero intercepts; r02: squared correlation coefficient between 
predicted and observed activity; r’02: squared correlation coefficient between predicted and observed 
activity; rm2 , r′m2 : rm2 , and r′m2  matrices;∆rm2 = |rm2 − r′m2 ; rm2 ���� = (rm2 + r′m

2 )/2 ; rpred2 : predictive 
correlation coefficient; QF1

2 , QF2
2 , QF3

2 , and Qccc
2 : QF1

2 , QF2
2 , QF3

2 , and Qccc
2  matrices; S: steric; E: 

electrostatic; H: hydrophobic; A: H-bond acceptor; D: H-bond donor. 

Next, we conducted the applicability domain analysis to visually detect the 

outliers[37]. It is a theoretical chemical space in which the QSAR model could reliably 

predict the descriptor properties of compounds. The AD analysis of CoMFA and 

CoMSIA is illustrated in Figs. 4b and 4f by the distance-based Williams plot. The 

standardized residual values of the training set and test set compounds were plotted 

against their leverage values within a square area of σ = ±3 and warning leverage (h*). 

Compounds with a leverage value greater than h* were considered outliers and 

significantly affected the regression slope of the QSAR models. In our study, none of 
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the compounds was outside the warning leverage (h* = 0.29), suggesting the 

robustness of the 3D-QSAR models. 

 
Figure 4. Correlation plots, applicability domain, and contour maps analysis. (a) PLS regression 
plot, (b) Williams plot, (c) steric contours, and (d) electrostatic contours from CoMFA analysis. (a) 
PLS regression plot, (b) Williams plot, (c) steric contours, and (d) hydrophobic contours from 
CoMSIA analysis. Warning leverage (h*) is shown as red dashed lines in each AD plot. In steric 
maps, the green and yellow contours indicate that bulky groups are favored and unfavored. On the 
electrostatic map, blue and red indicate a favorable space for the electropositive and electronegative 
groups. The orange and light-grey color in the hydrophobic map represents favorable and 
unfavorable substitutions for hydrophobic chemical groups. 
                                        

  
Figure 5. SAR study and development of new compounds. (a) The summary of the structure-activity 
relationship from the CoMFA and CoMSIA analysis around the reference compound C31. (b) 
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Designed compounds with higher predicted pIC50 in the CoMSIA model. The substitution sites are 
highlighted in the pale salmon color. 

The contour maps analysis from the 3D-QSAR study was carried out to explore the 

favorable and unfavorable sites for chemical substitution. As shown in Figure 4(c-h), 

the field effects of the chemical descriptors from CoMFA and CoMSIA were 

graphically represented by contour polyhedrons around the C31-bound active site. In 

both CoMFA and CoMSIA, two green contours appeared at the R1 and R3 positions 

near the solvent-exposed area of the active sites, indicating that the presence of bulky 

steric chemical groups in that region could increase the inhibitor potency. In contrast, 

a large yellow contour appears near the DFG-residues, suggesting a disfavored 

substitution for bulky steric groups at that position. Compounds C04, C07, C08, C09, 

and C12 non-steric groups in their R1 and R3 positions exhibited lower inhibitory 

activity (pIC50 < 0.7) than the other dataset compounds. 

On the other hand, compounds C31 and C32 consist of steric groups such as methyl (-

CH3) or methoxy (-OCH3) groups in meta-position instead of para-position of the 

piperazine moiety, which allocated them in proximity to the green contours. It might 

favor the critical inhibitory potency of these two highest active compounds. The blue 

and red contours (Figure 4d) suggested a favorable substitution for the electropositive 

and electronegative chemical groups. In that chemical space, compounds with 

positively charged nitrogen (N atoms) or amine (-NH2) groups might enhance the 

inhibitory activity against FLT3. An orange contour near the aniline moiety at the R2 

position towards the residue F830 suggested that a small hydrophobic substitution 

could be favorable (Figure 4h). Taken together, the overall observation was 

emphasized as a SAR scheme in Figure 5a. 

In the context of SAR, we initiated the inhibitor design using substitution growth 

methods. The contour maps suggested a large steric substitution in the R1 and R3 

positions, although this is not infinite. The addition of substantially bulky chemical 

components may result in steric clash and failure of ligand insertion into the binding 

pocket. Moreover, the designed compounds should satisfy Lipinski’s criterion and 
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have a low complexity in the chemical synthesis route. Similarly, the compounds 

should be designed with scaffolds similar to the dataset compounds. A rather 

heterogeneous molecule may not be adequately evaluated by a 3D-QSAR model, 

causing it to be assigned outside the applicability domain or the chemical space. Earlier 

modeling studies have reported that D835 mutations alter the conformational changes 

of the phenylalanine residue (F830) of the conserved DFG motif, affecting the vdW 

and electrostatic interactions, which influence the binding affinity regardless of the 

type I or type II inhibitors[38, 39]. Our multiple binding energy computation schemes 

estimated a lower binding affinity of the most active compound to the mutant receptor. 

