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Abstract

Development of Autonomous Operation Algorithm
using Deep Reinforcement Learning

for Start-up/Emergency in NPPs

Daeil Lee
Advisor : Prof. Jonghyun Kim, Ph.D.
Department of Nuclear Engineering

Graduate School of Chosun University

With the improvement of computer performance and the emergence of
cutting—edge artificial intelligence (AI) algorithms, an autonomous
operation based on Al is being applied to many industries. An autonomous
algorithm 1s a higher-level concept than conventional automatic operation
in nuclear power plants (NPPs). In order to achieve autonomous operation,
the autonomous algorithm needs to include superior functions to monitor,
control and diagnose automated subsystems. This study develops an
intelligent controller for an autonomous operation in NPPs during start-up
and emergency. The controller i1s focused on conducting high-level
operations that are similarly performed to the current operation strategy.
To manipulate components similarly to operators, controllers currently aim
to automate manual controls. To achieve the design goal, the intelligent
controller applies a deep reinforcement learning method. The design of the
Deep Reinforcement Learning (DRL)-based controllers considers the
current operational strategy, 1.e., existing systems, operating procedures,
and staffing. The controllers are applied to a reference NPP, a

Westinghouse 990 megawatts electric, three-loop pressurized water reactor.
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In start-up and emergency operation, the validation results showed that
the autonomous operation algorithm can mange the NPPs according to

given operational goals.

- viii -
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I. Introduction

A. Background

Nuclear power plants (NPPs) use highly automated controllers to reduce
probability of accident risk and increase availability [1, 2]. In addition,
digitalized controllers help process large amounts of data, improve system
reliability, automate periodic tests, perform diagnosis, and increase
operation capability [3]. Regulatory bodies for NPPs require that safety
systems must be designed to be consisted as a high level of automation to
protect public safety. This is because, in the event of an abnormal
situation, these safety systems operate stably and quickly to ensure the
safety of the public. Even if these safety systems are well designed, the
operator must intervene if the system does not work under unexpected

conditions [4].

Typical operations (i.e., Start-up/shutdown operation or emergency
operation) in NPPs largely rely on the operator’s manual controls, whereas
the full power operation is highly automated. Thus, these operations are

known to be error-prone for the following reasons [5, 6]:

* There are many operator’s tasks that are need decision-making, such
as establishing a operational strategy and planning operational goals
according to guidelines from the operating procedures.

* Operator's many manipulations due to a wide range of tests,
maintenance, and monitoring parameters to prevent accident or

abnormal situations
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e Control of components that may be disable automatic systems and
safety functions

e Incomplete or insufficient operational steps in which only operational
goals are described detailed procedural information about the

operator’s actions

These scenarios may cause the operator’s stress or bring about the
possibility that the operators may task the wrong manipulations. In
addition, these operations with a high proportion of manual actions may
be highly prone to human errors due to increased operator’s workload [5,
79]. Therefore, automation of operations collaborated with operator’s
manipulation and automatic control would be expected to be lowered this

operator’s burden.

Typical approaches to automatic controllers in current NPPs include
proportional-integral-differential (PID) controller, field-programmable gate
array (FPGA), as well as programmable logic controller (PLC) [10-13]. For
safety systems, the PLC is generally used to automatically act as a fast
and reliable response to prevent malfunctions from propagating into major
accidents. For non-safety systems, PID controllers or controllers that
combine two out of three types of controllers (e.g., proportional-integral
controllers) are the most popular among the existing NPPs. These

controllers generally aim to stabilize a system within a defined range.

To tune the PID controller, traditional tuning methods have been
applied, such as Ziegler-Nichols (ZN) [14], Cohen-Coon [15], and Astrom
and Hagglund [16]. However, traditional methods still need re-tuning
before being applied to industrial processes because the methods may

cause frequent oscillations, large overshoot, and delayed settling time for
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higher-order systems [17]. An intelligent tuning method has been proposed
to improve the capabilities of the existing PID parameter tuning
techniques. A Harris hawks optimization (HHO) algorithm, which is
suggested by Davut Izci et al, can find the optimal parameters of a PID
controller installed on an aircraft pitch control system [18]. Optimization
algorithms are suggested for DC motor control. In [19], an atom search
optimization algorithm was improved by using simulated annealing (SA).
Mahmud Iwan Solihin et al. compared the performance of tuning
algorithms between particle swarm optimization and ZN [20]. Ignacio
Carlucho et al. developed a multiple PID controllers with Deep
Reinforcement Learning (DRL) algorithm that can adapt to changes in a

mobile robot [21].

Some studies suggest an automatic operation algorithm by applying
knowledge-based method. Sekimizu et al. [22] suggested an automatic
algorithm for start-up operation. This algorithm can execute sequential
controls following operation procedures according to if-then rules. In [22],
knowledge-based method is applied to develop an automatic start-up
intelligent control system (ASICS). At a pressurized water reactor
simulator, ASICS controlled the components to reach the 2% reactor power

state from the cold shutdown condition.

These studies shown the knowledge-based system that have powerfully
robustness when the if-then logics are clearly defined. However, there are
still some limitations in automating the operation process of NPPs. First,
many operational tasks are difficult to change into clear if-then rule. This
means that some operating steps are not specific enough to be executed
using if-then rules. For example, an operating step would instruct the

operator to manage the control rods to increase the power to 20% without
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detailed explanation such as how many steps are moved. Second, since the
knowledge-based system is composed of linear functions (if-then rules), it
is hard to handle flexible operations and changes in operating objectives,
which are provided as the non-linear function. Therefore, applying artificial
intelligence (AI) method may be a one way for design of an algorithm for

autonomous operations in NPPs.

Recently, controllers applying artificial intelligence (AI) techniques have
been studied in several industrial fields [23]. Since the 2000s, deep-learning
techniques have drawn attention for several reasons: increasing computing
power, increasing data size, and advances in deep-learning research [24,
25]. Among them, DRL is a trending approach because it has a training
process that is very similar human’s training mechanism. A DRL-based
controller learns using its own experiences collected via trial-and-error,
similar to humans. In addition, this DRL-based controller can perform
tasks that classical controllers cannot perform, such as determining an
operation strategy, planning sequential controls, making decisions according
to current plant conditions, and finding optimal paths. Consequently,
several DRL-based controllers have been suggested in robotics [10, 26],
smart building [23, 27], power management [28-31], autonomous vehicles
[11-13, 32, 33], railway industry [34], wind turbine [35], traffic signal [36],

and nuclear power plants [37, 38].

These advantages in Al technologies have led to increased interest in the
development of intelligent controllers to extend the automation capabilities
of NPPs. Various Al-based methods are suggested for tunning process of
PID controllers. PID controllers are typically applied in NPPs [39-41].
Bowen et al. developed a two-level hierarchical controller combined with a

neural-network-based PID controller and a fuzzy controller. This
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hierarchical controller applied a multiunit small modular reactor [42].
Upadhyaya et al. suggested an autonomous operation system for a space
reactor by applying a PID controller. To get the gains in PID controller,
this study used the genetic algorithm [43]. Several studies have proposed
Al-based applications to operate NPPs. Na et al. proposed a neuro-fuzzy
controller to control the power distribution without any residual flux
oscillations between the upper and lower halves of the reactor core [44].
In [45], an adaptive fuzzy controller was suggested to track reactor power
in a research nuclear reactor. The suggested controller demonstrated good
performance that can reduce the rise time than the PID controller.
Arab-Alibeik and Setayeshi developed a neural adaptive inverse controller
that can control the reactor power of a PWR type. After simulating the
inverse dynamics of the nuclear reactor by a the multilayer neural
networks, it was utilized as a controller [46]. In [47] and [48], a fuzzy-PID
composite controller that directly switches between a fuzzy controller and
a PID controller is proposed and utilized for reactor power operation of a

molten salt reactor.
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B. Motivation

Al-based controllers have been developed in several studies, they are not
applied to NPPs at a practical level. This is mainly because Al-based
controllers do not sufficiently prove their performance to guarantee
robustness and correctness and solve regulatory issues, such as the
transparency of the algorithm. However, it is very likely that the Al-based
controller implemented as part of autonomous reactor controls will be an
important aspect of small modular reactors and microreactors that can be
operated remotely by an offsite operations crew [49].

Therefore, the use of controllers based on more advanced Al may be an
alternative to developing algorithms for autonomous operation of NPPs.
Furthermore, the broader application of Al technology should be

considered for autonomous control in NPPs [50].
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C. Goal of Study

This study aims at developing a DRL-based controller for an
autonomous operation in NPPs during start-up and emergency. The
controller is focused on conducting high-level operations that are similarly
performed to the current operation strategy. To manipulate components
similarly to operators, controllers currently aim to automate manual
controls. Developed DRL-based controller is designed to handle the
procedure-based operation (as knowledge-based system) and the operator’s
experienced-based operation (as DRL-based controller). The scope of this
study is the work of an operator using a manual controller rather than an

existing automatic controller as illustrated in Fig. 1.

Plant information

» Operator

Operator’s action

A 4
e Manual controller
Controller (On/off button, Increase/Decrease button)
information

Manual control signal

Automatic controller
(PID, Fuzzy, If-then logic)

Automatic
control signal

Nuclear power plant

)

1
U S
N mcmm e ommama

Fig. 1. Scope of the autonomous operation algorithm
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D. Outline of Study

After the introduction, this paper describes the main concepts of
reinforcement learning and then introduce representative DRL methods. In
Chapter 2, among many DRL techniques, the techniques used in this
study are mainly introduced. It will be helpful to wunderstand the
controller based on the DRL developed in Chapter 3 and 4. The
DRL-controllers designed in Chapter 3 and 4 are considered the current
operational strategy, i.e., existing systems, operating procedures, and
staffing. Then, developed controllers are trained and demonstrated by
using a compact nuclear simulator (CNS). In Chapter 3, DRL-controllers
are developed for the normal operation. For normal operation, two
DRL-controllers are proposed for the power-increase and bubble creation
operation. In Chapter 4, this study designed a DRL-controller for the
emergency operation. The controller shows the autonomous operation to
reach the shutdown operation entry condition while keep the cooling rate
(85 °C/hour), which is one of the required operational rules in the
technical specification procedures. Then, this study discusses performance
and limitations of developed DRL-controllers in Chapter 5. Last chapter is

conclusion.
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II. Methodology

A. Background of Reinforcement Learning

Reinforcement learning (RL) is a method for training an agent through
its interaction with the environment [10], [49]-[51]. The agent interacts with
the environment in a series of independent episodes, each of which
comprises a sequence of turns. One episode consists of several discrete
time steps, t=0,1,2,3:-. At each time step (t), the agent receives a state (s,)
from the environment. Then, the agent selects an action (a,) from a set of
possible actions based on its policy (w). The policy is a mapping from
states (s;) to actions. The environment provides the next state (s;;;) and a
reward (r;) for the action (a,) of the agent. Through this interaction with
the environment, the agent is trained to maximize the returned reward
that is associated with the specified state (s,) from the environment.
Through this trial-and-error process, the agent determines the optimum

policy for realizing the specified operational objective.

1. Background of Deep Reinforcement Learning

Using a controller with RL provides the possibility of finding an optimal
policy, which includes solving the given problem or achieving operational
goals in the sequential decision-making of the current state collected from
the environment. One of the challenges in RL is finding an optimized
policy function to obtain the maximum reward for all given states.
Determining an optimized policy function may take a long time. To
resolve this issue, recent studies have suggested using a neural network as
an optimized policy function of the RL owing to the increased computing

power and an improved method called the deep neural network.
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Therefore, typical DRL algorithms combines RL and deep neural network

models, to find the optimal policy.

First, this paper reviews of previous studies related to the use of DRL
for the development and application to advanced control systems. Based
on the summarized review, advantages of DRL-based controller are

identified.

DRL, which is a method for training deep neural networks, provides a
mechanism via Al agents that can optimize their control of an
environment to realize a specified objective [10]-[13]. The interaction
process between the Al agent and the environment can be represented by
a closed-loop, which is very similar to the process of human learning [14],
[15]. As a result, an Al agent can also develop its own experiences
through trial-and-error, as humans do [16] and can perform tasks that a
classic controller cannot do. Such actions may include selecting an
operation strategy, operating nonlinear systems, making decisions based on

current conditions, and optimizing operations [17]-[20].

Due to these characteristics of DRL, DRL is now an essential technology
for the development of Al agents and is being used in many industries.
Moreover, DRL is becoming a trend in advanced control systems due to
increased safety and efficiency [21]. In the power system field, Suyang
Zhou et al. [22] proposed an Al agent that was based on DRL for
handling various operating scenarios for the economic dispatch of a
combined heat and power system. In an application to wind turbines [23],
DRL has been shown to overcome one of the most important
disadvantages of the conventional control strategies, which is the tuning of

control parameters and lowering fatigue. In energy management, Esmat

_10_
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Samadi et al. proposed the use of decentralized multiagent systems
(MASs) for integrated grid-connected microgrids. MASs with DRL have
shown not only flexible management while considering customer
consumption but also a reduced operating cost [24]. Hussain Kazmi et al.
optimized the energy efficiency of hot water production by using a DRL
controller, which could reduce the energy consumption by almost 20% for
a set of 32 Dutch houses [25]. Tianshu Wei et al. also significantly
reduced the energy cost of an HVAC (heating, ventilation, and air
conditioning) system by using DRL instead of rule-based and model-based
strategies [26]. In another study [27], DRL was adopted in urban rail
transit to effectively improve energy management compared to the genetic

algorithms and to provide dynamic programing.

