

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

August 2022

Master’s Degree Thesis

Real-Time Map-Based Autonomous

Navigation of Mobile Robot Using ROS

Graduate School of Chosun University

Department of Electronic Engineering

Henok Tegegn Warku

Real-Time Map-Based Autonomous

Navigation of Mobile Robot Using

ROS

ROS를 사용하는 이동 로봇의 지도 기반 실시간 자율 주행

August 26, 2022

Graduate School of Chosun University

Department of Electronic Engineering

Henok Tegegn Warku

Real-Time Map-Based Autonomous

Navigation of Mobile Robot Using

ROS

Advisor: Prof. Nak Yong Ko

This thesis is submitted to Graduate School of Chosun University in

partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In

Electronics Engineering

April 2022

Graduate School of Chosun University

Department of Electronic Engineering

Henok Tegegn Warku

This is to certify that the Master’s Thesis of

Henok Tegegn Warku

Has been approved by the Examining Committee for the thesis

requirement for the Master’s Degree in Electronic Engineering

Committee:

Prof. Hong Gi Yeom, Chosun University (sign)

(Chair Committee)

Prof. Nak Yong Ko, Chosun University (sign)

(Committee Member)

Prof. Sung Hyun You, Chosun University (sign)

(Committee Member)

May 2022

Graduate School of Chosun University

i

TABLE OF CONTENTS

LIST OF FIGURES .. iii

LIST OF TABLES .. viii

ABSTRACT ... x

한 글 요 약 .. xi

 INTRODUCTION ... 1

1.1. Research Background and Paper Reviews .. 1

1.2. Objectives ... 3

1.3. Organization of Thesis .. 4

 SOFTWARE PLATFORM .. 5

2.1. Software Platform ... 5

2.1.1. Robot Operating System ..5

2.1.2. ROS Simulation Environment ..8

 ALGORITHMS FOR NAVIGATION OF MOBILE ROBOT 10

3.1. Probability Theory .. 10

3.2. Monte Carlo Localization ... 12

3.3. Occupancy Grid Mapping ... 14

3.4. Simultaneous Localization and Mapping Algorithm .. 15

3.4.3. Feature-Based FastSLAM ... 16

3.4.4. Grid-Based FastSLAM .. 17

3.5. Path Planning .. 18

3.5.1. Global Planner ... 19

3.5.2. Local Planner ... 20

 SIMULATION AND HARDWARE SETUPS .. 24

4.1. Simulation Setup ... 24

4.1.1. Model of Robot.. 24

4.1.2. Interfacing of Simulated Robot and Lidar Sensor ... 24

ii

4.1.3. Simulation Environment used for Navigation of Mobile Robot 26

4.2. Hardware Setup... 27

4.2.1. Robot Platform .. 27

4.2.2. Sensors on Scout Mini ... 29

4.3. Structure of ROS Navigation .. 31

4.3.1. SLAM-gmapping ... 37

4.3.2. Adaptive Monte Carlo Localization .. 40

4.3.3. Move-Base Package .. 44

 RESULTS AND DISCUSSIONS ... 53

5.1. Simulation Results .. 53

5.2. Experimental Results .. 64

5.3. Development of Graphical User Interface .. 83

5.4. GUI-Based Autonomous Waypoint Navigation of Mobile Robot 84

5.5. Effects of Parameters on the Mobile Robot Performance 89

 CONCLUSION .. 101

REFERENCES .. 102

PUBLICATIONS ... 105

ACKNOWLEDGEMENTS .. 106

iii

LIST OF FIGURES

Figure 2-1 ROS architecture block diagram .. 6

Figure 2-2 ROS Gazebo Simulator. ... 8

Figure 2-3 ROS Visualization (Rviz) tool. .. 9

Figure 3-1 Visualization of Adaptive Monte Carlo Localization (AMCL) for different states. (a)

shows the particle filter after running Global Localization, where all particles have been spread

evenly throughout the map. (b) depicts that the particle filter has converged to low variance. 14

Figure 3-2 Breadth-first expansion in the Dijkstra algorithm .. 19

Figure 3-3 Best-first expansion in A* Algorithm .. 20

Figure 3-4 Dynamic-Window Approach (DWA) .. 22

Figure 4-1 The simulated platform of the robot on Gazebo and Rviz from left to right............ 24

Figure 4-2 The URDF of Hokuyo lidar sensor and mobile robot in a simulated environment (a)

URDF of Hokuyo lidar sensor on Rviz. (b) Mounting the lidar sensor on the top of the robot

using URDF on the Gazebo simulator. (c) Facing the wall (the light brown color) as an obstacle

in front of the robot to observe the lidar output. The blue color is the ray of the lidar activating

Gazebo’s ray visualization plugin.(d) Visualizing the internal state of the laser scan (the red color

shows the detected obstacle in front of the robot from (c)) on Rviz. ... 25

Figure 4-3 URDF representation of Hokuyo lidar sensor. ... 26

Figure 4-4 Transformation tree diagram of the mobile robotSimulation Environment used for

Navigation of Mobile Robot. ... 26

Figure 4-5 Simulation Environment. (a) The built mobile robot inside the environment and lidar

rays using Gazebo. (b) Rviz's internal lidar signal visualization by detecting obstacles in the

environment. .. 27

Figure 4-6 The hardware platform of the mobile robot used for experimentation. (a) Robot

Hardware setup, (b) Mobile robot on Rviz, and (c) Frame transformation on Rviz. 28