Therefore, growing molecular probes from the R2 position towards DFG residues may 

contribute to additional steric or electrostatic interactions and ultimately improve the 

binding affinity of the designed compounds. This could be reinforced from the SAR 

study, as we obtained that the non-steric, hydrophobic, and electronegative groups 

could be favorable for improving the inhibitory potency of C31. By considering the 

above factors, we designed up to 50 new compounds (given in Table 4 as SMILES 

format), and their activity was predicted by the CoMSIA model. We introduced the 

steric substitution to the R3 position as a first step while leaving the remaining positions 

unaltered. At the R2 site, we added hydrophobic and electronegative chemical entities 

(-C=O, -CF3), while the R3 position remained unchanged. Following that, chemical 

probes were grown in the R1 position, with varying degrees of substitution in the R2 

and R3 positions. Beyond the SAR scheme, we also incorporated investigational 

electronegative groups like chlorine and fluorine as probe moieties. 

Table 4: SAR and MD assisted designed compounds in SMILES format 
SMILES 

NC1=CC=C(C=C1)N2C(C=NC3=C2N=C(NC4=CC(CC)=C(N5CCN(C)CC5)C=C4)N=C3)=O D01 

NC1=CC=C(C=C1)N2C(C=NC3=C2N=C(NC4=CC(C(C)C)=C(N5CCN(C)CC5)C=C4)N=C3)=O D02 

CC1=CC=C(C=C1)N2C(C=NC3=C2N=C(NC4=CC(C(C)C)=C(N5CCN(C)CC5)C=C4)N=C3)=O D03 

O=C1C=NC2=C(N=C(NC3=CC(C(C)C)=C(N4CCN(C)CC4)C=C3)N=C2)N1C5=CC=CC=C5 D04 

CC(C)C1=C(N2CCN(C3CC3)CC2)C=CC(NC(N=C4)=NC5=C4N=CC(N5C6=CC=CC(C)=C6)=O)=C1 D05 

CC(C)C1=C(N2CCN(CC3CC3)CC2)C=CC(NC(N=C4)=NC5=C4N=CC(N5C6=CC=CC(C)=C6)=O)=C1 D06 

CC(C)C1=C(N2CCN(CC3CC3)CC2)C=CC(NC(N=C4)=NC5=C4N=CC(N5C6=CC=CC=C6)=O)=C1 D07 
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CC(C)C1=C(N2CCN(C3CC3)CC2)C=CC(NC(N=C4)=NC5=C4N=CC(N5C6=CC=CC=C6)=O)=C1 D08 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(C)=C6 D09 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(F)=C6 D10 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(Cl)=C6 D11 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(Br)=C6 D12 

O=C1C=NC2=C(N=C(NC3=CC(F)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D13 

O=C1C=NC2=C(N=C(NC3=CC(Cl)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D14 

O=C1C=NC2=C(N=C(NC3=CC(C(C)C)=C(N4CCN(C)CC4)C=C3)N=C2)N1C5=CC=CC(C)=C5 D15 

O=C1C=NC2=C(N=C(NC3=CC(C(C)C)=C(N4CCN(C)CC4)C=C3)N=C2)N1C5=CC=CC=C5C D16 

NC1C=NC2=C(N=C(NC3=CC(C(C)C)=C(N4CCN(C)CC4)C=C3)N=C2)N1C5=CC=CC=C5C D17 

CN(CC1)CCN1C(C=C2)=C(C(C)C)C=C2NC(N=C3)=NC4=C3N=CCN4C5=CC(C=CC5)=O D18 

O=C1C=NC2=C(N=C(NC3=CC(Br)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D19 

O=C1C=NC2=C(N=C(NC3=CC(CCl)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D20 

O=C1C=NC2=C(N=C(NC3=CC(CCl)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=C(N)C=C6 D21 

O=C1C=NC2=C(N=C(NC3=CC(CF)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=C(N)C=C6 D22 

O=C1C=NC2=C(N=C(NC3=CC(CF)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(N)=C6 D23 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(F)=C6 D24 

CN(CC1)CCN1C(C=C2)=C(C(C)C)C=C2NC(N=C3)=NC4=C3N=CC(N)N4C5=CC(C=CC5)=O D25 

CN(CC1)CCN1C(C=C2)=C(C(C)C)C=C2NC(N=C3)=NC4=C3N=CC(N)N4C5=CC=CC[C@H]5C(F)(F)F D26 

CC(C)C1=C(N2CCN(CC)CC2)C=CC(NC(N=C3)=NC4=C3N=CC(N)N4C5=CC=CC[C@H]5C(F)(F)F)=C1 D27 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(Cl)=C6 D28 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(Br)=C6 D29 

O=C1C=NC2=C(N=C(NC3=CC(F)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D30 

O=C1C=NC2=C(N=C(NC3=CC(Cl)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D31 

O=C1C=NC2=C(N=C(NC3=CC(Br)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D32 

O=C1C=NC2=C(N=C(NC3=CC(CCl)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC=C6 D33 

O=C1C=NC2=C(N=C(NC3=CC(CCl)=C(N4CCN(C5CC5)CC4)C=C3)N=C2)N1C6=CC=C(N)C=C6 D34 

O=C1C=NC2=C(N=C(NC3=CC(CF)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=C(N)C=C6 D35 

O=C1C=NC2=C(N=C(NC3=CC(CF)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC=CC(N)=C6 D36 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC(F)C=C6 D37 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC(Cl)C=C6 D38 

O=C1C=NC2=C(N=C(NC3=CC=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC(Br)C=C6 D39 

O=C1C=NC2=C(N=C(NC3=CC(Cl)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CCC=C6 D40 

O=C1C=NC2=C(N=C(NC3=CC(F)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CCC=C6               D41 

O=C1C=NC2=C(N=C(NC3=CC(Br)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CCC=C6 D42 

O=C1C=NC2=C(N=C(NC3=CC(CCl)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CCC=C6 D43 

