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I. Introduction

Unmanned aerial vehicle (UAV) is largely classified into a fixed wing type and a rotary wing
type according to the shape of the aircraft, and recently, a multi-rotor, one of the types of ro-
tary blades, has been most actively studied. The multi-rotor has the advantage of being able
to vertical take-off and landing (VIT'OL) and hovering in place through thrust control of each
rotor, so it replaces human resources and performs missions such as monitoring, reconnaissance,
target recovery, and damage evaluation for military purposes[1-3]. Recently, various tasks such
as aerial photography, environmental monitoring, building inspection, and disaster management
support have been performed in the private sector[4, 5]. As the use of multi-rotors increases,
related accidents are also increasing every year around the world. Among them, the proportion of
crashes and crashes is the highest, and most of them are problems that occur during flight[6, 7].
Commercial multi-rotors are specified to ensure flight stability at wind speeds of about 10 m/s.
However, it is difficult to guarantee the flight stability of the multi-rotor even with slight changes
in wind speed during actual flight. Although the multi-rotor is simple to model the system, it
is difficult to ensure flight stability through speed control alone when there is disturbance such
as rapid change in wind speed due to the relatively small and light aircraft, and the system and
mathematical modeling of the actual model may be somewhat erratic, resulting in model uncer-
tainty. The stability and reliability of the system must be ensured for smooth and safe mission
performance. To solve these problems, research on robust control techniques for disturbance and
uncertainty and nonlinearity of models is underway[8-10].

Typical nonlinear model control techniques for ensuring flight stability and reliability of UAVs
include sliding mode control (SMC), backstepping control, neural network control, and adaptive
control. Backstepping control is systematic in the design process of the control input and can
be applied to systems with known nonlinearity that do not satisfy matching conditions, but it
needs to know the nonlinearity of the system accurately and can cause rapid output changes[11].
Neural network control is a technique of setting variables related to a control model and setting

the combination and weight of the model and variable as variables[12]. This technique is difficult
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to design an intermediate layer that determines the weight, and as the number of layers increases,
the control precision increases, but the amount of computation increases, requiring a lot of com-
putation time. Adaptive control has model-based adaptive control and non-model-based adaptive
control methods, which require a lot of computation for nonlinear models, and the more complex
the model, the more difficult it is to apply.

Most of the control techniques introduced above have limitations in modeling nonlinear dy-
namics and handling various environmental variables, and it is expected that accurate and quick
response to perform tasks in situations of disturbance and model uncertainty will be difficult.
Sliding mode control, which follows the target state accurately and quickly and is robust to dis-
turbance and model uncertainty, can handle nonlinear dynamics without linearization, define a
sliding surface using system state variables, and control variables to make the system behave[13].
However, sliding mode control has two problems. First, chattering, a high-frequency shaking phe-
nomenon, occurs in the process of increasing robustness. Second, it takes infinite time for the state
error to converge to zero[14, 15]. Such a problem can lead to a decrease in control performance,
and research has been conducted to improve it. A method of improving and using the problem-
causing Reaching law to reduce chattering is proposed[16], and in this study, fast terminal sliding
mode control(FTSMC) using improved sliding faces is applied to ensure convergence within finite
time[17-19].

Since it is difficult to ensure attitude stability through speed control only by the rotor of the
multi-rotor due to disturbance, Control Moment Gyro (CMG), a driver device that generates
torque using the Gyroscope effect, was applied to ensure attitude stability at a fast reaction
speed[20-24]. CMG consists of flywheel and gimbal in structure, and can be classified into two
main categories according to speed controllability of flywheel. VSCMG (Variable speed CMG)
that adjusts the rotation speed of the wheel and the angle of the gimbal, and CSCMG (Constant
speed CMQG) that adjusts the angle of the gimbal[25, 26]. CMG has the advantage of being able
to generate large torque with small inputs, and is mainly used for attitude control of high agility
spacecrafts. Not limited to spacecrafts, related research is being conducted by applying it to
various fields such as ships and vehicles, and recently, feasibility studies using CMG and reaction
wheels as multi-rotor systems are being conducted[27-30]. Despite its excellent performance, CMG

has a geometric singularity problem that cannot generate control torque in a specific direction.
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This reason relates to the alignment of the CMG gimbal and the shape of the driver mounting,
and the problem can be simplified according to the CMG mounting. The pyramid array structure,
which is mainly used, is very difficult to avoid singularities due to the complexity of the singularity
shape derived according to the tilt angle.

In this study, the CSCMG was used and two CMGs were attached side by side to the X-axis in
the body frame. This form involves only roll and pitch movements, not yaw movements. The reason
for using this form is that in the case of Yaw motion, the Z-axis moment of inertia of the multi-rotor
is larger than that of other axes, and it is relatively less sensitive to disturbance. However, even in
the case of the proposed form, it is not possible to have the same angular momentum distribution
for all axes, and the maximum angular momentum allowed for each axis is closely related to the
initial gimbal angle. If the multi-rotor fails to restore to the initial gimbal angle during hovering
after starting, it is difficult to expect the same maneuver performance during all starts, and
a singularity problem may occur. In order to overcome such singularity problems, research on
various singularity avoidance and robust driving laws is continuously underway[20, 31-35]. In
this study, we introduce the optimal angular momentum vector recovery driving law to prevent
singularity problems. However, one further consideration in this driving law is the singularity
problem due to disturbance. Therefore, we propose a Disturbance robust drive law, which can
ensure the avoidance of singularities in CMGs by appropriately adjusting them to the torque by
the rotor of the multi-rotor.

