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초 록

원자력발전소의 기동/비상 운전을 위한 심층강화학습

기반 자율운전 알고리즘 개발

이 대 일

지도 교수 : 김 종 현

원자력공학과

조선대학교 대학원

최근 컴퓨터 성능의 향상과 새로운 인공지능 알고리즘의 등장으로 인공지

능 기술에 기반한 높은 자동화 수준을 가진 자율 운전 시스템이 많은 산업분

야에 적용되었다. 자율 운전 알고리즘은 원자력 발전소 시스템의 기존에 전

통적인 자동화 알고리즘보다 더 높은 수준의 개념을 가지고 있다. 자율 운전

시스템을 개발하기 위해서는 이미 기존에 자동된 하위 시스템들을 모니터링,

제어 및 진단할 수 있는 기능을 포함해야 한다. 본 연구에서는 원전의 시동

및 비상시 자율 운전을 위한 지능형 제어기를 개발한다. 제어기는 현재 운전

원에 의한 원자력 발전소에 운영 전략과 유사한 높은 수준의 작업을 수행하

는 데 중점을 둔다. 운영자와 유사하게 구성 요소를 조작하기 위해 컨트롤러

는 현재 수동 제어를 자동화하는 것을 목표로 한다. 설계 목표를 달성하기

위해 지능형 컨트롤러는 심층 강화학습 방법이 적용된다. 심층 강화학습 기

반에 컨트롤러의 설계는 현재 운영 전략, 즉 기존 시스템, 운영 절차 및 인력

을 고려하여 설계된다. 컨트롤러는 Westinghouse 990MWe, 3 Loop 가압경수

로에 적용된다. 시동 및 비상 운전에서 검증 결과는 자율 운전 알고리즘이

주어진 운영 목표에 따라 원자력 발전소의 시스템들을 관리할 수 있음을 보

였다.
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Abstract

Development of Autonomous Operation Algorithm

using Deep Reinforcement Learning

for Start-up/Emergency in NPPs

Daeil Lee

Advisor : Prof. Jonghyun Kim, Ph.D.

Department of Nuclear Engineering

Graduate School of Chosun University

With the improvement of computer performance and the emergence of

cutting-edge artificial intelligence (AI) algorithms, an autonomous

operation based on AI is being applied to many industries. An autonomous

algorithm is a higher-level concept than conventional automatic operation

in nuclear power plants (NPPs). In order to achieve autonomous operation,

the autonomous algorithm needs to include superior functions to monitor,

control and diagnose automated subsystems. This study develops an

intelligent controller for an autonomous operation in NPPs during start-up

and emergency. The controller is focused on conducting high-level

operations that are similarly performed to the current operation strategy.

To manipulate components similarly to operators, controllers currently aim

to automate manual controls. To achieve the design goal, the intelligent

controller applies a deep reinforcement learning method. The design of the

Deep Reinforcement Learning (DRL)-based controllers considers the

current operational strategy, i.e., existing systems, operating procedures,

and staffing. The controllers are applied to a reference NPP, a

Westinghouse 990 megawatts electric, three-loop pressurized water reactor.
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In start-up and emergency operation, the validation results showed that

the autonomous operation algorithm can mange the NPPs according to

given operational goals.
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I. Introduction

A. Background

Nuclear power plants (NPPs) use highly automated controllers to reduce

probability of accident risk and increase availability [1, 2]. In addition,

digitalized controllers help process large amounts of data, improve system

reliability, automate periodic tests, perform diagnosis, and increase

operation capability [3]. Regulatory bodies for NPPs require that safety

systems must be designed to be consisted as a high level of automation to

protect public safety. This is because, in the event of an abnormal

situation, these safety systems operate stably and quickly to ensure the

safety of the public. Even if these safety systems are well designed, the

operator must intervene if the system does not work under unexpected

conditions [4].

Typical operations (i.e., Start-up/shutdown operation or emergency

operation) in NPPs largely rely on the operator's manual controls, whereas

the full power operation is highly automated. Thus, these operations are

known to be error-prone for the following reasons [5, 6]:

� There are many operator's tasks that are need decision-making, such

as establishing a operational strategy and planning operational goals

according to guidelines from the operating procedures.

� Operator's many manipulations due to a wide range of tests,

maintenance, and monitoring parameters to prevent accident or

abnormal situations
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� Control of components that may be disable automatic systems and

safety functions

� Incomplete or insufficient operational steps in which only operational

goals are described detailed procedural information about the

operator's actions

These scenarios may cause the operator's stress or bring about the

possibility that the operators may task the wrong manipulations. In

addition, these operations with a high proportion of manual actions may

be highly prone to human errors due to increased operator's workload [5,

7-9]. Therefore, automation of operations collaborated with operator's

manipulation and automatic control would be expected to be lowered this

operator's burden.

Typical approaches to automatic controllers in current NPPs include

proportional-integral-differential (PID) controller, field-programmable gate

array (FPGA), as well as programmable logic controller (PLC) [10-13]. For

safety systems, the PLC is generally used to automatically act as a fast

and reliable response to prevent malfunctions from propagating into major

accidents. For non-safety systems, PID controllers or controllers that

combine two out of three types of controllers (e.g., proportional-integral

controllers) are the most popular among the existing NPPs. These

controllers generally aim to stabilize a system within a defined range.

To tune the PID controller, traditional tuning methods have been

applied, such as Ziegler-Nichols (ZN) [14], Cohen-Coon [15], and Astrom

and Hagglund [16]. However, traditional methods still need re-tuning

before being applied to industrial processes because the methods may

cause frequent oscillations, large overshoot, and delayed settling time for
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higher-order systems [17]. An intelligent tuning method has been proposed

to improve the capabilities of the existing PID parameter tuning

techniques. A Harris hawks optimization (HHO) algorithm, which is

suggested by Davut Izci et al., can find the optimal parameters of a PID

controller installed on an aircraft pitch control system [18]. Optimization

algorithms are suggested for DC motor control. In [19], an atom search

optimization algorithm was improved by using simulated annealing (SA).

Mahmud Iwan Solihin et al. compared the performance of tuning

algorithms between particle swarm optimization and ZN [20]. Ignacio

Carlucho et al. developed a multiple PID controllers with Deep

Reinforcement Learning (DRL) algorithm that can adapt to changes in a

mobile robot [21].

Some studies suggest an automatic operation algorithm by applying

knowledge-based method. Sekimizu et al. [22] suggested an automatic

algorithm for start-up operation. This algorithm can execute sequential

controls following operation procedures according to if-then rules. In [22],

knowledge-based method is applied to develop an automatic start-up

intelligent control system (ASICS). At a pressurized water reactor

simulator, ASICS controlled the components to reach the 2% reactor power

state from the cold shutdown condition.

These studies shown the knowledge-based system that have powerfully

robustness when the if-then logics are clearly defined. However, there are

still some limitations in automating the operation process of NPPs. First,

many operational tasks are difficult to change into clear if-then rule. This

means that some operating steps are not specific enough to be executed

using if-then rules. For example, an operating step would instruct the

operator to manage the control rods to increase the power to 20% without
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detailed explanation such as how many steps are moved. Second, since the

knowledge-based system is composed of linear functions (if-then rules), it

is hard to handle flexible operations and changes in operating objectives,

which are provided as the non-linear function. Therefore, applying artificial

intelligence (AI) method may be a one way for design of an algorithm for

autonomous operations in NPPs.

Recently, controllers applying artificial intelligence (AI) techniques have

been studied in several industrial fields [23]. Since the 2000s, deep-learning

techniques have drawn attention for several reasons: increasing computing

power, increasing data size, and advances in deep-learning research [24,

25]. Among them, DRL is a trending approach because it has a training

process that is very similar human's training mechanism. A DRL-based

controller learns using its own experiences collected via trial-and-error,

similar to humans. In addition, this DRL-based controller can perform

tasks that classical controllers cannot perform, such as determining an

operation strategy, planning sequential controls, making decisions according

to current plant conditions, and finding optimal paths. Consequently,

several DRL-based controllers have been suggested in robotics [10, 26],

smart building [23, 27], power management [28-31], autonomous vehicles

[11-13, 32, 33], railway industry [34], wind turbine [35], traffic signal [36],

and nuclear power plants [37, 38].

These advantages in AI technologies have led to increased interest in the

development of intelligent controllers to extend the automation capabilities

of NPPs. Various AI-based methods are suggested for tunning process of

PID controllers. PID controllers are typically applied in NPPs [39-41].

Bowen et al. developed a two-level hierarchical controller combined with a

neural-network-based PID controller and a fuzzy controller. This
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hierarchical controller applied a multiunit small modular reactor [42].

Upadhyaya et al. suggested an autonomous operation system for a space

reactor by applying a PID controller. To get the gains in PID controller,

this study used the genetic algorithm [43]. Several studies have proposed

AI-based applications to operate NPPs. Na et al. proposed a neuro-fuzzy

controller to control the power distribution without any residual flux

oscillations between the upper and lower halves of the reactor core [44].

In [45], an adaptive fuzzy controller was suggested to track reactor power

in a research nuclear reactor. The suggested controller demonstrated good

performance that can reduce the rise time than the PID controller.

Arab-Alibeik and Setayeshi developed a neural adaptive inverse controller

that can control the reactor power of a PWR type. After simulating the

inverse dynamics of the nuclear reactor by a the multilayer neural

networks, it was utilized as a controller [46]. In [47] and [48], a fuzzy-PID

composite controller that directly switches between a fuzzy controller and

a PID controller is proposed and utilized for reactor power operation of a

molten salt reactor.
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B. Motivation

AI-based controllers have been developed in several studies, they are not

applied to NPPs at a practical level. This is mainly because AI-based

controllers do not sufficiently prove their performance to guarantee

robustness and correctness and solve regulatory issues, such as the

transparency of the algorithm. However, it is very likely that the AI-based

controller implemented as part of autonomous reactor controls will be an

important aspect of small modular reactors and microreactors that can be

operated remotely by an offsite operations crew [49].

Therefore, the use of controllers based on more advanced AI may be an

alternative to developing algorithms for autonomous operation of NPPs.

Furthermore, the broader application of AI technology should be

considered for autonomous control in NPPs [50].
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C. Goal of Study

This study aims at developing a DRL-based controller for an

autonomous operation in NPPs during start-up and emergency. The

controller is focused on conducting high-level operations that are similarly

performed to the current operation strategy. To manipulate components

similarly to operators, controllers currently aim to automate manual

controls. Developed DRL-based controller is designed to handle the

procedure-based operation (as knowledge-based system) and the operator's

experienced-based operation (as DRL-based controller). The scope of this

study is the work of an operator using a manual controller rather than an

existing automatic controller as illustrated in Fig. 1.

Nuclear power plant

Automatic controller 
(PID, Fuzzy, If-then logic)

Component

Manual controller
(On/off button, Increase/Decrease button)

Operator

Target domain

Component Component

Manual control signal

Plant information

Controller
information

Automatic 
control signal

Operator’s action

Fig. 1. Scope of the autonomous operation algorithm
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D. Outline of Study

After the introduction, this paper describes the main concepts of

reinforcement learning and then introduce representative DRL methods. In

Chapter 2, among many DRL techniques, the techniques used in this

study are mainly introduced. It will be helpful to understand the

controller based on the DRL developed in Chapter 3 and 4. The

DRL-controllers designed in Chapter 3 and 4 are considered the current

operational strategy, i.e., existing systems, operating procedures, and

staffing. Then, developed controllers are trained and demonstrated by

using a compact nuclear simulator (CNS). In Chapter 3, DRL-controllers

are developed for the normal operation. For normal operation, two

DRL-controllers are proposed for the power-increase and bubble creation

operation. In Chapter 4, this study designed a DRL-controller for the

emergency operation. The controller shows the autonomous operation to

reach the shutdown operation entry condition while keep the cooling rate

(55 °C/hour), which is one of the required operational rules in the

technical specification procedures. Then, this study discusses performance

and limitations of developed DRL-controllers in Chapter 5. Last chapter is

conclusion.
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II. Methodology

A. Background of Reinforcement Learning

Reinforcement learning (RL) is a method for training an agent through

its interaction with the environment [10], [49]-[51]. The agent interacts with

the environment in a series of independent episodes, each of which

comprises a sequence of turns. One episode consists of several discrete

time steps, t=0,1,2,3…. At each time step (t), the agent receives a state ( )

from the environment. Then, the agent selects an action ( ) from a set of

possible actions based on its policy (π). The policy is a mapping from

states ( ) to actions. The environment provides the next state (  ) and a

reward () for the action ( ) of the agent. Through this interaction with

the environment, the agent is trained to maximize the returned reward

that is associated with the specified state ( ) from the environment.

Through this trial-and-error process, the agent determines the optimum

policy for realizing the specified operational objective.

1. Background of Deep Reinforcement Learning

Using a controller with RL provides the possibility of finding an optimal

policy, which includes solving the given problem or achieving operational

goals in the sequential decision-making of the current state collected from

the environment. One of the challenges in RL is finding an optimized

policy function to obtain the maximum reward for all given states.

Determining an optimized policy function may take a long time. To

resolve this issue, recent studies have suggested using a neural network as

an optimized policy function of the RL owing to the increased computing

power and an improved method called the deep neural network.
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Therefore, typical DRL algorithms combines RL and deep neural network

models, to find the optimal policy.