O=C1C=NC2=C(N=C(NC3=CC(CF)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC(N)C=C6 D44 

CC(C)C1=C(N2CCN(C(F)(F)F)CC2)C=CC(NC(N=C3)=NC4=C3N=CC(N4C5=CC=CC=C5)=O)=C1 D45 
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CC(C)C1=C(N2CCN(C(Cl)(Cl)Cl)CC2)C=CC(NC(N=C3)=NC4=C3N=CC(N4C5=CC=CCC5C)=O)=C1 D46 

CC(C)C1=C(N2CCN(C(Cl)(Cl)Cl)CC2)C=CC(NC(N=C3)=NC4=C3N=CC(N4C5=CC=CC(C)=C5)=O)=C1 D47 

O=C1C=NC2=C(N=C(NC3=CC(CBr)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC(N)C=C6 D48 

O=C1C=NC2=C(N=C(NC3=CC(C(C)(C)C)=C(N4CCN(CC5CC5)CC4)C=C3)N=C2)N1C6=CC(N)C=C6 D49 

CC(C)C1=C(N2CCN(CC(F)(F)F)CC2)C=CC(NC(N=C3)=NC4=C3N=CC(N)N4C5=CC=CCC5C)=C1 D50 

Thirteen designed compounds, namely D02, D03, D04, D15, D16, D17, D18, D25, 

D26, D27, D45, D46, and D47, were predicted to have higher pIC50 values than the 

most active compound (Figure 5b). The binding affinities of these 13 compounds were 

carried out using the MM-PB/GBSA, LIE, and FEP methods targeting wild-type and 

mutant FLT3 variants. The last 2 ns snapshots were extracted from the MD trajectories 

to calculate the MM-PB/GBSA binding free energy. Compounds D03, D15, D17-18, 

D25-26, and D46-47 had higher binding free energies than C31 in complex with wild-

type receptors. In contrast, D02, D04, D15, D18, D25-26, and D46-47 exhibited higher 

binding free energies in complex with the mutant receptor. The last 1 ns average MD 

complexes of the designed compounds were carried out for the FPL and FEP 

simulation studies. Compounds D03, D04, D15-16, D27, and D46-47 had higher 

binding free energies in complex with FLT3 receptors than C31. The first 40% of the 

data is eliminated during the final FEP energy calculations to avoid the convergence 

error. The compounds D02, D04, D15, D18, D27, and D46-47 have stronger affinities 

for FLT3 receptors than C31. In Figure 6, the computed binding free energies from 

the MM-PB/GBSA, LIE, and FEP models are compared. The designed compounds 

with higher binding free energies than the most active compounds are designated by 

asterisks.  
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Figure 6. Comparison of the binding free energy of the designed compounds. (a) ΔGMM−PB/GBSA, 
(b) ΔGLIE, and (c) ΔGFEP binding free energy to wild-type (FLT3) and mutant (FLT3D835Y) receptors. 
The higher estimated binding free energies of the designed compounds than the most active 
compound C31 are marked by the black (for wild-type FLT3) and pink asterisk (for FLT3D835Y). The 
energy values shown below the standard deviation bar in blue are in kcal/mol. 

3. Conclusion 
In summary, overexpression and frequent mutations of FLT3 kinase remain an 

intriguing challenge in the treatment of AML. We have herein employed the binding 

studies of pteridin-7(8H)-one-based FLT3 inhibitors using docking, MD simulation, 

and multiple binding energy terms calculation. We applied MM-PB/GBSA, FPL, LIE, 

and FEP scoring functions to correlate the experimental binding energies and 

computed binding energies of the selected compounds. In MM-PB/GBSA and FEP 

methods, the acceptable correlation coefficients (RMM−PB/GBSA = 0.92, and RFEP =
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0.71) were obtained, whereas the rupture force (FMAX) and LIE are weakly correlated 

with the experimental binding energies. Although, each binding model distinguished 

the free energy differences between wild-type and mutant complexes of the most 

active compounds. Besides, we used a more rigorous biased sampling (US) simulation 

to evaluate the effective binding free energies between the FLT3-C31 and FLT3D835Y-

C31 complexes from the PMF curve. Following that, the statistically significant 

CoMFA (q2 = 0.768, r2 = 0.982) and CoMSIA (q2 = 0.844, r2 = 0.972) models were 

generated which showed the strong correlations between the observed and predicted 

inhibitory activity of the dataset compounds. The developed 3D-QSAR models had a 

satisfactory predictive power (rpred2 >0.6) and could be used to assess the inhibitory 

potential of the unknown compounds with analogous scaffolds. We designed several 

new compounds based on the SAR scheme by growing the chemical entities from the 

reference molecule C31. Thirteen compounds were predicted to have higher pIC50 than 

the most active compounds and were subjected to binding affinity evaluation by MM-

PB/GBSA, LIE, and FEP calculations. Multiple compounds were determined to have 

greater binding free energy to wild-type and mutant receptors than most active 

compounds in different scoring models. Overall, these designed compounds have the 

potential to be lead molecules in future biochemical assays.  
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1. Introduction 
AML can be characterized by the abnormal proliferation of immature hematopoietic 

stem cells and bone marrow cells[1]. Overexpression and frequent mutations of FLT3 

have been reported in approximately 30% of AML cases in patients with a poor 

prognosis. Although pharmacological inhibition of FLT3 appears to be a promising 

therapy for leukemia, several issues, notably drug resistance during clinical trials, limit 

its therapeutic advantages[2, 3].  