In this study, a hexa-rotor with higher thrust and more detailed control is used compared to
a quad-rotor. To ensure flight stability and reliability, we apply FTSMC, which can guarantee
robust and finite time convergence in disturbance and model uncertainty, and prove the stability
of the control technique through Lyapunov theory. In addition, since it is difficult to guarantee
attitude stability only by the rotor of the multi-rotor due to disturbance, two CSCMGs were
applied, and DRSL was applied to solve the problem of CMG singularity. The designed system
verifies the performance of CMG-free multirotors and CMG-free hexa-rotor through numerical

simulations in the presence of disturbances.
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I1. Modeling of UAV

UAV is largely classified into fixed-wing method and rotary-wing method. The multi-rotor has
the advantage of not being constrained by space because vertical VTOL and hoveing are possible
through the thrust control of each rotor. Multi-rotors are classified into tri-rotors, quad-rotors,
and hexa-rotors according to the number of rotors. In general, the most commonly used type of
multi-rotor is a quad-rotor, which has the advantage of being relatively simple and intuitive in
operation, but has the disadvantage of poor flight stability. In this study, a hexarotor that can

withstand more power than a quadrotor and has excellent flight stability was used.

A. Coordinate System

In order to explain the dynamic motion of the hexarotor, two reference coordinate systems
are required, and the coordinate systems are the inertial frame (Xpg, Yr, Zg) and the body frame
(XB,YB,Zp). The body frame of the hexarotor is a coordinate system fixed at the center of
the actual observer or airplane, and the inertial frame is based on Newton’s first law, so objects
without force are stationary or move in a straight line at a constant speed. Basically, it is a
coordinate system with the center of the Earth as the zero point. The structure of the hexarotor
includes thrust, angular velocity, and torque by six rotors, and is shown as Fig.1[36-38]. The
dynamic motion of the hexarotor can be explained by six degrees of freedom that appear in the
12 states of the hexarotor. Components expressed in the inertial frame are defined as position
¢, Euler angle n and Quaternion Q. The Euler angle is intuitive, but there is a risk of loss of
freedom due to the gimbal lock problem[39]. To overcome this problem, we use quaternion with
no dependencies on other axes to solve the singularity problem and simplify the calculation. In
this study, quaternion were used for mathematical modeling, and in order to intuitively interpret

the operation of the hexarotor, it was analyzed by converting it into Euler angles. In the body
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Figure. 1 Hexa-rotor configuration

frame, velocity is defined as v, and angular velocity is defined as w[40].
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B. Forece and Torque

The thrust of the rotor is represented by the lift coefficient and angular velocity of the rotor,

and the thrust of the hexarotor is represented by the sum of the thrusts of the six rotors.

Fy=kw?, (i=1,2,3,4,5,6) (3)
0
6 6
T=Y F=k> w}, Te=|0 (4)
=1 =1
T

where, k is the lift coefficient of the rotor, w; is angular speed of each rotor.

Hexarotor is rotated 60 degrees about the Zp axis as shown in Fig.??, and Roll, Pitch, and
Yaw moments can be obtained from the F; and 7; components of the body frame and geometric
structure. At this time, the angular acceleration effect w; of the rotor is small in the equation for
the torque, so it is ignored.

T = bwi + i (5)

7o =kl (w§ —wd + 5 (—wi 4+ w? + w} — w?))

Ty = b (—w? + wj — w3 4+ wi — wi + wj)
where, [ is the distance from the center of the hexarotor to any of the propellers, b is the drag

coefficient and J,, is the moment of inertia of the rotor.

Combining the thrust and torque equations, the equation for the control input of the hexarotor
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can be obtained.
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C. Rotation Matrix

In order to derive the equation of motion of the hexarotor, it must be defined in one coordinate
system. Quaternions are applied based on Euler’s theory of rotation, which expresses the same
variables as rotational motion in the translational motion of an arbitrary rigid body with fixed

points. Quaternions, also known as Euler parameters, are defined as the main rotation factors as

q1 = p1sin (a/2)
g2 = p2sin («/2)
q3 = p3sin (a/2)
qo = cos (/2)

where, « is the angle of rotation with respect to the unit vector p = [p1, p2, ps].
Please note that quaternions are composed of four elements, so there is a constraint that only
one condition must be satisfied.

G+a+at+a=1 (10)

The direction cosine matrix from the body frame to the inertial frame is as follows.

R = (¢} — d'q) Isxs +2(qq’) + 2q0q™
@+ai—a3—d3 2(q192 — g390) 2 (g290 + q193)
=| 2(qe+aw) G-G+63-63  2(06— o)

2(qigs — g2q90)  2(qiqo +q2q3) @ —di—d3+ 43

X

where, R is orthogonal matrix; therefor, R™1 = RT, ¢* is the matrix representation for the

general vector product, which can be defined as a skew-symmetric matrix as follows.

0 —g¢ @
= ¢ 0 -aq (12)
-2 q 0
_8-
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D. Mathematical Model of the UAV

Through the rotation matrix, the relational expression between the velocity in the inertial

frame and the velocity in the body frame can be expressed.

XE Vg
YE =R Vy
ZE v
4 z (13)
@+ -3 —-¢ 2(me—awp) 292490+ q1gs) Uy
= 2(a2 + 390) @ —dd+d3 -3 2(02q3 — qq0) Uy
2(q193 — 4290)  2(q190 + 4293) @ — G — B + ¢ Vs
The kinematic differential equation for the quaternion is given by
0 —Wr Wy —W, qo
—Wy 0 W, Wy q1
Q= (14)
Wy —Wy 0 Wy q2
w:  wy —wg 0 qs

g —q —q92 —q3 0

1|91 9@ —9 g2 Wy
Q= (15)

q2 q3 q0 —q1 Wy

g3  —q2 q1 q0 Wz

The equation of motion for the attitude and position of the hexarotor can be described by
the Newton-Euler equation. In the body frame, the centrifugal force w* (mwv) and the force for
mass acceleration m® are equal to the gravitational force RTG and thrust Ts of the UAV. The

acceleration in the body frame is as

md + w* (mv) = RTG 4 Ty (16)
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where, m is total mass of hexarotor, g is gravitational acceleration.