First, this paper reviews of previous studies related to the use of DRL

for the development and application to advanced control systems. Based

on the summarized review, advantages of DRL-based controller are

identified.

DRL, which is a method for training deep neural networks, provides a

mechanism via AI agents that can optimize their control of an

environment to realize a specified objective [10]-[13]. The interaction

process between the AI agent and the environment can be represented by

a closed-loop, which is very similar to the process of human learning [14],

[15]. As a result, an AI agent can also develop its own experiences

through trial-and-error, as humans do [16] and can perform tasks that a

classic controller cannot do. Such actions may include selecting an

operation strategy, operating nonlinear systems, making decisions based on

current conditions, and optimizing operations [17]-[20].

Due to these characteristics of DRL, DRL is now an essential technology

for the development of AI agents and is being used in many industries.

Moreover, DRL is becoming a trend in advanced control systems due to

increased safety and efficiency [21]. In the power system field, Suyang

Zhou et al. [22] proposed an AI agent that was based on DRL for

handling various operating scenarios for the economic dispatch of a

combined heat and power system. In an application to wind turbines [23],

DRL has been shown to overcome one of the most important

disadvantages of the conventional control strategies, which is the tuning of

control parameters and lowering fatigue. In energy management, Esmat
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Samadi et al. proposed the use of decentralized multiagent systems

(MASs) for integrated grid-connected microgrids. MASs with DRL have

shown not only flexible management while considering customer

consumption but also a reduced operating cost [24]. Hussain Kazmi et al.

optimized the energy efficiency of hot water production by using a DRL

controller, which could reduce the energy consumption by almost 20% for

a set of 32 Dutch houses [25]. Tianshu Wei et al. also significantly

reduced the energy cost of an HVAC (heating, ventilation, and air

conditioning) system by using DRL instead of rule-based and model-based

strategies [26]. In another study [27], DRL was adopted in urban rail

transit to effectively improve energy management compared to the genetic

algorithms and to provide dynamic programing.

The advantages of DRL for the development and application of

advanced control systems through these research trends are briefly

summarized as follows:

� Performance improvement compared to conventional control

strategies (e.g., reducing operating costs, reducing failures, and

increasing energy efficiency);

� Increased flexibility by adaptable control according to demand and

change in practice;

� Optimal control to achieve the required goals.
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B. Deep Reinforcement Learning Method

This section introduces the deep Q-learning network (DQN) that is well

known as the basic methodology of DRL. Then, this section describes the

training architecture and process for the DRL method used in this study.

1. Deep Q-learning Network (DQN)

DQN is an algorithm that combines deep learning methodology with

Q-learning that is a kind of reinforcement learning. Q-learning aims to

find optimal Q-values to achieve given goal. The Q-learning algorithm

generates a Q-table in which states and Q-values are mapped. The

Q-learning has the limitation that it is difficult to map the Q-values into a

table for all states. To solve this problem, DQN computes Q-values by

approximating states using deep neural networks. Google DeepMind has

developed a DQN agent that can recognize information from the

environment (game) and take action to get the highest score in the current

state. The DQN agent trained through thousands of trial-and-errors and

scored higher than human players in Atari games. In addition, the DQN

agent showed that human-level manipulation is possible if the input

values and rewards are properly designed, even if the domain is changed

through training and verification in various Atari games.

2. Asynchronous Advantage Actor-Critic (A3C)

This study utilizes Asynchronous Advantage Actor-Critic (A3C), which is

a type of DRL method, to reduce the agent training time for the

continuous control module. Although DQN is a well-known basic model

of DRL, slow training speed and biased actions are problematic. To

address these issues, A3C utilizes parallel actor-learners that are based on
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the central processing unit's (CPU's) multiple threads and the

asynchronous network update, while DQN utilizes one agent on one CPU.

Fig. 2 illustrates the A3C and DQN training algorithms. A3C replaces

the experience memory with the local network memory to reduce the

interactions between the collected training datasets. In addition, A3C

utilizes multiple agents in the multiple simulations for training an agent

that has a local neural network [51]. In A3C, each local network

asynchronously updates the main network at regular intervals. In this

asynchronous approach, after collecting a short memory (which is called a

mini-batch) of data points, each of the local networks computes gradients

and uses them to update the weights [52]. This update process increases

the training speed by providing training datasets that consist of pairs of

various actions that correspond to similar states. As illustrated in Fig. 3,

the A3C agent updates the network's weights more frequently than the

DQN agent.

DQN Training Algorithm A3C Training Algorithm

Main Network

Local 
Network

(1)

Environment
(1)

Local 
Network

(N)

Environment
(N)

Action Monito ri ng Action

Asynchronous 
TrainingLocal

Training

Monito ri ng

Main Network

Enviro nment

Exp erience
Replay Memory

Action

Monito ri ng

Experience Data

Training

Fig. 2. DQN and A3C training algorithms
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3. Soft actor critic (SAC) with distributed prioritized

experience replay (DPER)

This study utilized SAC to improve the training stability of a DRL-based

controller using an long short-term memory (LSTM) network model. The

SAC was suggested to compensate for the deep Q-learning network

(DQN), which is a basic model of the DRL. The drawback of the DQN is

biased actions caused by predictions that rely on a single neural network.

One network in the DQN predicts actions mixed with evaluations based

on action probability and estimated reward.

Q-Network

Environment

Replay Buffer

Training based on 
sampling data

(S, R, A, Next S)

Q-Network

Q-Network

Environment

DQN Algorithm SAC Algorithm

Reward Estimator

Estimated reward (R)
Replay Buffer

Reward Estimator

Estimated reward (R)

Sampled
reward (R)

Training

Predicted action (A)Measured state (S)

Expected
reward (r)

Policy 
Network

Sampled 
state (S), 

action (A)

Predicted action (A)Measured state (S)

Fig. 4. Training algorithm of DQN (left) and SAC (right)
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In contrast, SAC uses an actor-critic architecture with a separate value

(Q-network) and policy network, as shown in Fig. 4. Q-networks calculate

the expected rewards for an action taken in the current state. Then, the

policy network predicts each action probability based on the expected

reward and the current state. For training stability, SAC uses two

Q-networks consisting of an online network and a target network. The

target network update is delayed when updating the online network

parameters over many iterations [10]. While updating online network

parameters over many iterations, the target network parameters perform

delayed updates from the online network at regular intervals, which helps

reduce biased training.

Moreover, to reduce the training time, this study also adopted a

distributed training architecture with distributed prioritized experience

replay (DPER), a type of experience replay buffer, as shown in Fig. 5. In

this architecture, the main network is trained with data collected from

multiple simulations using a local neural network. Each local network

contains only a policy network that regularly distributes training from the

main policy network.

DPER was utilized to collect data simulated from local networks and

improve the efficiency of the sampled data when the main network was

trained [53]. DPER enables the DRL controller to remember and reuse

experiences from the past, where observed transitions are stored for some

time, usually in a queue, and sampled uniformly from this memory to

update the network. For example, DQN training relies on randomly

selected samples from the replay buffer. In contrast to the basic experience

replay buffer, the DPER can sample data that are more frequently

replayed transitions with high expected learning progress, as measured by
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the magnitude of their temporal difference (TD) error. TD error is the

difference between the expected and actual rewards. Consequently, the

main network learns by sampling data with higher stochastic priorities.
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Experience Replay)

Main 
Network

Q-Network

Q-Network

Policy 
Network

Local Network 1 Local Network N

Environment 1 Environment N

Measured state (S)
Estimated reward (R)
Prediction action (A)

Reward Estimator

Policy 
Network

Policy 
Network

Reward Estimator

Rearrange by stochastic 
prioritization

Update main policy 
network’s weights

Training
data

sampling

SAC Algorithm with DPER

Fig. 5. Training algorithm of SAC with DPER
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III. Normal Operation

Current NPP operating strategies were considered in the development of

DRL-controllers for cold shutdown operations and increasing the reactor

power from 2% to 100% autonomously. This study analyzed the operating

procedures and the operator's tasks during the start-up operation of a

reference plant, namely, a Westinghouse 900 MWe PWR. The analysis

identified the operator's major tasks, and the tasks were categorized into

automatic and manual actions. The manual actions were further divided

into discrete and continuous actions.

A. Overview

The operation for increasing power from 2% to 100% is the part of the

start-up operation that increases the temperature and power to the normal

conditions for generating electricity after reactor refueling or shutdown.

During the start-up operation, the operators follow general operating

procedures (GOPs) for controlling systems and components. The cold

shutdown operation is included in the GOPs, which provide instructions

to start up the reactor and increase its power after refueling. A

Westinghouse-900 MW PWR was used as the reference plant in the task

analysis. The reference plant had six GOPs, as listed below [22, 54]:

� Reactor coolant system filling and venting

� Cold shutdown to hot shutdown

� Hot shutdown to hot standby

� Hot standby to 2% reactor power

� Power operation at than 2% power

� Secondary systems heat-up and startup
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Fig. 6 shows the trend of the important parameters in the startup

operation along with the relevant procedures. These parameters provide

milestones for operators to achieve successful start-up operations. The

target operations, i.e., the focus of this study, is in the gray area in Fig. 6.
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Fig. 6. Significant parameters of the startup operation
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B. Bubble Creation Operation

This study compares the performances of DRL and PID controllers in

the cold shutdown operation of NPPs. First, this study analyzes the GOPs

of the bubble creation operation, which is part of the cold shutdown

operation. It identifies the operational goals and manual controls by

operators, and defines the inputs and outputs for the automatic controllers.

Subsequently, a DRL-based controller is developed by combining a

rule-based system, LSTM, and soft actor critic (SAC). Then, a PID

controller was developed using the Ziegler-Nichols and DRL-based tuning

methods. Finally, the performances of both controllers were compared and

discussed.

1. Overview of Cold Shutdown Operation

The cold shutdown procedure provides instructions for heating the plant

from the cold shutdown condition to the hot shutdown condition (Tavg <

176.7 °C, Keff < 0.99). This operation allows the components to increase

the temperature of the primary system by maintaining pressure in the

pressurizer. The goal of the cold shutdown operation is to create bubbles

in the pressurizer, that is, the bubble creation operation, and then to

control the pressure and level of the pressurizer.

Fig. 7 shows a simplified schematic of the components related to cold

shutdown operation. The initial and final conditions of the operation of

the plant variables are shown in Table 1.
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Fig. 7. Simplified schematic of related components

Table 1. Initial and final conditions of the cold shutdown operation

Major parameter Initial condition Final condition

Pressurizer pressure 27 kg/cm2 27 kg/cm2

Pressurizer temperature 84 °C 210 °C

Average temperature 81 °C 176 °C

Pressurizer level 100% 50%

Back-up heater Off On

Proportional heater 0% 100%

Letdown valve 0% »40%

Pressurizer spray valve 0% »30%

Charging valve 0% »60%
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The first step of the cold shutdown operation is to heat the coolant in

the primary system by turning on all the pressurizer heaters (e.g., back-up

and proportional heaters) and starting the reactor coolant pump. This leads

to an increase in the temperature of the primary system and pressure

inside the pressurizer. The pressure of the primary system, that is, the

reactor coolant system (RCS), should be maintained between 25 kg/cm2

and 29 kg/cm2 despite the increase in the pressurizer temperature. Thus,

the increase in pressure can be prevented by opening a letdown valve that

handles the letdown flow rate from the RCS to a residual heat removal

system (RHR). When the pressurizer temperature reached the saturation

point of approximately 200 °C, its level decreased. A space filled with

saturated steam was created on top of the pressurizer, allowing pressure

to be controlled through the pressurizer spray. Subsequently, the level

inside the pressurizer was maintained at 50% by adjusting the charging

flow rate. It is known that this operation normally requires 8 h for actual

NPPs.

2. Task Analysis of Cold Shutdown Operation

Task analysis identifies the objective of each operator action and defines

the inputs and outputs of the actions to design the controllers. Table 2

presents the results of the task analysis of the operating procedure. The

step numbers and tasks are the step numbers and instructions described in

the procedure, respectively. Subsequently, task types are classified into

control or check tasks. If the task type was "control," the task included

action(s) on a component. The task type "check" is to check or monitor

plant states without performing any action on components. The inputs and

outputs of each task are then defined. The information necessary to design

the controllers is then extracted by focusing on the task type of the
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control. Finally, four tasks were selected for implementation using the

control algorithm, as listed in Table 3.

Control tasks were also classified as discrete or continuous controls.

Discrete control has two separate states: "on or off" or "fully open or

closed." For example, the task "controlling the proportional heater" in Table

3 is an example of discrete control because the heater only has two states:

on or off. In contrast, continuous control adjusts the state of the

component to satisfy the specific value of the parameters. In the cold

shutdown operation, controlling the charging valve, letdown valve (RHR to

CVCS flow), and spray valve belong to the category of continuous control

because the positions of those valves are adjusted between 0% and 100%

to maintain the specified RCS pressure.
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Table 2. Task analysis result for cold shutdown operation

Step

Number
Task

Task

Type

1
Cold shutdown operation should be completed

within 8 hours.
Check

2

The pressurizer pressure should be maintained

between 25 kg/cm2 and 29 kg/cm2 during cold

shutdown operation.