Recent research has shown that the knockdown of CDK2 induces AML differentiation 

without losing the embryo model. CDK2 activates the G1/S border checkpoint and 

leads the cell cycle through the S phase after binding to cyclins E and A[4-6]. This 

opens up the possibility of targeting CDK2 in specific AML types. However, the 

effective treatment of AML by suppressing myeloid differentiation rather than 

proliferation remains a significant challenge. Most FDA-approved drugs aim to 

achieve antiproliferative effects against abnormal cells. The high similarity across the 

active sites of CDK members and other kinases makes ATP competitive inhibitors 

nonspecific or very toxic[7-9]. Therefore, further development of selective CDK2 

inhibitors is required. 

Investigating the underlying mechanisms of ligand binding and a systematic search for 

lead-like compounds play a crucial role in the discovery of kinase drugs. Several in 

silico methods have been developed, including docking, MM-PB/GBSA, linear 

interaction energy, virtual screening, QSAR, and free energy perturbation to rank the 

binding potential of the ligands, thus lowering the cost of therapeutic 

development[10]. Herein, we carried out molecular modeling studies of 3H-

Pyrazolo[4,3-f]quinoline-containing compounds as anti-AML inhibitors reported by 

Dayal et al. [11]. These compounds exhibited a wide range of inhibitory activities 

against CDK2 and FLT3-ITD. Therefore, the compounds might be promising 

therapeutics in heterogeneous leukemia where multiple kinases are overexpressed. 

The experimental binding energy (∆GEXP) of the compounds were deduced from their 

IC50 values. However, when the -log IC50 (pIC50) of CDK2 and FLT3 were correlated 
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with each other, the squared correlation (r2) was found to be only 0.29, suggesting that 

the selectivity and inhibitory potency of the compounds are partially independent from 

each other. In addition, compounds C24, C25, C26 and C30 have nonspecific 

inhibitory activities (or IC50 > 20 μM), although they exhibited the inhibitory potency 

against CDK2. These phenomena have led us to postulate that more structural 

investigations utilizing computational modeling may enhance the feasibility of 

developing novel chemical entities that are selective to the CDK2 receptor.  

The structure-activity relationship (SAR) study was conducted using CoMSIA, a well-

known 3D-QSAR method to identify the key structural features of inhibitor 

compounds, which could increase the inhibitory potency and selectivity of CDK2 over 

FLT3. Binding free energy estimations between protein and small molecules are 

roughly categorized into three broad classes: 1. Endpoint methods, 2. Alchemical 

methods and 3. Pathway methods[12]. We employed MM-GBSA and US simulations 

as endpoint and pathway methods for nine structurally diverse ligands for the binding 

energy calculation, which are computationally inexpensive compared to the 

alchemical routes. Thereafter, the computed energies using the above methods were 

correlated with the experimental binding free energies. The correlation coefficients 

between the computed and experimental binding energies were determined. 

2. Methodology 
2.1. Dataset preparation  

The inhibitory activities (IC50 values) of the compounds were converted into the -

logIC50 or pIC50 values to prepare the data set. Compound 18 is available in the CDK2 

bound co-crystallized form (PDB ID 7B7S), which is considered a biological 3D 

conformer. Thus, C18 was selected as the template molecule and 3H-Pyrazolo[4,3-

f]quinoline as the common skeleton. Based on the template, the remaining compounds 

were sketched, minimized, and added partial charges in Sybyl X 2.1 according to our 
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previously described study[13]. Some compounds that were reported to have 

nonspecified activity, i.e., IC50 > 20μM, were discarded during model development. 

To develop the CoMSIA model of CDK2 fifty-two datapoints were used, whereas 

forty-eight datapoints were considered for FLT3 CoMSIA model. The compounds 

were aligned on the common skeleton one after another, using C18 as a reference. The 

pIC50 values spanned over three log units and were classified into low, medium, and 

high activity groups. From each group, the compounds were selected randomly by 

maintaining structural diversity to build the test set, while the remaining compounds 

were treated as a training set to achieve a final ratio between training and test set 

compound 3:1. 

2.2. CoMSIA model development and Contour map analysis 

In CoMSIA, descriptor fields were calculated in a 3D cube with a grid spacing of 1 Å. 

A gaussian function was applied to calculate the similarity indices for all grid points. 

Five descriptor fields, steric (S), electrostatic (E), hydrophobic (H), H-bond donor (D), 

and H-bond acceptor (A) were calculated in the permutation-combination process. 

Partial least square (PLS) method was used to correlate the physicochemical 

descriptors and pIC50 of the compounds. Cross-validation and no-cross-validation 

methods were used consecutively to build a statistically reliable CoMSIA model. 

Additional methodological details can be found in our previous studies[14-17]. The 

predictive correlation coefficient (r2
pred) was determined to evaluate the predictive 

power of the developed model. The r2
pred can be calculated as follows: 

r2
pred = (SD-PRESS)/SD (1) 

SD is the sum of the squared deviations between the actual activities of the test set and 

the average activity values of the training set compounds. The PRESS is the sum of 

the squared deviations between the actual and predicted activities of the test set 

compounds.  

The field effects of the chemical descriptors of the CoMSIA model were visually 

represented as 3D StDev*Coeff contour polyhedrons with different color codes. Each 
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color signifies the favorable or unfavorable chemical substitution that might increase 

or decrease the inhibitory potency of the compounds in the data set. 