The advantages of DRL for the development and application of
advanced control systems through these research trends are briefly

summarized as follows:

e Performance improvement compared to conventional control
strategies (e.g., reducing operating costs, reducing failures, and
increasing energy efficiency);

* Increased flexibility by adaptable control according to demand and
change in practice;

* Optimal control to achieve the required goals.

_11_
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B. Deep Reinforcement Learning Method

This section introduces the deep Q-learning network (DQN) that is well
known as the basic methodology of DRL. Then, this section describes the

training architecture and process for the DRL method used in this study.

1. Deep Q-learning Network (DQN)

DON is an algorithm that combines deep learning methodology with
Q-learning that is a kind of reinforcement learning. Q-learning aims to
find optimal Q-values to achieve given goal. The Q-learning algorithm
generates a Q-table in which states and Q-values are mapped. The
Q-learning has the limitation that it is difficult to map the Q-values into a
table for all states. To solve this problem, DQN computes Q-values by
approximating states using deep neural networks. Google DeepMind has
developed a DQN agent that can recognize information from the
environment (game) and take action to get the highest score in the current
state. The DQN agent trained through thousands of trial-and-errors and
scored higher than human players in Atari games. In addition, the DON
agent showed that human-level manipulation is possible if the input
values and rewards are properly designed, even if the domain is changed

through training and verification in various Atari games.

2. Asynchronous Advantage Actor-Critic (A3C)

This study utilizes Asynchronous Advantage Actor-Critic (A3C), which is
a type of DRL method, to reduce the agent training time for the
continuous control module. Although DON is a well-known basic model
of DRL, slow training speed and biased actions are problematic. To

address these issues, A3C utilizes parallel actor-learners that are based on

_12_
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the central processing unit's (CPU’s) multiple threads and the

asynchronous network update, while DQN utilizes one agent on one CPU.

Fig. 2 illustrates the A3C and DQN training algorithms. A3C replaces
the experience memory with the local network memory to reduce the
interactions between the collected training datasets. In addition, A3C
utilizes multiple agents in the multiple simulations for training an agent
that has a local neural network [51]. In A3C, each local network
asynchronously updates the main network at regular intervals. In this
asynchronous approach, after collecting a short memory (which is called a
mini-batch) of data points, each of the local networks computes gradients
and uses them to update the weights [52]. This update process increases
the training speed by providing training datasets that consist of pairs of
various actions that correspond to similar states. As illustrated in Fig. 3,
the A3C agent updates the network’s weights more frequently than the
DON agent.

DQN Training Algorithm A3C Training Algorithm

peemececeacaa: Tra\'m’ng................

-1 Main Network /& C Main Network )
A AsynchonousA

Action B . H
| few g b
Experience E Local Local

Replay Memory i| Network | @ @/ Network

(1) (N)

Action Monitoring Action Monitoiing
Monito1ing

Enviro nment Environment Environment
(1) (N)

Fig. 2. DON and A3C training algorithms

_13_
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| : Algorithm
| Local Network (n) Local agent (n) > Local agent (n)
|
;
i Man | Man Main Man |_ Man
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i
e g OSSP
i
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t Main Network Agent Network Agent Nework
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i
|

Fig. 3. Agent’s weight update process
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3. Soft actor critic (SAC) with distributed prioritized
experience replay (DPER)

This study utilized SAC to improve the training stability of a DRL-based
controller using an long short-term memory (LSTM) network model. The
SAC was suggested to compensate for the deep Q-learning network
(DQN), which is a basic model of the DRL. The drawback of the DQN is
biased actions caused by predictions that rely on a single neural network.
One network in the DQN predicts actions mixed with evaluations based

on action probability and estimated reward.

DQN Algorithm 1 SAC Algorithm
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P R B B Sty O-
sampling data P
(S, R, A, NextS) \’o
w0 | | |+ 0 Q-Network |o-----
L etvort)o—
________________ ’d
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] [ ] L [ |
v Policy D
) ) Network
Measured state (S)  Predicted action (A) (] []

>
} { Measured state (S) Predicted action (A)
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Fig. 4. Training algorithm of DQN (left) and SAC (right)
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In contrast, SAC uses an actor-critic architecture with a separate value
(Q-network) and policy network, as shown in Fig. 4. Q-networks calculate
the expected rewards for an action taken in the current state. Then, the
policy network predicts each action probability based on the expected
reward and the current state. For training stability, SAC wuses two
Q-networks consisting of an online network and a target network. The
target network update is delayed when updating the online network
parameters over many iterations [10]. While updating online network
parameters over many iterations, the target network parameters perform
delayed updates from the online network at regular intervals, which helps

reduce biased training.

Moreover, to reduce the training time, this study also adopted a
distributed training architecture with distributed prioritized experience
replay (DPER), a type of experience replay buffer, as shown in Fig. 5. In
this architecture, the main network is trained with data collected from
multiple simulations using a local neural network. Each local network
contains only a policy network that regularly distributes training from the

main policy network.

DPER was utilized to collect data simulated from local networks and
improve the efficiency of the sampled data when the main network was
trained [53]. DPER enables the DRL controller to remember and reuse
experiences from the past, where observed transitions are stored for some
time, usually in a queue, and sampled uniformly from this memory to
update the network. For example, DQN training relies on randomly
selected samples from the replay buffer. In contrast to the basic experience
replay buffer, the DPER can sample data that are more frequently

replayed transitions with high expected learning progress, as measured by
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the magnitude of their temporal difference (TD) error. TD error is the
difference between the expected and actual rewards. Consequently, the

main network learns by sampling data with higher stochastic priorities.

SAC Algorithm with DPER

———————————————————————————————————————————————————

Rearrangé by stochastic
prioritization

Replay Buffer |.... Traning . >
(Distributed Prioritized data
Experience Replay) sampling
(]
=N
Measured state (S) ,
ESU?a,f.ed rev;/'ard (E) Update main policy
rediction action (A) network’s weights
v . v
Local Network 1 Local Network N
»{ Reward Estimator ) —»{ Reward Estimator )
[ X X J

n O (J—
R Policy "\ I Policy |
I Network Ntwok
O O

{ Environment 1 )¢ { Environment N )¢

Fig. 5. Training algorithm of SAC with DPER
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ITII. Normal Operation

Current NPP operating strategies were considered in the development of
DRL-controllers for cold shutdown operations and increasing the reactor
power from 2% to 100% autonomously. This study analyzed the operating
procedures and the operator’'s tasks during the start-up operation of a
reference plant, namely, a Westinghouse 900 MWe PWR. The analysis
identified the operator’s major tasks, and the tasks were categorized into
automatic and manual actions. The manual actions were further divided

into discrete and continuous actions.

A. Overview

The operation for increasing power from 2% to 100% is the part of the
start-up operation that increases the temperature and power to the normal
conditions for generating electricity after reactor refueling or shutdown.
During the start-up operation, the operators follow general operating
procedures (GOPs) for controlling systems and components. The cold
shutdown operation is included in the GOPs, which provide instructions
to start up the reactor and increase its power after refueling. A
Westinghouse-900 MW PWR was used as the reference plant in the task

analysis. The reference plant had six GOPs, as listed below [22, 54]:

. Reactor coolant system filling and venting
. Cold shutdown to hot shutdown
. Hot shutdown to hot standby
. Hot standby to 2% reactor power
. Power operation at than 2% power
. Secondary systems heat-up and startup
- 18 -
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Fig. 6 shows the trend of the important parameters in the startup
operation along with the relevant procedures. These parameters provide
milestones for operators to achieve successful start-up operations. The

target operations, i.e., the focus of this study, is in the gray area in Fig. 6.

Reactor
X coolant Secondary system heatup and start-up procedure
Operating system
procedure filling and Cold shutdown Hot shutdown to Hot standby to Power operation

venting to hot shutdown hot standby 2% reactor at 2% power
procedure procedure procedure power procedure procedure

[ Operation state [ Cold shutdown [ Hot shutdown E [ Hot standby

Power operation

operation operation operation
100%
Pressurizer \
Level 50% \ /
30%
Reacton 157kg/cm? I
Coolant /
Pressure 27kg/cm? P
Reactor 308 °C
Coolant 176 °C /
Temperature 60 °C
Steam 100%
Generator |
Level 50% T ——
Steam 77.6kg/cm?
Generator —
Pressure 1kg/cm
%
Reactor 100%
Power 2% o
0% A

Fig. 6. Significant parameters of the startup operation
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B. Bubble Creation Operation

This study compares the performances of DRL and PID controllers in
the cold shutdown operation of NPPs. First, this study analyzes the GOPs
of the bubble creation operation, which is part of the cold shutdown
operation. It identifies the operational goals and manual controls by
operators, and defines the inputs and outputs for the automatic controllers.
Subsequently, a DRL-based controller is developed by combining a
rule-based system, LSTM, and soft actor critic (SAC). Then, a PID
controller was developed using the Ziegler-Nichols and DRL-based tuning
methods. Finally, the performances of both controllers were compared and

discussed.

1. Overview of Cold Shutdown Operation

The cold shutdown procedure provides instructions for heating the plant
from the cold shutdown condition to the hot shutdown condition (Tavg <
176.7 °C, Keff < 0.99). This operation allows the components to increase
the temperature of the primary system by maintaining pressure in the
pressurizer. The goal of the cold shutdown operation is to create bubbles
in the pressurizer, that is, the bubble creation operation, and then to

control the pressure and level of the pressurizer.

Fig. 7 shows a simplified schematic of the components related to cold
shutdown operation. The initial and final conditions of the operation of

the plant variables are shown in Table 1.
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Fig. 7. Simplified

schematic of related components

Table 1. Initial and final conditions of the cold shutdown operation
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Major parameter Initial condition Final condition
Pressurizer pressure 27 kg/cm? 27 kg/cm?
Pressurizer temperature 84 °C 210 °C
Average temperature 81 °C 176 °C
Pressurizer level 100% 50%
Back-up heater Oft On
Proportional heater 0% 100%
Letdown valve 0% »40%
Pressurizer spray valve 0% »30%
Charging valve 0% »60%
~ 21 -




The first step of the cold shutdown operation is to heat the coolant in
the primary system by turning on all the pressurizer heaters (e.g., back-up
and proportional heaters) and starting the reactor coolant pump. This leads
to an increase in the temperature of the primary system and pressure
inside the pressurizer. The pressure of the primary system, that is, the
reactor coolant system (RCS), should be maintained between 25 kg/cm?
and 29 kg/cm’ despite the increase in the pressurizer temperature. Thus,
the increase in pressure can be prevented by opening a letdown valve that
handles the letdown flow rate from the RCS to a residual heat removal
system (RHR). When the pressurizer temperature reached the saturation
point of approximately 200 °C, its level decreased. A space filled with
saturated steam was created on top of the pressurizer, allowing pressure
to be controlled through the pressurizer spray. Subsequently, the level
inside the pressurizer was maintained at 50% by adjusting the charging
flow rate. It is known that this operation normally requires 8 h for actual

NPPs.

2. Task Analysis of Cold Shutdown Operation

Task analysis identifies the objective of each operator action and defines
the inputs and outputs of the actions to design the controllers. Table 2
presents the results of the task analysis of the operating procedure. The
step numbers and tasks are the step numbers and instructions described in
the procedure, respectively. Subsequently, task types are classified into
control or check tasks. If the task type was "control," the task included
action(s) on a component. The task type "check" is to check or monitor
plant states without performing any action on components. The inputs and
outputs of each task are then defined. The information necessary to design

the controllers is then extracted by focusing on the task type of the
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control. Finally, four tasks were selected for implementation using the

control algorithm, as listed in Table 3.

Control tasks were also classified as discrete or continuous controls.
Discrete control has two separate states: "on or off' or "fully open or
closed." For example, the task "controlling the proportional heater" in Table
3 is an example of discrete control because the heater only has two states:
on or off. In contrast, continuous control adjusts the state of the
component to satisfy the specific value of the parameters. In the cold
shutdown operation, controlling the charging valve, letdown valve (RHR to
CVCS flow), and spray valve belong to the category of continuous control
because the positions of those valves are adjusted between 0% and 100%

to maintain the specified RCS pressure.
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Table 2. Task analysis result for cold shutdown operation

Step Task
Task
Number Type
Cold shutdown operation should be completed
1 Check
within 8 hours.
The pressurizer pressure should be maintained
2 between 25 kg/cm® and 29 kg/cm® during cold | Check
shutdown operation.
The RHR system should be isolated from RCS
3 before the pressurizer temperature reaches 200 °C | Check
or its pressure reaches 30 kg/cm’.
The reactor coolant loops and the pressurizer are
4 Check
filled and vented.
The reactor coolant boron concentration is greater
5 than or equal to that of the cold-shutdown | Check
condition.
The residual heat removal (RHR) system is served
6 with all loop isolation valves open and one | Check
operational RHR.
7 Close main steam isolation valves. Check
Close steam generator (S/G) power operated relief
8 Check
valves.
9 The makeup control system is in Auto mode. Check

_24_
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Table 3. Simplified operational task for cold shutdown operation

Control .
Task Input Output Constraints
Type
Put back-up Back-up Back-up
heater from heater heater
Off to ON. state control
Increase the Discrete
power of Proportio | Proportion control
proportional | nal heater | al heater
heater from state control
0% to 100%.
1) Maintain RCS
Adjust letdown
lve (RHR to pressure between
valve ( Letdown 26 kg/ cm? and
CVCS flow) RCS 2
valve 28 kg/cm”.
within the pressure,
RCS control
presstre 2) Maintain
boundary. )
pressurizer level
usti t 50%.
Adjusting Continuous 2
spray valve Letdown Spray control
within the valve
valve
RCS pressure control
boundary.
Adjust
charging valve Charging
to maintain position valve
pressurizer control
level.
— 25 —
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3. Development of a DRL-based Controller

This section introduces the development of a DRL-based controller to
create bubbles for the pressurizer and then controls the pressurizer
pressure and level during the cold shutdown operation. The DRL-based
controller comprises two DRL controllers and a rule-based controller, as
shown in Fig. 8. The rule-based controller performed the discrete controls
listed in Table 4. As a result of the task analysis, if specific rules, that is,
if-then logic, can be defined, the rule-based controller is applied, as shown
in Table 4. Therefore, the back-up heaters and proportional heaters are

controlled using a rule-based controller.