Check

3

The RHR system should be isolated from RCS

before the pressurizer temperature reaches 200 °C

or its pressure reaches 30 kg/cm2.

Check

4
The reactor coolant loops and the pressurizer are

filled and vented.
Check

5

The reactor coolant boron concentration is greater

than or equal to that of the cold-shutdown

condition.

Check

6

The residual heat removal (RHR) system is served

with all loop isolation valves open and one

operational RHR.

Check

7 Close main steam isolation valves. Check

8
Close steam generator (S/G) power operated relief

valves.
Check

9 The makeup control system is in Auto mode. Check
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Table 3. Simplified operational task for cold shutdown operation

Task Input Output
Control

Type
Constraints

Put back-up

heater from

Off to ON.

Back-up

heater

state

Back-up

heater

control

Discrete

control

1) Maintain RCS

pressure between

26 kg/cm2 and

28 kg/cm2.

2) Maintain

pressurizer level

at 50%.

Increase the

power of

proportional

heater from

0% to 100%.

Proportio

nal heater

state

Proportion

al heater

control

Adjust letdown

valve (RHR to

CVCS flow)

within the

RCS pressure

boundary.

RCS

pressure,

Letdown

valve

control

Continuous

control

Adjusting

spray valve

within the

RCS pressure

boundary.

Letdown

valve

Spray

valve

control

Adjust

charging valve

to maintain

pressurizer

level.

position

Charging

valve

control
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3. Development of a DRL-based Controller

This section introduces the development of a DRL-based controller to

create bubbles for the pressurizer and then controls the pressurizer

pressure and level during the cold shutdown operation. The DRL-based

controller comprises two DRL controllers and a rule-based controller, as

shown in Fig. 8. The rule-based controller performed the discrete controls

listed in Table 4. As a result of the task analysis, if specific rules, that is,

if-then logic, can be defined, the rule-based controller is applied, as shown

in Table 4. Therefore, the back-up heaters and proportional heaters are

controlled using a rule-based controller.

DRL controllers perform continuous control, for which it is difficult to

define specific rules, for example, how much a valve should be open to

maintain the pressure. DRL controllers are divided into pressure and level

controllers, as shown in Table 3. As shown in Table 4, the pressure DRL

controller aims to maintain the pressure by adjusting the letdown and

spray valve, whereas the level DRL controller adjusts the charging valve

to maintain the pressure level at 50%. DRL controllers use an LSTM

network trained using the SAC learning algorithm. The LSTM is known to

show a good performance in handling time-related, dynamic data. In

addition, the authors' previous studies also showed that the LSTM could

support well the operation of nuclear systems and the diagnosis of events

[54-57].
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Fig. 8. DRL-based controller block diagram

Table 4. Controller tasks for cold shutdown operation

Task type Controller Action

Discrete

control

Rule-based

controller

If the back-up heater state is “Off,” push

“On” button.

If the proportional heater power is 0% or

below 100%, increase the power to 100%.

Continuous

control

Pressure

DRL

controller

Maintain the pressurizer pressure between 26

kg/cm2and 28 kg/cm2by adjusting letdown

valve.

If the pressurizer temperature reaches the

saturation point of about 200 °C, maintain

the pressurizer pressure between 26

kg/cm2and 28 kg/cm2by adjusting the spray

valve.

Level DRL

controller

Adjust the charging valve to maintain the

pressurizer level at 50%
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a. Design of reward algorithm

This section presents the reward algorithm for the DRL-based controllers.

In DRLs, the reward is an essential element used to update the weights of

the neural networks. A reward algorithm was used to evaluate the actions

predicted by a network and provide guidance for updating the weights of

the neural network [58, 59]. DRL-based controllers obtain rewards by

evaluating the actions performed within given states. Thus, the reward

algorithm evaluates the performed action under the given state and creates

training datasets that consist of pairs of states, actions, and rewards.

Two reward algorithms for the level and pressure controllers were

suggested to reflect the operational constraints identified in Table 3.

Reward algorithms aim to minimize the distance from the current state to

the desired state, for example, the midpoint of the pressure boundary or

the specified pressurizer level.

As the level controller does not operate until the saturation point is

reached, the level-reward algorithm provides a reward when the level

controller starts control. As shown in Fig. 9, the reward value is defined

as the difference between the current pressurizer level and desired level

(50%), as shown in Equation (1). The pressure level in the pressurizer was

varied between 0% and 100%. To provide a reward range between 0 and

1, the scaling value is defined as 50, which is the maximum distance from

the desired pressurizer level to the limits of range (0% to 100%). For

instance, the level reward is zero for the lowest reward when the current

level is within the limits of the level range (Points A and B in Fig. 9). As

the current level increases from Point C to D, approaching the desired

value, the level reward increases from 0.8 to 1. The level reward algorithm
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provides a maximum reward of one when the level controller is running

successfully to maintain the current level at the desired pressure level.

Time (s)

Level

A

Coolant level in pressurizer

C

Operational Boundary

B

D Reward
10

Level

Fig. 9. Level reward algorithm for achieving operational goals

The pressure-reward algorithm provides a reward for the pressure

controller to maintain a pressure between 25 kg/cm2 and 29 kg/cm2. The

reward value was calculated as the difference between the current RCS

pressure and the desired condition, as shown in Equation (2). The scale

value is defined as 2, which is half the desired range of pressure. Because

the pressure changes slightly during the cold shutdown operation, the

pressure reward uses the squared reward to consider pressure changes

sensitively. For instance, in Fig. 10, the reward value at Point C is the

difference between the current RCS pressure and the lower desired

pressure (25 kg/cm2), which is 0.25 at the current pressure 26 kg/cm2. In

the case of point D, that is, at a current pressure of 27 kg/cm2. The

reward value is the difference between the current pressure and the upper

(1)
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desired pressure (29 kg/cm2), which is 0.56. Therefore, the pressure reward

increased as the pressure approached the middle of the pressure boundary,

with a maximum of 1. When the current pressure exits the desired

pressure boundary, e.g., Point E and F in Fig. 10, the training is

terminated.

Time (s)

Pressure

C

Operational Boundary

Reactor Coolant System Pressure

D

F

E

Pressure

Reward
10

Fig. 10. Pressure reward algorithm for achieving operational goals

In addition to this termination condition of pressure, another termination

condition was defined during the training. If the operation time in the

training reaches eight hours, the episode is terminated because the GOP

instructs that the operation should be completed within 8 h.

b. Design of Long Short-term Memory Network (LSTM)

A neural-network-based architecture, that is, a part of the DRL-based

controller, was developed to perform continuous controls. To generate

control actions from the DRL-based controller, this study used LSTM cells

(2)
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that can calculate time-series data [60]. LSTM cells were developed from

recurrent neural networks (RNNs). An RNN can naturally represent

dynamic systems and capture their dynamic behavior. This is a powerful

network for extracting information features related to a dynamic system in

its hidden layer [61]. However, an RNN may exhibit a gradient vanishing

problem when the network has five or more layers [62]. The drawback is

that the gradient value becomes too large or vanishes exponentially to

zero, whereas the weight in many layers is updated. Therefore, there is a

restriction on the dataset for long-term memory within the RNN. Thus,

LSTM cells have been proposed to solve this problem.

Fig. 11 shows the structure of a typical LSTM cell. Each LSTM cell is

composed of units that retain the state across time steps, called "constant

error carousels" (CECs), as well as three types of specialized gate units

(input, output, and forget gates) [63]. The following equations describe the

output from each gate unit in the LSTM cell, where  is the input of the

LSTM cell. The input gate, forget gate, output gate, cell state, and output

of the LSTM cell at the current time step t are  ,  ,  ,  , and  ,

respectively. The weights between the input layer and input gate, the

input layer and forget gate, and the input and output gates are  ,

 and  , respectively. The weights between the hidden recurrent

layer and forget gate, hidden recurrent layer and input gate, and hidden

recurrent layer and output gate of the memory block are  ,  and

 , respectively. Finally,  , , and  are the additive biases of the

input, forget, and output gates, respectively. This set of activation

functions consists of the sigmoid function, elementwise multiplication, e.g.,

the inner product of a vector, ∘ , and hyperbolic activation function. At

time step 0,  and  were initialized as zero matrices.
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Fig. 11. Structure of an LSTM cell

LSTM cells allow the DRL controller to handle the NPP parameters and

control the components with high performance because the NPP data

exhibit the characteristics of non-linearity and time-series data. Fig. 12

illustrates the structure of the LSTM network applied to the DRL

controller policy. Value networks have the same structure as the policy

network, except for the output layer that generates the expected reward.

Generally, an LSTM network model consists of an input layer, an LSTM

layer, and an output layer. The sizes of the input and output layers are

defined according to the number of plant parameters. The number of

LSTM cells is equal to the size of the time window.

(3)

(4)

(5)

(6)

(7)
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The input layer of the LSTM network has a time window of 10 s,

which considers the trend of the plant parameters by exploiting the

collected historical data. Therefore, the DRL controller uses states that

include the current and previous states as a two-dimensional array. Thus,

the number of LSTM cells is equal to the size of the time window.

As shown in Fig. 12, the proposed DRL controller includes two policy

networks composed of LSTM networks to manage the pressurizer pressure

and level. The DRL controller used five plant parameters and two

specified pressures and levels. The plant parameters consisted of three

component states (letdown/charging/spray valve positions) and two

pressurizer states (pressure and level). The pressure policy network uses

four plant parameters (pressurizer pressure, pressurizer level, letdown

valve position, and spray valve position) and two modified variables that

include the distance from the pressure boundary. The level-policy network

uses two plant parameters (pressurizer level and charging valve position)

and two distance values from the specified level.
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Fig. 12. Structure of LSTM network for DRL the controller policy network

The output layer consists of a set of actions for controlling the target

components, such as the letdown, spray, and charging valves. The control

strategies of one valve are threefold, that is, open, closed, or no control. If

a control strategy selects "open valve,' the valve position will increase. In

the case of "no control," the valve maintains the current position.

Therefore, the level policy network output is one of the three control

strategies shown in Fig. 12. However, because the policy network for

pressurizer pressure aims to control the letdown and spray valves, the set

of actions includes nine cases that combine the three control strategies of

the two valves. To select a control strategy, the output size of the output

layer should be equal to the number of control strategies. Therefore, in the
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case of the DRL pressure controller, nine control strategies for controlling

the letdown and spray valves were mapped to the output valves for the

output layer of the LSTM network.

To select one control strategy among the nine cases, the DRL-based

controller for pressurizer pressure also calculates the expected reward

acquisition probability for each action in the LSTM network. The softmax

function was used to calculate the probability of each control strategy in

the output layer. The softmax function can map the network output to a

probability distribution between zero and one. Therefore, the sum of the

values of the generated output is one. Therefore, the LSTM network can

calculate the probability value for each control strategy.

c. Training of DRL-based controller

CNS was used as a real-time testbed to train and validate the developed

DRL-based controller. The CNS was originally developed by the Korean

Atomic Energy Research Institute (KAERI) with reference to a

Westinghouse 930 MWe three-loop PWR [64]. Fig. 13 shows the chemical

and volume control system in the CNS.
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Fig. 13. Chemical and volume control system (CVCS) in the CNS

Fig. 14 shows the multi-CNS environment for training and validating the

DRL-based controller. Two desktop computers were used to construct the

multi-training environment. A DRL-based controller is installed on the

main computer. CNSs were installed on a subcomputer with Intel

Core(TM) i7-8700K and 16 GB of memory. Twenty CNSs were

simultaneously simulated. One of the local networks is connected to a

CNS simulation through user datagram protocol (UDP) communication.

The global network was trained on two Nvidia Geforce GTX1080Ti

graphics cards, whereas the SAC training algorithm was trained using a 10

CPU core on Intel CoreX i7-7820X. The DRL-based controller was

programmed using Python. PyTorch, which is a well-known Python

machine-learning library, was used to develop a DRL-based controller.
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Fig. 14. Multi-CNS environment for training and validating the developed

DRL-based controller

To achieve acceptable performance of the proposed DRL-based controller,

it was trained until it reached a stable training state. DRL-based pressure

and level controllers are trained through many episodes, each of which is

completed if at least one controller reaches the termination condition. All

controllers stop training when the average maximum probability converges

to a certain value, or when the value stabilizes. The average maximum

probability is the mean value of the probability of the actions selected by

the DRL controller in one step. In one step, the DRL-based controller

learns using 256 sample data from the DPER. In this study, the

experimental results considering the entire operation time confirmed that

operational goals could be reached when 256 data points were sampled. If

more (512) or less (128) than this, learning fails. The average maximum

probability refers to the degree to which the DRL controller completes the

training. If the average maximum probability is higher than the previous

step, it implies that the DRL controller selects actions that are more likely

to succeed. Fig. 15 shows the trend of the average maximum probability

per step over time. Fig. 16 shows the trend in the rewards per episode.

The y-axis represents the total reward earned in each episode.
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The pressure and level controllers reached a stable value after 2000

episodes. Approximately 84 h of training were required until the

DRL-based controllers learned how to adjust the charging, letdown, and

spray valves to achieve the operational goal. At approximately 500

episodes, the rewards reached 400 (pressure controller) and 275 (level

controller).