2.3. Structure preparation and molecular docking 

Compound C18 bound CDK2 crystal structure (PDB ID 7B7S) was retrieved from the 

RCSB PDB database. Water molecules, ions, crystal ligands, and the Cyclin-A2 

polypeptide chain were removed. The missing residues and loops of the CDK2 chain 

were modeled by MODELLER and Chimera 1.14[18]. Compound C18 was self-

docked into the predefined binding pocket with grid dimensions of 30×40×40 points 

in X, Y, and Z directions and grid spacing of 0.375 Å using Autodock4.2 in the 

graphical version of AudoDockTools[19]. More methodological details about 

receptors, ligands, and grid-box preparation can be found in our previous papers[20, 

21]. One hundred docking runs were performed, and the final docking solution was 

collected from the lowest energy and RMSD cluster. During docking pose validation, 

polar, nonpolar, and RMSD from the crystal pose were considered. A similar protocol 

was applied during the cross-docking simulations of compounds C01, C11, C16, C19, 

C24, C36, C38, and C48. The final solution of each individual docked complex was 

undertaken for the MD simulation study. 

2.4. MD simulation and binding energy calculations 

GROMACS 2019.5[22] was used for the MD simulation study using Amber ff99SB 

force field according to our previous studies[23, 24]. ACEPYPE[25] was used to 

parameterize the ligand molecules with AM1-BCC charges. The protein-ligand 

complexes were immersed in a cubic box with a minimum periodic boundary of 10 Å 

in the X, Y, and Z directions of the protein atoms. TIP3P water models were used to 

dissolve the system, and an adequate amount of Na+ and Cl- counterions were used to 

neutralize the increased ion concentration to 0.15M. The system was carried out for 

10000 steps minimization, 200 ps NVT simulation to attain the temperature of 300 K, 

and 400 ps NPT simulation runs to attain the pressure of 1 bar, followed by 60 ns of 
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production simulation. Positional restraint was applied during the NVT and NPT 

ensemble and was omitted during the production simulation. Finally, the RMSDs of 

the protein-ligand complexes were calculated using the built-in 'gmx rms' function in 

gromacs. 

According to our previous study[26], the binding free energy (∆GMM−GBSA ) and 

entropy term (-TΔS) as Interaction Entropy (IE) were calculated using the 

gmx_MMPBSA package[27]. The binding free energy from the MM-GBSA 

calculation can be written as: 

∆GMM−GBSA =  ERL −  ER −  EL (2) 

where, the free energy of the complex (RL), receptor (R), and ligand (L) are 

represented by ERL, ER, and EL respectively. The ∆GMM−GBSA is further defined as: 

∆GMM−GBSA =  ∆H − TΔS =  ∆EMM + ∆ESOL −  TΔS (3) 

The ∆H  stands for the enthalpy, whereas ∆EMM and ∆ESOL  represents molecular 

mechanics energy in the gas phase and solvation-free energy, respectively. 

The entropy term (−TΔS) is expressed as, 

−T∆S = KTln⟨eβ(∆Eele+∆EvdW)⟩ (4) 

where K, T, and β represent the Boltzmann constant, the simulation temperature (300 

K), and the inverse of temperature (1 kT⁄ ), respectively. Electrostatic and van der 

Waals interactions between receptor and ligand are expressed by ∆Eele and ∆EvdW, 

respectively. The ensemble average of receptor-ligand interactions is denoted by ⟨⟩. 

2.5. US simulation study 
The US simulation was carried out in a two-step process according to this study[28]. 

In the first step, the unbinding pathway was determined by caver analysis. The 

complexes were placed in the center of a periodic water box of 10 × 8 × 10 nm3 and 

ionized with 0.15 M NaCl. Following that, Minimization, NPT, and SMD simulations 

were performed. In SMD, the ligands were dissociated at a distance of 3 nm using an 

external harmonic force at a velocity (ν) of 0.006 nm/ps and a cantilever spring 

constant (k) of 400 kJ/mol/nm2. 
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In the second step, the unbinding snapshots were extracted from the SMD trajectory 

with an increasing spacing distance of 0.2 nm between the center-of-mass (COM) 

distance of DFG residues and ligands. However, an additional frame was allocated, 

resulting in a 0.1 nm spacing between the first three windows. A total of 13 snapshots 

were taken for the umbrella sampling simulation. Each window was subjected to 

Minimization, 500 ps NPT, and 5 ns US simulation runs. The weighted histogram 

analysis method (WHAM) was used to determine the potential mean force (PMF) 

using the built-in 'gmx wham' function by the following equation: 

w(ξ) =  −β ln  [ P (ξ)
P (ξ0)

] (5) 

In this equation, β  = kBT, where kB  represents Boltzmann constant and T is the 

simulation temperature. The terms P (ξ) and P (ξ0) signifies the probability density of 

ξ  and reference point ξ0  ( i. e. w(ξ0) = 0 ), respectively. The binding free energy 

(∆GUS) from the US simulation was estimated as the difference between the highest 

and lowest values from the PMF curve.  

3. Results and Discussion 
3.1. Statistical analysis of CoMSIA models 
The 2D structure of all compounds and their respective inhibitory activity (pIC50) for 

CDK2 and FLT3 are shown in Table 1. The compounds aligned with the common core 

taking C18 as a reference. 