Figure 4-7 External topology connection of Scout Mini. .. 29

iv

Figure 4-8 Nvidia AGX Xavier external topology connection. ... 29

Figure 4-9 Intel RealSense D435 camera .. 30

Figure 4-10 Velodyne VLP-16 lidar sensor. .. 31

Figure 4-11 Robot process cycle using ROS ... 32

Figure 4-12 Challenges to Navigation of mobile robot ... 32

Figure 4-13 ROS Navigation stack structure ... 34

Figure 4-14 Odometry source information of a mobile robot. (a) Shows the two-wheeled mobile

robot that is used for simulation in this thesis (MRP-NRLAB02 Red-One technology). (b) The

odometry data from the mobile robot's wheel encoder containing position, orientation, linear

velocity, and angular velocity with topic name /odom, and the data can be visualized with ROS

command of $ rostopic echo /odom. (c) It shows the type of message that the /odom topic contains

with nav_msgs/Odometry’s message type and it can be extracted with the ROS command of

$ rostopic info /odom.(d) Shows the visual representation of odometry information................ 34

Figure 4-15 The transformation between the coordinates of laser and robot base link 35

Figure 4-16 URDF of lidar sensor transformation with the simulated robot on Rviz 36

Figure 4-17 Example of Occupancy Grid Map (OGM). .. 38

Figure 4-18 The PGM file and the metadata of the YAML file. ... 38

Figure 4-19 Examples of AMCL ... 41

Figure 4-20 AMCL node data subscription and publication ... 41

Figure 4-21 Example of a global planner .. 45

Figure 4-22 Example of global costmap .. 48

Figure 4-23 Example of a local planner ... 49

Figure 4-24 Example of local costmap. ... 51

Figure 5-1 Simulation environment constructed on Gazebo. .. 53

Figure 5-2 Occupancy Grid Map of the virtual environment on Gazebo and Rviz 54

Figure 5-3 Communication between nodes and topics using rqt_graph 56

Figure 5-4 Transformation tree after launching the mapping algorithm. 56

v

Figure 5-5 Preparing the simulated mobile robot for navigation on Rviz (a) and Gazebo (b) on

the static obstacles in the environment. ... 58

Figure 5-6 Correction of the robot's pose for navigation on Rviz (a) and Gazebo (b) following a

small robot motion ... 59

Figure 5-7 Autonomous navigation of mobile robot in a simulated environment with static

obstacles of the environment. .. 60

Figure 5-8 Communication of node and topic of the navigation system. 61

Figure 5-9 Dynamic obstacles in the simulated environment. ... 62

Figure 5-10 Autonomous navigation of a mobile robot in a simulated environment with dynamic

obstacles of the environment. .. 63

Figure 5-11 The target position and orientation (a) and the estimated pose (b) of the robot in

Figure 5.10 ... 64

Figure 5-12 Experimental indoor environments for navigation of a mobile robot 65

Figure 5-13 Mapping of the actual environments for Scenarios 1 (a) and 2 (b), with comparisons

of environmental features and the constructed map on Rviz. .. 67

Figure 5-14 Block diagram representation of the mapping algorithm of the experiment 68

Figure 5-15 Manual localization of mobile robot for Scenario 1 and Scenario 2 using 2D pose

estimator tool (a), (c) The yellow color arrow of the particles used to estimate the robot pose in

Scenarios 1 and 2 depicts the uncertainty in robot position at the beginning of AMCL. The green

arrow represents the robot's manual pose estimation in the environment using the 2D pose

estimator tool of Rviz. (b), (d) Represents the condensation of particles after the robot translates

1.6 meters in the positive x-direction for Scenario 1 and 3.29 meters forward in Scenario 2. .. 70

Figure 5-16 Global localization of a mobile robot for Scenario 1 and Scenario 2. (a), (c) After

calling AMCL's global localization service, the particles are distributed uniformly (yellow

arrows) across the entire map, with equal guesses about the robot's pose. Because the robot pose

estimation and the actual robot poses differ, the lidar measurement (white line) does not match

the map. (b), (d) The convergence of particles after the robot moves and when the filter updates

vi

its belief due to the motion, the measurements were projected from the robot’s pose point of view.

For Scenario 1 the distance the filter took to converge is 4.15 meters and 21.38 meters for

Scenario 2. ... 71

Figure 5-17 Particles used for Case-2 parameters. .. 72

Figure 5-18 The effect of small particles on the localization of the robot. 72

Figure 5-19 Structure of particle filter. .. 73

Figure 5-20 Autonomous navigation of a mobile robot in the actual indoor environment of the

static map without dynamic obstacles for Scenario 1 and Scenario 2. 76

Figure 5-21 Global planner of the robot in the static map of the environment. 76

Figure 5-22 Dynamic obstacles on Rviz and the actual environment from left to right for Scenario

1 (a) and Scenario 2 (b). .. 78

Figure 5-23 Autonomous navigation of a mobile robot in the actual indoor environment of the

static map with dynamic obstacles for Scenario 1 and Scenario 2. ... 80

Figure 5-24 Qt 5 Designer tool. ... 84

Figure 5-25 The designed GUI for autonomous navigation of a mobile robot through different

waypoints(a), (b): GUI platforms that contain the actual environments and the map of the

environments on the right side, and also contain 5 tools for controlling the navigation system for

Scenario (a) and Scenario (b). ... 85

Figure 5-26 GUI-based autonomous navigation of a mobile robot for Scenario 1. (a): shows the

mobile robot's real-time autonomous navigation to the first waypoint (1) on the map using the