The expression for acceleration is as follows

0 0
1
0=RT | 0| —wxv+—1| 0 (17)
m
g T

To enhance the actual behavior of the UAV, the aerodynamic effect created by air resistance

must be included. Therefore, it can be expressed as

0 0 A 0 0 Vg
1
9=R"| 0 | —wv+—| 0 |0 Ay, 0 Uy (18)
g T 0 0 A Uy

In the body frame, the sum of the centripetal force w> Jpepew and the inertial angular accel-
eration Jpepqw are equal to the torque u,. Application to rotational motion from Newton-Euler
equation is as follows.

Jhexa‘-"-’ = 7“-’><Jhexa‘-‘-’ + Uy (19)

Adding disturbances here is as follows.

w=J,1 (~w*Tpezaw+un + d) (20)
where,
Jhea:a = diag( Jheaca,acz Jhe:ca,yy Jhe:ca,zz ) (21)
T
d= [ To,d T0,d Ty.,d } (22)
T
Uy = [ Ty TO Ty :| (23)

Jheza,ze> Iheza,yy A Jhega,z- are the moments of inertia of the hexarotor in each axis direction,

d is torque disturbance, u,, is torque of hexarotor.

- 10 -
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I1I. Modeling of UAV Using CMGs

Currently, there is Control Moment Gyro (CMG), which is an actuator device that generates
torque using flywheels among the attitude control devices of spacecrafts.In the case of the CMG,
there is a difference in performance compared to the momentum wheel and the reaction wheel,
which are other attitude control devices, and the performance part has torque that induces at-
titude control. In the case of the momentum wheel and the reaction wheel, the generation of
torque is insufficient compared to the CMG, so there is a limit to the attitude control of the
spacecrafts, which emphasizes maneuverability. In fact, in order to generate a large torque using
a momentum wheel and a reaction wheel for attitude control of an object requiring high agility,
the size of the wheel has to be increased, and strong motor performance is required accordingly.
Therefore, weight and power consumption increase inefficiently. However, if the CMG is used,
since the torque is amplified by the principle of the gyroscopic effect, it is possible to generate a
larger torque for the same size wheel and motor performance. CMG has a unique advantage of
torque amplification, and research is being actively conducted to compensate for the problems
of expensive equipment, complexity, and singularity. In this study, the validity of the multi-rotor

attitude control is confirmed using the characteristics of CMG.

- 11 -
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A. System Configuration

As shown in Fig.2, it is defined as a gimbal frame given by unit vectors (a,b,c) and body
frame. a is the unit vector of the gimbal axis. b is the unit vector of the spinning axis of the wheel
disk. ¢ is the unit vector of the torque axis. Components of the gimbal frame unit vector are
assumed to be given by the hexarotor body reference frame. The structure of CMG is composed
of gimbal rotor, spin rotor, and flywheel, and can be classified into two main categories according
to speed controllability of flywheel. Tt is classified into Variable speed CMG (VSCMG), which
controls the rotational speed of the wheel and the angle of the gimbal, and Constant speed CMG
(CSCMG), which maintains a constant rotational speed of the wheel and adjusts the angle of the
gimbal. It is classified according to the number of gimbal axes, and if there is one, it is divided
into single gimbal CMG and double gimbal CMG if there are two. In this study, attitude control
was performed using two CSCMGs.

In this study, as shown in Fig.3, in order to solve the singularity problem relatively simply,
the CSCMG method was applied to select a method of attaching two CMGs side by side to the
X-axis of the body frame. This form is involved in roll and pitch motions, but not in yaw motion.
The reason for choosing this form is that in the case of yaw motion, the Z-axis moment of inertia
of the hexarotor is larger than that of other axes, so it is relatively less sensitive to disturbance.

Therefore, a form that can only be involved in roll and pitch motions was selected.

- 12 -
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Gimbal axis direction

Body frame
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b
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Gimbal rotor
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XE

Figure. 2 Rigid hexa-rotor body with a single CMG
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Figure. 3 Definition of Two CSCMGs Coordinate System
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B. Mathematical Model of the UAV with CMGs

The CMG attached to the hexarotor can be expressed in the body frame of the hexarotor and
the gimbal frame of the CMG, and the rotation matrix for converting the gimbal frame to the

body frame is defined as C.
C= [ a b c } (24)

From the CSCMG, the derivatives of the unit vectors are given by

a; =0
bi = Aic; (25)
¢i = —ibi

Consider a hexarotor applied with two CSCMGs rotating with the angular velocity w of the
hexarotor body, the spin rate w,, of the wheel disk with respect to the gimbal frame and gimbal

rate  of the gimbal frame with respect to the body frame.

. T
Yo=]4% 0 0]

[0 w0 (26)

The angular velocity of the hexarotor relative to the body frame can be converted to the

gimbal frame as follows.

W =Wy T + WyY + W,z
x yY z (27)
= waa + wpb + wee = Cuwy

where wy, is angular vector with respect to the gimbal frame. The projection of the angular vector

onto the gimbal frame has a relationship given by
w = Cuwy (28)

The gimbal direction unit vector a is an axis fixed to the body frame, and when the gimbal

angle v is rotated around this axis, the gimbal angular velocity appears. The gimbal angular

15 -
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velocity vector is
T
Yg=4a=]4 0 0] (20)

The total angular momentum of the CSCMG can be expressed as

where h¢pg is the angular momentum vector of CSCMG, h; = J;w,, ; represents the i-th internal
momentum produced by the i-th CSCMG, and J; denotes the moment of inertia of the i-th
CSCMG wheel.

The time derivative of hcy,g is equal to the torque generated by the CSCMGs as follows.
. 2 . 2 .
hemg = Y- hibi + > hib;

i=1 i=

=1 (31)

2 2
= Z Jiww,ibi + Z hiﬂ.}/ici = Ucmyg
=1 =1

where uq,mg represents the torque output vector. Since CSCMG was selected in this study, the

angular velocity w,, is set to 0. Therefore, it can be written as

2
Ucmg = Z hiic;
=1
gl
= h101 hQCQ } (32)
Je
=AY

—hicosyy hgcosvys
A(v)=| —hysinyy —hosinys (33)
0 0
where A is the jacobian matrix. The detailed derivation of the equations of motion without
simplification is well described in Refs.[26, 33, 41].