Table 1. Dataset compounds and their inhibitory activities against CDK2 and FLT3 
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The S, E, H, A, and D descriptor fields were used in different combinations to obtain 

the statistically robust CoMSIA models. While developing the CoMSIA model using 

the CDK2 training set, the PLS analysis yielded the highest q2 and r2 values of 0.672 

and 0.933 at ONC of 5 in the SEAD combination. The values of q2 and r2 were also 

higher than the minimum accepted criterion (q2 > 0.5, r2 > 0.6)[29], indicating a good 

correlation between the physicochemical descriptors and the inhibitory activities of 

the compounds. Therefore, the SEAD combination was selected as the final CoMSIA 

model for CDK2 inhibitors. We determined the χ2 value for internal model validation, 

which was obtained as 0.097, satisfying the accepted parameters of <1.0. The external 

validation and predictive power of the QSAR model are then determined by 

calculating r2
pred from the predicted pIC50 values of the chemicals in the test set. The 

r2
pred was found to be 0.888 in the CoMSIA/SEAD model, which also satisfied the 

acceptable norms, i.e., r2
pred > 0.6, indicating an excellent predictive power of the 

model.  

Continuing that, we developed the CoMSIA model for FLT3 by taking the training set 

compounds and their inhibitory activity (pIC50) to FLT3. The SEHD combination 

yielded the best q2 and r2 values of 0.631 and 0.859 at ONC of 3, the highest among 

the other combinations. The internal validation parameter χ2 was obtained as 0.326, 

whereas the external validation or predictive power of the model r2
pred was anticipated 

to be 0.887. Overall, the statistics of the SEHD combination followed the acceptable 

norms, and thus selected as the final CoMSIA model for FLT3. The statistical results 

of the CoMSIA models and PLS regression plots are shown in Table 2 and Figure 

1a,b. 
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Table 2. Statistical result and validation of CDK2 and FLT3 CoMSIA models 
Statistical  

parameters 

CDK2 FLT3 
Threshold values 

SEAD SEHD 

q2 0.672 0.631 > 0.5 

ONC 5 3  

SEP 0.482 0.661  

r2 0.933 0.859 > 0.6 

SEE 0.218 0.409 << 1 

F-value 91.912 64.984  

BS- r2 0.958 0.904  

BS-SD 0.016 0.034  

χ2 0.097 0.326 < 1.0 

rpred2  0.888 0.887 > 0.6 

S (%) 35.8 10.7 

 

E (%) 19.2 27.8 

H (%) - 34.5 

A (%) 30.6 - 

D (%) 14.4 17.0 

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: 
standard error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; F-
value: F-test value; BS-r2: Bootstrapping squared correlation coefficient; χ2: Chi-square value; rpred2 : 
predictive correlation coefficient; S(%): steric contribution; E(%): electrostatic contribution; H(%): 
Hydrophobic contribution; A(%): H-bond acceptor contribution; D(%): H-bond donor contribution. 

3.2. Contour map analysis and SAR study 
In addition to predicting the activity of the novel compounds, CoMSIA in 3D-QSAR 

vividly illustrated favorable and unfavorable chemical descriptor fields as distinctive 

colored contour maps. In the CoMSIA/SEAD model of CDK2, the steric, electrostatic, 

hydrophobic, and H-bond donors contributed 25.8%, 19.2%, 30.6%, and 24.4% in the 

field distribution, respectively. Together, the steric and hydrophobic descriptors 

account for more than 60% of the overall field contribution. Figure 1c illustrates the 

favorable and unfavorable space for steric and hydrophobic chemical group 

substitutions, using C18 as a reference. The green contour at the meta-position of the 

thiopyran ring indicated that bulky steric groups at that position might enhance the 
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inhibitory potency. On the contrary, yellow contours were present near the thiopyran 

and indazole rings, suggesting that bulky steric groups could reduce the inhibitory 

activity. A large magenta contour appeared at the para-position of the thiopyran ring, 

indicating that an H-bond accepting group would be advantageous in that region. Two 

brownish-grey contours near the indazole and 3-(trifluoromethyl)-1H-pyrazole 

moieties indicated the unfavorable substitutions of H-bond acceptors at these 

positions. 

In the FLT3 CoMSIA/SEHD model, the field distributions of steric, electrostatic, 

hydrophobic, and H-bond donor descriptors were found to be 10.7%, 29.8%, 24.5%, 

and 35.0%, respectively. Electrostatic and H-bond donor fields account for more than 

60% of the total field contribution and are shown in Figure 1d. The blue and red 

contours indicated favorable positions for electropositive and electronegative 

chemical groups, respectively, which could increase the bioactivity of inhibitor 

compounds. Similarly, the orange and dark-gray contours represented the favorable 

and unfavorable positions for hydrophobic chemical groups. 

Considering the observations above, chemical group modification of compound C18 

according to the CoMSIA/SEAD contours of CDK2 would likely promote enhanced 

bioactivity. While alteration of the chemical groups in the area designated according 

to the CoMSIA/SEHD of FLT3 contours might improve CDK2 selectivity over FLT3.  

3.3. Docking, MD simulation, and binding energy calculation 
To study molecular interactions and protein-ligand binding stability, we carried out 

the docking and MD simulation studies of the compounds C01, C11, C16, C18, C19, 

C24, C36, C38, and C48. These nine compounds are selected considering their diverse 

bioactivities while maintaining their structural diversities. Compound C18 was self-

docked into the ATP pocket of CDK2, and the docked pose was compared with the 

crystal-bound pose. The RMSD between the crystal pose and docked pose was 

obtained to 1.07 Å, reflecting the satisfactory validation of the overall docking 

protocol. The ligand was anchored to the hinge loop by forming an H-bond interaction 
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with residue L83. Residue F80 and catalytic residue K33 formed the π-π and π-σ 

interaction with the indazole and pyrazole rings, respectively. Additional hydrophobic 

interactions were observed with residues I10, A33, and L134.  
 