GUI platform. (b): depicts the mobile robot's real-time autonomous navigation to the second

waypoint (2) of Table 5-8 Scenario 1. (c): shows the mobile robot's real-time autonomous

navigation to the third waypoint (3) on the map using the GUI platform. (d): shows the mobile

robot's real-time autonomous navigation to the map's initial pose (0) using the GUI platform. 89

Figure 5-27 Robot path for Scenario-1environment. (a) Robot inside the environment., (b) The

path of the robot with its position values. .. 90

Figure 5-28 Effects of map resolution at the start of gmapping. ... 91

vii

Figure 5-29 AMCL pose estimation for the three particles interval. ... 93

Figure 5-30 The pose estimates of the robot for the three-particle intervals on Rviz. The figures

depict how the particle clouds are dispersed with the lidar matching the environment. (a) min

=500, max = 5000 , (b) min = 100, max = 5000, (c) min = 5, max = 20 94

Figure 5-31 The effect of changing the value of the minimum linear and angular distance to

perform filter updates. (a) update_min_d = 0.1, update_min_a = 0.1., (b) update_min_d = 0.03,

update_min_a = 0.03., (c) update_min_d = 0.25, update_min_a = 0.2., (d) update_min_d = 0.75,

update_min_a = 0.7. .. 96

Figure 5-32 The effects of the odometry noise and the filter update parameters adjustments and

comparisons. (a) case 1, (b) case 2, and (c) case 3 .. 98

viii

LIST OF TABLES

Table 4-1 Hardware specification. ... 28

Table 4-2 Hardware specification of Intel RealSense D435 camera. 30

Table 4-3 Hardware specification of VLP-16. ... 31

Table 4-4 Major parameters of gmapping ... 39

Table 4-5 Major parameters of AMCL. ... 42

Table 4-6 Move base parameters ... 44

Table 4-7 Global planner parameters... 46

Table 4-8 Global costmap parameters. .. 48

Table 4-9 DWA planner parameters .. 49

Table 4-10 Local costmap and common costmap parameters ... 52

Table 5-1 Some positions and orientations of the mobile robot during the mapping operation. 55

Table 5-2 Comparison of target goal pose and robot estimated pose with their respective errors

of static obstacles in the environment ready for autonomous navigation. 60

Table 5-3 Some gmapping parameter values used for the experiment 68

Table 5-4 Some of the AMCL parameters for the two cases ... 69

Table 5-5 Experimental comparisons of the target goal pose and the real robot estimated pose of

Scenario 1 (a) and Scenario 2 (b) of Figure 5.20. .. 77

Table 5-6 Experimental comparisons of the target goal pose and the real robot estimated pose of

Scenario 1 (a) and Scenario 2 (b) for the dynamic obstacle. ... 81

Table 5-7 Some of the navigation parameters used during the experiment of Scenario 1 and

Scenario 2. (a) Global planner params, (b) Global costmap params, (c) DWA local planner

params, (d) local costmap params, and (e) common costmap params 82

Table 5-8 Position and attitude quantitative values of the waypoints for autonomous navigation

using GUI of Figure 5.25. (a) Scenario 1 and (b) Scenario 2 .. 87

ix

Table 5-9 The effects of map resolution tuning on the time it took the robot to fully explore the

environment. .. 91

Table 5-10 The odometry noise and filter update parameter values. ... 99

x

ABSTRACT

Real-Time Map-Based Autonomous Navigation of Mobile Robot

Using ROS

Henok Tegegn Warku

Advisor: Prof. Nak Yong Ko, PhD.

Department of Electronic Engineering

Graduate School of Chosun University

 Many applications of mobile robotics necessitate the safe planning of a collision-free

motion to a defined place. Real-time obstacle avoidance strategies enable reactive motion in

dynamic and unpredictable situations, whereas planning approaches are best suited for achieving

a goal position in known static environments. A ROS-based approach is presented to address the

challenge of robot SLAM, which has been used in real-time applications to construct the map

the environment, localize the robot within the environment, plan paths, and avoid obstacles. It is

demonstrated that all navigation modules can coexist and work together to reach the destination

without colliding with static and dynamic obstacles. The goal of this thesis is to provide a

platform for guiding a mobile robot in a real-world environment while avoiding static and

dynamic obstacles. Our results were validated at Chosun University in South Korea, through

simulation and testing in indoor environments, and the effect of mapping and localization

parameters was studied and investigated for better performance of the robot while navigating

autonomously in the environment. In addition, a Graphical User Interface (GUI) is being

developed to guide the mobile robot through various waypoints autonomously.

xi

한 글 요 약

ROS를 사용하는 이동 로봇의 지도 기반 실시간 자율 주행

Henok Tegegn Warku.

Advisor: Prof. Nak Yong Ko, PhD.