To derive the equation of motion of a hexarotor with two CSCMGs installed, the total angular

- 16 -
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momentum vector h of a hexarotor with CMGs is as follows.
h = hperpq + hcmg (34)

where, Rjeqq is the angular momentum vector of the hexarotor, and hcy,4 is the angular momen-
tum vector of the two CSCMGs.

Equations of motion of the system from Euler’s equation is given by
h=u (35)

In order to derive the time change of the total angular momentum vector h of the hexarotor,

the components of Eq.34 are differentiated with respect to each time, and summarized as follows.
Jo=—-wJw+w hemg—AY)Y+u,+d (36)

where, J is the total moment of inertia of the hexarotor including the two CSCMGs, w is the
angular velocity vector of the hexarotor, w™ is the skew-symmetric matrix for the angular velocity

vector, and d is the disturbance.

and
J :diag< oz Jyy Sz )

T
WZ[wI Wy wz}

0 —Wws w2
wX =1 ws 0 —w (37)
—w2 w1 0

"V:["Yl Yo }T
d—

T
[Tm ux Tw,d}

17 -
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IV. Sliding Mode Control

Most control techniques have limitations in modeling nonlinear dynamics and handling various
environmental variables, and it is expected that it will be difficult to respond accurately and
promptly to work under disturbance and model uncertainty. Sliding mode control(SMC), which
follows the target state accurately and quickly and is robust to disturbance and model uncertainty,
can handle nonlinear dynamics without linearization, define a sliding surface using system state
variables, and control variables to make the system behave[42]. SMC is controlled through two
operations. The first step is the reaching phase of the variable to be controlled toward the sliding
surface. The second is the sliding phase, in which the variable that rises above the surface flows
toward the target value. Generally, the variable you want to control is defined as the error between
the current state and the target state. Designed the controller to aim to zero error.

The typical sliding mode control has the disadvantage that it takes infinite time for the state
error to converge to zero. To compensate for this, Terminal Sliding Mode Control(TSMC) was
proposed, and in this control method, Fast Terminal Sliding Mode Control(FTSMC) was proposed
to allow the error to converge to zero more quickly. In this study, FTSMC was used for attitude

control and TSMC was used for altitude control.
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Sliding Surface

Sliding Phase X(t‘)

Figure. 4 Phase Portrait of Sliding Mode Control
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A. Altitude Control

The Terminal Sliding Mode Control (TSMC) technique is one of the control methods that
solves the disadvantage that it takes infinite time for each variable to converge to 0. By applying
this technique, convergence to the target value can be guaranteed within a finite time. For altitude

control, TSMC was applied. The sliding surface and error equation for this are defined as follows.
S, = é + azerz (38)

€y, =2 — 2(- (39)

where, a, is positive gain values greater than zero, and r, is gain values having a value between
0 and 1.

To obtain the convergence time of TSMC, we assume that the sliding surface is
S, =¢é+aye =0 (40)

thus,
é=—aze” (41)

The above equation can be viewed as a first-order differential equation for time, and integration

is performed to obtain the convergence time.

ef ty
/ e "rde = —az/ dt (42)
e ts

s

where, e; and ey mean the initial error and final error, and ¢ and ¢y mean the start time and
final time.

Integration by parts, and assuming that the final error ef and the starting time ts are zero,

1 1—r, ° ty
e (43)
! el = —aty (44)
1—r,
90 -
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By rearranging the final time ts, the convergence time of TSMC can be obtained, and conver-
gence of each variable within a finite time can be guaranteed.

]. 1—
t — Tz 45
I~ . (1—r,) ®s (4)

In order to obtain the control input for the altitude control of the hexarotor, it can be obtained
by differentiating the equation for the sliding surface of Eq.38 with respect to time and rearranging
for u,.

In this study, the power rate reaching law is selected as the reaching law consisting of the
sum of the proportional terms for the sliding surface. This type of reaching law is used in many

studies because it not only reduces chattering but also has good control performance.
S, = — X182 — Asalsz|PZsign (s2) (46)

where, A\, 1 and A, > are positive gain values greater than zero, and p, is gain values having a
value between 0 and 1.
The sliding surface of Eq.38 has a problem that an imaginary number appears when the state

variable e is negative. To solve this, we use a modified sliding surface as follows.
s, = é+ale|sign (e) (47)

where, sign (- ) are signum functions.
Using the modified sliding surface, the control input for the altitude control of the hexarotor
can be derived as follows.
m

2 (azralel™ e+ g+ 5 (48)

Uyg =
R,

where, R, are values corresponding to 3 rows and 3 columns in eq.11.
Lyapunov function is used to verify the stability of the system using the designed controller.
The goal of the controller is to make the sliding variable zero, and the Lyapunov candidate

function is defined as follows.

(49)
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Differentiating the Lyapunov candidate function gives
V=s.4,=s, (—/\z15z — Xaals|PZsign (sz)) <0 (50)

Therefore, since it can be seen that it is less than 0, the controller is Lyapunov stable, and the

sliding surface converges to 0 after sufficient time.
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B. Attitude Control

Fast Terminal Sliding Mode Control (FTSMC) is a control technique that speeds up the

convergence speed in the existing TSMC. The sliding surface of FTSMC is as follows.

s=é+aye+byé" (51)

where, a, and b, are positive gain values greater than zero, and r is gain values having a value
between 0 and 1.

FTSMC ensures a faster convergence rate compared to TSMC. The method of calculating the
convergence speed is the same as that of TSMC. It is guaranteed that each variable converges to
0 within time ¢ = In((ayel™" + by)/by)/(an(1 — 7)). The sliding surface, like the sliding surface
of TSMC, has the problem of appearing imaginary numbers when the variable is negative. The
problem was solved in the same way as TSMC, and for attitude control, the error equation is
defined using the desired quaternion g4 and the sliding surface in which the sliding variable is 0

is as follows.