Figure 1. CoMSIA analysis, RMSD plots, and residue-specific binding energy contribution to the 
ligand. PLS regression plots of (a) CoMSIA/SEAD model of CDK2 system and (b) CoMSIA/SEAD 
model of FLT3 system. (c) Contour map analysis of the CoMSIA/SEAD model of CDK2. The steric 
(S) and H-bond acceptor (A) are shared 35.8%, and 30.6% (>60%) of the field contribution are shown 
in colored contours. Favorable and unfavorable positions for steric substitutions are shown in green 
and yellow contours. Similarly, favorable and unfavorable H-bond acceptor positions are depicted 
in magenta and brownish-grey contours. (d) Contour map analysis of CoMSIA/SEAD model of 
FLT3 in which electrostatic (E) and hydrophobic (H) have shared 27.4% and 34.5% (>0.60%) field 
contributions. The favorable substitutions for electropositive and electronegative groups are shown 
by blue and red contours, whereas orange-grey contours depict the favorable-unfavorable position 
for hydrophobic groups. (e) RMSD analysis of protein backbones and ligand heavy atoms for the 60 
ns production run in salmon and dark gray. (f) Common residues that decompose the critical binding 
energies to the ligand within the active site are shown in the stick representation. 
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The rest of the compounds were cross-docked into the binding pocket of CDK2. Figure 

1e depicts the RMSD changes of the docked complexes employed in all-atom 

production simulations for 60 ns. Throughout the MD run, the compounds remained 

stable in the complex with FLT3, and no significant variations in RMSD curves were 

observed. The MM-GBSA binding free energies were calculated using the last 2.5 ns 

frames of each MD trajectory. Compounds C01, C11, C16, C18, C19, C24, C36, C38, 

and C48 exhibited the binding energy of −26.32 kcal/mol, −25.81 kcal/mol, −29.55 

kcal/mol, −27.27 kcal/mol, −21.27 kcal/mol, −23.89 kcal/mol, −32.68 kcal/mol, 

−32.59 kcal/mol, and −23.81 kcal/mol, respectively. The residue-specific binding 

energy decomposition analysis to the ligand is important information for the drug 

development process. The residues within 4Å distance from the ligand atoms that 

contributed to the critical binding free energy are reported and shown in the stick 

representation around compound C18 in Figure 1f. 

3.4. US simulation analysis 
The binding affinity of two biomolecules is often estimated using atomistic simulation 

approaches rather than quantum chemical calculations, which requires less 

computational resources. However, in conventional MD, it is still impossible to 

sample the whole phase space of large conformational changes of biomolecules, which 

often requires microseconds to milliseconds of simulation. To precisely estimate the 

binding affinity, enhanced sampling techniques such as steered MD (SMD), meta-

dynamics (MetaD), scaled MD, and replica-exchanged MD (REMD) seem to be more 

effective. Many kinases feature solvent-exposed active sites, which allow ligands to 

move in and out of the binding pocket without inducing conformational changes to the 

receptors. Thus, US simulation is a popular choice for determining the binding affinity 

of ligands with reasonable accuracy. The unbinding direction of the ligands from the 

ATP pocket was determined by caver analysis as void channels in which the molecules 

could be forced to mobilize in the solvent. The two predicted channels with the highest 

ranking (P1 and P2) are shown in Figure 2. The ligands were then forced to dissociate 
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from the active site at a distance of 3 nm with a constant velocity to the X-axis direction 

by SMD simulation, as illustrated in Figure 3a. Initially, the pulling force started from 

zero and gradually increased over the simulation time. The ligands were dissociated 

entirely from the active site at the maximum force potential (Fmax), also known as the 

rupture force. Then, the force was steeply decreased when the ligand was mobilized 

into the solvent. Theoretically, Fmax could be correlated with the binding affinity of 

the ligands because a higher binding affinity required a higher rupture force (Fmax) for 

ligand dissociation. However, in the current study, we only used the SMD simulation 

to generate input for the US simulations. The free energy in the US simulation was 

derived as a PMF curve along with the reaction coordinates (ξ) at X-axis by WHAM 

analysis in Figure 3b. 

 

 
Figure 2. Caver predicted unbinding direction of the ligand. The top two predicted results (P1 and 

P2) are shown in blue and green vdW channels. 
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Figure 3. Overview of the unbinding direction and estimation of the PMF curve in the US simulation 
process. (a) The ligand molecule is forced to mobilize into the solvent at a distance of 3 nm from the 
X-axis direction from the active site. The constant velocity of 0.006 nm/ps and a cantilever spring 
constant of 400 kJ/mol/nm2. (b) The PMF energy curves of the compounds C01, C11, C16, C18, 
C19, C24, C36, C38, and C48 in the complex with CDK2 were obtained by WHAM analysis. The 
error was estimated using 1000 rounds of bootstrapping runs.  