Fig. 15. Average maximum probability per episode

Fig. 16. Reward per episode
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4. Development of a PID-based Controller

A PID-based controller was designed as shown in Fig. 17. The

PID-based controller should manage five components (charging, letdown,

spray valves, and back-up and proportional heaters) to achieve two

operational goals (pressurizer pressure and level). If-then logic was applied

to control the two heaters. Therefore, three PID controllers are developed

for the three valves.

In general, a PID controller is applied to a single-input, single-output

system without considering the disturbance and nonlinearity of the system

[65]. Thus, three PID controllers must be developed to adjust the charging,

letdown, and spray valves. In Fig. 17, PID Controllers 1 and 2 adjust the

letdown and spray valves for pressurizer pressure, whereas PID Controller

3 manages the charging valve at the pressurizer level. Because the spray

valve can be operated after pressurizer bubble creation, a condition switch

was added to avoid unnecessary operations. The operational goal of PID

controllers 1 and 2 was to regulate the pressurizer pressure within a

specified pressure ( ). The pressure deviation error ( ) between the

actual pressure value ( ) and pressure set-point ( ) is commonly

used in PID controllers 1 and 2. PID controller 3 controls the charging

valve to satisfy the pressurizer level.
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Fig. 17. PID-based system block diagram

a. Background of PID controller

The PID controller is based on classical optimal control theory that uses

a control loop feedback mechanism to control the process variables [66].

PID controllers are typically used in industrial control applications to

regulate temperature, flow, pressure, speed, and other process variables. To

increase plant performance and safety, a PID controller is also one of the

most commonly used process controllers in NPPs [67]. The PID controller

in Fig 18 aims to minimize the cost function comprising three terms:

current error with the proportional term, past errors with the integral

term, and future errors with the derivation term. Its control output  is

linearly obtained by combining the proportional, integral, and differential

of the error  , between the set value , and the actual value ,

thus realizing the control of the controlled object. Among them,

proportional regulation can accelerate the system response speed, integral

regulation can eliminate the steady-state error of the system, and

differential regulation can realize advanced control of the system [48].

However, the regulation performance of classical PID controllers includes

the regulation time, overshoot, and system stability [68].
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Fig. 18. Block diagram of the PID controller principle

b. PID-based controller tuning using Ziegler-Nichols rule and DRL

algorithm

This study applies the Ziegler-Nichols closed-loop tuning method and

DRL tuning method to achieve an acceptable performance of PID-based

controllers. As a traditional tuning method, the Ziegler-Nichols method is

well known as a suitable tool for nuclear power plants whose

mathematical models are unknown or difficult to obtain [69]. Despite

many design methods for PID controllers, the Ziegler-Nichols rule is one

of the most widely used design methods in the literature [70, 71]. In

addition, the Ziegler-Nichols tuning method is used for automatic control

in Korean NPPs [67].

According to the Ziegler-Nichols tuning method, a PID controller is

tuned by first setting it to the P-only mode, which means that the integral

gain () and derivative gain () are set to zero. The proportional gain

() increases until the ultimate gain ( ), where the system starts to

oscillate, and an ultimate oscillation period ( ), as shown in Fig 19 Then,

 , , and  were then approximated using Table 5 [14].
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Table 5. Ziegler-Nichols formula for PID controller tuning rules

Controller   

P 0.50 0 0

PI 0.45 0.54 0

PID 0.60 1.20 3 /40

*   

As an alternative for the intelligent tuning methods, the DRL-based

tuning was applied. This uses a DRL approach to obtaining the gains of

controllers (Kp, Ki, and Kd). Fig. 20 shows the process of the DRL-based

tuning method. At the first step, the method initializes the gains as

Kp=0.1, Ki=0, and Kd=0. Then, in the second step, the policy network

with simple DNN layers generates the gains, and the Q-network generates

the expected reward by using initialized gains. The third step applies the

gains to the PID controller and runs the CNS with the controller. In the

fourth step, the cumulative rewards resulting from the simulation are
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calculated by using Equations (1) and (2). The fifth step calculates the loss

value by the deviation between the cumulative rewards and the reward

expected from the Q-network. Then, the policy and Q-network weights are

updated by using the loss value in the sixth step. The seventh step

evaluates whether the cumulative reward reaches a stable training state. If

it is evaluated to be satisfactory, the generated gains are finally selected as

the final gains of the controller.

The PID controllers for the letdown, spray, and charging valves were

tuned by using DRL-based tuning algorithm. Fig. 21 shows the history of

cumulative reward per episode. The y-axis represents the total reward

earned in each episode. Each PID controller is tuned until it reaches a

stable training state.
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Fig. 20. Flowchart of DRL tuning algorithm
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Fig. 21. Reward per episode

Table 6 shows the tuning results for the PID controllers by using the

Ziegler-Nichols and DRD-based tuning method. Fig. 22 also compares the

performances of the different tuning results for the pressure and level of

pressurizer. Because the pressure is managed by the letdown and spray

valves, the letdown valve controller was first tuned and then the spray

valve was tuned later. The comparison indicates that the DRL-based

tuning shows better performances in time and accuracy than the

Ziegler-Nichols method.
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Table 6. Tuning results based on Ziegler-Nichols method and DRL tuning

method

Controller
Initial

parameter

Tuned parameter

(Ziegler-Nichols 

method)

Tuned parameter

(DRL method)

Letdown

valve

Kp=0.2

Ki=0

Kd=0

Tu=60 sec

Kp=0.12

Ki=0.004

Kd=0.9

Kp=1.487

Ki=1.155

Kd=0.106

Spray

valve

Kp=0.1

Ki=0

Kd=0

Tu=70 sec

Kp=0.06

Ki=0.001714

Kd=0.525

Kp=1.657

Ki=0.198

Kd=0.078

Charging

valve

Kp=0.1

Ki=0

Kd=0

Tu=300 sec

Kp=0.06

Ki=0.004

Kd=2.25

Kp=0.833

Ki=2.522

Kd=0.105

Fig. 22. Comparison of performances for the different tuning methods
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5. Comparison of performances between DRL-based and

PID-based controllers

A comparison of the performance of the developed DRL-based and

PID-based controllers was conducted for the automation of the cold

shutdown operation. The data were sampled from the simulator per

second and the components could be manipulated every 10 seconds, which

is considered enough time period for the pressure and level of the

pressurizer to change. The data sampling frequency was chosen by taking

into account the computation time (0.5 seconds) of the simulator and the

time transmitted to the controller (0.1 milliseconds).

Fig. 23 shows the comparison of the performances in controlling the

pressurizer pressure by the DRL-based and PID controllers. As shown in

Fig 24, the DRL-tuned PID controller shows smaller accumulated error

than the PID controllers tuned by the ZN and DRL-based controller. The

comparison for the pressurizer level also shows similar results as shown

in Fig. 25 and 26. The DRL-tuned PID controller shows the smallest error

in the level. For the time to reach the desired state, it appears that the

DRL-tuned PID controller is faster than the other controllers.
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Fig. 23. Comparisons of controllers for the pressurizer pressure

Fig. 24. Accumulated error for the pressure with the reference of 27

kg/cm2
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Fig. 25. Comparisons of controllers for the pressurizer level

Fig. 26. Accumulated error for the level with the set-point of 50%
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C. Power Increase Operation

1. Overview of the power-increase operation

To increase the power from 2% to 100%, two GOPs should be applied

in the reference plant, namely, "Power operation greater than 2%" and

"Secondary system heat-up and start-up", as presented in Fig. 6. The

instructions for increasing the plant load from 2% to 100% are provided in

the "Power operation greater than 2%" GOP, while the procedure

"Secondary system heat-up and start-up" procedure describes the steps that

are necessary for aligning and starting the secondary systems. These GOPs

require the operators to operate components, such as the rod controller,

turbine load controller, feedwater pumps, condenser pumps, steam

generator feedwater valves, and synchronizer, based on the planned rate of

power increase. Fig. 27 presents a simplified schematic diagram of the

components that are related to the power-increase operation, and the

operation's initial and final conditions are presented in Table 7.

Boron
tank

Boric acid 
control
valve

Reactor coo lan t 
pu mp 1, 2, 3

Pressurizer
Steam

generator
1, 2, 3

Reactor

Reactor coolant system

Volume con trol 
tank

Ch arging pu mp

Chemical volume 
control system

Control
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Make-u p
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Make-up  water
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Main feedwater
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Fig. 27. Simplified schematic diagram of related components
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Table 7. Initial and final conditions of the power-increase operation

Major parameter Initial condition Final condition

Reactor power 2% 100%

Electric power 0 MWe 900 MWe

Reactor coolant system

(RCS) average temperature
294 ℃ 306 ℃

Turbine revolutions per

minute (RPM)
0 1800 RPM

Turbine load setpoint 0 MWe 900 MWe

Turbine load rate setpoint 0 MWe/min 2 MWe/min

Boron concentration 637 ppm 457 ppm

Rod position

211 Step (A Bank)

95 Step (B Bank)

0 Step (C Bank)

0 Step (D Bank)

228 Step (A Bank)

228 Step (B Bank)

228 Step (C Bank)

220 Step (D Bank)

Rod controller Manual Auto

Steam generator controller Manual Auto

Feedwater pump 1 On On

Feedwater pump 2 Off On

Feedwater pump 3 Off On

Condenser pump 1 On On

Condenser pump 2 Off On

Condenser pump 3 Off On

Synchronous connection Disconnected Connected
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The operators' tasks in the applicable procedures can be divided into 1)

primary system control and 2) secondary system control. When conducing

primary system control, the operators withdraw the control rods (reactor

coolant system, Fig. 27) and manipulate the boron concentration (chemical

volume control system, Fig. 27). At the beginning of the operation for

stably increasing the power to 2%, the operators withdraw all control rods

to the 100% position, which is the final condition, as specified in Table 7,

and subsequently increase the boron concentration to maintain the reactor

power at 2%. Once all the control rods have been withdrawn, the

operators do not manipulate them further, and they reduce the boron

concentration to increase the power from 2% to 100% by increasing the

volume of the water from the make-up tank.

The rate of power increase (percent power per hour) is determined by

considering the reactor cooling system (RCS) average temperature and the

reference temperature. The reference temperature is the desired RCS

temperature, which is predefined based on the current turbine load, while

the RCS average temperature is the actual temperature in the primary side

[72]. According to the procedure, during the power increase from 2 to

100%, the difference between the reference temperature and the RCS

average temperature should be maintained within ± 1 ℃. This is only a

recommendation and is not mandatory.

Operators must control several components of the secondary system.

First, they increase the turbine speed to 1800 revolutions per minute

(RPM) using the turbine RPM controller (the main steam/turbine system

in Fig. 27). When the turbine and the reactor power reach 1800 RPM and

15%, respectively, the operators close the breaker to connect the generator

to the grid and synchronize the frequencies (the electrical system in Fig.
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27). In addition, the operators increase the turbine load setpoint, start the

feedwater pumps, and start the condenser pumps concurrently with the

reactor power increase in the primary system. The primary and secondary

systems must be controlled harmoniously to avoid a reactor trip.

2. Task analysis of the power-increase operation

Based on a review of the "Power operation greater than 2%" and

"Secondary plant heat-up and start-up" procedures, a task analysis was

conducted to identify the tasks that should be automated by the algorithm

that is proposed in this study. As presented in Table 8, this analysis

identified a total of 21 control actions that are performed by the operators

according to these procedures. Only the control-related actions were

extracted for the development of the algorithm, although the procedures

also provide monitoring actions, e.g., “confirm the RCS temperature is

above 200 ℃.”

These actions were also categorized into three task types: Decision

Making, Continuous Control, and Discrete Control. Decision Making task

determines the rate of power increase; the subsequent control actions

depend on this rate, although it does not include any control action. The

continuous controls in this study adjust component states over a range to

realize specified target values for the given parameters, and the rules that

govern the necessary adjustments cannot be described with simple logic.

For example, the operators adjust the RCS boron concentration to

manipulate the power level. In contrast, a discrete control involves the

direct setting of a target value based on a binary condition, as in if-then

logic. An example of a discrete control is as follows: if the power level is

10%, then the turbine is set to 1800 RPM. The next section proposes an
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algorithm that can perform these actions.

Table 8. Operational tasks for increasing the reactor power

Step Task Type Action

1 Decision
Making Determine the rate of power increase in %/h

2 Continuous
Control

Withdraw all control rods to the position of 100% reactor
power while maintaining the reactor power at 2% through
boration.

3 Continuous
Control

If all the control rods are withdrawn, increase the reactor
power from 2% to 6%–10% by reducing the boron
concentration.

4 Discrete
Control

If the reactor power is 10%, the turbine RPM setpoint is
1800 RPM.

5 Discrete
Control

If the reactor power exceeds 10%, the acceleration setpoint
is 2 MWe/min.

6 Continuous
Control

Adjust the boron concentration to increase the reactor
power from 10% to 20%.

7 Discrete
Control

If the reactor power is between 10% and 20%, the load
setpoint is 100 MWe.

8 Discrete
Control

If the turbine RPM is 1800 RPM and the reactor power
exceeds 15%, push the net-breaker.