T
sy = [54:50,55] = w+ayQe +b,G(Qe) sgn (Qe) (52)
Tavs — g~ —
Q. = e _ qd,4 3><1?: q, qq q (53)
e,4 q; qd,4 qo

In order to obtain a control input for attitude control of the hexarotor, the equation for the

sliding variable is differentiated with respect to time as follows.
8y = =18y — A2G(sy) sgn (sy) (54)

where, sign (- ) are signum functions, A1, Asare positive gain values greater than zero, p is gain
values having a value between 0 and 1.
Using the above equations, the control input for the attitude of the hexarotor can be obtained

as follows.

(QX + qols) w> . (55)

N | =

Uy = wIJw—-1J <—-§ + (an13><3 + bnTG(Qe)T_l)
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where,

G(s):diag(|s¢|7\89|,|s¢’) (56)
sgn (g;) = [sign (q1) , sign (q2) , sign (qg)]T (57)

Lyapunov theory is used to verify the stability of the system using the designed controller.
At this time, in order to verify the robustness of FTSMC, it is confirmed through the modeling
equation Eq.20 considering the disturbance. The goal of the controller is to make the sliding

variable zero, and the Lyapunov candidate function is defined as follows.

1
V= 53377.]3,7 (58)

Differentiating the Lyapunov candidate function gives
V=538 = 5,7 (—A1sy — A2G(sy)Psgn (sy)) <0 (59)

Therefore, since it can be seen that it is less than 0, the controller is Lyapunov stable, and the

sliding surface converges to 0 after sufficient time.
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C. Numerical Simulation

1. Simulation Configuration

Using the sliding mode control, a control performance comparison simulation of a hexarotor
with and without two CSCMGs is conducted. In addition, the performance was compared and
analyzed in an environment without disturbance and in an environment with disturbance. For
accurate performance comparison, Since the hexarotor control the attitude through the thrust
control of six motors, a mathematical model for the motor must also be considered. Therefore,

the simple mathematical model of the BLDC motor used in the hexarotor is as follows.

Km
ImBm

W, = (—Kpwm + V) (60)
where, w,, is the motor angular velocity, J,, is the moment of inertia of the motor, K, is the
torque constant, R,, is the motor resistance, Kj is the back electromotive force and V is the

voltage.

K/a)(t)

Motor load

)

Vo (z) Inertial

Torque a)(t)
Angular rate

Figure. 5 A Simple Model of a DC Motor Driving
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The hexarotor system parameters and SMC gains used in the simulation are shown in Table.1
and 2, respectively. The initial attitude of the hexarotor was set as ny = [0, O,O]Tdeg7 and the
target attitude was set as ng = [10,20,30]Tdeg. The altitude was simulated with the goal of
maintaining 5m.

The disturbance scenario was designed with a torque value as shown in Fig.6, and the simu-

lation was conducted by adding the torque value to the hexarotor modeling formula.

Table 1: Configuration of hexarotor with CSCMGs system

Variable Parameter | Variable Parameter
0 10 0
no (deg) [0,0,0]" nq (deg) 0] =>1]20]=1]0
0 30 0
20 (m 5 zq (m) 5
o (k:gm ) 0.17 m (kg) 6.7
Jyy (kgm?) ] 0.175 L(m) 0.96
Iz (kgm?) 0.263 b 0.001
k 0.03 h; (Nms) 0.2
Y0 (deg) 45 T (kgm?) | 9.68 x 10°
Ky (V/krpm) | 6.3 x 1073 | R, () 3
K, (Nm/A) |63 x1073

Table 2: Design parameters for SMC

Parameter | Values | Parameter | Values
a 0.5 b 0.5
A1 12 A9 9
r 0.95 P 0.95
_ 96 -
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torque (Nm)

-0.005
-0.01
-0.015

-0.02
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Figure. 6 Disturbance scenario
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2. Without CMG Simulation Result

A simulation is conducted to control the attitude of a hexarotor without CMG in an environ-
ment without and with disturbance. Figure.7 and 8 are the attitude and attitude error graphs of
the hexarotor. When there is no disturbance, as shown in the results of Fig.7(a) and Figure.8(a),
it can be confirmed that the attitude value converges to the target attitude even though there
is a slight tremor. In the case of disturbance, the attitude value fluctuated as shown in Fig.7(b)
and Fig.8(b). In the case of the pitch, there was a maximum error of -0.27 deg due to disturbance
of about -0.01 Nm in the range of 0 to 20 seconds. In the case of roll, there was a maximum
error of -0.47 deg due to disturbance of about -0.01 Nm in the 20 to 40 second section. Figure.9
and 10 are the motor speed and torque graphs of the hexarotor. It can be seen that the tremor
phenomenon appears both in the absence of disturbance and in the presence of disturbance. This
phenomenon is caused by the sign function in the arrival law and is called chattering. During
hovering and attitude conversion, when controlled only by the motor in an environment with
disturbance, it can be seen that a lot of vibration occurs as the motor does not respond quickly
enough to compensate for the disturbance.

FTSMC can be controlled to converge faster by adjusting the gain, but it has a problem of poor
compensating ability for disturbance. Conversely, when the disturbance capability increases, there
is a problem that the convergence speed becomes slow, and it is necessary to tune an appropriate
gain more suitable for the control purpose among disturbance and control performance. It can
be seen that vibration occurs even when there is no disturbance due to the strong gain tuning
against disturbance. And, it was confirmed that it is difficult to compensate for the disturbance

only with the motor of the hexarotor in an environment with disturbance.
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Figure. 9 Histories of Motor Speed Without CMGs (a) without disturbance, (b) with disturbance
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Figure. 10 Histories of Torque Without CMGs (a) without disturbance, (b) with disturbance
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3. With CMG Simulation Result