The free energy in the PMF curve starts at zero and drops to a minimum value, termed 

the bound state. Subsequently, the curve increased to a maximum energy value (E) at 

the ξ of 1.5-2.0 nm and remained steady. From that ξ onwards, the nonbonded 

interactions between the protein and ligands were diminished, termed the unbound 

state. The binding energy change from the US simulation (ΔGUS ) was roughly 

estimated as the difference between the maximum and minimum values of the PMF 

curves. Compounds C01, C11, C16, C18, C19, C24, C36, C38, and C48 exhibited 

binding energy (ΔGUS ) of −19.46 kcal/mol, −15.67 kcal/mol, −15.30 kcal/mol, 

− 21.60 kcal/mol, − 14.43 kcal/mol, − 8.79 kcal/mol, − 21.62 kcal/mol, − 29.79 

kcal/mol and −9.62 kcal/mol, respectively. 

The experimental binding energies were deduced from the inhibitory activity (IC50) of 

the compounds and shown along with the computed binding free energies in Table 2. 

In Figure 4, the computed binding energies of the MM-GBSA and US simulation are 

correlated with the experimental binding energies. The correlation coefficient 

(RMM−GBSA) between ∆GMM−GBSA  and ∆GEXP  was obtained as 0.77. Similarly, the 



Suparna Ghosh Ph.D. Thesis 

Chosun University, Department of Biomedical Sciences 

 

 

- 88 - 
 

correlation coefficient (RUS) was determined to be 0.81 between ∆GUS and ∆GEXP. In 

both MM-GBSA and US methods, the binding free energies were overestimated 

compared to the experimental values. Therefore, in MM-GBSA methods, other 

entropic calculations such as normal mode (nmode) or quasi-harmonic (QH) 

computation might be useful instead of the IE method. On the other hand, the initial 

configuration of the receptor-ligand complex is crucial for SMD setup. Furthermore, 

many frames were discarded during input generation, and only countable frames were 

acquired for biased sampling simulation. As a result, there could be a higher chance 

of non-equilibrium phase space sampling error. In such a case, analyzing the free 

energy landscape of the complexes may be informative; but, as previously noted, 

significant computing resources would be needed for convergence sampling. 

Table 3. Binding free energy calculation from MM-GBSA and US simulation in 

kcal/mol 

Complexes ∆𝐆𝐆𝐄𝐄𝐄𝐄𝐄𝐄 
𝚫𝚫𝐆𝐆𝐌𝐌𝐌𝐌−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 

(±𝐆𝐆𝐒𝐒) 

𝚫𝚫𝐆𝐆𝐔𝐔𝐆𝐆 

(±𝐆𝐆𝐒𝐒) 

CDK2-C01 −8.63 −26.32 ± 2.27 −19.46 ± 0.74 

CDK2-C11 −7.21 −25.81 ± 3.56 −15.67 ± 0.87 

CDK2-C16 −9.60 −29.55 ± 2.36 −15.30 ± 0.66 

CDK2-C18 −10.21 −27.27 ± 3.02 −21.60 ± 0.91 

CDK2-C19 −8.34 −21.27 ± 4.50 −14.43 ± 0.62 

CDK2-C24 −8.13 −23.89 ± 2.82 −8.79 ± 0.46 

CDK2-C36 −10.08 −32.68 ± 2.55 −21.62 ± 0.89 

CDK2-C38 −10.72 −32.59 ± 3.39 −29.79 ± 0.70 

CDK2-C48 −6.90 −23.81 ± 2.62 −9.62 ± 1.20 
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Figure 4. Correlation plots between experimental binding energies and computed binding energies. 

(a) The correlation coefficient (RMM-GBSA) between the ∆GMM−GBSA and ∆GEXP is estimated to be 

0.77. (b) The correlation coefficient (RUS) between the ∆GUS and ∆GEXP is estimated to be 0.81. 

 

4. Conclusion 
To summarize, the current work established statistically reliable CoMSIA models of 

CDK2 and FLT3 inhibitors. The predictive power of both models was evaluated by 

determining the r2
pred using the test set compounds. The dominant field contributors in 

the CDK2 CoMSIA model are steric and H-bond acceptor descriptors, as evidenced 

by the green and magenta contours surrounding the thiopyran ring. In contrast, 

electrostatic and hydrophobic descriptors dominated the field contributions CoMSIA 

model of FLT3 and appeared near the indazole, pyrazole, and thiopyran rings. 

Therefore, chemical substitution along the CDK2 CoMSIA contours might enhance 

bioactivity, while bypassing the chemical space according to the FLT3 contours could 

promote CDK2 selectivity. 

Binding affinity predictions of inhibitor molecules to receptors are crucial steps in 

computer-aided drug development. As a result, we employed binding-free energy 

estimation using MM-GBSA and US simulation methods. Acceptable correlation 

coefficients (RMM-GBSA = 0.77, RUS = 0.81) were obtained between the computed and 

experimental binding energies with reasonable accuracy. Furthermore, the 

experimental binding energy could be expressed by the following equations -  



Suparna Ghosh Ph.D. Thesis 

Chosun University, Department of Biomedical Sciences 

 

 

- 90 - 
 

∆GEXP = 0.2664 × ∆GMM−GBSA– 1.670 (6) 

∆GEXP = 0.1679 × ∆GUS – 5.953 (7) 

Using the MM-GBSA and US methods described here and in combination with the 

above equations (6) and (7), the binding affinity of the new compound could be 

reliably estimated. The findings might aid in developing more potent and selective 

CDK2 targeting inhibitors in the treatment of AML by suppressing the myeloid 

differentiation pathway.  
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