Department of Electronic Engineering

Graduate School of Chosun University

모바일 로봇 공학 분야에서는 모바일 로봇이 정해진 장소로 주행하기 위해 충돌

없는 안전한 주행이 필요하다. 충돌 없는 안전한 주행을 위한 방법으로는 실시간

장애물 회피 방법과 경로 계획 방법이 있다. 먼저, 실시간 장애물 회피 방법은

로봇이 움직이거나 예측할 수 없는 환경에서 주행하기에 적합하고, 경로 계획 방법은

로봇이 고정된 환경에서 목표 위치에 도착하기에 적합하며 이러한 방법들은 ROS를

통해 구현되었다. ROS는 항법 모듈인 주변 환경 맵핑, 로봇의 위치 인식, 경로

계획, 그리고 장애물 회피를 위해 모바일 로봇 분야에서 실시간으로 로봇 SLAM을

구현하는 데 사용된다. 이 논문은 모든 항법 모듈을 함께 작동하여 고정되어 있거나

움직이는 장애물을 충돌하지 않게 회피하면서 목적지에 도달할 수 있도록 실제

환경에서 모바일 로봇을 주행하기 위한 플랫폼을 제공하는 것을 목적으로 한다. 이

논문의 결과는 대한민국에 있는 조선대학교의 실내 환경에서 시뮬레이션과 실험을

통해 검증되었으며, 주변 환경을 자율적으로 탐색하면서 로봇의 더 나은 성능을

위해 맵핑 및 위치 인식 매개변수에 따른 효과를 연구하고 조사했다. 마지막으로,

다양한 경유점을 통해 모바일 로봇을 자율적으로 주행하기 위한 GUI(Graphical User

Interface)를 개발하고 있다.

1

 INTRODUCTION

1.1. Research Background and Paper Reviews

 Mobile robotics has recently become more popular due to technological advancement,

the availability of many robot platforms, and robotic system architectures. Numerous

autonomous robots have been developed and used for different application areas. Some of them

are space and ocean exploration, underground mining, underwater exploration, manufacturing

industries, and an autonomous self-driving car that can operate alongside pedestrians and cars

driven by humans.

 When the robots are modeled and designed, they require a software program and code

that can perform a specific task. Programmers and software developers typically write a program

for a particular robot that is developed. These programs are frequently customized to the design

of the robot and are not versatile. Creating a modular design in hardware can be a relatively

simple task, but designing software that is flexible could be very difficult [1].

 Data sensors are used for gathering information from the environment to be used by the

robot. And also, they play a significant role in deploying Simultaneous Localization and

Mappings (SLAMs) for the mobile robots to navigate autonomously. These robots have a huge

impact and are the next frontier for technologies that can impact societal life, including industrial

manufacturing [2], transport [3], and service robots [4]. Recently, several service robots, such as

Care-O-bot [5], NAO [6], and KeJia [7], have had a significant influence on the enhancement of

quality of life for people. First, the robot has to understand the environment wherein it is

navigating for completing the given task. The conventional way of representing maps are

topological, metric, and hybrid [8]. The metric map represents the layout of the environment

geometrically by using geometric features such as points or grids, planes, or lines. Whereas a

topological map uses a graph for modeling the environment to achieve an abstract representation.

2

Thus, vertices and edges correspond to places and paths respectively. However, to take advantage

of both metric and topological map representations, hybrid map amalgamates the high

localization performance of matric map and high path planning accuracy of topological map for

the improvement of navigation performance.

 Metric navigation for small or medium-scale environments is relatively enough based

on an occupied grid or hybrid maps. Nonetheless, for using mobile robots in the case of the

domestic scene, it does lack semantic information to be ordered by the users conveniently. For

instance, geometric coordinates are used to define the goal point, but humans prefer to interact

using natural language. As a result, several researchers are working to create semantic maps that

include not only the geometric layout but also the concepts of objects or rooms to improve

human-robot interactions[9]. SLAM is commonly used to create metric maps since it can build

a map of the environment whilst localizing the robot [10]. SLAM can be categorized according

to different sensors used for the collection of information into vision-based and laser-based

SLAM. SLAM based on the laser is mostly used to generate occupied grid maps. Representative

algorithms include Hector SLAM [11], Cartographer [12], GMapping [13], and, Karto SLAM

[14] whereas SLAM based on vision chiefly creates feature maps like lines [15, 16], or planes

[17, 18] and points [19, 20]. With the rapid development of the uses of mobile robots, the ability

of mapping and localization is crucial for autonomous navigation through the environment.

Without the knowledge of the current pose and map of the environment, the robot cannot make

its own decisions and actions. Simultaneously Localizing and mapping (SLAM) the environment

is crucial for answering autonomous navigation problems in a given environment. To achieve

autonomous navigation in indoor environments, mobile robots must be able to obtain information

from the environment using range sensors (e.g., laser sensor, 3D sensor, ultrasonic sensor) to

construct a map of their environment and determine their location [21].

The ROS navigation stack has been tested using a range of ROS-compatible robots. However, it

appears that the impact of parameters in packages like Gmapping, AMCL, and move base have

3

not been thoroughly investigated. Because the navigation stack has so many parameters to adjust

to take the robot from one position to the destination, many had a lot of trouble configuring the

parameters for using it for autonomous navigation.

 This thesis addresses the simulation and experimental implementation of map-based

autonomous navigation for a mobile robot in an indoor environment. We also investigate the

impact of tuning major parameters of mapping, localization, and path planning, which will be

described in the results and discussion sections (Chapter 5). We also integrated a Graphical User

Interface (GUI) with the mobile robot to implement waypoint autonomous navigation of a mobile

robot in an indoor environment. This GUI can be used with any ROS-based robot and allows

anyone to handle the navigation system without having to write complex commands.

We have noticed that many faced a lot of trouble configuring the parameters of the

navigation stack and their impact on the real robot and actual environment on the ROS Wiki

platform. Due to this, we tested and recorded data for major parameter change and their effects,

and we have uploaded the full implementation guidance manual for real-time map-based

autonomous navigation of a mobile robot in an indoor environment to our lab website

(https://irlchosun.wixsite.com/nyko) that may help others to use it as a guide to navigating their

robot autonomously.