DRL controllers perform continuous control, for which it is difficult to
define specific rules, for example, how much a valve should be open to
maintain the pressure. DRL controllers are divided into pressure and level
controllers, as shown in Table 3. As shown in Table 4, the pressure DRL
controller aims to maintain the pressure by adjusting the letdown and
spray valve, whereas the level DRL controller adjusts the charging valve
to maintain the pressure level at 50%. DRL controllers use an LSTM
network trained using the SAC learning algorithm. The LSTM is known to
show a good performance in handling time-related, dynamic data. In
addition, the authors’ previous studies also showed that the LSTM could
support well the operation of nuclear systems and the diagnosis of events

[54-57].
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« Plant parameters
- Pressurizer pressure
- Pressurizer level
- Letdown valve position
- Spray valve position
- Charging valve position
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- Specified pressureand level
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DRL Level g (t)
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Heater States
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Fig. 8. DRL-based controller block diagram

Table 4. Controller tasks for cold shutdown operation

Task type | Controller Action
If the back-up heater state is “Off,” push
“On” button.
Discrete | Rule-based
control controller
If the proportional heater power is 0% or
below 100%, increase the power to 100%.
Maintain the pressurizer pressure between 26
kg/cm2and 28 kg/cm2by adjusting letdown
Pressure valve.
DRL If the pressurizer temperature reaches the
Continuous | controller | saturation point of about 200 °C, maintain
control the  pressurizer  pressure  between 26
kg/cm2and 28 kg/cm2by adjusting the spray
valve.
Level DRL | Adjust the charging valve to maintain the
controller | pressurizer level at 50%
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a. Design of reward algorithm

This section presents the reward algorithm for the DRL-based controllers.
In DRLs, the reward is an essential element used to update the weights of
the neural networks. A reward algorithm was used to evaluate the actions
predicted by a network and provide guidance for updating the weights of
the neural network [58, 59]. DRL-based controllers obtain rewards by
evaluating the actions performed within given states. Thus, the reward
algorithm evaluates the performed action under the given state and creates

training datasets that consist of pairs of states, actions, and rewards.

Two reward algorithms for the level and pressure controllers were
suggested to reflect the operational constraints identified in Table 3.
Reward algorithms aim to minimize the distance from the current state to
the desired state, for example, the midpoint of the pressure boundary or

the specified pressurizer level.

As the level controller does not operate until the saturation point is
reached, the level-reward algorithm provides a reward when the level
controller starts control. As shown in Fig. 9, the reward value is defined
as the difference between the current pressurizer level and desired level
(50%), as shown in Equation (1). The pressure level in the pressurizer was
varied between 0% and 100%. To provide a reward range between 0 and
1, the scaling value is defined as 50, which is the maximum distance from
the desired pressurizer level to the limits of range (0% to 100%). For
instance, the level reward is zero for the lowest reward when the current
level is within the limits of the level range (Points A and B in Fig. 9). As
the current level increases from Point C to D, approaching the desired

value, the level reward increases from 0.8 to 1. The level reward algorithm
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provides a maximum reward of one when the level controller is running

successfully to maintain the current level at the desired pressure level.

(1

Level reward ( 1 |Current level — Specified pressurizer level[)
eve v = -

Scaling value

>

Level A Operational Boundary Level 4
Coolant level in pressurizer

100 %— [0 |
Reward(A) =1— —— 0 |
AY
\
AY
I Reward(D) =1 —@ - I \\
D ~» Reward

50 % \

|10 — 50|
Reward(B) =1— =

50

%, ,

40 — 50
I Rewurd(C):1—| = l:o.s | 4

0% B >
Time(¢s) Y

Fig. 9. Level reward algorithm for achieving operational goals

The pressure-reward algorithm provides a reward for the pressure
controller to maintain a pressure between 25 kg/cm® and 29 kg/cm? The
reward value was calculated as the difference between the current RCS
pressure and the desired condition, as shown in Equation (2). The scale
value is defined as 2, which is half the desired range of pressure. Because
the pressure changes slightly during the cold shutdown operation, the
pressure reward uses the squared reward to consider pressure changes
sensitively. For instance, in Fig. 10, the reward value at Point C is the
difference between the current RCS pressure and the lower desired
pressure (25 kg/cm?), which is 0.25 at the current pressure 26 kg/cm’. In
the case of point D, that is, at a current pressure of 27 kg/ cm?. The

reward value is the difference between the current pressure and the upper
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desired pressure (29 kg/cm?), which is 0.56. Therefore, the pressure reward
increased as the pressure approached the middle of the pressure boundary,
with a maximum of 1. When the current pressure exits the desired

pressure boundary, e.g., Point E and F in Fig. 10, the training is

terminated.
[Current pressure — Middle of pressure boundary| 2
Pressure reward = [ 1 — : (2)
Scaling value
A A
Pressure & —— Operational Boundary Pressure
— Reactor Coolant System Pressure
29 kg/cm2 —— : /®, \
el ! 1
Reward(D) = <1 - f) =056 [ \“
) 0 ™~ 1
27 kg/cm —-=>» Reward
4
v /
2 Y. /
25kg/cm = 5
‘ Reward(C) = (1 - |26;—27|> =0.25 ’ \®\
Time (s) v

Fig. 10. Pressure reward algorithm for achieving operational goals

In addition to this termination condition of pressure, another termination
condition was defined during the training. If the operation time in the
training reaches eight hours, the episode is terminated because the GOP

instructs that the operation should be completed within 8 h.
b. Design of Long Short-term Memory Network (LSTM)
A neural-network-based architecture, that is, a part of the DRL-based

controller, was developed to perform continuous controls. To generate

control actions from the DRL-based controller, this study used LSTM cells
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that can calculate time-series data [60]. LSTM cells were developed from
recurrent neural networks (RNNs). An RNN can naturally represent
dynamic systems and capture their dynamic behavior. This is a powerful
network for extracting information features related to a dynamic system in
its hidden layer [61]. However, an RNN may exhibit a gradient vanishing
problem when the network has five or more layers [62]. The drawback is
that the gradient value becomes too large or vanishes exponentially to
zero, whereas the weight in many layers is updated. Therefore, there is a
restriction on the dataset for long-term memory within the RNN. Thus,
LSTM cells have been proposed to solve this problem.

Fig. 11 shows the structure of a typical LSTM cell. Each LSTM cell is
composed of units that retain the state across time steps, called "constant
error carousels" (CECs), as well as three types of specialized gate units
(input, output, and forget gates) [63]. The following equations describe the
output from each gate unit in the LSTM cell, where z' is the input of the
LSTM cell. The input gate, forget gate, output gate, cell state, and output
of the LSTM cell at the current time step t are i', f', o', ¢, and 1,
respectively. The weights between the input layer and input gate, the
input layer and forget gate, and the input and output gates are W, ,

T

W,, and W,

xo’

respectively. The weights between the hidden recurrent

layer and forget gate, hidden recurrent layer and input gate, and hidden
recurrent layer and output gate of the memory block are W, , W,, and
W, respectively. Finally, b, , b;, and b, are the additive biases of the
input, forget, and output gates, respectively. This set of activation
functions consists of the sigmoid function, elementwise multiplication, e.g.,
the inner product of a vector, -, and hyperbolic activation function. At

time step 0, o, and h, were initialized as zero matrices.

_31_

Collection @ chosun



it = o(x*Wy + hee1 Wi + by)
fi = o(x"Wye + hy—1 Wt + bg)
0 = 0(x'Wyo + hy—1Wie + by)

et = frocq_1y +igo tanh(xtVch + hy—yWhe+ bc)

hi = 0y O tanh(ct)
E] Sigmoid function
(] sias e
(he)

X | Multiplication 2

- Long Short-term Memory (LSTM) Cell -

Cell state [4O) Next cell state
T | I G

Ouﬂaut or next
p| hidden state

(he)

Hidden state
(he-1)

Input node
(Xe)

Fig. 11. Structure of an LSTM cell

LSTM cells allow the DRL controller to handle the NPP parameters and
control the components with high performance because the NPP data
exhibit the characteristics of non-linearity and time-series data. Fig. 12
illustrates the structure of the LSTM network applied to the DRL
controller policy. Value networks have the same structure as the policy
network, except for the output layer that generates the expected reward.
Generally, an LSTM network model consists of an input layer, an LSTM
layer, and an output layer. The sizes of the input and output layers are

defined according to the number of plant parameters. The number of

LSTM cells is equal to the size of the time window.
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The input layer of the LSTM network has a time window of 10 s,
which considers the trend of the plant parameters by exploiting the
collected historical data. Therefore, the DRL controller uses states that
include the current and previous states as a two-dimensional array. Thus,

the number of LSTM cells is equal to the size of the time window.

As shown in Fig. 12, the proposed DRL controller includes two policy
networks composed of LSTM networks to manage the pressurizer pressure
and level. The DRL controller used five plant parameters and two
specified pressures and levels. The plant parameters consisted of three
component states (letdown/charging/spray valve positions) and two
pressurizer states (pressure and level). The pressure policy network uses
four plant parameters (pressurizer pressure, pressurizer level, letdown
valve position, and spray valve position) and two modified variables that
include the distance from the pressure boundary. The level-policy network
uses two plant parameters (pressurizer level and charging valve position)

and two distance values from the specified level.
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Fig. 12. Structure of LSTM network for DRL the controller policy network

The output layer consists of a set of actions for controlling the target
components, such as the letdown, spray, and charging valves. The control
strategies of one valve are threefold, that is, open, closed, or no control. If
a control strategy selects "open valve,’ the valve position will increase. In
the case of '"no control," the valve maintains the current position.
Therefore, the level policy network output is one of the three control
strategies shown in Fig. 12. However, because the policy network for
pressurizer pressure aims to control the letdown and spray valves, the set
of actions includes nine cases that combine the three control strategies of
the two valves. To select a control strategy, the output size of the output

layer should be equal to the number of control strategies. Therefore, in the
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case of the DRL pressure controller, nine control strategies for controlling
the letdown and spray valves were mapped to the output valves for the

output layer of the LSTM network.

To select one control strategy among the nine cases, the DRL-based
controller for pressurizer pressure also calculates the expected reward
acquisition probability for each action in the LSTM network. The softmax
function was used to calculate the probability of each control strategy in
the output layer. The softmax function can map the network output to a
probability distribution between zero and one. Therefore, the sum of the
values of the generated output is one. Therefore, the LSTM network can

calculate the probability value for each control strategy.

c. Training of DRL-based controller

CNS was used as a real-time testbed to train and validate the developed
DRL-based controller. The CNS was originally developed by the Korean
Atomic Energy Research Institute (KAERI) with reference to a
Westinghouse 930 MWe three-loop PWR [64]. Fig. 13 shows the chemical

and volume control system in the CNS.
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4 CHEMICAL AND VOLUME CONTROL SYSTEM
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Fig. 13. Chemical and volume control system (CVCS) in the CNS

Fig. 14 shows the multi-CNS environment for training and validating the
DRL-based controller. Two desktop computers were used to construct the
multi-training environment. A DRL-based controller is installed on the
main computer. CNSs were installed on a subcomputer with Intel
Core(TM) i7-8700K and 16 GB of memory. Twenty CNSs were
simultaneously simulated. One of the local networks is connected to a
CNS simulation through user datagram protocol (UDP) communication.
The global network was trained on two Nvidia Geforce GTX1080Ti
graphics cards, whereas the SAC training algorithm was trained using a 10
CPU core on Intel CoreX i7-7820X. The DRL-based controller was
programmed using Python. PyTorch, which is a well-known Python

machine-learning library, was used to develop a DRL-based controller.
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Fig. 14. Multi-CNS environment for training and validating the developed
DRL-based controller

To achieve acceptable performance of the proposed DRL-based controller,
it was trained until it reached a stable training state. DRL-based pressure
and level controllers are trained through many episodes, each of which is
completed if at least one controller reaches the termination condition. All
controllers stop training when the average maximum probability converges
to a certain value, or when the value stabilizes. The average maximum
probability is the mean value of the probability of the actions selected by
the DRL controller in one step. In one step, the DRL-based controller
learns using 256 sample data from the DPER. In this study, the
experimental results considering the entire operation time confirmed that
operational goals could be reached when 256 data points were sampled. If
more (512) or less (128) than this, learning fails. The average maximum
probability refers to the degree to which the DRL controller completes the
training. If the average maximum probability is higher than the previous
step, it implies that the DRL controller selects actions that are more likely
to succeed. Fig. 15 shows the trend of the average maximum probability
per step over time. Fig. 16 shows the trend in the rewards per episode.

The y-axis represents the total reward earned in each episode.
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The pressure and level controllers reached a stable value after 2000
episodes. Approximately 84 h of training were required until the
DRL-based controllers learned how to adjust the charging, letdown, and
spray valves to achieve the operational goal. At approximately 500
episodes, the rewards reached 400 (pressure controller) and 275 (level

controller).
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Fig. 15. Average maximum probability per episode
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Fig. 16. Reward per episode
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4. Development of a PID-based Controller

A PID-based controller was designed as shown in Fig. 17. The
PID-based controller should manage five components (charging, letdown,
spray valves, and back-up and proportional heaters) to achieve two
operational goals (pressurizer pressure and level). If-then logic was applied
to control the two heaters. Therefore, three PID controllers are developed

for the three valves.