9 Discrete
Control If the reactor power is 20%, start condenser pump #2.

10 Continuous
Control

Adjust the boron concentration to increase the reactor
power from 20% to 100%.

11 Discrete
Control

If the reactor power is between 20% and 30%, the load
setpoint is 200 MWe.

12 Discrete
Control

If the reactor power is between 30% and 40%, the load
setpoint is 300 MWe.

13 Discrete
Control

If the reactor power is 40%, start main feedwater pump
#2.

14 Discrete
Control

If the reactor power is between 40% and 50%, the load
setpoint is 400 MWe.

15
Discrete
Control

If the reactor power is between 50% and 60%, the load
setpoint is 500 MWe.

16 Discrete
Control If the reactor power is 50%, start condenser pump #3.

17 Discrete
Control

If the reactor power is between 60% and 70%, the load
setpoint is 600 MWe.

18 Discrete
Control

If the reactor power is between 70% and 80%, the load
setpoint is 700 MWe.

19 Discrete
Control

If the reactor power is 80%, start main feedwater pump
#3.

20 Discrete
Control

If the reactor power is between 80% and 90%, the load
setpoint is 800 MWe.

21 Discrete
Control

If the reactor power is between 90% and 100%, the load
setpoint is 900 MWe.
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3. Timeline of the power-increase operation

The timeline of the power-increase operation was analyzed to develop a

normative operational strategy. This analysis considered the GOP's

operational rules and the practical operational practices, which were

determined from an interview with a senior reactor operator who works at

a reference plant. Fig. 27 presents the timeline that was developed, which

associates the desired operations with the reactor and electric powers, RCS

temperatures and their differences from the reference temperature, and the

control of related systems, such as the steam generator (SG) level, control

rods, turbines, valves, and pumps.

The power-increase operation is divided into two operational ranges: 1)

maintaining the reactor power at 2% and 2) increasing the reactor power

from 2% to 100%. The objective of the first operational range is to adjust

the positions of all control rods (Fig. 28 (d)) to 100% while maintaining

the reactor power at 2% (Fig. 28 (a)); the average temperature is also

maintained because it depends on the reactor power (Fig. 28 (b)). As the

control rods are withdrawn, the reactor power increases, and increasing

the boron concentration in the RCS reduces the reactor power. To

maintain the reactor power at 2%, a boric acid-water solution is injected

into the RCS, as illustrated in Fig. 28 (c).

The objective of the second operational range is to increase the reactor

power from 2% to 100%, as represented by the red line in Fig. 28 (a). The

operators determine the rate of the power increase (%/h); the power is

increased by reducing the boron concentration in the RCS using make-up

water (Fig. 28 (c)). The electric power is also increased to 100% by

following a load setpoint that is increased stepwise. The RCS average
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temperature increases from 294 ℃ to 306 ℃, as illustrated in Fig. 28 (b).

The difference between the RCS average temperature and the reference

temperature should be maintained within ± 1 ℃, as represented by the

gray area in Fig. 28 (b). This condition is applied after the start of the

electrical power generation because the reference temperature is calculated

based on the electrical power.

Reference
Temperature

Average
Temperature

Difference 
temperature 
range

Temperature
(℃)

291 ℃

306 ℃

Reactor
Power

Electric
Power

Load
Setpoint

2%

15%
20%

100%
Reactor power (%)

10%

90%
80%
70%
60%
50%
40%
30%

Boron concentration 
(ppm)

457 ppm

727 ppm

637 ppm Boron
Concentration

Rod back position

0

228 A Bank
B Bank
C Bank
D Bank

Discrete
Control

Auto
Control

Continuous
Control

Condenser Pump #2

Steam generator
level control

Boron concentration 
control

Synchronizer
control

Turbine control

Main feedwater
pump control

Condenser pump
control

Condenser Pump #3

Rod control

Time (S)

100% 900 MWe

20% ≈ 200 MWe

Time (S)

Time (S)

Time (S)

Discrete
(Step8)

Discrete
(Step4,5,7)

Discrete
(Step9)

Discrete
(Step12)

Discrete
(Step14)

Discrete
(Step15)

Discrete
(Step17)

Discrete
(Step18)

Discrete
(Step20)

Discrete
(Step21)

Discrete
(Step11)

Discrete
(Step13)

Discrete
(Step16)

Discrete
(Step19)

Main Feedwater Pump #3
Main Feedwater Pump #2

Continuous control (Step2, 3, 6, 10)

Automatic control

Continuous control (Step2, 3)

(a) Trend of reactor power and electric power 

(b) Trend of average and reference temperature

(c) Boron concentration in reactor coolant system

(d) Control rod position

(e) Control action

Increase reactor power from 2% to 100%
Maintain reactor 

power at 2%

Generate electrical power

Fig. 28. Timeline for increasing the reactor power from 2% to 100%
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To increase the reactor power, the operators manipulate seven systems,

as illustrated in Fig. 28 (e). As described in Table 8, they withdraw the

control rods and manipulate the boron concentration continuously, which

corresponds to Steps 2, 3, 6, and 10. At 10% reactor power, in Steps 4, 5,

and 7, the turbine RPM, acceleration setpoint, and load setpoint are

adjusted to 1800 RPM, 2 MWe/min, and 100 MWe, respectively.

Subsequently, the operators adjust the load setpoint with every 10%

increase in the reactor power (Steps 11, 12, 14, 15, 17, 18, 20, and 21). At

15% reactor power, the plant and the grid are synchronized (Step 8). At

20% reactor power, condenser pump #2 is started (Step 9); condenser

pump #1 is already running. Condenser pump #3 is started at 50%

reactor power (Step 16). Main feedwater pumps #2 and #3 are started at

reactor powers of 40% (Step 13) and 80% (Step 19), respectively; main

feedwater pump #1 is already running. This study applies the

pre-established automatic control algorithm for the SG level control.

4. Development of an algorithm for power-increase control

This paper presents an algorithm that employs a rule-based system and

deep reinforcement learning to facilitate the autonomous increase of NPP

power from 2% to 100% by controlling several systems. Fig. 29 illustrates

the structure of the proposed algorithm, which consists of two modules: 1)

a discrete control module and 2) a continuous control module. The

discrete control module directs the synchronization, turbine, main

feedwater pump, and condenser pump controls, for which rule-based

systems can be developed based on the operating procedures.
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Algorithm for Autonomous Power-Increase Control

Discrete control module Continuous control module
Operational rules 

about discrete task

Rule: IF-THEN

Inference 
Engine

Nuclear power plant

A3C Agent

• Discrete control signal
- Turbine load controller
- Feedwater pumps
- Condenser pumps
- Synchronizer

• Continuous control signal
- Rod controller
- Make-up water valve
- Boric acid water valve

• Plant parameters• Plant parameters

Fig. 29. Overview of the algorithm for the power-increase operation

The continuous control module dictates the adjustment of the control

rods and the RCS boron concentration. The associated procedures do not

specify rules for the operators; e.g., they do not specify the number of

steps in which the control rod should be withdrawn or the volumes of

make-up or boric acid water that should be added. The procedures specify

only the objective of the control activity, e.g., "increase the power to 20%

by altering the control rod position or RCS boron concentration.“

Deep reinforcement learning was deemed suitable for use as the

continuous control module. A neural network and a training algorithm are

selected by considering the characteristics of the operational steps in NPPs.

The types of control for NPPs are regulatory control (e.g., adjustment of

valve position) and discrete control (e.g., on/off control). For discrete

control, the set-point and operating conditions are specified in detail in the
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operating procedure. Operators can conduct discrete control according to

rules that are specified in the operating procedures. In contrast, only

operational target values are provided for regulatory control. Accordingly,

regulatory control is based on the operator's experience, which includes

monitoring previous and current plant conditions. The target of the

continuous control module is the requlatory control. Thus, this study

attempted to implement controls in accordance with the operator's

behavioral pattern through trial and error using a long short-term memory

(LSTM) and an asynchronous advantage actor-critic (A3C) algorithm.

(1) This study used a LSTM network, a kind of recurrent neural

network (RNN), by considering the characteristics of the plant parameters.

The trends of the plant parameters are well known to be the same as that

of time series data. To extract and analyze meaningful information, e.g.,

the timing of an AI agent's action, from time-series data, it is important to

identify the correlations between previous and current data. The output of

an LSTM can be calculated by considering previous data, in contrast to

other neuronal networks such as convolutional neural networks and vanilla

feedforward neural networks.

Moreover, LSTM not only stores the values that are calculated from the

previous time data in the LSTM cell but also considers previously saved

values when calculating the next time data. The author's previous studies

showed that the LSTM can support well the operation of nuclear systems

[5, 57] as well as the diagnosis of events [56, 73]. Moreover, to better

support the selection of the LSTM neural network, this study compares

the performance of other neural networks such as deep neural network

(DNN), convolutional neural network (CNN), LSTM, and C-LSTM(CNN +

LSTM).
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(2) An asynchronous advantage actor-critic (A3C) algorithm was quickly

trained in the specified domain. The A3C algorithm is well known for fast

training due to parallel actor-learners that are based on the central

processing unit's (CPU's) multiple threads and the asynchronous network

update. This study used a nuclear simulator to test and train an AI agent.

This simulator does not recommend calculation acceleration with a stable

calculation performance. As a result, the AI agent takes more than 14

hours per episode to train the entire power increase operation. To solve

this problem, we not only built multiple environments but also applied a

parallel training algorithm, namely, A3C.

The goal of the continuous control module is to select actions necessary

to meet the operational goals of the sequential plant states. The continuous

control module with A3C algorithm can find an operational path in

parallel. An operational path is a set of actions for controlling a

component to achieve flexible operating goals that are assigned by the

operators. A reward algorithm was developed for training the agent, and

an LSTM network was used for selecting the actions necessary to meet the

operational goals of the sequential plant states.

a. Design of the discrete control module using if-then logic

A rule basis for discrete control was developed for the synchronizer,

turbine, main feedwater pump, and condenser pump controls by

transforming the operating procedures into if-then rules, which are

presented in Table 8. The tasks that are identified as discrete controls in

Table 9 were analyzed and categorized into four functions based on the

controlled system, and the applicable rules were extracted from the

procedures' task instructions. The inputs and outputs that were required
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for the module to control the tasks were identified. An input is a plant

parameter that must be obtained to correctly determine the control action

that is needed for accomplishing a task, while an output is the control

action that will be performed as a result.

Table 9. Discrete control module if-then rules for increasing the reactor

power from 2% to 100%

Function
Rule

Number(s)
If-then Rule Input(s) Output(s)

Synchronizer

control
1

If the turbine RPM is 1800 RPM

and the reactor power is greater

than 15%, push the net-breaker

button.

Reactor

power,

Turbine RPM

Net-breaker

button control

Turbine control

2
If the reactor power is 10%, the

turbine RPM setpoint is 1800 RPM.

Reactor

power,

Turbine RPM

Turbine RPM

setpoint

control

3

If the reactor power is greater

than 10%, the acceleration setpoint

is 2 MWe/min.

Turbine

acceleration

Turbine

acceleration

setpoint

control

4

If the reactor power is between

10% and 20%, the load setpoint is

100 MWe.

Reactor

power, Load

setpoint

Load setpoint

control

5–11 ... ... ...

12

If the reactor power is between

90% and 100%, the load setpoint

is 900 MWe.

Reactor

power, Load

setpoint

Load setpoint

control

Main

feedwater

pump control

13

If the reactor power is 40% and

the state of the main feedwater

pump 1 is “activated,” start main

feedwater pump 2.

Reactor

power, Main

feedwater

pumps 1 and

2 states

Main

feedwater

pump 2

control

14

If the reactor power is 80% and

the state of main feedwater pump

2 is "activated," start main

feedwater pump 3.

Reactor

power, Main

feedwater

pumps 2 and

3 states

Main

feedwater

pump 3

control

Condenser

pump control

15

If the reactor power is 20% and

the state of condenser pump 1 is

"activated," start condenser pump

2.

Reactor

power,

Condenser

pumps 1 and

2 states

Condenser

pump 2

control

16

If the reactor power is 50% and

the state of condenser pump 2 is

"activated," start condenser pump

3.

Reactor

power,

Condenser

pumps 2 and

3 states

Condenser

pump 3

control
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b. Design of the continuous control module using SAC

The A3C agent for continuous control aims at managing the reactor

power by manipulating the control rods and boron concentration, and, if

fully trained, can manage the reactor power based on a specified rate of

power increase and the obtained plant parameters. The A3C agent's

strategies relate to three operational strategies: increase power, decrease

power, and stay.

Continuous control module

Nuclear power plant

Asynchronous advantage actor-critic (A3C) agent

• Plant parameters
- Reactor power
- Average temperature
- Electrical power

Reward
Algorithm

Long short-term memory (LSTM) 
network model

• Estimated plant states
- Operational boundary
- Mismatch boundary

• Estimated reward

• Updating weights in network

• Withdraw
control rod

• Open make-up
water valve

• Component Control

• Decrease
power

• Stay

• Increase
power

• Open boric acid
water valve

• Stay

< Strategies >

<Control action>

Fig. 30. Overview of the continuous control module

Fig. 30 illustrates the overall structure of the A3C agent for continuous

control, which consists of a reward algorithm and an LSTM network

model. The reward algorithm evaluates the obtained plant parameters to

determine whether and the degree to which the prior operation or action

of the A3C agent was successful, and this reward is used to update the

weights in the LSTM network model. The LSTM network model generates
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an operational strategy using the obtained and evaluated plant parameters.