1.2. Objectives

The main objective of this study is:

• Testing and visualizing different sensors like lidar, IMU, and camera.

• 2D and 3D mapping of different environments on simulation and experimental analysis.

• Localization of the mobile robot inside the constructed map.

• Path planning of the robot. This includes:

 a) Global path planning and

4

 b) Local path planning

• Obstacle avoidance. This includes

 a) Static obstacle avoidance

 b) Dynamic obstacle avoidance

• Navigation of mobile robot inside an environment from one point to the desired goal

point.

• Development of a Graphical User Interface (GUI) application with multiple options for

moving the robot to different waypoints and canceling the operation at any time if

problems arise.

• The impact of changing the ROS navigation stack parameters on a mobile robot's

mapping, localization, and path planning in order to make the robot more resilient when

moving autonomously, as well as investigating some of the factors that can affect the

robot navigation performance.

1.3. Organization of Thesis

 This thesis is organized into six chapters. The first chapter includes the background of

the research, a review of related works, and the objective. The second chapter contains an

introduction to ROS and simulation environments that are used such as Gazebo and Rviz. The

third chapter is dedicated to the theoretical formulations and algorithms that let the robot localize,

build, both localize and navigate through the environment including path planning. Simulation,

hardware setup, and the ROS navigation structure are presented in chapter four. Chapter five

covers simulation and experimental results. Besides, Graphical User Interface (GUI) based

autonomously waypoint navigation system is included. Finally, Chapter 6 presents the

conclusion and future works.

5

 SOFTWARE PLATFORM

2.1. Software Platform

 Before the algorithm that has been developed is deployed onto a real robot, verifying

the algorithms using simulation is a very crucial step. The robot simulations and applications are

made using the Robot Operating System (ROS) which is the subject of this section.

2.1.1. Robot Operating System

 It is an open-source platform for programming robots. It is a collection of libraries, tools,

and conventions that facilitate the development of robust and scalable robot actions across a wide

range of robotics platforms. It is used in both research and commercial applications and provides

robot programming capabilities such as high-level programming language support and tools,

message passing interface between processes, availability of third-party libraries, community

support, extensive tools and simulators, and so forth. Despite these capabilities, there are still

areas in which ROS is not advisable or recommended to develop the actual product owing to

security and real-time processing problems [22, 23].

2.1.1.1. ROS Concepts

 Conceptually, ROS has three levels: filesystem, computational graph, and community

levels [24].

i. Filesystem Level

 The filesystem-level chiefly contains resources that we encounter in the disk. The

software in ROS is organized as a package. A package may include nodes, datasets, ROS-

dependent libraries, and others that are well organized together. This provides useful

functionality, thereby the software can be reused easily. The package follows a common structure

and has subparts: package manifests, metapackages, repositories, executable files, service types,

and message types. Meta-packages represent a group of related packages, whereas package

6

manifests contain additional information about a package like a name, description, version,

dependencies, license, and so on. The data structure of a message, which is sent in ROS, is

described by its message type. The response and request data structures for services in ROS are

defined by service type. Furthermore, repositories are groups of packages that share a similar

version control system [25].

i. Computational Graph Level

 The communication between two or more programs can be accomplished using socket

programming; however, as the number of programs increases, the complexity as well. This inter

process communication can be easily handled using ROS. A robot might have many sensors,

actuators, and computing units. So, by writing independent programs for handling sensor data

and controlling actuators, the exchange of data between programs can be achieved using ROS,

which is better than having a single program. The architecture of ROS for communication

between two programs, which are represented by node 1 and node 2, is illustrated in Figure 2-1.

Figure 2-1 ROS architecture block diagram

 The communication between nodes is achieved by sending information to the ROS

master as well as the data type which is to be sent or received. The nodes can send or receive

(publisher and subscriber nodes respectively) different forms of data with each other. The data

type of the data (ROS message) can be string, integer, float, and so on. ROS messages are

transmitted via a message bus or path known as ROS topics. When a ROS node publishes a topic,

7

it transmits a ROS topic together with a ROS message, containing data with the message type

[22].

ii. Community Level

 ROS community-level concepts are resources of ROS that assist various robotics groups

throughout the world in sharing their knowledge and programs. These resources are ROS Wiki

and answers, ROS distributions, repositories, mailing lists, and blogs. A collection of versioned

stacks, a cluster of packages that provide functionality together, can easily be installed from the

ROS distributions. To increase the participation of communities, ROS follows a federated

repository model rather than having one secured place for all packages, thereby users and

developers can create their repositories and also, they are granted the right to control, and license

and update their repositories. Moreover, information about ROS is documented in ROS Wiki

wherein anyone can sign up and share their documentation, make modifications, develop

tutorials, and so forth. Any ROS-related inquiries can also be answered on the ROS answers site

[26].

2.1.1.1. Unified Robot Description Format

 The Unified Robot Description Format (URDF) is an XML specification that describes

the model of the robot. It is created to be as general as possible and makes ROS a modular system.

Nodes are made as general as possible for the robot that utilizes them rather than creating unique

nodes for different robot types. The robot-specific information that nodes require to do their tasks

is contained in the URDF file. A URDF file is constructed in such a way that each link is

connected to joints, each robot link is a child of a parent link, and joints are specified by their

offset from the parent link's reference frame and rotation axis [27].

2.1.1.2. Coordinate Frames and Transforms

 Typically, a robotic system has many 3D coordinate frames, which vary with time, such

as base frame, world frame, gripper frame, and so on. Users can use the tf package to track

8

multiple coordinate frames throughout time and keeps track of their relationships in a time-

buffering tree structure. In addition to this, it provides the capability for the transformation of

points and vectors between any coordinate frame that is chosen at any time [28].