In general, a PID controller is applied to a single-input, single-output
system without considering the disturbance and nonlinearity of the system
[65]. Thus, three PID controllers must be developed to adjust the charging,
letdown, and spray valves. In Fig. 17, PID Controllers 1 and 2 adjust the
letdown and spray valves for pressurizer pressure, whereas PID Controller
3 manages the charging valve at the pressurizer level. Because the spray
valve can be operated after pressurizer bubble creation, a condition switch
was added to avoid unnecessary operations. The operational goal of PID
controllers 1 and 2 was to regulate the pressurizer pressure within a
specified pressure (r,(t)). The pressure deviation error (e,(t)) between the
actual pressure value (y,(t)) and pressure set-point (r,(t)) is commonly
used in PID controllers 1 and 2. PID controller 3 controls the charging

valve to satisfy the pressurizer level.
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Fig. 17. PID-based system block diagram

a. Background of PID controller

The PID controller is based on classical optimal control theory that uses
a control loop feedback mechanism to control the process variables [66].
PID controllers are typically used in industrial control applications to
regulate temperature, flow, pressure, speed, and other process variables. To
increase plant performance and safety, a PID controller is also one of the
most commonly used process controllers in NPPs [67]. The PID controller
in Fig 18 aims to minimize the cost function comprising three terms:
current error with the proportional term, past errors with the integral
term, and future errors with the derivation term. Its control output u(t) is
linearly obtained by combining the proportional, integral, and differential
of the error e(t), between the set value r(t¢), and the actual value y(t),
thus realizing the control of the controlled object. Among them,
proportional regulation can accelerate the system response speed, integral
regulation can eliminate the steady-state error of the system, and
differential regulation can realize advanced control of the system [48].
However, the regulation performance of classical PID controllers includes

the regulation time, overshoot, and system stability [68].
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Fig. 18. Block diagram of the PID controller principle

b. PID-based controller tuning using Ziegler-Nichols rule and DRL
algorithm

This study applies the Ziegler-Nichols closed-loop tuning method and
DRL tuning method to achieve an acceptable performance of PID-based
controllers. As a traditional tuning method, the Ziegler-Nichols method is
well known as a suitable tool for nuclear power plants whose
mathematical models are unknown or difficult to obtain [69]. Despite
many design methods for PID controllers, the Ziegler-Nichols rule is one
of the most widely used design methods in the literature [70, 71]. In
addition, the Ziegler-Nichols tuning method is used for automatic control

in Korean NPPs [67].

According to the Ziegler-Nichols tuning method, a PID controller is
tuned by first setting it to the P-only mode, which means that the integral
gain (K;) and derivative gain (K,) are set to zero. The proportional gain

2

(K,) increases until the ultimate gain (K,), where the system starts to

P u

oscillate, and an ultimate oscillation period (7)), as shown in Fig 19 Then,

K

24

K;, and K,; were then approximated using Table 5 [14].
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Fig. 19. The change of pressure about step response
Table 5. Ziegler-Nichols formula for PID controller tuning rules
Controller K, K; K,
p 0.50K, 0 0
PI 0.45K, 054K,/ T, 0
PID 0.60K, 1.20K,/T, 3K,T,/40
* Ku = I(p

As an alternative for the intelligent tuning methods, the DRL-based
tuning was applied. This uses a DRL approach to obtaining the gains of
controllers (Kp, Ki, and Kd). Fig. 20 shows the process of the DRL-based
tuning method. At the first step, the method initializes the gains as
Kp=0.1, Ki=0, and Kd=0. Then, in the second step, the policy network
with simple DNN layers generates the gains, and the Q-network generates
the expected reward by using initialized gains. The third step applies the
gains to the PID controller and runs the CNS with the controller. In the

fourth step, the cumulative rewards resulting from the simulation are

_42_

Collection @ chosun



calculated by using Equations (1) and (2). The fifth step calculates the loss
value by the deviation between the cumulative rewards and the reward
expected from the Q-network. Then, the policy and Q-network weights are
updated by using the loss value in the sixth step. The seventh step
evaluates whether the cumulative reward reaches a stable training state. If
it is evaluated to be satisfactory, the generated gains are finally selected as

the final gains of the controller.

The PID controllers for the letdown, spray, and charging valves were
tuned by using DRL-based tuning algorithm. Fig. 21 shows the history of
cumulative reward per episode. The y-axis represents the total reward
earned in each episode. Each PID controller is tuned until it reaches a

stable training state.
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Fig. 20. Flowchart of DRL tuning algorithm
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Fig. 21. Reward per episode

Table 6 shows the tuning results for the PID controllers by using the
Ziegler-Nichols and DRD-based tuning method. Fig. 22 also compares the
performances of the different tuning results for the pressure and level of
pressurizer. Because the pressure is managed by the letdown and spray
valves, the letdown valve controller was first tuned and then the spray
valve was tuned later. The comparison indicates that the DRL-based
tuning shows better performances in time and accuracy than the

Ziegler-Nichols method.
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Table 6. Tuning results based on Ziegler-Nichols

method and DRL tuning

method
. Tuned parameter
Initial . . Tuned parameter
Controller (Ziegler—Nichols
parameter (DRL method)
method)
Tu=60 sec
Kp=0.2 Kp=1.487
Letdown ) Kp=0.12 )
Ki=0 ] Ki=1.155
valve Ki=0.004
Kd=0 Kd=0.106
Kd=0.9
Tu=70 sec
Kp=0.1 Kp=1.657
Spray ] Kp=0.06 ]
Ki=0 ] Ki=0.198
valve Ki=0.001714
Kd=0 Kd=0.078
Kd=0.525
Tu=300 sec
) Kp=0.1 Kp=0.833
Charging ] Kp=0.06 )
Ki=0 . Ki=2.522
valve Ki=0.004
Kd=0 Kd=0.105
Kd=2.25
PID controller of letdown valve

284

— Kp=02, Ki=0,
— Kp=0.12, Ki=0.004,Kd=0.9

Kd =0

Pressurizer pressure [kg/cm?]
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Fig. 22. Comparison of performances for the different tuning methods
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5. Comparison of performances between DRL-based and

PID-based controllers

A comparison of the performance of the developed DRL-based and
PID-based controllers was conducted for the automation of the cold
shutdown operation. The data were sampled from the simulator per
second and the components could be manipulated every 10 seconds, which
is considered enough time period for the pressure and level of the
pressurizer to change. The data sampling frequency was chosen by taking
into account the computation time (0.5 seconds) of the simulator and the

time transmitted to the controller (0.1 milliseconds).

Fig. 23 shows the comparison of the performances in controlling the
pressurizer pressure by the DRL-based and PID controllers. As shown in
Fig 24, the DRL-tuned PID controller shows smaller accumulated error
than the PID controllers tuned by the ZN and DRL-based controller. The
comparison for the pressurizer level also shows similar results as shown
in Fig. 25 and 26. The DRL-tuned PID controller shows the smallest error
in the level. For the time to reach the desired state, it appears that the

DRL-tuned PID controller is faster than the other controllers.
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C. Power Increase Operation

1. Overview of the power-increase operation

To increase the power from 2% to 100%, two GOPs should be applied
in the reference plant, namely, "Power operation greater than 2%" and
"Secondary system heat-up and start-up", as presented in Fig. 6. The
instructions for increasing the plant load from 2% to 100% are provided in
the "Power operation greater than 2%" GOP, while the procedure
"Secondary system heat-up and start-up" procedure describes the steps that
are necessary for aligning and starting the secondary systems. These GOPs
require the operators to operate components, such as the rod controller,
turbine load controller, feedwater pumps, condenser pumps, steam
generator feedwater valves, and synchronizer, based on the planned rate of
power increase. Fig. 27 presents a simplified schematic diagram of the
components that are related to the power-increase operation, and the

operation’s initial and final conditions are presented in Table 7.

Secondary system
Main steam / turbine Electrical
4 system system
!

Primary system
Reactor coolantsystem

<

Chemical volume
control system

Fig. 27. Simplified schematic diagram of related components
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Table 7. Initial and final conditions of the power-increase operation

Major parameter

Initial condition

Final condition

Reactor power 2% 100%
Electric power 0 MWe 900 MWe
Reactor coolant system . .
294 C 306 C
(RCS) average temperature
Turbine revolutions per
. 0 1800 RPM
minute (RPM)
Turbine load setpoint 0 MWe 900 MWe
Turbine load rate setpoint 0 MWe/min 2 MWe/min
Boron concentration 637 ppm 457 ppm
211 Step (A Bank) | 228 Step (A Bank)
. 95 Step (B Bank) 228 Step (B Bank)
Rod position
0 Step (C Bank) 228 Step (C Bank)
0 Step (D Bank) 220 Step (D Bank)
Rod controller Manual Auto
Steam generator controller Manual Auto
Feedwater pump 1 On On
Feedwater pump 2 Off On
Feedwater pump 3 Off On
Condenser pump 1 On On
Condenser pump 2 Off On
Condenser pump 3 Off On
Synchronous connection Disconnected Connected
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The operators’ tasks in the applicable procedures can be divided into 1)
primary system control and 2) secondary system control. When conducing
primary system control, the operators withdraw the control rods (reactor
coolant system, Fig. 27) and manipulate the boron concentration (chemical
volume control system, Fig. 27). At the beginning of the operation for
stably increasing the power to 2%, the operators withdraw all control rods
to the 100% position, which is the final condition, as specified in Table 7,
and subsequently increase the boron concentration to maintain the reactor
power at 2%. Once all the control rods have been withdrawn, the
operators do not manipulate them further, and they reduce the boron
concentration to increase the power from 2% to 100% by increasing the

volume of the water from the make-up tank.

The rate of power increase (percent power per hour) is determined by
considering the reactor cooling system (RCS) average temperature and the
reference temperature. The reference temperature is the desired RCS
temperature, which is predefined based on the current turbine load, while
the RCS average temperature is the actual temperature in the primary side
[72]. According to the procedure, during the power increase from 2 to
100%, the difference between the reference temperature and the RCS
average temperature should be maintained within + 1 C. This is only a

recommendation and is not mandatory.

Operators must control several components of the secondary system.
First, they increase the turbine speed to 1800 revolutions per minute
(RPM) using the turbine RPM controller (the main steam/turbine system
in Fig. 27). When the turbine and the reactor power reach 1800 RPM and
15%, respectively, the operators close the breaker to connect the generator

to the grid and synchronize the frequencies (the electrical system in Fig.

_52_

Collection @ chosun



27). In addition, the operators increase the turbine load setpoint, start the
feedwater pumps, and start the condenser pumps concurrently with the
reactor power increase in the primary system. The primary and secondary

systems must be controlled harmoniously to avoid a reactor trip.

2. Task analysis of the power-increase operation

Based on a review of the "Power operation greater than 2%" and
"Secondary plant heat-up and start-up" procedures, a task analysis was
conducted to identify the tasks that should be automated by the algorithm
that is proposed in this study. As presented in Table 8, this analysis
identified a total of 21 control actions that are performed by the operators
according to these procedures. Only the control-related actions were
extracted for the development of the algorithm, although the procedures
also provide monitoring actions, e.g., “confirm the RCS temperature is

above 200 C.

These actions were also categorized into three task types: Decision
Making, Continuous Control, and Discrete Control. Decision Making task
determines the rate of power increase; the subsequent control actions
depend on this rate, although it does not include any control action. The
continuous controls in this study adjust component states over a range to
realize specified target values for the given parameters, and the rules that
govern the necessary adjustments cannot be described with simple logic.
For example, the operators adjust the RCS boron concentration to
manipulate the power level. In contrast, a discrete control involves the
direct setting of a target value based on a binary condition, as in if-then
logic. An example of a discrete control is as follows: if the power level is

10%, then the turbine is set to 1800 RPM. The next section proposes an
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algorithm that can perform these actions.

Table 8. Operational

tasks for increasing the reactor power

Step | Task Type | Action

1 ADAZi?;%n Determine the rate of power increase in %/h
Continuous | Withdraw all control rods to the position of 100% reactor

2 ower while maintaining the reactor power at 2% through
Control -

oration.
. If all the control rods are withdrawn, increase the reactor

3 Continuous power from 2% to 6% -10% by reducing the boron

Control -
concentration.

4 Discrete If the reactor power is 10%, the turbine RPM setpoint is
Control 1800 RPM.

5 Discrete If the reactor power exceeds 10%, the acceleration setpoint
Control is 2 MWe/min.

6 Continuous | Adjust the boron concentration to increase the reactor
Control power from 10% to 20%.

7 Discrete If the reactor power is between 10% and 20%, the load
Control setpoint is 100 MWe.

3 Discrete If the turbine RPM is 1800 RPM and the reactor power
Control exceeds 15%, push the net-breaker.

9 gésﬁfresf If the reactor power is 20%, start condenser pump #2.

10 Continuous | Adjust the boron concentration to increase the reactor
Control power from 20% to 100%.

11 Discrete If the reactor power is between 20% and 30%, the load
Control setpoint is 200 MWe.

12 Discrete If the reactor power is between 30% and 40%, the load
Control setpoint is 300 MWe.
Discrete If the reactor power is 40%, start main feedwater pump

13
Control

14 Discrete If the reactor power is between 40% and 50%, the load
Control setpoint is 400 MWe.

15 Discrete If the reactor power is between 50% and 60%, the load
Control setpoint is 500 MWe.

16 gg;ftrre (;[f If the reactor power is 50%, start condenser pump #3.