Then, the A3C agent selects the option that is associated with the highest

probability value from among the available outputs of the LSTM network:

increase, decrease, or stay.

The operational strategies comprise the control actions that are required

for realizing the objective of each strategy. For example, for the "stay"

strategy, the A3C agent stops manipulating components, and the boric acid

water valve is opened to increase the boron concentration and, therefore,

decrease the reactor power. The strategies for "power increase" consist of

two control actions; the A3C agent withdraws the control rods and

changes the control action to the opening of the make-up water control

valve to reduce the boron concentration.

c. Design of the reward algorithm

In DRLs, the reward is an essential element that is used to update the

weights of the A3C agent; learning by the agent is associated with

updating the weights of the network to maximize the accumulative reward

[74]. The reward algorithm evaluates the agent's behavior based on a

specified state in the environment to determine the reward. Therefore, the

reward algorithm guides the agent to obtain a high accumulative reward

in the target domain [75]. To find the best operational path, the use of

operational guidelines or boundaries is a suggested for designing a

reward algorithm [76]. Furthermore, if the operational goal is more than

one, like in the multi-objective problems, Garduno-Ramirez and Lee [77]

proposed defining the upper and lower boundaries for each operational

goal. In this study, the specified operational objectives were used to

design the reward algorithm for increasing the reactor power.
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This study proposes a reward algorithm that is designed for training the

proposed A3C agent to increase the reactor power. It has two reward

criteria, which are based on the reactor power and the average

temperature. Fig. 31 presents the criteria for providing a reward via the

proposed reward algorithm. The first reward criterion is related to the

reactor power. As illustrated in Fig. 31, two bandwidths were applied.

While maintaining the reactor power at 2% (the blue area in Fig. 31), the

reward boundary was defined as ± 1% of the reactor power, namely, 1%

to 3%. During the power increase after reaching 2% reactor power, the

bandwidth was determined by the following linear equations that were

based on the pre-determined rate of power increase (the red area in Fig.

31). The upper boundary was 3% at 2% reactor power and 110% at 100%

reactor power, while the lower boundary was 1% at 2% reactor power

and 90% at 100% reactor power.

      Pr
  

(8)

 










  ≥ 

  

  
      ≥    

    

(9)

 










  ≥ 

  

 
     ≥    

    

(10)

Pr : Predefined Rate of Power Increase (%/h)

t : Time

t2 : Time at All Rods 100% Withdrawal

t100 : End of Operation Time
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The power reward was calculated as the difference between the current

power at time t and the most desirable power, which was the predefined

power at that time and is represented by the dashed line in the center of

the reward boundary in Fig. 31. The power reward was calculated via

Equation (11) by using a normalized value of the distance. The reward

was maximal, namely, 1, when the current power was equal to the

predefined power, while it was 0 when the current power was located on

the upper or lower boundary. For instance, at t = 8 h in Fig. 31, when

the reactor power increased from 2% at 5 h to 100% at 103 h at a 1%/h

rate of increase, the reactor power, the predetermined power that was

based on the rate of power increase, and the upper boundary were 6%,

4.99%, and 6.27%, respectively. The resulting reward was 0.21 by R=1 - (6

- 4.99)/(6.27 - 4.99). Similarly, at t = 10 h and P = 5.6%, the reward was

0.04, as presented in Fig. 31.

  ∼  









    

   

    ≥    

    

   

  
   ≥  

    

(11)

P : Current Power at Time t (%)

Rmp : Middle of Power Reward Boundary, 

  i.e., Pre-determined Power at Time t

Rup : Upper Power Reward Boundary

Rlp : Lower Power Reward Boundary

If the power moved outside the boundary, the training was terminated.

In addition, the agent stopped the training when it realized the objective

of the operation, namely, when the reactor power was 100%.
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Fig. 31. Power reward for the A3C agent

The second reward criterion relates to the difference between the

average temperature and the reference RCS temperature that is provided

by the GOP. This reward represents that the rule that the average RCS

temperature should be controlled by the agent to within ± 1 ℃" of the

reference RCS temperature (the gray area in Fig. 32). Since the reference

temperature is calculated based on the current turbine load (MWe), the

upper and lower limits of this reward boundary are calculated after the

electrical power generation has begun.

Similar to the power reward, the temperature reward was also calculated

via Equation 12 based on the difference between the current temperature

at time t and the most desirable temperature, namely, the reference

temperature. The maximal reward, namely, 1, was obtained when the

average RCS temperature was equal to the reference temperature. In



- 67 -

contrast to the power reward, if the average RCS temperature moved

outside the boundary, the training was not terminated; instead, the reward

had a negative value that was proportional to the distance from the

closest boundary, with -1 being the lowest possible value.

291 ℃

292 ℃

290 ℃ Time (h)

Temperature
(℃)

Increase reactor power from 2% to 100%Maintain reactor power 2%

Generate electrical power

Average temperature

Reward boundary

Reference temperature

Minimum reward boundary

T��(���) = 291.5℃

T��(���) = 300℃

T��(����) = 292.2℃

T��(����) = 293℃

306 ℃

307 ℃

305 ℃
T��(����) = 302℃

Fig. 32. Temperature reward for the A3C agent

As shown in Fig. 32, when the average RCS temperature was between

the upper and lower boundaries, a positive reward was returned and was

inversely proportional to the distance from the reference temperature (as

shown at t = 10 h in Fig. 32). Outside this boundary and up to a

difference of ± 2 ℃, a negative reward was given proportional to the

distance to the closest boundary (as shown at t = 20 h in Fig. 32). If the

temperature difference was greater than 2 ℃, the reward was –1.

The total reward was calculated as the arithmetic mean of the power

and temperature rewards, as expressed in Equation 13. The agent
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conducted the training to obtain the largest total reward for each episode

and, in the process, was incentivized to shift the reactor power and the

average RCS temperature to the middle values of the reward boundaries.

The episode continued until the reactor power reached 100% or moved

outside the reward boundary.

   ∼  









       

       ≥    

      ≥   

   

        ≥  

      ≤    

       

(12)

(13)

T : Average RCS Temperature at Time t

Trf : Middle of Temperature Reward Boundary, 

  i.e., Reference Temperature at Time t

Rut : Upper Temperature Reward Boundary (Trf+1) at 

          Time t

Rlt : Lower Temperature Reward Boundary (Trf-1) at 

          Time t

d. LSTM network modeling

Fig. 33 illustrates the proposed LSTM network of the continuous control

module's A3C agent for producing an operational strategy (increase,

decrease, or stay). The final control action of the continuous control

module is selected based on the reactor power and the operational

strategy. Each operational strategy maps to the required control action. For

example, the decrease strategy is mapped to the opening of the boric acid
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water valve. If the output strategy of the LSTM network is "stay," the

A3C agent does not control the component. In the increase strategy, the

A3C agent selects a control according to the current operational objective:

� Withdraw the control rod (when maintaining the reactor power at

2%) or

� Open the make-up water valve (when increasing the reactor power

from 2% to 100%).

The proposed LSTM network model consists of an input layer, an LSTM

layer, and an output layer. The sizes of the input and output layers can

be defined based on the numbers of plant parameters and control actions,

respectively. The number of LSTM cells is determined by the time

window.

The input layer of the investigated LSTM network had a 10-step time

window, which considered the trends of plant parameters by exploiting

the collected historical data. The historical data were sampled from the

simulator every 30 s to optimize the dataset size; the trends that were

observed when the data were collected every second did not differ

significantly. The A3C agent used the current and previous states as a

two-dimensional array and as a training dataset, which included the plant

parameters for 300 s. At each time window, the LSTM network used eight

input parameters, namely, four plant parameters (reactor power, average

temperature, reference temperature, and electric power) and four variables

that represented the distances of the current power and average RCS

temperature from their upper and lower boundaries.
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At the LSTM network's output layer, the probability of each operational

strategy was generated using a softmax function, which can map a

network's output to a probability distribution between 0 and 1; the sum

of the generated output values is one. If the A3C agent selected the

strategy with the highest probability among the operational strategies, it

received a large reward or realized the operational objective. Finally, the

A3C agent selected a control action based on the selected operational

strategy. The detailed structure and hyperparameters of the LSTM network

were determined as illustrated in Fig. 33 through an experimental

optimization.
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Sigmoid function

Linear
function

Softmax
function

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

PolicyValue

Input
( )

Input
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Reference temperature

Average temperature
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Electric power

Reward boundary for reactor power
(Upper restriction)

Reward boundary for reactor power
(Lower restriction)

Reward boundary for average 
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Reward boundary for average 
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Value Layer
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Critic Layer
(3 Neuron)

Fig. 33 The structure of the LSTM network for the A3C agent
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5. Experiments

a. Training environment

CNS was also used as a real-time testbed for training and validating the

proposed autonomous power increase algorithm. Fig. 34 shows the A3C

agent training environment structure, which consists of four desktop

computers-one main computer and three sub-computers. One main agent

and sixty local agents for implementing the proposed algorithm were

installed on the main computer. The CNS was installed on the three

sub-computers. Each sub-computer could run 20 CNS simulations at a

time; therefore, a total of 60 simulations could be conducted

simultaneously. The A3C global network was trained, while the A3C

training algorithm was trained using 60 threads of CPUs. The A3C agent

was developed based on the Python programming language with the

TensorFlow and Keras machine learning libraries

Fig. 34. Structure of the training environment for the A3C agent
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b. Training and stability for the entire power-increase operation

For a complete (from 0% to 100%) power-increase operation at a rate of

3%/h, the A3C agent was trained in 8800 episodes. The A3C agent

training was complete when the average maximum probability converged

to a specified value or when the value became stable.

Fig. 35 Average maximum probability per episode for the A3C LSTM

network

Fig. 35 presents the trend in the average maximum output probability

per episode over time. The A3C network approached a stable probability

(larger than 0.9) after approximately 7500 episodes. Fig. 36 shows the

trend of the rewards that were obtained by the A3C agent as the number

of episodes increased. In one episode, the theoretical maximum cumulative

reward during the entire power-increase operation was 4800 (the green

dashed line in Fig. 36); this is because the largest reward for a training

dataset was 1, and the total number of datasets that increased the reactor

power to 100% over 144 000 s at the rate of 3%/h, plus an additional

margin of 4000 s, was 4800. The maximum practicably feasible reward for

power-increase operation success was observed to be 3000.
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Fig. 36. Rewards obtained by the A3C LSTM network

This study identifies a network that can be quickly trained in the

specified domain since the A3C network requires more than 14 hours per

episode to train the entire power increase operation. In this study, the

considered networks are the deep neural network (DNN), convolutional

neural network (CNN), LSTM, and C-LSTM (CNN + LSTM). DNN is a

typical feed-forward neural network that contains many hidden layers of

nonlinear hidden units and a very large output layer. In CNN, the hidden

layers have fewer connections and parameters because filters that perform

convolution operations are utilized. CNN has been demonstrated to

outperform DNN in feature extraction from input data. LSTM can calculate

time-sequential input data for units that are called constant error carousels.

It can facilitate the memorization of important events or long-term data.

C-LSTM is a combined model of CNN and LSTM. This network has been

proposed for extracting features of data and for handling time-sequential

data.
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Table. 10 Architectures of the compared networks

Network
Network

layer
Layer type

Time-

sequence
Node Parameter

DNN

Common

Input layer - 8 0

Dense - 32 224

Dense - 64 2112

Dense - 70 4550

Actor
Dense - 64 4544

Output layer - 3 195

Critic
Dense - 32 2272

Output layer - 1 33

CNN

Common

Input layer 10 8 0

Conv1D 10 10 190

Max pooling 3 10 0

Flatten - 30 0

Dense - 64 1984

Dense - 70 4550

Actor
Dense - 64 4544

Output layer - 3 195

Critic
Dense - 32 2272

Output layer - 1 33

LSTM

Common

Input layer 10 8 0

LSTM - 32 4992

Dense - 64 2112

Actor
Dense - 64 4160

Output layer - 3 195

Critic
Dense - 32 2080

Output layer - 1 33

C-LSTM

Common

Input layer 10 8 0

Conv1D 10 10 190

Max pooling 3 10 0

LSTM - 32 5504

Dense - 60 1900

Actor
Dense - 64 3904

Output layer - 3 195

Critic
Dense - 32 1952

Output layer - 1 33

To train these networks under the same conditions, they should have

the same number of parameters. The parameters at each layer of the

network model are arranged with a normal distribution (mean = 0.0 and
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standard deviation = 1.0), which supports stable training under the same

conditions. Table 10 describes the architectures of the networks that are

used in the A3C algorithm for the experiment. Each network consists of

three layers: common, actor, and critic. The actor and critic layers are

linked to the common layer.