A simulation is conducted to control the attitude of a hexarotor with CMG in an environment
without and with disturbance. Figure.11 and 12 are the attitude and attitude error graphs of
the hexarotor. When there is no disturbance, it can be confirmed that all converge to the target
attitude as shown in the results of Fig.11(a) and Fig.12(a). In the case of disturbance, as shown
in Fig.11(b) and Fig.12(b), in the case of the pitch, there is a maximum error of -0.15 deg due
to the disturbance of about -0.01 Nm in the range of 0 to 20 seconds. In the case of roll, there
is a maximum error of -0.16 deg due to disturbance of about -0.01 Nm in the range of 20 to
40 seconds. In the case of yaw, the performance of yaw does not change because only roll and
pitch are involved due to the geometrical reason of CMG. However, it can be confirmed that all
of them converge to the target attitude. Figure.13 and 14 are hexarotor motor speed and torque
graphs. In the case of the speed of the motor, it can be seen that the vibration phenomenon
appears at about 20 seconds both when there is no disturbance and when there is disturbance.
This phenomenon is caused by the sign function in the arrival law and is called chattering. When
there is no disturbance, the torque value of the hexarotor trembles when changing attitude. The
reason is that vibration occurs even when there is no disturbance due to the strong gain tuning
of the FTSMC gain adjustment against disturbance. Figure.15 is the angle graph of the CMG
gimbal. The initial gimbal angle vg was set to 45 deg. It converged to the initially set gimbal
angle while entering the hovering state with the final attitude command value in an environment
without disturbance, and ; had a 5 deg error. It was confirmed that the final hovering did not
converge to the initial gimbal angle in an environment with disturbance. Figure.16 is the angular
velocity graph of the CMG gimbal. In the absence of disturbance, the maximum angular velocities
of 41 and 9 are about 2 rad/s and 4 rad/s, respectively, and in the presence of disturbance, the
maximum angular velocities of 41 and 42 are about 0.6 rad/s and 5.5 rad/s, respectively.

Therefore, it was confirmed that stability and convergence were improved when controlled
using CMG compared to when controlling the attitude of the hexa-rotor only with the motor in
an environment with disturbance. However, the initial gimbal angular position is closely related
to the rotational maneuvering performance of the hexarotor. Because the angular momentum

vectors for all axes are a function of the gimbal angle, they always change with changes in the
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CMG gimbal vectors. One of the most important parts is that the same starting performance
must be exhibited within all starting times. That is, the gimbal angle must always return to
the initially defined direction. If you don’t return, you will fall into the Singularity. As shown in
Figure.11(b), in the case of roll, it can be seen that the error gradually increases at the end of
the flight. Therefore, an angular momentum vector recovery drive law is required to recover the

angular momentum vector.
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V. CMG Drive Law

The actuator command distribution law is required to generate the 3-axis control torque
command derived from the attitude control law for the hexarotor attitude. At this time, control
torque distribution is generally performed using Psudo-inverse drive law. In addition, when the
torque command to be provided by the CMG is %Ucmg = h, it is equal to the product of the
jacobian matrix A () and angular velocity of the gimbal, and the inverse of the jacobian matrix
is required to obtain the angular velocity of the gimbal ¥ required to drive the CMG from the
torque. However, since the jacobian matrix is not a square matrix, the angular velocity value
is obtained using the psudo-inverse matrix. However, since the Jacobian matrix of the pseudo-
inverse matrix law is also a function of the gimbal angle, the pseudo-inverse matrix for the CMG
of a specific gimbal angle configuration does not always exist. The singular state occurs when the
rank value of the jacobian matrix is less than 3. Consequently, the gimbal angular velocity cannot
be calculated. Therefore, there are various studies on the CMG drive law to avoid and escape
from the following singular state.

The initial gimbal angular position is closely related to the rotational maneuvering perfor-
mance of the hexarotor. Because the angular momentum vectors for all axes are a function of the
gimbal angle, the values always change with changes in the CMG gimbal vectors. If it is one of
the most important parts that the same maneuvering performance must be demonstrated within
all maneuvering times, the angular momentum vector allowed for each axis must not change its
value before starting the attitude maneuver. This means that the gimbal angle should always
return to the initial gimbal angle. As a result, the angular momentum vector must also return
to the initial angular momentum vector position at the time of the last posture maneuver of any
hexarotor. If it fails to return and gradually moves away from the value of the initial angular
momentum vector, it eventually falls into a singularity. If it falls into the singularity, CSCMG is
in a state where it cannot perform the desired torque command generation. Therefore, optimal
angular momentum vector recovery drive law is required for recovery of the angular momentum

vector.
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However, another issue to consider is the singularity problem caused by disturbance. There
are disturbances caused by wind that interfere with the attitude of the hexarotor. This problem
results in fluctuations in the total angular momentum vector. This causes the CMG configuration
to easily enter the singular condition, which is similar to the saturation problem of the reaction
wheel. Proper use of an internal torquer alone cannot deal with the effects of unwanted external
perturbing torque. In this study, Disturbance Robust drive law was proposed. The torque by the
hexarotor’s motor is appropriately used to overcome the disturbance-based singularity problem.
The torque of the CMG and the torque of the motor of the hexarotor are sufficient to prevent
entering the singularity due to disturbance. As a result, it is ensured that the external torque can

be properly offset and the CMG array can be free from singularity.