2.1.2. ROS Simulation Environment

i. Gazebo

 It is a 3D dynamic simulator used to simulate a robot accurately and efficiently by

developing complex indoor and outdoor environments. It provides a more accurate physical

simulation of the system, as well as a wider range of sensors with user and program interfaces.

Among the basic features of Gazebo are various physics engines, a large library of robot models

and environments, and simple programmatic and graphical interfaces [29]. Figure 2-2 shows the

ROS Gazebo.

Figure 2-2 ROS Gazebo Simulator.

 After designing the robot using Gazebo, the robot’s algorithm that is developed using

ROS can be tested on the simulated robot. By doing so, model validation can be done that is how

the robot performs well as compared to what it was intended to do. Thus, the algorithm will be

deployed on the real robot if the predetermined performances have been achieved.

9

ii. Rviz

 ROS Visualization (Rviz) is an impressive 3D visualization tool for ROS that enables

users to view or visualize the simulated robot model; that is what is the robot doing, seeing, and

heading. It is used to visualize 2D or 3D sensor data from cameras, lidar data as a point cloud,

and also a 2D laser range, and webcams as image data [30]. The ROS Rviz is shown in Figure

2-3.

Figure 2-3 ROS Visualization (Rviz) tool.

10

 ALGORITHMS FOR NAVIGATION OF MOBILE

ROBOT

3.1. Probability Theory

 We shall, in this section, commence by introducing the notions and concepts of

probability theory that will be used to describe the algorithms listed in this chapter. One might

be curious why probability is involved in robotics. This is because robots operate in a real-world

that contains numerous uncertainty sources. The interaction with the robot enabled by knowing

the data measured by the robot’s sensors and the environment is unpredictable. Sensors, on the

other hand, have limited resolution and perception due to their range, and are also subjected to

noise, which unpredictably disturbs measurements. Since the controls might be noisy and there

may be mechanical failures, the motors which drive the robot are not predictable. Finally, the

actual information that is required, for instance, the position of the robot on a map, cannot mostly

be measured directly and must be inferred. A stochastic model based on probabilistic theory is

required to deal with the uncertainties of robot perception and actuation. Most of the explanations

of the theoretical concepts and algorithms in this chapter for autonomous navigation of mobile

robots are taken from [31]and [32].

 The first tool to be introduced deals with the conditional probability, which is the

likelihood of an event given the occurrence of another event:

 𝑝(𝑥|𝑦) =
𝑝(𝑥,𝑦)

𝑝(𝑦)
 (3.1)

The Theorem of total probability follows:

 𝑝(𝑥) = ∑ 𝑝(𝑥, 𝑦)𝑝(𝑦)𝑦 (for discrete) (3.2)

11

 𝑝(𝑥) = ∫ 𝑝(𝑥, 𝑦)𝑝(𝑦)𝑑𝑦 (for continuous) (3.3)

In light of this, the important Bayes’ rule on multiple random variables can be determined:

 𝑝(𝑥|𝑦, 𝑧) =
𝑝(𝑦|𝑥, 𝑧)𝑝(𝑥|𝑧)

𝑝(𝑦|𝑧)
 (3.4)

From the above equations, 𝑥 is the quantity to infer from 𝑦 , 𝑝(𝑥) is the prior probability

distribution and 𝑦 is the data. Other notions used in [32] are shown below:

• Time is discrete, which refers to occurrences that occur at discrete time instants of t = 0,

1, 2, ...

• 𝑥𝑡 is the environment at time 𝑡 and the robot’s state. The state can be thought of as the

gathering of the environment that can affect the feature (pose, location of the obstacles,

the velocity of the robot, and so on) and all properties of the robot.

• 𝑧𝑡 is the measured data time instant t, which is knowledge regarding the environment’s

state. Provided that the measurements between the time interval 𝑡1 and 𝑡2 are taken into

account, hence the notation would be 𝑧𝑡1:𝑡2.

• 𝑢𝑡 is control data which is the corresponding change of the states between time instants

(t-1;t]. Like the previous case, control data sequences are indicated by 𝑢𝑡1:𝑡2.

 It is essential to note that noise frequently influences both measurement data and control.

Because the probabilistic laws govern the measurement and state’s evolution, the probability

distribution which produces 𝑥𝑡 could be written as:

 𝑝(𝑥𝑡|𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) (3.5)

 However, when the state is complete, which is, knowledge of previous measurements,

states, or controls doesn’t provide more information to support future predictions, the probability

distribution will be:

 𝑝(𝑥𝑡|𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡) (3.6)

12

 This is because the knowledge of 𝑥𝑡−1 includes measurement data and controls until the time

instant 𝑡 − 1.

 The other concept in probabilistic theory is belief. It is knowledge of the robot regarding

the environment. According to the probability theory, beliefs are expressed as a conditional

probability distribution, which is the posterior probabilities of the state variables given the

measurements and control inputs data:

 𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡) (3.7)

All of these tools are used to clarify algorithms’ mathematical formalization which is used in

practice so that the robot creates a map while it localizes itself inside the environment.

3.2. Monte Carlo Localization

 The estimation of the robot’s pose relative to the known environment of the map is called

localization. The 3 localization issues which differ on the available knowledge during the task

and initially:

I. Local localization: is also known as position tracking and it takes an assumption that

the initial pose of the robot is known with small noise. The uncertainty is close to the

actual value of the pose of the robot.