17 Discrete If the reactor power is between 60% and 70%, the load
Control setpoint is 600 MWe.

18 Discrete If the reactor power is between 70% and 80%, the load
Control setpoint is 700 MWe.
Discrete If the reactor power is 80%, start main feedwater pump

19
Control #3.

20 Discrete If the reactor power is between 80% and 90%, the load
Control setpoint is 800 MWe.

7 Discrete If the reactor power is between 90% and 100%, the load
Control setpoint is 900 MWe.
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3. Timeline of the power-increase operation

The timeline of the power-increase operation was analyzed to develop a
normative operational strategy. This analysis considered the GOP’s
operational rules and the practical operational practices, which were
determined from an interview with a senior reactor operator who works at
a reference plant. Fig. 27 presents the timeline that was developed, which
associates the desired operations with the reactor and electric powers, RCS
temperatures and their differences from the reference temperature, and the
control of related systems, such as the steam generator (SG) level, control

rods, turbines, valves, and pumps.

The power-increase operation is divided into two operational ranges: 1)
maintaining the reactor power at 2% and 2) increasing the reactor power
from 2% to 100%. The objective of the first operational range is to adjust
the positions of all control rods (Fig. 28 (d)) to 100% while maintaining
the reactor power at 2% (Fig. 28 (a)); the average temperature is also
maintained because it depends on the reactor power (Fig. 28 (b)). As the
control rods are withdrawn, the reactor power increases, and increasing
the boron concentration in the RCS reduces the reactor power. To
maintain the reactor power at 2%, a boric acid-water solution is injected

into the RCS, as illustrated in Fig. 28 (c).

The objective of the second operational range is to increase the reactor
power from 2% to 100%, as represented by the red line in Fig. 28 (a). The
operators determine the rate of the power increase (%/h);, the power is
increased by reducing the boron concentration in the RCS using make-up
water (Fig. 28 (c)). The electric power is also increased to 100% by

following a load setpoint that is increased stepwise. The RCS average
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temperature increases from 294 T to 306 C, as illustrated in Fig. 28 (b).

The difference between the RCS average temperature and the reference

+

temperature should be maintained within + 1 T, as represented by the
gray area in Fig. 28 (b). This condition is applied after the start of the

electrical power generation because the reference temperature is calculated

based on the electrical power.
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To increase the reactor power, the operators manipulate seven systems,
as illustrated in Fig. 28 (e). As described in Table 8, they withdraw the
control rods and manipulate the boron concentration continuously, which
corresponds to Steps 2, 3, 6, and 10. At 10% reactor power, in Steps 4, 5,
and 7, the turbine RPM, acceleration setpoint, and load setpoint are
adjusted to 1800 RPM, 2 MWe/min, and 100 MWe, respectively.
Subsequently, the operators adjust the load setpoint with every 10%
increase in the reactor power (Steps 11, 12, 14, 15, 17, 18, 20, and 21). At
15% reactor power, the plant and the grid are synchronized (Step 8). At
20% reactor power, condenser pump #2 is started (Step 9); condenser
pump #1 is already running. Condenser pump #3 is started at 50%
reactor power (Step 16). Main feedwater pumps #2 and #3 are started at
reactor powers of 40% (Step 13) and 80% (Step 19), respectively; main
feedwater pump #1 is already running. This study applies the

pre-established automatic control algorithm for the SG level control.

4. Development of an algorithm for power-increase control

This paper presents an algorithm that employs a rule-based system and
deep reinforcement learning to facilitate the autonomous increase of NPP
power from 2% to 100% by controlling several systems. Fig. 29 illustrates
the structure of the proposed algorithm, which consists of two modules: 1)
a discrete control module and 2) a continuous control module. The
discrete control module directs the synchronization, turbine, main
feedwater pump, and condenser pump controls, for which rule-based

systems can be developed based on the operating procedures.
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Fig. 29. Overview of the algorithm for the power-increase operation

The continuous control module dictates the adjustment of the control
rods and the RCS boron concentration. The associated procedures do not
specify rules for the operators; e.g., they do not specify the number of
steps in which the control rod should be withdrawn or the volumes of
make-up or boric acid water that should be added. The procedures specify
only the objective of the control activity, e.g., "increase the power to 20%

by altering the control rod position or RCS boron concentration.”

Deep reinforcement learning was deemed suitable for wuse as the
continuous control module. A neural network and a training algorithm are
selected by considering the characteristics of the operational steps in NPPs.
The types of control for NPPs are regulatory control (e.g., adjustment of
valve position) and discrete control (e.g., on/off control). For discrete

control, the set-point and operating conditions are specified in detail in the
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operating procedure. Operators can conduct discrete control according to
rules that are specified in the operating procedures. In contrast, only
operational target values are provided for regulatory control. Accordingly,
regulatory control is based on the operator’s experience, which includes
monitoring previous and current plant conditions. The target of the
continuous control module is the requlatory control. Thus, this study
attempted to implement controls in accordance with the operator’s
behavioral pattern through trial and error using a long short-term memory

(LSTM) and an asynchronous advantage actor-critic (A3C) algorithm.

(1) This study used a LSTM network, a kind of recurrent neural
network (RNN), by considering the characteristics of the plant parameters.
The trends of the plant parameters are well known to be the same as that
of time series data. To extract and analyze meaningful information, e.g.,
the timing of an Al agent’s action, from time-series data, it is important to
identify the correlations between previous and current data. The output of
an LSTM can be calculated by considering previous data, in contrast to
other neuronal networks such as convolutional neural networks and vanilla

feedforward neural networks.

Moreover, LSTM not only stores the values that are calculated from the
previous time data in the LSTM cell but also considers previously saved
values when calculating the next time data. The author’s previous studies
showed that the LSTM can support well the operation of nuclear systems
[5, 57] as well as the diagnosis of events [56, 73]. Moreover, to better
support the selection of the LSTM neural network, this study compares
the performance of other neural networks such as deep neural network
(DNN), convolutional neural network (CNN), LSTM, and C-LSTM(CNN +
LSTM).
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(2) An asynchronous advantage actor-critic (A3C) algorithm was quickly
trained in the specified domain. The A3C algorithm is well known for fast
training due to parallel actor-learners that are based on the central
processing unit's (CPU’s) multiple threads and the asynchronous network
update. This study used a nuclear simulator to test and train an Al agent.
This simulator does not recommend calculation acceleration with a stable
calculation performance. As a result, the AI agent takes more than 14
hours per episode to train the entire power increase operation. To solve
this problem, we not only built multiple environments but also applied a

parallel training algorithm, namely, A3C.

The goal of the continuous control module is to select actions necessary
to meet the operational goals of the sequential plant states. The continuous
control module with A3C algorithm can find an operational path in
parallel. An operational path is a set of actions for controlling a
component to achieve flexible operating goals that are assigned by the
operators. A reward algorithm was developed for training the agent, and
an LSTM network was used for selecting the actions necessary to meet the

operational goals of the sequential plant states.

a. Design of the discrete control module using if-then logic

A rule basis for discrete control was developed for the synchronizer,
turbine, main feedwater pump, and condenser pump controls by
transforming the operating procedures into if-then rules, which are
presented in Table 8. The tasks that are identified as discrete controls in
Table 9 were analyzed and categorized into four functions based on the
controlled system, and the applicable rules were extracted from the

procedures” task instructions. The inputs and outputs that were required
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for the module to control the tasks were identified. An input is a plant
parameter that must be obtained to correctly determine the control action
that is needed for accomplishing a task, while an output is the control

action that will be performed as a result.

Table 9. Discrete control module if-then rules for increasing the reactor

power from 2% to 100%

Rule
Function If-then Rule Input(s) Output(s)
Number(s)
If the turbine RPM is 1800 RPM Reactor
Synchronizer 1 and the reactor power is greater p:;e(; Net-breaker
0y - s
control than 15%, pléilzt ci;lrlle net-breaker Turbine RPM button control
' React Turbine RPM
” If the reactor power is 10%, the pzi\cle(;r ul;elt‘r;)mt
turbine RPM setpoint is 1800 RPM. Turbine RPM control
Turbi
If the reactor power is greater Turbi ulrru:.e
3 than 10%, the acceleration setpoint urbine acceretation
is 2 MWe/min acceleration setpoint
Turbine control . control
If the reactor power is between Reactor Load setpoint
4 10% and 20%, the load setpoint is | power, Load trpl
100 MWe. setpoint contro
5-11
If the reactor power is between Reactor Load setpoint
12 90% and 100%, the load setpoint | power, Load oacoriterc}:lom
is 900 MWe. setpoint
React
If the reactor power is 40% and owiic li)/fain Main
13 the state of the main feedwater P P d, ter feedwater
pump 1 is “activated,” start main ee wla © d pump 2
Main feedwater pump 2. pumps - ah control
feedwater %{:;Cattg:
pump control If the reactor power is 80% and ower. Main Main
14 the state of main feedwater pump P fee d‘:vater feedwater
2 is "activated," start main 2 and pump 3
feedwater pump 3. pumps = an control
3 states
React
If the reactor power is 20% and cac c;r Cond .
the state of condenser pump 1 is powet, oncense
15 . Condenser pump 2
"activated," start condenser pump
” pumps 1 and control
Condenser ’ 2 states
React
pump control If the reactor power is 50% and iise(;r Condenser
the state of condenser pump 2 is P ’
16 . Condenser pump 3
"activated," start condenser pump
3 pumps 2 and control
: 3 states
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b. Design of the continuous control module using SAC

The A3C agent for continuous control aims at managing the reactor
power by manipulating the control rods and boron concentration, and, if
fully trained, can manage the reactor power based on a specified rate of
power increase and the obtained plant parameters. The A3C agent’s
strategies relate to three operational strategies: increase power, decrease

power, and stay.

(. N N
Continuous control module
Asynchronous advantage actor-critic (A3C) agent
: _ Estimated reward Long short-term memory (LSTM)
network model <Control action>
Rew.ard kY < Strategies > . Withdraw
Algorithm =, ’/ control rod
I . \ : :)lg:‘:’eea}se L. Open make-up
« Estimated plant states water valve
- Operational boundary /.
- Mismatch boundary /@ Stay =+ Stay
@
> 4 \ Decrease s=t=p « Open boric acid
* Plant parameters power water valve
- Reactor power 1
- Average temperature e Updating weights in network
- Electrical power
e Component Control
G J
v

Nuclear power plant

Fig. 30. Overview of the continuous control module

Fig. 30 illustrates the overall structure of the A3C agent for continuous
control, which consists of a reward algorithm and an LSTM network
model. The reward algorithm evaluates the obtained plant parameters to
determine whether and the degree to which the prior operation or action
of the A3C agent was successful, and this reward is used to update the

weights in the LSTM network model. The LSTM network model generates
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an operational strategy using the obtained and evaluated plant parameters.
Then, the A3C agent selects the option that is associated with the highest
probability value from among the available outputs of the LSTM network:

increase, decrease, or stay.

The operational strategies comprise the control actions that are required
for realizing the objective of each strategy. For example, for the "stay"
strategy, the A3C agent stops manipulating components, and the boric acid
water valve is opened to increase the boron concentration and, therefore,
decrease the reactor power. The strategies for "power increase" consist of
two control actions; the A3C agent withdraws the control rods and
changes the control action to the opening of the make-up water control

valve to reduce the boron concentration.

c. Design of the reward algorithm

In DRLs, the reward is an essential element that is used to update the
weights of the A3C agent; learning by the agent is associated with
updating the weights of the network to maximize the accumulative reward
[74]. The reward algorithm evaluates the agent’s behavior based on a
specified state in the environment to determine the reward. Therefore, the
reward algorithm guides the agent to obtain a high accumulative reward
in the target domain [75]. To find the best operational path, the use of
operational guidelines or boundaries is a suggested for  designing a
reward algorithm [76]. Furthermore, if the operational goal is more than
one, like in the multi-objective problems, Garduno-Ramirez and Lee [77]
proposed defining the upper and lower boundaries for each operational
goal. In this study, the specified operational objectives were used to

design the reward algorithm for increasing the reactor power.
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This study proposes a reward algorithm that is designed for training the
proposed A3C agent to increase the reactor power. It has two reward
criteria, which are based on the reactor power and the average
temperature. Fig. 31 presents the criteria for providing a reward via the
proposed reward algorithm. The first reward criterion is related to the
reactor power. As illustrated in Fig. 31, two bandwidths were applied.
While maintaining the reactor power at 2% (the blue area in Fig. 31), the
reward boundary was defined as + 1% of the reactor power, namely, 1%
to 3%. During the power increase after reaching 2% reactor power, the
bandwidth was determined by the following linear equations that were
based on the pre-determined rate of power increase (the red area in Fig.
31). The upper boundary was 3% at 2% reactor power and 110% at 100%
reactor power, while the lower boundary was 1% at 2% reactor power

and 90% at 100% reactor power.