-37-

Collection @ chosun



A. CMG Mounting Geometry

In this study, a CMG with a relatively simple singularity space as shown in Fig.18 was selected
as an actuator for attitude control rather than a pyramidal arrangement commonly used in
spacecraft. In the case of an internal/external singularity, it can be divided according to the
alignment method of the CMG angular momentum vector as shown in Fig. As shown in Fig.17(a),
an internal singularity occurs when the total angular momentum vector of the CMG is zero, and
this is when the two CMGs are aligned in opposite directions. As shown in Fig.17(b), an external
singularity occurs when the total angular momentum vector has a value twice, which means that
the two CMGs are aligned in the same direction. That is, when having such an alignment state,

the CMG cannot generate control torque in a desired direction.

e
(AN,

(a) Oh singularity (a) 2h singularity

Figure. 17 Internal/External Singular Conditions of CMGs
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Figure. 18 Two CSCMGs Configuration
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B. Pseudo Inverse Drive Law

In order to generate the 3-axis control torque command derived from the control law for the
attitude of the hexarotor, the CMG drive law, which is the actuator command distribution law,
is required. At this time, the control torque distribution is generally applied using the pseudo
inverse drive law. The equation for obtaining the angular velocity vector from the pseudo inverse
drive law using the pseudo inverse matrix to evaluate the gimbal angle vector for a given control

torque command u. is as follows.
T T\ !
y=A (AA ) e (61)

However, since the Jacobian matrix of the pseudo-inverse drive law is a function of the gimbal
angle, there is still the possibility of a singularity occurring for the CMG in a specific gimbal

angle arrangement shape.

C. Angular Momentum Vector Recovery Drive Law

The position of the initial gimbal angle is related to the rotational maneuverability of the
hexarotor. The angular momentum vector h¢y,4 for the 3 axes is a function of the gimbal angle
~;, and the value always changes according to the change of the CMG gimbal vector. If one of
the most important parts is that the same maneuvering performance should be demonstrated
within all maneuvering times, the allowable angular momentum and gimbal operation range for
each axis should not be changed before attitude maneuvering begins. That is, it means that the
gimbal angle must always return to the initially defined direction. At this time, keep in mind that
the gimbal angle must always return to the initial position means that the angular momentum
vector must also return to the initial position when the posture maneuver of an arbitrary model
ends. If you do not return and gradually move away from the initial value, you will eventually
fall into a singularity.

In this study, a Gimbal cector recovery drive law was derived using an optimization technique.
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Therefore, the performance index to be minimized was set as follows.

1, R .
T = 58" MY + 5 (4 = 4a) N (4~ Fa) (62)

where, M, N is a symmetric positive definite weighting matrix. At this time, we have a constraint
equation called u.. The first component of the above equation contributes to minimizing the
sum of squares of the control torque input in the same way as the conventional pseudo-inverse
matrix. The second component means to find a solution for minimizing the difference between
the current angular velocity of the gimbal of the CSCMG gimbal and the angular velocity of the
gimbal desired or predetermined by the user.

The desired angular velocity of the gimbal 4 can be defined as follows.

Ya = (v —va) /At (63)

If the optimality condition equation is used to find the optimal solution of Eq.62, the following

solution is eventually derived[43].
-1 -1
¥ = WAT(AWAT) “uc + [WAT (AWAT) AW - W] g (64)

where, W = (M + N)~!, g is non-zero gradient vector, g = N (v —74)/At. As a result, it can be
seen that the second term on the right hand side is the null vector for momentum vector recovery
and the first term is related to the pseudo-inverse drive law.

If the weight matrices M, N are defined as M = alsxo and N = Blsx2, the AMVRSL for

obtaining the CSCMG angular acceleration vector can be simply obtained as follows.

4 =AMu.+n (65)
Af = AT (AAT) o (66)
n= [ATA—szz} s(vy—7a) (67)

where, n is null vector, a, 5 are positive constants. GVRSC is activated during the final maneuver

section of a redirect mission to any attitude. ¢ is defined by utilizing the characteristics of the
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S-shaped sigmoid function.
B B L
[(a+B)A] 14 e ko

S = (68)

where, K, L are constants, ||e| is the norm of the attitude error of the hexarotor, ||w] is the
angular velocity vector of the hexarotor and o = m — ¢. That is, in the final section of
the maneuver, both attitude and angular velocity converge to a small value. Therefore, it means
that ¢ is set so that AMVRSL is activated only in the last startup section.

In this study, the angular momentum vector recovery strategy is set to be divided into acti-
vation/deactivation according to |le]| + ||w| < v. If enabled, eta is set to 1/v = 100. Also, the

maximum value of the null vector is limited from the following standard values.

n >n
I 2 e L )
o Inlle <7

where, ||n||, is infinite norm of the generic vector n.
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D. Disturbance Robust Drive Law

For During the actual flight of the hexarotor, there are various causes that disturb the attitude
of the hexarotor due to wind disturbance. These sources also interfere with the coordination of
the CMG, resulting in the singular problem of the array once again. That is, the gimbal does
not return to its original position due to external disturbances. It can be seen from the previous
case study that the unwanted external disturbance torque cannot be adequately handled using
only the torque of the CMG. From now on, the torque of the hexarotor is appropriately used to

overcome this disturbance-based singularity problem.

JL:J+WXJW+Wthmg = _Aheacaw2 - A(’V)'Y""d

(70)
=-Bu+d
T
where,u = [ w? 5 } € R?8 is the control input. and
B = [ Anexa Acmg } € R4X8 (71)

Through the motion equation of the hexarotor using CMG, it is corrected with a drive law that
is strong against disturbance. The optimization problem constrained to minimize the performance

index is as follows.

1 1
J = §uTPu + §(u —ug) H (u — uy) (72)
subject to
u. = Bu (73)

where, P € R®*® and H € R®%® are the symmetric positive definite weighting matrices. ug =
T
[ wi2d d ] € R? is the desired vector.
By applying the optimal condition[43], the minimum standard solution can be obtained as

follows.

u=WBT (BWBT) Tt (WB”(BWBT) 'BW - W|g (74)

where, W, g are the gradient vector forcing the gimbal angle to the preferred original position,
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P and H are weighting matrices.
Since there are many solutions that satisfy Eq.71, the pseudo-inverse solution to the first term

on the right hand side of Eq.74 is the most advantageous choice. It is simply rewritten as
u=AT(AAT) 'u, +n (75)

n= |WBT(BWB") 'BW - W< (u - u) (76)

where, n is the null vector

and
u. = Bu € R*
B=| Apeva Acmg | € R
Apeza € RMC

Acmg c R4><2
T

T
Ud:[wzd "'ydi| GRS

Z?