II. Global localization: the starting pose of the robot is unknown. It is achieved by

spreading the particles throughout the map (Figure 3.1. shows Global localization on

real robots used for experimentation)

III. Kidnapped robot problem: here the robot can vanish and be teleported to a different

location.

13

 The MCL algorithm is a particle filter method that uses a set of particles to represent the

pose (position and orientation) of the robot. Particle filters are widely used because they are

simple to implement and non-parametric, allowing them to represent multimodal probability

distributions. Each particle is a separate sample of the robot's state, such as x,y, and heading.

Furthermore, each particle has a weighting that indicates how likely it is that a particle represents

the actual state of the system. The algorithm works by running the Bayes filter algorithm on each

particle. The algorithm has the following steps:

• Particle sampling: Calculate the weight from the previous distribution.

• Motion model: Updating particle's position using a robot motion model noise.

• Measurement model: The given new measurements re-weight particles based on the

likelihood that a measurement matches the state of the particle.

• Resampling: Replacing unlikely particles of low weight with more likely particles.

• Compute mean: Computation of the weighted mean to get the estimated state.

 Kalman filter is among the most powerful and important filters used for state estimation

in the presence of process disturbance and measurement noise. In mobile robotics, Extended

Kalman Filter (EKF) is usually applied to a nonlinear system. The process and measurement

models are needed. And additive noises, which are characterized by covariance matrices, are also

incorporated in both models. Even though EKF is a robust filter, it has the following drawbacks:

• It depends on the basic principle that is the added noise and the initial belief, 𝑏𝑒𝑙(𝑥0)

have a Gaussian distribution.

• As the initial belief is required in EKF, the global localization problem can not be

addressed using it.

• Feature-dependent maps, for instance, point landmarks are needed for the localization

of the robot. The measurements used by the filter for the estimation of the robot's

position are represented using the features.

14

• The filter is found by linearizing the system using Taylor’s Expansion, hence it

approximates a non-linear system.

(a) (b)

Figure 3-1 Visualization of Adaptive Monte Carlo Localization (AMCL) for different states. (a) shows the

particle filter after running Global Localization, where all particles have been spread evenly throughout the

map. (b) depicts that the particle filter has converged to low variance.

 The Monte Carlo Localization (MCL) can process raw sensor measurements which

makes it a great alternative to the EKF. It also avoids the EKF’s assumption of uni-modal

distribution assumption because of its non-parametric nature. The sensor’s range finder is

represented using a measurement model algorithm and it returns a probability 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚𝑡) (m

represents map) that is the combination of discrete, Gaussian, and exponential distributions. The

fundamental idea of MCL is to represent the the 𝑏𝑒𝑙(𝑥𝑡) with particles a set of samples that are

random states, taken from the belief itself. However, the computational time increases with the

number of particles exponentially.

3.3. Occupancy Grid Mapping

 Mapping is the way of generating a map of the environment from the noisy

measurements provided by the robot's pose. We use mapping algorithms to deal with such

problems. This algorithm is based on:

15

i. Features: Recognizing objects within the environment and

ii. Occupancy grids: A map can be represented by a grid. Each part of the grid denotes either

a free space or an obstacle and a binary value is assigned accordingly.

 The posterior over the maps with the given data is:

 𝑝(𝑚|𝑧1:𝑡, 𝑥1:𝑡) (3.8)

 Where the map is represented by 𝑚 , 𝑧1:𝑡 is the set of all measurements up to the time

instant 𝑡, and 𝑥1:𝑡 is the sequence of all the poses [13].

3.4. Simultaneous Localization and Mapping Algorithm

 It is building a map of the environment that is not known to the robot while localizing

itself on the map and only the command inputs 𝑢1:𝑡 and the measurements 𝑧1:𝑡 are known by the

robot. The robot can build the environment’s map while its location is estimated with respect to

the map using SLAM. According to the posterior estimate, the problem of SLAM could come in

two different forms.

o Online SLAM: If the current state and map are estimated given the measurement

and control input up to the current time instant and can be expressed as:

 𝑝(𝑥𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) (3.9)

o Full SLAM: If the posterior is computed throughout the whole path, 𝑥1:𝑡, along

with the map and it is given by:

 𝑝(𝑥1:𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) (3.10)

 Derivation of online SLAM from full SLAM is by integrating the poses:

 𝑝(𝑥𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) = ∬ … ∫ 𝑝(𝑥1:𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡)𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑡−1 (3.11)

 For convenience, let's take a state vector which is the combination of both the robot pose

and the map:

16

 𝑦𝑡 = (
𝑥𝑡

𝑚
) (3.12)

 The posterior (3.17) can be rewritten as:

 𝑝(𝑦1:𝑡|𝑧1:𝑡, 𝑢1:𝑡) (3.13)

 SLAM based on the Rao-Blackwellized approach uses a combination of particles and

Gaussians for representing state variables. A SLAM algorithm that depends on this particle filter

version is FastSLAM. In the case of FastSLAM, the robot path is estimated using particle filters

so that the errors of each map are conditionally not dependent on each particle. FastSLAM

algorithm has the following features:

• It makes use of particle filters to deal with non-linear robot motion models without

resorting to linearization.

• Since it computes the whole path posterior, which makes feature locations independent,

it addresses both online and full SLAM problems, although it merely estimates one pose

at a given time.

 FastSLAM algorithm has two major different versions: feature-based and grid-based

Fast SLAM.