Endof Operation Time (t,,) = t, + br (8)
3 (ty = t)
100 — 3
Upper Boundary = 7 7 (t—ty)+3 (tyg =t >t,) (9)
100 ~ b2
110 (t > t100)
1 (ty = t)
100—3
Lower Boundary = (t—ty)+1 (tigp =t>1,) (10)
tigo — b2
90 (t > t10)
Pr : Predefined Rate of Power Increase (%/h)
t : Time

to - Time at All Rods 100% Withdrawal

tioo - End of Operation Time
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The power reward was calculated as the difference between the current
power at time t and the most desirable power, which was the predefined
power at that time and is represented by the dashed line in the center of
the reward boundary in Fig. 31. The power reward was calculated via
Equation (11) by using a normalized value of the distance. The reward
was maximal, namely, 1, when the current power was equal to the
predefined power, while it was 0 when the current power was located on
the upper or lower boundary. For instance, at t = 8 h in Fig. 31, when
the reactor power increased from 2% at 5 h to 100% at 103 h at a 1%/h
rate of increase, the reactor power, the predetermined power that was
based on the rate of power increase, and the upper boundary were 6%,
4.99%, and 6.27%, respectively. The resulting reward was 0.21 by R=1 - (6
- 499)/(6.27 - 4.99). Similarly, at t = 10 h and P = 5.6%, the reward was
0.04, as presented in Fig. 31.

0 (P>R,,)
PR S psp
_ m up = mp
Power Reward (0 ~ 1) =41 (P=R,,) (1D
Rmp —-P
--" _— (R,,>P=R,)
Rmp - Rlp
0 (P< Rlp)
P : Current Power at Time t (%)
Rmp . Middle of Power Reward Boundary,

i.e., Pre-determined Power at Time t
Ry, ¢ Upper Power Reward Boundary

Ry, ¢ Lower Power Reward Boundary

If the power moved outside the boundary, the training was terminated.
In addition, the agent stopped the training when it realized the objective

of the operation, namely, when the reactor power was 100%.
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Fig. 31. Power reward for the A3C agent

The second reward criterion relates to the difference between the
average temperature and the reference RCS temperature that is provided
by the GOP. This reward represents that the rule that the average RCS
temperature should be controlled by the agent to within + 1 C" of the
reference RCS temperature (the gray area in Fig. 32). Since the reference
temperature is calculated based on the current turbine load (MWe), the
upper and lower limits of this reward boundary are calculated after the

electrical power generation has begun.

Similar to the power reward, the temperature reward was also calculated
via Equation 12 based on the difference between the current temperature
at time t and the most desirable temperature, namely, the reference
temperature. The maximal reward, namely, 1, was obtained when the

average RCS temperature was equal to the reference temperature. In
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contrast to the power reward, if the average RCS temperature moved
outside the boundary, the training was not terminated; instead, the reward
had a negative value that was proportional to the distance from the

closest boundary, with -1 being the lowest possible value.

;Generate electrical power

< »<
»<

e‘ Maintain reactor power 2% Increase reactor power from 2% to 100%
Temperatur
(°C) Average temperature
307 °C | Reference temperature
[ Reward boundary
306 °C |, [ ] Minimum reward boundary | T
305 °C :Tav(t:ZO) =302°C : ,,,,,,,,,,,,,,,,,,,
'{R=302-3015=-0.5 g
1Ry =301.5°C
E/ Tav(t=s) = 300°C '““t\i'u S\ ‘
. R=-1 . 1 i /
| Ry =292.5°C - b P S .
I r ' Tefe=10) = 293°C Y
\ Teems) = 2015°C ! ; _M . :
292 °C e e - ‘f—‘f‘\)i = * Tay(t=10) = 292.2°C !
: R =1+292.2°C—293°C=0.2 |
291 °C H !
290°C ; Time (h)
=5 t=8 t=10 t=20 t100 = 103

Fig. 32. Temperature reward for the A3C agent

As shown in Fig. 32, when the average RCS temperature was between
the upper and lower boundaries, a positive reward was returned and was
inversely proportional to the distance from the reference temperature (as
shown at t = 10 h in Fig. 32). Outside this boundary and up to a
difference of + 2 T, a negative reward was given proportional to the
distance to the closest boundary (as shown at t = 20 h in Fig. 32). If the

temperature difference was greater than 2 C, the reward was -1.

The total reward was calculated as the arithmetic mean of the power

and temperature rewards, as expressed in Equation 13. The agent
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conducted the training to obtain the largest total reward for each episode
and, in the process, was incentivized to shift the reactor power and the
average RCS temperature to the middle values of the reward boundaries.
The episode continued until the reactor power reached 100% or moved

outside the reward boundary.

—1
_T(L'I}+R

ut

(
(
1- Ta.'u+ Ty-f ( t
Temperature Reward(—1 ~ 1) =11 (1, = ,-f) (12)
(T,;,>T,, = Ry)
(
(

th —1= Ta'u < th)
th 1> Ta.'u)

(13)

T : Average RCS Temperature at Time t
Tr . Middle of Temperature Reward Boundary,
i.e., Reference Temperature at Time t
Ry : Upper Temperature Reward Boundary (T.+ 1) at
Time t
Ry : Lower Temperature Reward Boundary (T.—1) at
Time t

d. LSTM network modeling

Fig. 33 illustrates the proposed LSTM network of the continuous control
module’s A3C agent for producing an operational strategy (increase,
decrease, or stay). The final control action of the continuous control
module is selected based on the reactor power and the operational
strategy. Each operational strategy maps to the required control action. For

example, the decrease strategy is mapped to the opening of the boric acid
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water valve. If the output strategy of the LSTM network is '"stay," the
A3C agent does not control the component. In the increase strategy, the

A3C agent selects a control according to the current operational objective:

* Withdraw the control rod (when maintaining the reactor power at

2%) or

* Open the make-up water valve (when increasing the reactor power

from 2% to 100%).

The proposed LSTM network model consists of an input layer, an LSTM
layer, and an output layer. The sizes of the input and output layers can
be defined based on the numbers of plant parameters and control actions,
respectively. The number of LSTM cells is determined by the time

window.

The input layer of the investigated LSTM network had a 10-step time
window, which considered the trends of plant parameters by exploiting
the collected historical data. The historical data were sampled from the
simulator every 30 s to optimize the dataset size; the trends that were
observed when the data were collected every second did not differ
significantly. The A3C agent used the current and previous states as a
two-dimensional array and as a training dataset, which included the plant
parameters for 300 s. At each time window, the LSTM network used eight
input parameters, namely, four plant parameters (reactor power, average
temperature, reference temperature, and electric power) and four variables
that represented the distances of the current power and average RCS

temperature from their upper and lower boundaries.
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At the LSTM network’s output layer, the probability of each operational
strategy was generated using a softmax function, which can map a
network’s output to a probability distribution between 0 and 1; the sum
of the generated output values is one. If the A3C agent selected the
strategy with the highest probability among the operational strategies, it
received a large reward or realized the operational objective. Finally, the
A3C agent selected a control action based on the selected operational
strategy. The detailed structure and hyperparameters of the LSTM network
were determined as illustrated in Fig. 33 through an experimental

optimization.

Control action ; 4 X .
Withdraw Open makeup Stla Open boric acid
control rod water valve v water valve
Operational strategy ~J | |
Increase Stay Decrease

¢ > \

[Value Layer || Critic Layer O Linear \O b 6 Softmax |
(1Neuron) |l (3 Neuron) : [value function ! Polic { function |

{ { Y : 4

I
Output Layer 1 ¢ ! X X X )
(128 Neurons) L O """"" O OAO O slemoidifnctionl

LSTM Layer 2 [ LsTM || LSTM |-+~ [ LST™M [»{ LSTM |
(10 LSTM cells) o o . N

LSTM Layer 1
(10 LSTM cells)

LSTM || LSTM | ---> [ LSTM
y

Input
(1) o o o0 o
Reactor power
Average temperature
Reference temperature
Input Layer Electric power
(10 Neurons) Reward boundary for reactor power,

(Upper restriction)
Reward boundary for reactor power
(Lower restriction)

Reward boundary for average
temperature (Upper restriction)

Reward boundary for average
temperature (Lower restriction)

/
| rarcn E E o

H . . e o o o o o

i historical data Sec| | sec

Time [Sec]

Fig. 33 The structure of the LSTM network for the A3C agent
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5. Experiments

a. Training environment

CNS was also used as a real-time testbed for training and validating the
proposed autonomous power increase algorithm. Fig. 34 shows the A3C
agent training environment structure, which consists of four desktop
computers-one main computer and three sub-computers. One main agent
and sixty local agents for implementing the proposed algorithm were
installed on the main computer. The CNS was installed on the three
sub-computers. Each sub-computer could run 20 CNS simulations at a
time; therefore, a total of 60 simulations could be conducted
simultaneously. The A3C global network was trained, while the A3C
training algorithm was trained using 60 threads of CPUs. The A3C agent
was developed based on the Python programming language with the

TensorFlow and Keras machine learning libraries

Main Computer

Training
Environment
Computers

Fig. 34. Structure of the training environment for the A3C agent
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b. Training and stability for the entire power-increase operation

For a complete (from 0% to 100%) power-increase operation at a rate of
3%/h, the A3C agent was trained in 8800 episodes. The A3C agent
training was complete when the average maximum probability converged

to a specified value or when the value became stable.

09 Ww#

(k]

o7

|
1 NI A

Average maximum probability [0-1]

04

2000 000 6000 8000
Episode

Fig. 35 Average maximum probability per episode for the A3C LSTM
network

Fig. 35 presents the trend in the average maximum output probability
per episode over time. The A3C network approached a stable probability
(larger than 0.9) after approximately 7500 episodes. Fig. 36 shows the
trend of the rewards that were obtained by the A3C agent as the number
of episodes increased. In one episode, the theoretical maximum cumulative
reward during the entire power-increase operation was 4800 (the green
dashed line in Fig. 36); this is because the largest reward for a training
dataset was 1, and the total number of datasets that increased the reactor
power to 100% over 144 000 s at the rate of 3%/h, plus an additional
margin of 4000 s, was 4800. The maximum practicably feasible reward for

power-increase operation success was observed to be 3000.
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Fig. 36. Rewards obtained by the A3C LSTM network

This study identifies a network that can be quickly trained in the
specified domain since the A3C network requires more than 14 hours per
episode to train the entire power increase operation. In this study, the
considered networks are the deep neural network (DNN), convolutional
neural network (CNN), LSTM, and C-LSTM (CNN + LSTM). DNN is a
typical feed-forward neural network that contains many hidden layers of
nonlinear hidden units and a very large output layer. In CNN, the hidden
layers have fewer connections and parameters because filters that perform
convolution operations are utilized. CNN has been demonstrated to
outperform DNN in feature extraction from input data. LSTM can calculate
time-sequential input data for units that are called constant error carousels.
It can facilitate the memorization of important events or long-term data.
C-LSTM is a combined model of CNN and LSTM. This network has been
proposed for extracting features of data and for handling time-sequential

data.
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Table. 10 Architectures of the compared networks

Network Time-
Network Layer type Node | Parameter
layer sequence
Input layer - 8 0
Common Dense - 32 224
Dense - 64 2112
Dense - 70 4550
DN Dense - 64 4544
Actor
Output layer - 3 195
Critic Dense - 32 2272
Output layer - 1 33
Input layer 10 8 0
ConvlD 10 10 190
Max pooling 3 10 0
Common Flatten - 30 0
Dense - 64 1984
CNN Dense - 70 4550
Actor Dense - 64 4544
Output layer - 3 195
Critic Dense - 32 2272
Output layer - 1 33
Input layer 10 8 0
Common LSTM - 32 4992
Dense - 64 2112
LSTM Actor Dense - 64 4160
Output layer - 3 195
Critic Dense - 32 2080
Output layer - 1 33
Input layer 10 8 0
ConvlD 10 10 190
Common Max pooling 3 10 0
LSTM - 32 5504
C-LSTM Dense - 60 1900
Actor Dense - 64 3904
Output layer - 3 195
Critic Dense - 32 1952
Output layer - 1 33

To train these networks under the same conditions, they should have
the same number of parameters. The parameters at each layer of the
network model are arranged with a normal distribution (mean = 0.0 and
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standard deviation = 1.0), which supports stable training under the same
conditions. Table 10 describes the architectures of the networks that are
used in the A3C algorithm for the experiment. Each network consists of
three layers: common, actor, and critic. The actor and critic layers are

linked to the common layer.

Before training on the entire power increase operation, the A3C agent is
trained between 2% and 15% power to identify the optimal network. Each
network has been trained by 6500 episodes. Fig. 37 shows the trend of the
duration of each network versus the number of episodes. Each line
represents the average duration over 10 episodes. The agent’s objective is
to increase the power within the operational boundary, which is the
power reward boundary in this paper, for 600 seconds. For strict
comparison of these networks, an operation with a duration of less than
600 seconds is regarded as a failed operation. These networks are trained
until the average duration is 600 seconds. In Fig. 37, the LSTM network is
the best performing network as it realized an average duration of 600
seconds in 6500 episodes. The second-best performing network is CNN,
which realized a duration of approximately 400 seconds in 6500 episodes.
C-LSTM and DNN show poor performance (durations of less than 250
seconds). The results of this experiment demonstrate that the LSTM
network can realize the operational objective in fewer training episodes

than the other networks.
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Fig. 37. Average duration of each network

c. Experimental results

After the algorithm for autonomous power increase control was trained,
an experiment was conducted to demonstrate that the proposed algorithm
could autonomously increase the power at a specified rate. The continuous
control module was implemented using an A3C and an LSTM network,
while the discrete control module was implemented with a rule-based
system. Fig. 38 (a-h) presents the experimental results for a 3.0%/h rate of
power increase, which demonstrate that the proposed algorithm can
increase the power at the intended rate within the operational boundary
(Fig. 38 (a)). In addition, Fig. 38 (b) shows that the proposed algorithm
managed the average temperature within the mismatch boundary from the
reference temperature over the reactor power of 30% and could effectively
restore an increased or decreased average temperature to within the
mismatch operation range. The changes in the average temperature that
were observed at approximately 40 000 s were due to connecting to the
grid and starting a condenser pump, which impacted the overall plant

state.
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The continuous control module also managed the boron concentration
during the power increase; the results are presented in Fig. 38 (c) and (d).
To maintain the power at 2%, the boron concentration was increased to
compensate for the effect of the control rod withdrawal, which occurred at
approximately 22 000 s, as shown in Fig. 38 (e). Then, the controller
decreased the boron concentration by increasing the volume of the

make-up water to increase the reactor power from 2% to 100%.