Before training on the entire power increase operation, the A3C agent is

trained between 2% and 15% power to identify the optimal network. Each

network has been trained by 6500 episodes. Fig. 37 shows the trend of the

duration of each network versus the number of episodes. Each line

represents the average duration over 10 episodes. The agent's objective is

to increase the power within the operational boundary, which is the

power reward boundary in this paper, for 600 seconds. For strict

comparison of these networks, an operation with a duration of less than

600 seconds is regarded as a failed operation. These networks are trained

until the average duration is 600 seconds. In Fig. 37, the LSTM network is

the best performing network as it realized an average duration of 600

seconds in 6500 episodes. The second-best performing network is CNN,

which realized a duration of approximately 400 seconds in 6500 episodes.

C-LSTM and DNN show poor performance (durations of less than 250

seconds). The results of this experiment demonstrate that the LSTM

network can realize the operational objective in fewer training episodes

than the other networks.
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Fig. 37. Average duration of each network

c. Experimental results

After the algorithm for autonomous power increase control was trained,

an experiment was conducted to demonstrate that the proposed algorithm

could autonomously increase the power at a specified rate. The continuous

control module was implemented using an A3C and an LSTM network,

while the discrete control module was implemented with a rule-based

system. Fig. 38 (a-h) presents the experimental results for a 3.0%/h rate of

power increase, which demonstrate that the proposed algorithm can

increase the power at the intended rate within the operational boundary

(Fig. 38 (a)). In addition, Fig. 38 (b) shows that the proposed algorithm

managed the average temperature within the mismatch boundary from the

reference temperature over the reactor power of 30% and could effectively

restore an increased or decreased average temperature to within the

mismatch operation range. The changes in the average temperature that

were observed at approximately 40 000 s were due to connecting to the

grid and starting a condenser pump, which impacted the overall plant

state.
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The continuous control module also managed the boron concentration

during the power increase; the results are presented in Fig. 38 (c) and (d).

To maintain the power at 2%, the boron concentration was increased to

compensate for the effect of the control rod withdrawal, which occurred at

approximately 22 000 s, as shown in Fig. 38 (e). Then, the controller

decreased the boron concentration by increasing the volume of the

make-up water to increase the reactor power from 2% to 100%.

The discrete control model operated the system's synchronous connection

to connect to the electrical grid at a reactor power of 15%. The discrete

control module also selected the turbine load (Fig. 38 (f)) and RPM

setpoints (Fig. 38 (g)) based on the reactor power. Additional actions that

were performed by the discrete control module during the power-increase

operation are presented in Fig. 38 (h) and include starting feedwater

pumps 2 and 3 and condenser pumps 2 and 3 to circulate feedwater in

the secondary part of the plant. The control module started these pumps

in sequence according to the general operating procedure.

(a) Simulation results: Reactor power
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(b) Simulation results: Average and reference temperatures

(c) Simulation results: RCS boron concentration

(d) Simulation results: Injected masses of boron and make-up water
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(e) Simulation results: Injected masses of boron and make-up water

(f) Simulation results: Turbine load and electric power

(g) Simulation results: Turbine RPM and turbine RPM setpoint
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(h) Simulation results: Pump and synchronous control signals

Fig. 38. Simulation results for a 3%/h autonomous power-increase

operation
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IV. Emergency Operation

This section aims to develop an emergency operation agent that can

reduce the primary pressure and temperature safely until the shutdown

cooling entry condition after reactor trip caused by the loss of coolant

accident (LOCA) in NPPs. The suggested agent uses Soft Actor-Critic

(SAC) algorithm and a deep neural network. SAC is a DRL method that

optimizes a stochastic policy in an off-policy way. This suggested

algorithm has also proven its data efficiency and learning stability as well

as hyper-parameter robustness. In order to identify the agent's

inputs/outputs, the functional recovery procedures (FRPs) are analyzed

through an abstraction decomposition space (ADS). ADS can help to

represent the entire target domain and draw constraints on the given

domain through a step-down decomposition. Based on identified

constraints, this study designs reward algorithms for providing training

directions for the agent. The test results using a compact nuclear simulator

(CNS) indicates that the suggested emergency operation agent can control

the components to comply with identified constraints until the shutdown

cooling entry condition.

A. Emergency operation analysis

NPP operating strategies during emergency situations were analyzed to

develop an autonomous operating agent. FRPs were analyzed for

identifying operation goals and criteria, required systems and components,

and success paths to mitigate the emergency. Then, the identified

information was mapped into the table of ADS. As a result of ADS, the

tasks of the agent and reward criteria were defined.
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1. Emergency operation analysis based on FRP

Based on the FRP, this study identified the goal and criteria of each

safety function, system, and component required in the emergency

operation. The emergency operating procedure in Korean NPPs can be

divided into the event-based procedure (optimal recovery procedure) and

symptom-based procedure (functional recovery procedure) [78]. Optimal

recovery procedure (ORP) is designed to cover specific design basis

accidents (DBAs), such as loss of coolant accident (LOCA) and steam

generator tube rupture (SGTR). On the other hand, FRP is focused on the

recovery of safety functions. FRP provides operator actions for events in

which a diagnosis is impossible, or any ORP is unavailable. The actions of

FRPs are to ensure that safety functions are placed in a stable, safe

condition. Fig. 39 shows the flow of the emergency operation strategy.

Standard Post Trip Actions

Event

Go to the appropriate
Optimal Recovery Guideline

Diagnose Optimal
Recovery Event?

Yes

Go to the Functional 

Recovery Procedure

No

Safety function 
success criteria 

satisfied?

Follow guideline

No

Yes

Verify RCP operating limits

Identify safety function 

success path(s) to be 
implemented

Perform selected safety 
function success path(s)

Implement long term actions

Functional 
Recovery ProcedureOptimal Recovery

Procedure

Fig. 39. Strategy flow chart for emergency operation
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This study analyzed safety functions, the required systems, and

components. Table 11 shows the nine safety functions and their purposes.

Table 12 represents the safety systems and components designed to satisfy

RCS inventory control function in Korean NPPs [78].

Table 11. Nine safety functions

No Safety function Purpose

1 Reactivity control
Shut reactor down to reduce heat

production

2
Reactor coolant system (RCS)

inventory control

Maintain volume or mass of reactor

coolant system

3 RCS pressure control
Maintain pressure of reactor coolant

system

4 RCS heat removal
Transfer heat out of coolant system

medium

5 Core heat removal Transfer heat from core to a coolant

6 Containment isolation Close valves penetrating containment

7
Containment pressure and

temperature control
Keep from damaging containment

8 Hydrogen control Control hydrogen concentration

9 Maintenance of vital auxiliaries
Maintain operability of systems

needed to support safety systems

Table 12. Safety systems and components designed for safety RCS pressure

control

System Component

Safety depressurization and vent

system

Power-operated relief valve

(PORV)

Pressurizer (PZR) pressure control

system
PZR spray valve, PZR heater
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2. Work domain analysis by using abstraction

decomposition space

The ADS is used to systematically identify the systems and components

that the agent is required to manipulate. The operational goal and

constraints during the emergency operation were also analyzed to design

the agent's reward algorithm.

ADS can analyze the given work domain as the abstraction level and

decomposition space. The abstraction level is a hierarchical structure that

consists of functional purpose, abstraction function, generalized function,

and physical function. These levels are connected with mean-end links that

show how-what-why relationships between levels. On the other hand, the

decomposition space is typically divided into a whole system, sub-system,

and component. It can represent the entire domain under examination,

stepping down through the spaces of detail to a component space.

Prevention of core damage

Reduce 
Temperature

Reduce
Pressure

PZR Level PZR Level > 20%

PZR
Spray

Supplying Coolant

Decompressing PZR

Pumping

PZR 
Heater

PZR 
PORV

RCP Charging 
Valve

Charging 
Pump

SI Valve

SI Pump

Whole system Sub-system Component

Functional
purpose

Abstraction
function

Generalized
function

Physical
function

SI Tank

Orifice 
Valve

Letdown 
Valve

Fig. 40. An example of ADS to reduce the pressure
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Fig. 40 illustrates an example of ADS for controlling the pressure of the

reactor and cooling system. The functional purpose is considered as the

objective of the systems and components. The functional purpose was

defined as reducing pressure and temperature to prevent core damage. At

the lowest level of physical function, target systems and components to be

controlled are identified.

Table 13. Required physical parameters and its success criteria in

abstraction function level

Physical Parameter Success Criteria

PZR pressure
Pressure < 29.5kg/cm2

Pressure within P-T curve boundary

PZR level 20% < Level < 76%

RCS average

temperature

170 C < Average temperature

Temperature within P-T curve boundary

55 °C/hour < Cooling rate

S/G Pressure Pressure < 88.2kg/cm2

S/G level 6% < Narrow level < 50%

The abstraction function represents the basic principles such as flow,

mass, temperature, and level. These principles should be fully considered

as the means to achieve the ends specified in the functional purpose level.

Table 13 shows physical parameters and its success criteria condition based

on the FRP. For instance, the pressure of the pressurizer (PZR) has a

success criterion of the RCS pressure control function, i.e., the PZR

pressure should be below 29.5kg/cm2, which is the shutdown operation
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entry condition, and stay within the pressure-temperature curve (P-T

Curve) boundary as shown in Fig. 41.

Accident

Normal Condition
Power : 100%

Temperature : 309˚C

Pressure : 156.2kg/cm2

After Reactor Trip
Power : 0%

Temperature : 260˚C

Pressure : 80kg/cm2

Shutdown Cooling System 
Entry Condition

Power : 0%
Temperature : 170˚C

Pressure : 29.5kg/cm2

Fig. 41. P-T curve boundary and trajectory of the change of the pressure

and temperature

The generalized function represents operation functions that can directly

or indirectly affect the basic principle defined in the abstraction function.

This function can be defined as the systematic process in relation to

physical parameters. For example, PZR level is affected by decompressing

PZR, and pumping and suppling the coolant. These system processes are

related to the purpose of the system in the safety functions.

The physical functions are defined as the components that can achieve

each systematic process, i.e., the generalized function such as pumping and

suppling the coolant. Table 14 shows the components required to supply

coolant to PZR. These components affect in finally satisfying the PZR

level.
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Table 14. Components required to supply coolant to PZR

Component

SI valve, SI pump, Charging valve, Letdown valve, Orifice valve

This study classified these components into continuous control and

discrete control according to the control type. As shown in Table 15, the

components required to reduce pressure and temperature are divided into

two control types. The continuous controls adjust component states to

satisfy specified target values of given parameters, and the rules that

govern the necessary adjustments cannot be described with simple logic,

i.e., cool the temperature within P-T curve adjusting the position of the

steam dump valve. In contrast, a discrete control involves the direct

setting of a target state, i.e., if the pressure is below 97kg/cm2, the RCP

is switched off.

Table 15. Control type of components

Control type Component

Continuous

control

PZR spray valve, SI pump, SI valve, aux feedwater

valve, steam dump valve

Discrete control

PZR heater, charging valve, letdown valve, orifice

valve, aux feedwater pump, main feedwater pump,

reactor coolant pump
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B. Development of Emergency Operation

Algorithm

This study developed an autonomous operation agent for emergency

situations. This algorithm employs a rule-based system and Soft

Actor-Critic (SAC), a kind of DRL. Fig. 42 illustrates the structure of the

proposed algorithm, which consists of 1) discrete control module and 2)

continuous control module.

The discrete control module controls components (discrete control type)

described in Table 15., i.e., the PZR heater, charging valve, letdown valve,

orifice valve, aux feedwater pump, main feedwater pump, and reactor

coolant pump. In addition, the continuous control module adjusts

components (continuous control type) such as the PZR spray valve, aux

feedwater valve, and steam dump valve. In particular, this module focuses

on operational tasks where the procedure does not provide the target

status of components but the goal value of the parameter that should be

achieved by the component, e.g., PZR pressure controlled by the spray.

Although the continuous control includes mostly control valves, some

components that have discrete states may be involved in this control. For

instance, the SI pump and valves with only discrete states are categorized

into the continuous control because those components are used to achieve

the goal of PZR level parameter.
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- Algorithm for Autonomous Emergency Operation -

Rule: IF-THEN

Inference Engine

Nuclear Power Plant

Discrete Control Module (Rule-based System)

Plant Parameters
Discrete Control

Signal

Continuous Control Module (Soft Actor-Critic Agent)

Continuous 
Control Signal

Physical Parameter
(5 Values)

Component State
(12 Values)

Reward Algorithm
(P-T Curve)

DNN
Network

Update network

Fig. 42. Overview of the algorithm to reduce the primary pressure and

temperature during emergency operation

Appropriate methods were selected by considering the characteristics of

each control type in NPPs. A rule-based system was adopted to

implement the discrete control because the specific rules can be developed

from the operating procedures. On the other hand, reinforcement learning

was applied to implement continuous control because it is difficult to

define specific rules, i.e., how much the valve should be opened or closed.

Reinforcement learning is similar to how actual operators learn and gain

experiences in real operations or training for continuous control.

For the continuous control, a SAC-based algorithm and a DNN were

used. Fig. 43 shows the structure of the SAC agent. As a training

algorithm, the SAC was applied. The SAC agent can find the policy to

explore more widely while giving up on clearly unpromising avenues. The
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policy can capture multiple operational paths of near-optimal behavior. The

Q-values can optimize its behavior selected from the policy by considering

the actual and expected rewards [10]. DNN was used to capture an action

that can achieve the operational goal.