P— phewaIGX(S 06><2 c RBXS

O2x6 Pemglaxo

H— Ghezaléxe  Ogx2 c R8%8

O2x6 Gemglaxe |

W= (P+H) ' eR¥S

g=H(u—uy) € R’

where Op,xpn denotes the m x n zero matrix and Prega, Pemg, Qheza, a0d gemg are the weighting

constants.
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E. Numerical Simulation

1. Simulation Configuration

Numerical simulation related to drive law is performed. The block diagram of the designed
system according to the drive law is shown in Fig.19. In order to perform the maximum maneuver
of the hexarotor with two CSCMGs, the simulation was conducted under the conditions shown in
Table.3. The drive law to derive the angular velocity value of the CSCMG gimbal was compared
and analyzed by applying the Pseudo Inverse drive law and the disturbance robust drive law.
Parameters of DRSL are shown in Table.4. The disturbance scenario was designed with the torque
value as shown in Fig. 10, and the simulation was conducted by adding the external torque value

to the modeling formula of the hexarotor.
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Table 3: Simulation configuration conditions

Parameter Values | Parameter Values
Number of commands 30 Total time (sec) 600
One command time (sec) | 20 Command maximum (deg) | £30
Table 4: Simulation parameters of DRSL
Parameter | Values | Parameter | Values
L 1 Dheza led
ko 1 Ghexa led
k 1 Pemg 10
9 500 Gcmg 1
n 0.1
. a)l ’ 0)2 ’ w} 9
”d”.h T¢,79,Z‘W,T Wy, Vs, Dg
oS 4 CMG Steering Hexa-rotor . "
Logic system EE
A
| cvGs
o system
e

Figure. 19 Block Diagram of System of Hexarotor with CMGs
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Figure. 20 Disturbance Scenario
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2. Pseudo Inverse Drive Law Simulation Result

Figure.21-25 is a state graph of a hexarotor with CMG in an environment with disturbance by
pseudo inverse drive law. Figure.21 is the attitude state controlled by multiple attitude commands.
There are some errors due to disturbance, but it can be confirmed that all of them converge to
the target attitude. Figure.22 and 23 are the motor speed and torque graphs of the hexarotor.
It can be seen that the shaking phenomenon appears during posture command conversion. This
phenomenon is caused by the sign function in the arrival law and is called chattering. Figure.24
is the angle graph of the CMG gimbal. The initial gimbal angle was set at 45 deg. After a few
minutes, you can see that the initial gimbal angle and the error gradually develop. This means
that the gimbal cannot be restored to its initial angle due to disturbance. Figure.25 is the angular
velocity graph of the CMG gimbal. Angular velocity of the gimbal chatter within hardware limits.
It was confirmed that the hexarotor with CMG using pseudo inverse drive law could not accurately

generate the necessary control torque commands in a disturbance environment.
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Figure. 21 Histories of Attitude of Hexarotor with Disturbances
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Figure. 23 Histories of Torque of Hexarotor with Disturbances

(“/Collection @ chosun

- 50 -



CMG Gimbal Angle (+)

0 100 200 300 400 500 600
time(sec)
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Figure. 25 Histories of Gimbal Rate of Hexarotor with Disturbances
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3. Disturbance Robust Drive Law Simulation Result

Figure.26-30 is a state graph of a hexarotor with CMG in a disturbance environment by
disturbance robust drive law. Figure 26 is the attitude state controlled by multiple attitude
commands. There are some errors due to disturbance, but it can be confirmed that all of them
converge to the target attitude. Figure.27 and 28 are the motor speed and torque graphs of
the hexarotor. It can be seen that the shaking phenomenon appears during posture command
conversion. This phenomenon is caused by the sign function in the arrival law and is called
chattering. Figure.29 is the angle graph of the CMG gimbal. The initial gimbal angle was set at
45 deg. It was confirmed that the gimbal angle is much more stable during multi-attitude command
maneuvers than in the case of pseudo inverse drive law. Figure.30 is the angular velocity graph
of the CMG gimbal. It was confirmed that the angular velocities of the gimbal of the two CMGs
were also very stable within hardware limits. It was confirmed that the hexarotor with CMG
using the disturbance robust drive law does not cause the singularity problem and avoids it even
in the environment with disturbance. Therefore, it was confirmed that the disturbance robust
drive law does not fall into the singularity problem and performs a stable CMG operation against

disturbance.
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Figure. 26 Histories of Attitude of Hexarotor with Disturbances
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Figure. 29 Histories of Gimbal Angle of Hexarotor with Disturbances

CMG Gimbal Angular Rate(7)

time(sec)

Figure. 30 Histories of Gimbal Rate of Hexarotor with Disturbances
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V1. Conclusion

Recently, stability and reliability are very important as multi-rotors perform various missions
replacing human resources. In order to perform the mission more effectively, three solutions are
suggested.

In order to ensure flight stability and reliability, sliding mode control, which is a representative
nonlinear model control technique, is applied, and disturbances such as wind or model uncertainty
can be resolved. However, FTSMC was applied to solve the problem of general SMC, that it takes
infinite time for the state error to converge to 0.

Since it is difficult to guarantee attitude stability through speed control only with the rotor of
a multi-rotor in a large disturbance, a CMG actuator is proposed to ensure attitude stability with
a fast response speed. Since two CSCMGs are installed on the multi-rotor, the problem of not
guaranteeing flight stability through speed control with only the rotors of the multi-rotor against
external disturbances has been solved.

Finally, a driving law is presented to overcome the singularity of CMG. It is very important
for CMG to restore the initial gimbal angle. In this paper, DRSL is presented to overcome the
singularity problem caused by disturbance.

Therefore, it was confirmed that the multi-rotor with CMG can overcome the singularity
problem and ensure flight stability and reliability in the environment with disturbance.

Through this study, it is expected that it will be helpful for research such as multi-rotor
landing on a ship by improving the performance of the multi-rotor for more stable attitude

control, hovering, and high maneuverability such as fast command-following.
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