The discrete control model operated the system’s synchronous connection
to connect to the electrical grid at a reactor power of 15%. The discrete
control module also selected the turbine load (Fig. 38 (f)) and RPM
setpoints (Fig. 38 (g)) based on the reactor power. Additional actions that
were performed by the discrete control module during the power-increase
operation are presented in Fig. 38 (h) and include starting feedwater
pumps 2 and 3 and condenser pumps 2 and 3 to circulate feedwater in
the secondary part of the plant. The control module started these pumps

in sequence according to the general operating procedure.
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(a) Simulation results: Reactor power
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(b) Simulation results: Average and reference temperatures
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(c) Simulation results: RCS boron concentration
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(d) Simulation results: Injected masses of boron and make-up water
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(e) Simulation results: Injected masses of boron and make-up water
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(f) Simulation results: Turbine load and electric power
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(g) Simulation results: Turbine RPM and turbine RPM setpoint
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(h) Simulation results: Pump and synchronous control signals

Fig. 38. Simulation results for a 3%/h autonomous power-increase
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IV. Emergency Operation

This section aims to develop an emergency operation agent that can
reduce the primary pressure and temperature safely until the shutdown
cooling entry condition after reactor trip caused by the loss of coolant
accident (LOCA) in NPPs. The suggested agent uses Soft Actor-Critic
(SAC) algorithm and a deep neural network. SAC is a DRL method that
optimizes a stochastic policy in an off-policy way. This suggested
algorithm has also proven its data efficiency and learning stability as well
as hyper-parameter robustness. In order to identify the agent’s
inputs/outputs, the functional recovery procedures (FRPs) are analyzed
through an abstraction decomposition space (ADS). ADS can help to
represent the entire target domain and draw constraints on the given
domain through a step-down decomposition. Based on identified
constraints, this study designs reward algorithms for providing training
directions for the agent. The test results using a compact nuclear simulator
(CNS) indicates that the suggested emergency operation agent can control
the components to comply with identified constraints until the shutdown

cooling entry condition.

A. Emergency operation analysis

NPP operating strategies during emergency situations were analyzed to
develop an autonomous operating agent. FRPs were analyzed for
identifying operation goals and criteria, required systems and components,
and success paths to mitigate the emergency. Then, the identified
information was mapped into the table of ADS. As a result of ADS, the

tasks of the agent and reward criteria were defined.
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1. Emergency operation analysis based on FRP

Based on the FRP, this study identified the goal and criteria of each
safety function, system, and component required in the emergency
operation. The emergency operating procedure in Korean NPPs can be
divided into the event-based procedure (optimal recovery procedure) and
symptom-based procedure (functional recovery procedure) [78]. Optimal
recovery procedure (ORP) is designed to cover specific design basis
accidents (DBAs), such as loss of coolant accident (LOCA) and steam
generator tube rupture (SGTR). On the other hand, FRP is focused on the
recovery of safety functions. FRP provides operator actions for events in
which a diagnosis is impossible, or any ORP is unavailable. The actions of
FRPs are to ensure that safety functions are placed in a stable, safe

condition. Fig. 39 shows the flow of the emergency operation strategy.

Standard Post Trip Actions ]

l

—

Diagnose Optimal

Perform selected safety
function success path(s)

Recovery Event?

S \
R .| | Functional !
! Optimal Recovery | yeg 'l | Recovery Procedure I
| Procedure | !
| H v 1
| ' : |
! Go to the appropriate N Go to the Functional !
' Optimal Recovery Guideline N Recovery Procedure !
| ol !
i Follow guideline ] E ! [ Verify RCP operating limits ] i
i H l !
| oo |
| . i Identify safety function |
! afety function N success path(s) to be !
| success criteria ! implemented |
| satisfied? No + 1 !
i [ |
! Yes . !
| [ |
I T i
| [ |
I T i
| [ |
I T i
i [ |
I T i
| ' | |

_____________________________

Fig. 39. Strategy flow chart for emergency operation
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This study analyzed

safety functions,

the required systems, and

components. Table 11 shows the nine safety functions and their purposes.

Table 12 represents the safety systems and components designed to satisfy

RCS inventory control function in Korean NPPs [78].

Table 11. Nine safety functions

No | Safety function Purpose
o Shut reactor down to reduce heat
1 Reactivity control .
production
5 Reactor coolant system (RCS) Maintain volume or mass of reactor
inventory control coolant system
Maintain pressure of reactor coolant
3 RCS pressure control

system

4 RCS heat removal

Transfer heat out of coolant system

medium
5 Core heat removal Transfer heat from core to a coolant
6 Containment isolation Close valves penetrating containment

Containment pressure and

temperature control

Keep from damaging containment

8 Hydrogen control

Control hydrogen concentration

9 Maintenance of vital auxiliaries

Maintain operability of systems

needed to support safety systems

Table 12. Safety systems and components designed for safety RCS pressure

control

System

Component

Safety depressurization and vent

system

Power-operated relief valve
(PORV)

Pressurizer (PZR) pressure control

system

PZR spray valve, PZR heater
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2. Work domain analysis by wusing abstraction

decomposition space

The ADS is used to systematically identify the systems and components
that the agent is required to manipulate. The operational goal and
constraints during the emergency operation were also analyzed to design

the agent’s reward algorithm.

ADS can analyze the given work domain as the abstraction level and
decomposition space. The abstraction level is a hierarchical structure that
consists of functional purpose, abstraction function, generalized function,
and physical function. These levels are connected with mean-end links that
show how-what-why relationships between levels. On the other hand, the
decomposition space is typically divided into a whole system, sub-system,
and component. It can represent the entire domain under examination,

stepping down through the spaces of detail to a component space.

Whole system Sub-system Component

Prevention of core damagd

Functional
emperaturg

urpose
Reduce purp
Pressure
PZR Level PZR Level > 20% Abstraction
function
—»{Supplying Coolant ]
—»{Decompressing PZR aner?hZEd
unction
L [Pamping |

Charging

PZR
PORV Valve
|, [Charging Physical
pre Pump function
PZR Letdown
Heater Valve
Orifice
Valve
SIValve

SI Pump
SITank

v

vVYVY

Fig. 40. An example of ADS to reduce the pressure
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Fig. 40 illustrates an example of ADS for controlling the pressure of the
reactor and cooling system. The functional purpose is considered as the
objective of the systems and components. The functional purpose was
defined as reducing pressure and temperature to prevent core damage. At
the lowest level of physical function, target systems and components to be

controlled are identified.

Table 13. Required physical parameters and its success criteria in

abstraction function level

Physical Parameter | Success Criteria

Pressure < 29.5kg/cm’

PZR pressure
Pressure within P-T curve boundary

PZR level 20% < Level < 76%

170 C < Average temperature

RCS average L
Temperature within P-T curve boundary

temperature

55 °C/hour < Cooling rate
S/G Pressure Pressure < 88.2kg/cm’
S/G level 6% < Narrow level < 50%

The abstraction function represents the basic principles such as flow,
mass, temperature, and level. These principles should be fully considered
as the means to achieve the ends specified in the functional purpose level.
Table 13 shows physical parameters and its success criteria condition based
on the FRP. For instance, the pressure of the pressurizer (PZR) has a
success criterion of the RCS pressure control function, ie. the PZR

pressure should be below 29.5kg/cm2, which is the shutdown operation

_85_

Collection @ chosun



entry condition, and stay within the pressure-temperature curve

Curve) boundary as shown in Fig. 41.

Pressure (kg/em?)
200=

Normal Condition
Power: 100%
Temperature : 309°C Accident
Pressure : 156A2l(g/:m2

After Reactor Trip
Power : 0%
Temperature : 260°C
Pressure : 80kg/:m2

Shutdown Cooling System)|

Entry Condition
Power : 0%
Temperature : 170°C
Pressure : 29.5kg/cm?

Fig. 41. P-T curve boundary and trajectory of the change of the pressure

and temperature

The generalized function represents operation functions that can directly

or indirectly affect the basic principle defined in the abstraction function.

This function can be defined as the systematic process in relation to

physical parameters. For example, PZR level is affected by decompressing

PZR, and pumping and suppling the coolant. These system processes are

related to the purpose of the system in the safety functions.

The physical functions are defined as the components that can achieve

each systematic process, i.e., the generalized function such as pumping and

suppling the coolant. Table 14 shows the components required to supply

coolant to PZR. These components affect in finally satisfying the PZR

level.
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Table 14. Components required to supply coolant to PZR

Component

SI valve, SI pump, Charging valve, Letdown valve, Orifice valve

This study classified these components into continuous control and

discrete control according to the control type. As shown in Table 15, the

components required to reduce pressure and temperature are divided into

two control types. The continuous controls adjust component states to

satisfy specified target values of given parameters, and the rules that

govern the necessary adjustments cannot be described with simple logic,

i.e, cool the temperature within P-T curve adjusting the position of the

steam dump valve. In contrast, a discrete control involves the direct

setting of a target state, i.e, if the pressure is below 97kg/cm2, the RCP

is switched off.

Table 15. Control type of components

Control type Component
Continuous PZR spray valve, SI pump, SI valve, aux feedwater
control valve, steam dump valve

Discrete control

PZR heater, charging valve, letdown valve, orifice
valve, aux feedwater pump, main feedwater pump,

reactor coolant pump
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B. Development of Emergency Operation

Algorithm

This study developed an autonomous operation agent for emergency
situations. This algorithm employs a rule-based system and Soft
Actor-Critic (SAC), a kind of DRL. Fig. 42 illustrates the structure of the
proposed algorithm, which consists of 1) discrete control module and 2)

continuous control module.

The discrete control module controls components (discrete control type)
described in Table 15, i.e., the PZR heater, charging valve, letdown valve,
orifice valve, aux feedwater pump, main feedwater pump, and reactor
coolant pump. In addition, the continuous control module adjusts
components (continuous control type) such as the PZR spray valve, aux
feedwater valve, and steam dump valve. In particular, this module focuses
on operational tasks where the procedure does not provide the target
status of components but the goal value of the parameter that should be
achieved by the component, e.g, PZR pressure controlled by the spray.
Although the continuous control includes mostly control valves, some
components that have discrete states may be involved in this control. For
instance, the SI pump and valves with only discrete states are categorized
into the continuous control because those components are used to achieve

the goal of PZR level parameter.
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(- Algorithm for Autonomous Emergency Operation - )

[

i Discrete Control Module (Rule-based System) 5

|
(Rule FTHEN
ete Control

Plant Parameters —>[ Inference Engine '— Dlschigna|

i Continuous Control Module (Soft Actor-Critic Agent) :

Reward Algorithm
(P-T Curve)

Update network

» Physical Parameter
L (5 Values)

Continuous
Control Signal

Component State
_t (12 Values)
J
—[ Nuclear Power Plant ]4—

Fig. 42. Overview of the algorithm to reduce the primary pressure and

temperature during emergency operation

Appropriate methods were selected by considering the characteristics of
each control type in NPPs. A rule-based system was adopted to
implement the discrete control because the specific rules can be developed
from the operating procedures. On the other hand, reinforcement learning
was applied to implement continuous control because it is difficult to
define specific rules, i.e,, how much the valve should be opened or closed.
Reinforcement learning is similar to how actual operators learn and gain

experiences in real operations or training for continuous control.

For the continuous control, a SAC-based algorithm and a DNN were
used. Fig. 43 shows the structure of the SAC agent. As a training
algorithm, the SAC was applied. The SAC agent can find the policy to

explore more widely while giving up on clearly unpromising avenues. The
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policy can capture multiple operational paths of near-optimal behavior. The
Q-values can optimize its behavior selected from the policy by considering
the actual and expected rewards [10]. DNN was used to capture an action

that can achieve the operational goal.