- Emergency controller -

DRL controller with SAC algorithm

Q-Network

Type Input parameters

Physical
Parameter
(5 Values)

• PZR pressure
• PZR level
• RCS average temperature
• S/G pressure
• S/G level

Component
State

(12 Values)

• PZR heater
• Charging valve
• Letdown valve
• Orifice valve
• Aux feedwater pump
• Main feedwater pump
• Reactor coolant pump
• PZR spray valve
• SI pump
• SI valve
• Aux feedwater valve
• Steam dump valve

Input
Layer
(17)

Hidden
Layer
(64)

Hidden
Layer
(64)

Output
Layer

(5)

Input
Layer

(17) * 2

Hidden
Layer

(64) * 2

Hidden
Layer

(64) * 2

Output
Layer
(1) * 2

Policy 
Network
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Reward Algorithm

Expected 
reward

Reward

Q-Networks Train

Predicted
actions

Policy Network Train

Target Component Control Output

PZR spray valve • 0% ~ 100%

SI pump • On ~ Off

SI valve • On ~ Off

Aux feedwater valve • 0% ~ 100%

Stem dump valve • 0% ~ 100%

Rule-
based 
system

Target Component Control Output

SI signal On / Off

PZR heater On / Off

Charging valve Open / Close

Letdown valve Open / Close

Aux feedwater pump Start / Stop

Main feedwater pump Start / Stop

Reactor coolant pump Start / Stop

Fig. 43. Structure of SAC agent

In DRLs, the reward is an essential element that updates the weights of

the SAC agent; learning by the agent involves updating the weights of the

network to maximize the accumulative reward. This study suggests a
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reward algorithm to reduce the pressure and temperature of the reactor

and cooling system down to the shutdown cooling system entry condition.

The reward was developed by the success criteria resulting from the

analysis of the operating procedure. The reward was calculated as shown

in Equations. 14 to 17. The SAC agent, who interacts with the simulator

every second, gets a total reward calculated by the equations below based

on the collected power plant's physical parameters. The range of expected

total reward per second is (-inf ~ 0). If the reward is close to zero, it

means that the agent satisfies the success criteria

The SAC agent interacts with simulators until the temperature or

pressure moves outside the P-T curve boundary (operation failure) or the

agent approaches the shutdown cooling entry condition (operation success).

If the interaction is complete, the simulator's condition returns to initial

operating conditions. This process is defined as one episode. Therefore, the

SAC agent is trained through numerous episodes until the cumulative

rewards of episodes converge.

     ×   (14)

 ∣  ∣ (15)

 ∣   ∣ (16)

(17)

Tcooling : Calculated Cooling Temperature

Tstable : Stable Temperature After Reactor Trip (260℃)

Tt : Temperature (time = t [sec])

Pcooling : Pressure of Shutdown Cooling Entry Condition

Pt : Pressure (time = t [sec])

t : Current Time [sec]

ttrip : Reactor Trip Time [sec]

Tdist : Distance between Tt and Tcooling

Pdist : Distance between Pt and Pcooling
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C. Training and Stability

To complete the emergency operation, the SAC agent was trained for

more than 800 episodes. The SAC agent training is stopped when the

average reward becomes saturated stably. Fig. 44 shows the trend of the

rewards that the SAC agent obtained. In one episode, the theoretically

maximum cumulative reward during the entire emergency operation was 0

(the green dashed line in Fig. 44). For a cumulative reward in one episode

to be zero, the SAC agent should get zero as a reward every second.

However, since the pressure cannot be the same as the pressure of

shutdown cooling entry condition at the beginning of the operation, the

maximum cumulative reward should be selected through experimental

observation. The practicably feasible maximum reward for the emergency

operation success was observed to be over -65.

Fig. 44. Reward obtained by the SAC agent
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1. Experiment result

After the proposed algorithm was trained successfully, an experiment

was conducted to demonstrate that the proposed algorithm can

autonomously cool down the reactor in the LOCA scenario and satisfy the

operation constraints, i.e., within the P-T curve boundary with the cooling

rate (55 °C/hour). As shown in Fig. 45, the proposed algorithm can

reduce the pressure and temperature within operational criteria down to

the entry condition of shutdown cooling.

Fig. 45. Simulation results for autonomous emergency operation
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V.Discussion

A. Bubble Creation Operation

This section discusses some interesting findings from this comparison

study. The DRL-tuned PID controller exhibited best performances in terms

of error and time.

Table 16 compares the DRL- and PID-based controllers in terms of the

average deviation error from the target value of the parameters and the

time taken to reach the target value. For the pressurizer pressure and

level, the DRL-tuned PID controller generally exhibited the smallest error

and fastest reaching time than both the ZN-tuned PID controller and the

DRL-based controller.

Table 16. Comparison result of operational performances

Performance
PID-based

controller

DRL-based

controller

Pressurizer

Pressure

Average deviation

error from 27 kg/cm2
±0.3248 kg/cm2 (ZN)

±0.1805 kg/cm2 (DRL)
±0.2816 kg/cm2

Reaching time to 27

kg/cm2
32 minutes (ZN)

10 minutes (DRL)
10 minutes

Pressurizer

Level

Average deviation

error from 50%

±9.56% (ZN)

±6.55% (DRL)
±8.79%

Reaching time to 50%
+ 144 minutes (ZN)

+ 38 minutes (DRL)
+ 93 minutes
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Although PID-based controllers are dedicated to one component,

DRL-based controllers manage the parameters and control multiple

components simultaneously. To control the pressurizer pressure to the

desired value, three PID-based controllers were designed for three

components: the charging valve, letdown valve, and spray. The controllers

opened these values and the spray simultaneously to reduce pressure, as

shown in Fig 46. On the other hand, two DRL-based controllers were

developed for the control of pressure, not the control of components.

Thus, the DRL-based controllers manipulate the three components in an

interactive manner. For instance, as shown in Fig 46, the DRL-based

controllers closed the letdown value at approximately 260 min and instead

maintained the charging valve closed, while the PID-based controllers

consistently opened these valves at the same time.
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(a) Posistion of letdown valve

(b) Posistion of spray valve

(c) Posistion of charging valve

Fig. 46. Positions of charging, spray, and letdown valve

PID-based controllers manipulate components more frequently than

DRL-based controllers. Fig 47 shows a comparison of the number of

manipulations for the three components. As shown in the figure,

PID-based controllers control the components more frequently than

DRL-based controllers. This may be related to the second finding described

above. DRL-based controllers work interactively and can satisfy the

operational goal with fewer manipulations.
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Less frequent manipulation is desirable in NPPs. First, frequent

manipulation is likely to lead to component failures. From the perspective

of probabilistic safety assessment, once a component starts to work (e.g.,

open/close or start/stop)., the probability of failing to work increases.

Second, frequent manipulation accelerates the aging or fatigue of

components. Thus, the replacement period is shortened because of aging.

(a) Accumulated control of letdown valve

(b) Accumulated control of spray valve

(c) Accumulated control of charging valve

Fig. 47. Total manipulation of letdown/spray/charging valve during cold

shutdown operation
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B. Power Increase Operation

The experimental results demonstrated that the proposed algorithm

successfully controlled the components to increase the reactor power and

generate electrical power at the intended rate of power increase. The

performance of this algorithm was also compared with that of the

established operation strategy. According to Fig. 48, the proposed

algorithm had a pattern of operation that was nearly identical to that of

the established operational strategy. Therefore, it is concluded that the

proposed algorithm, which combines a rule-based system and

reinforcement learning, can successfully control the complicated

power-increase operation.

In this algorithm, the discrete control module operated the synchronizer

controller, turbine controller, main feedwater pump, and condenser pump

according to the operational steps that are clearly stated in the GOPs.

The continuous control module adjusted the valves to manage the boron

concentration and manipulated the rod controller. The continuous control

module can provide experiential control of these inputs, thereby gradually

affecting the power increase, based on the parameter trends, the

predetermined rate of power increase, and the current operational

boundaries. In addition, the results demonstrate that the continuous control

module effectively managed the boron concentration such that the

difference between the average temperature and the reference temperature

was maintained within ± 1 ℃. Since this rule is not mandated in the

GOPs, the control module allowed average temperatures that were outside

the mismatch boundary.
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However, based on interviews with senior operators who work at the

reference plant, this restriction can be satisfied after the reactor power

reaches 30%; in the earlier stages of the power-increase operation, the

start-up of large components results in system disturbances that complicate

temperature control. Therefore, these results demonstrate that the A3C

agent in the continuous control module can effectively conduct

experience-based control after training with the simulator and the discrete

control module can control components according to rules that are based

on the operating procedures.
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[ Timeline for increasing the reactor power  
from 2% to 100% ]

[ Experimental result of the power increase at 3%/h ]
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Fig. 48. Comparison between the existing operational strategy and the

simulation results
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Several aspects should be further considered regarding the practical

application of this algorithm:

1) Since the power-increase operation is only a small part of the overall

plant operation, to cover the entire plant operation, the proposed reward

algorithm should be changed according to the operation objectives,

strategies, operational methods, and required procedural steps for each

operating range. Moreover, the AI agent should be capable of selecting

and controlling an operating strategy based on the context.

2) To further improve the safety of NPPs, an AI agent requires

additional functions (e.g., fault detection, diagnosis, forecasting the status

of the plant, identifying the possible control options, and recommending

the best option) to address emergency, abnormal, and normal situations.

3) The signal noise in a plant should be an additional consideration;

signals in NPPs contain noise, while the simulator does not. Therefore, a

technique that can mitigate the signal noise, e.g., signal validation or noise

tolerance, must be developed.

4) Another issue is the differences in behavior between the simulator

model and actual power plants, which mandates a thorough validation of

the practical application.
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C. Emergency Operation

Licensing is one of the unsolved issues for the DRL-based controllers.

The application of NPPs requires proven technologies. In particular, for

safety-critical systems, controllers need to be approved by regulations.

PID-based controllers have been acknowledged as a proven technology,

because they have been used in NPPs for decades. However, it is common

knowledge that AI technologies have not been sufficiently proven.

Therefore, solving the licensing issue is the largest problem for applying

DRL-based controllers to NPPs.

Even though the licensing issue is beyond the scope of this study, it is

worth investigating some approaches to proving AI. The first is the use of

an explainable AI called XAI. XAI can show how the AI produces the

result and makes the AI closer to a whitebox. The second is the

application of the software development process. The software used in the

safety-critical system of NPPs should follow a very strict development

process recommended by various standards, such as IEEE Standards 1012

[79] and 7-4.3.2 [80]. Because AI-based controllers can also be regarded as

software, they are considered to apply the software development process

to them.
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VI. Conclusion

This study developed a intelligent controller for an autonomous

operation in NPPs during start-up and emergency. The controller was

focused on conducting high-level operations that are similarly performed

to the current operation strategy. To manipulate components similarly to

operators, controllers currently aimed to automate manual controls.

First, this study compares the performance of DRL- and PID-based

controllers in the cold shutdown operation of NPPs. This study conducted

a task analysis for the bubble creation operation based on the operating

procedures. Subsequently, PID- and DRL-based controllers were developed

to satisfy the operational goal of the operation. The PID-based controllers

were tuned by using the Ziegler-Nichols and DRD-based tuning method.

This study compared the performances of the controllers. In general, the

DRL-tuned PID controller exhibited the smallest error and fastest reaching

time than both the ZN-tuned PID controller and the DRL-based controller.

Finally, we presented some interesting findings.

Second, this study proposed an algorithm for the power-increase

operation. The power increase algorithm was also designed through an

analysis of the current operational strategy, which considered the operation

staffing and operating procedures. To train the continuous control, the

proposed algorithm used an A3C agent and an LSTM network and

applied a rule-based system for the discrete control components. The CNS

was used to determine whether the proposed algorithm could effectively

and autonomously control the power-increase operation at a 3%/h rate of

power increase. Based on the simulation results, the power increase
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algorithm was proven capable of identifying an acceptable operation path

for increasing the reactor power from 2% to 100% at a specified rate of

power increase.

Third, this study proposed an algorithm for an autonomous emergency

operation that uses AI techniques. The emergency operation algorithm was

developed through a domain analysis based on the FRPs using ADS. The

proposed algorithm used a SAC agent and a DNN network for the

continuous control and applied a rule-based system for the discrete

control. A compact nuclear simulator was used to train and test the

algorithm. Based on the simulation results, this algorithm reached the

shutdown operation entry condition, according to the cooling rate (55

°C/hour).

These three studies was shown that the validation results showed that

the autonomous operation algorithm can mange the NPPs according to

given operational goals. The suggested approach seems to be applicable to

other operational modes in NPPs, if the reward algorithm is adjusted

according to the operation objectives, strategies, methods, and required

procedure steps for each operating range.

Future studies may suggest developing an agent that can select and

control a contextual operating strategy, either in the entire operation range

or in part. Future studies may also consider emergency as well as

abnormal situations during power-increasing operation. More so, to realize

a fully automated NPP, an autonomous control system should be capable

of: automatic operation of the NPP, fault detection, diagnosis (identifying

the causes of component failures or incidents), simulation, forecasting the

status of the plant, identifying the possible control options, and

recommending the best option for optimizing the plant performance. This
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autonomous control is expected to be a key technology in small modular

reactors that are under development.
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