- Emergency controller -

DRL controller with SAC algorithm

— [ Reward Algorithm ]> "Reward

_ Q-Networks Train

Rule-
Input Hidden Hidden  Output based
Layer Layer Layer Layer system

(17)*2  (64)*2 (64)*2  (1)*2

Policy Network Train

< Predicted
- R
actions
Policy D
Network | = .
Input Hidden Hidden Output
Layer Layer Layer Layer
(17) (64) (64) (5)
Type Input parameters Target Component Control Output
« PZR pressure PZR spray valve . 0% ~100%
Physical « PZR level SI pump . On~Off
Parameter | + RCS average temperature
(5 Values) | « S/G pressure Stvalve M
« S/G level Aux feedwater valve | - 0% ~ 100%
« PZR heater Stem dump valve . 0% ~ 100%
« Charging valve
« Letdown valve Target Component Control Output | <
« Orifice valve s signal on/Off
Component| + Auxfeedwater pump PZR heater On / Off
State « Main feedwater pump -
VA + Reactor coolant pump Charging valve Open / Close
(12 Values)| . p7p spray valve Letdown valve Open / Close
« SI pump
. Slvalve Aux feedwater pump Start/ Stop
«  Aux feedwater valve Main feedwater pump Start/ Stop
+ Steam dump valve Reactor coolant pump Start/ Stop

Fig. 43. Structure of SAC agent

In DRLs, the reward is an essential element that updates the weights of
the SAC agent; learning by the agent involves updating the weights of the

network to maximize the accumulative reward. This study suggests a
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reward algorithm to reduce the pressure and temperature of the reactor
and cooling system down to the shutdown cooling system entry condition.
The reward was developed by the success criteria resulting from the
analysis of the operating procedure. The reward was calculated as shown
in Equations. 14 to 17. The SAC agent, who interacts with the simulator
every second, gets a total reward calculated by the equations below based
on the collected power plant’s physical parameters. The range of expected
total reward per second is (-inf ~ 0). If the reward is close to zero, it

means that the agent satisfies the success criteria

T'(:ooling = Ts'table —95 X (t_ tfr/p)/3600 (14)
T'dist = | Tt - T'(:ooling | (15)

Pdist = | Pt - P{:ooling | (16)

a7

Teooling : Calculated Cooling Temperature

Teable - Stable Temperature After Reactor Trip (2607TC)
T: : Temperature (time =t [sec])

Peooling : Pressure of Shutdown Cooling Entry Condition
P; : Pressure (time =t [sec])

t : Current Time [sec]

tyip - Reactor Trip Time [sec]

Tast : Distance between Ty and Tcooling

Paist  Distance between P; and Pooling

The SAC agent interacts with simulators until the temperature or
pressure moves outside the P-T curve boundary (operation failure) or the
agent approaches the shutdown cooling entry condition (operation success).
If the interaction is complete, the simulator’s condition returns to initial
operating conditions. This process is defined as one episode. Therefore, the
SAC agent is trained through numerous episodes until the cumulative

rewards of episodes converge.
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C. Training and Stability

To complete the emergency operation, the SAC agent was trained for
more than 800 episodes. The SAC agent training is stopped when the
average reward becomes saturated stably. Fig. 44 shows the trend of the
rewards that the SAC agent obtained. In one episode, the theoretically
maximum cumulative reward during the entire emergency operation was 0
(the green dashed line in Fig. 44). For a cumulative reward in one episode
to be zero, the SAC agent should get zero as a reward every second.
However, since the pressure cannot be the same as the pressure of
shutdown cooling entry condition at the beginning of the operation, the
maximum cumulative reward should be selected through experimental
observation. The practicably feasible maximum reward for the emergency

operation success was observed to be over -65.

Reward

~125 4

~150 1

175 4 = = Maximum reward

= = Success reward

0 200 400 500 800
Episode

Fig. 44. Reward obtained by the SAC agent
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1. Experiment result

After the proposed algorithm was trained successfully, an experiment

was conducted to demonstrate that the proposed algorithm can

autonomously cool down the reactor in the LOCA scenario and satisfy the
operation constraints, i.e., within the P-T curve boundary with the cooling
rate (55 °C/hour). As shown in Fig. 45, the proposed algorithm can

reduce the pressure and temperature within operational criteria down to

the entry condition of shutdown cooling.

PZR Pressure [kg/cm~2]

[y 300 10000

Cooling Rate [55°C/hour]
-------- Shutdown Cooling Entry Condition
— P-T Trajectory

P-T Curve Boundary

Fig. 45. Simulation results for autonomous emergency operation
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V.Discussion

A. Bubble Creation Operation

This section discusses some interesting findings from this comparison
study. The DRL-tuned PID controller exhibited best performances in terms

of error and time.

Table 16 compares the DRL- and PID-based controllers in terms of the
average deviation error from the target value of the parameters and the
time taken to reach the target value. For the pressurizer pressure and
level, the DRL-tuned PID controller generally exhibited the smallest error
and fastest reaching time than both the ZN-tuned PID controller and the
DRL-based controller.

Table 16. Comparison result of operational performances

PID-based DRL-based
Performance
controller controller
Average deviation +0.3248 kg/cm’® (ZN) )
) ) 10.2816 kg/cm
. error from 27 kg/cm £0.1805 kg/cm” (DRL)
Pressurizer
Pressure
Reaching time to 27 32 minutes (ZN) .
) ] 10 minutes
kg/cm 10 minutes (DRL)
Average deviation £9.56% (ZN)
£8.79%
) error from 50% £6.55% (DRL)
Pressurizer
Level
) ) + 144 minutes (ZN) )
Reaching time to 50% . + 93 minutes
+ 38 minutes (DRL)
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Although PID-based controllers are dedicated to one component,
DRL-based controllers manage the parameters and control multiple
components simultaneously. To control the pressurizer pressure to the
desired value, three PID-based controllers were designed for three
components: the charging valve, letdown valve, and spray. The controllers
opened these values and the spray simultaneously to reduce pressure, as
shown in Fig 46. On the other hand, two DRL-based controllers were
developed for the control of pressure, not the control of components.
Thus, the DRL-based controllers manipulate the three components in an
interactive manner. For instance, as shown in Fig 46, the DRL-based
controllers closed the letdown value at approximately 260 min and instead
maintained the charging valve closed, while the PID-based controllers

consistently opened these valves at the same time.
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1001%] ——- [PID-based controller(ZN Tuning)] Letdown Valve Posistion / V'V
o ——— [PID-based controller(DRL Tuning)] Letdown Valve Posistion
750%]1 1 — [DRL-based controller] Letdown Valve Posistion
50[%]
25[%]
O]
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Time[Min]
(a) Posistion of letdown valve
=== [PID-based controller(ZN Tuning)] Spray Valve Posistion
—— [PID-based controller(DRL Tuning)] Spray Valve Posistion
20[%] 1 —— [DRL-based controller] Spray Valve Posistion
10[%] 1
0[%] T T T T T T T T T I.i T T T T T T T
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Time[Min]
(b) Posistion of spray valve
100[%] 1

——- [PID-based controller(ZN Tuning)] Charging Valve Posistion
80[%]1 [PID-based controller(DRL Tuning)] Charging Valve Posistion
—— [DRL-based controller] Charging Valve Posistion

60[%] 1
40[%] 1 u.”,
20[%] 1 A;:l"

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Time[Min]
(c) Posistion of charging valve

Fig. 46. Positions of charging, spray, and letdown valve

PID-based controllers manipulate components more frequently than
DRL-based controllers. Fig 47 shows a comparison of the number of
manipulations for the three components. As shown in the figure,
PID-based controllers control the components more frequently than
DRL-based controllers. This may be related to the second finding described
above. DRL-based controllers work interactively and can satisfy the

operational goal with fewer manipulations.
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Less frequent manipulation is desirable in NPPs. First, frequent
manipulation is likely to lead to component failures. From the perspective
of probabilistic safety assessment, once a component starts to work (e.g.,
open/close or start/stop)., the probability of failing to work increases.
Second, frequent manipulation accelerates the aging or fatigue of

components. Thus, the replacement period is shortened because of aging.

400
° ~ - PID-based controllerizN Tuning)
€ 3004 —  PID-based controller(DRL Tuning)
8 e DRI -baced controller
o
2 200
©
]
£ 100
o
&
0
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Time[Min]
(a) Accumulated control of letdown valve
S 150§~ PiD-based controller(ZN Tuning)
< . PiD-based controllerlDRI Tuning)
8 = DR based controller
< 100
L
©
g 50
3
o
&
0 r T T T T T T T T T T T T T T T T T
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Time[Min]
(b) Accumulated control of spray valve
150
S = PR based controller(ZN Tuning)
k= -~ PID-Based controller(DRL Tuning)
S 100§ DRI based controlier
8
o
3
g 50
3
o
O
<

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
Time[Min]

0

(c) Accumulated control of charging valve

Fig. 47. Total manipulation of letdown/spray/charging valve during cold

shutdown operation

_97_

Collection @ chosun



B. Power Increase Operation

The experimental results demonstrated that the proposed algorithm
successfully controlled the components to increase the reactor power and
generate electrical power at the intended rate of power increase. The
performance of this algorithm was also compared with that of the
established operation strategy. According to Fig. 48, the proposed
algorithm had a pattern of operation that was nearly identical to that of
the established operational strategy. Therefore, it is concluded that the
proposed  algorithm, which combines a rule-based system and
reinforcement  learning, can successfully control the complicated

power-increase operation.

In this algorithm, the discrete control module operated the synchronizer
controller, turbine controller, main feedwater pump, and condenser pump

according to the operational steps that are clearly stated in the GOPs.

The continuous control module adjusted the valves to manage the boron
concentration and manipulated the rod controller. The continuous control
module can provide experiential control of these inputs, thereby gradually
affecting the power increase, based on the parameter trends, the
predetermined rate of power increase, and the current operational
boundaries. In addition, the results demonstrate that the continuous control
module effectively managed the boron concentration such that the
difference between the average temperature and the reference temperature
was maintained within + 1 C. Since this rule is not mandated in the
GOPs, the control module allowed average temperatures that were outside

the mismatch boundary.
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However, based on interviews with senior operators who work at the
reference plant, this restriction can be satisfied after the reactor power
reaches 30%; in the earlier stages of the power-increase operation, the
start-up of large components results in system disturbances that complicate
temperature control. Therefore, these results demonstrate that the A3C
agent in the continuous control module can effectively conduct
experience-based control after training with the simulator and the discrete
control module can control components according to rules that are based

on the operating procedures.
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Several aspects should be further considered regarding the practical

application of this algorithm:

1) Since the power-increase operation is only a small part of the overall
plant operation, to cover the entire plant operation, the proposed reward
algorithm should be changed according to the operation objectives,
strategies, operational methods, and required procedural steps for each
operating range. Moreover, the Al agent should be capable of selecting

and controlling an operating strategy based on the context.

2) To further improve the safety of NPPs, an Al agent requires
additional functions (e.g., fault detection, diagnosis, forecasting the status
of the plant, identifying the possible control options, and recommending

the best option) to address emergency, abnormal, and normal situations.

3) The signal noise in a plant should be an additional consideration;
signals in NPPs contain noise, while the simulator does not. Therefore, a
technique that can mitigate the signal noise, e.g., signal validation or noise

tolerance, must be developed.

4) Another issue is the differences in behavior between the simulator
model and actual power plants, which mandates a thorough validation of

the practical application.
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C. Emergency Operation

Licensing is one of the unsolved issues for the DRL-based controllers.
The application of NPPs requires proven technologies. In particular, for
safety-critical systems, controllers need to be approved by regulations.
PID-based controllers have been acknowledged as a proven technology,
because they have been used in NPPs for decades. However, it is common
knowledge that AI technologies have not been sufficiently proven.
Therefore, solving the licensing issue is the largest problem for applying

DRL-based controllers to NPPs.

Even though the licensing issue is beyond the scope of this study, it is
worth investigating some approaches to proving Al The first is the use of
an explainable AI called XAI XAI can show how the AI produces the
result and makes the Al closer to a whitebox. The second is the
application of the software development process. The software used in the
safety-critical system of NPPs should follow a very strict development
process recommended by various standards, such as IEEE Standards 1012
[79] and 7-4.3.2 [80]. Because Al-based controllers can also be regarded as
software, they are considered to apply the software development process

to them.
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V1. Conclusion

This study developed a intelligent controller for an autonomous
operation in NPPs during start-up and emergency. The controller was
focused on conducting high-level operations that are similarly performed
to the current operation strategy. To manipulate components similarly to

operators, controllers currently aimed to automate manual controls.

First, this study compares the performance of DRL- and PID-based
controllers in the cold shutdown operation of NPPs. This study conducted
a task analysis for the bubble creation operation based on the operating
procedures. Subsequently, PID- and DRL-based controllers were developed
to satisfy the operational goal of the operation. The PID-based controllers
were tuned by using the Ziegler-Nichols and DRD-based tuning method.
This study compared the performances of the controllers. In general, the
DRL-tuned PID controller exhibited the smallest error and fastest reaching
time than both the ZN-tuned PID controller and the DRL-based controller.

Finally, we presented some interesting findings.

Second, this study proposed an algorithm for the power-increase
operation. The power increase algorithm was also designed through an
analysis of the current operational strategy, which considered the operation
staffing and operating procedures. To train the continuous control, the
proposed algorithm used an A3C agent and an LSTM network and
applied a rule-based system for the discrete control components. The CNS
was used to determine whether the proposed algorithm could effectively
and autonomously control the power-increase operation at a 3%/h rate of

power increase. Based on the simulation results, the power increase
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algorithm was proven capable of identifying an acceptable operation path
for increasing the reactor power from 2% to 100% at a specified rate of
power increase.

Third, this study proposed an algorithm for an autonomous emergency
operation that uses Al techniques. The emergency operation algorithm was
developed through a domain analysis based on the FRPs using ADS. The
proposed algorithm used a SAC agent and a DNN network for the
continuous control and applied a rule-based system for the discrete
control. A compact nuclear simulator was used to train and test the
algorithm. Based on the simulation results, this algorithm reached the
shutdown operation entry condition, according to the cooling rate (55

°C/hour).

These three studies was shown that the validation results showed that
the autonomous operation algorithm can mange the NPPs according to
given operational goals. The suggested approach seems to be applicable to
other operational modes in NPPs, if the reward algorithm is adjusted
according to the operation objectives, strategies, methods, and required

procedure steps for each operating range.

Future studies may suggest developing an agent that can select and
control a contextual operating strategy, either in the entire operation range
or in part. Future studies may also consider emergency as well as
abnormal situations during power-increasing operation. More so, to realize
a fully automated NPP, an autonomous control system should be capable
of: automatic operation of the NPP, fault detection, diagnosis (identifying
the causes of component failures or incidents), simulation, forecasting the
status of the plant, identifying the possible control options, and

recommending the best option for optimizing the plant performance. This
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autonomous control is expected to be a key technology in small modular

reactors that are under development.
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