3.4.3. Feature-Based FastSLAM

 This type of FastSLAM algorithm depends on the model of feature-based measurement.

In this algorithm, features (𝑓) are extracted from the range measurements, 𝑓(𝑧𝑡), and thus the

computational complexity is minimized greatly. It does, however, necessitate the use of

additional specialized algorithms for the extraction of features and recognition.

 Particles, in feature-based FastSLAM, contain an estimation of pose 𝑧𝑡
[𝑘]

 as well as a

collection of Kalman filters for each of the map's 𝑚𝑗 features. For estimation of the location of a

feature, the Kalman filter is used. The first and second moments are used to characterize it, 𝜇𝑗,𝑡
[𝑘]

17

and 𝛴 𝑗,𝑡
[𝑘]

 , for the 𝑘𝑡ℎ particle. Like other particle filter algorithms, it obtains the particle at time

instant 𝑡 − 1 and the new pose at time 𝑡 is sampled. It then updates the Extended Kalman Filters

(EKF) whenever a new feature is found. Finally, the important weight of the particle is updated,

which is used for the resampling process. The representation of the map using feature-based

enables the factorization of the posterior (3.17):

 𝑝(𝑦1:𝑡|𝑧1:𝑡, 𝑢1:𝑡, 𝑐1:𝑡) = 𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡, 𝑐1:𝑡) ∏ 𝑝(𝑚𝑛|𝑥1:𝑡, 𝑧1:𝑡, 𝑐1:𝑡)𝑁
𝑛=1 (3.14)

 where 𝑐1:𝑡 is a variable of the correspondence between the observed feature and the

map's genuine feature. It aids in the identification of the observed feature. The underlying

principle of the algorithm depends on this factorization since the posterior over robot paths

𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡, 𝑐1:𝑡)is computed using particle filter whilst each posterior 𝑝(𝑚𝑛|𝑥1:𝑡, 𝑧1:𝑡, 𝑐1:𝑡)

is handled by EKF. The posterior is now factored into N+1 products, but the actual number of

filters is MN+1 because each of the M particles is subjected to N Kalman estimations.

3.4.4. Grid-Based FastSLAM

 The Grid-based FastSLAM algorithm does not rely on EKFs to estimate feature

localization because it does not employ a feature-based map; however, it combines MCL with

Occupancy Grid Mapping.

 The function used for the FastSLAM has the following particular properties:

✓ The sample_motion_model function computes the sample 𝑥𝑡
[𝑘]

 by integrating the motion

model that is the impact of the input 𝑢𝑡 on the sample of the previous time instant, 𝑥𝑡−1
[𝑘]

;

which implies that it computes the posterior 𝑝(𝑥𝑡|𝑥𝑡−1
[𝑘]

, 𝑢𝑡).

✓ The measurement_model_map function: The significance of the weight 𝑤𝑡 of the 𝑘𝑡ℎ

particle is depicted using this function via the probability distribution, 𝑝(𝑧𝑡|𝑥𝑡
[𝑘]

, 𝑚𝑡−1
[𝑘]

)

18

of the measurement 𝑧𝑡 given the pose 𝑥𝑡 and map 𝑚𝑡−1 that is computed using the

previous measurement and the trajectory followed by the particle.

✓ The updated_occupancy_grid function: This function utilizes the pose of the 𝑘𝑡ℎ

particle, the associated map with it, and the measurement for computation of a new

occupancy grid.

 To summarize, the main benefit of the feature-based FastSLAM approach is that the

computational complexity can be controlled. This is achieved by varying both the number N of

features and the size of the M set of particles characterizing the map that are localized using EKF.

The grid-based technique, on the other hand, leverages particle filters to take advantage of both

MCL and Occupancy Grid Mapping. Therefore, a grid-based approach is generally preferred

over a feature-based since it does not need features or the use of feature recognition algorithms.

Besides, it is more portable since it can model any type of environment.

3.5. Path Planning

 Path planning is the problem of creating the path of the robot while navigating from one

point to the goal point by avoiding obstacles. The two major tools that are used in path planning

are:

✓ A global planner is responsible for determining the best path from a current point to the

desired destination.

✓ A local planner tells the robot how to act or handles the command that has to be sent to

the robot’s wheels for following the global planner.

 To put it another way, the global planner seeks the shortest possible path in a known

map (a graph or a grid) that is represented digitally whereas the local planner determines how

and where the robot should travel. Furthermore, another algorithm is needed to direct the robot

which goal to reach to explore the map while the robot is executing autonomous SLAM: frontier

19

exploration algorithm. Because searching for a goal is one part of path planning, hence frontier

exploration is presented [33].

3.5.1. Global Planner

 This algorithm determines the optimal path the robot has to take from its starting point

to its destination. In SLAM, a map of the surroundings is created from the data that is collected

using sensors as the robot moves. Using the map that is created, the global planner finds the

optimal trajectory by considering the path length and obstacle avoidance. Provided that the

endpoint is in an unknown location, the global planner uses the straight line connecting the

desired point to its closest possible known point as a trajectory.

 Dijkstra and A* are two widely used path planning algorithms in a 2-Dimensional grid

map. Both will be covered in the following sections.

Dijkstra Algorithm

 In this algorithm, the shortest possible distance is computed in a given path whilst taking

into account the lowest cost of the distance between the current points to the target point. It

utilizes nodes in its computation and the points where the cost of the distance is low are saved.

Figure 3.2 shows operating graphs of the Dijkstra algorithm which is a breadth-first-search

algorithm. The term "breadth-first" refers to expanding the search in all feasible avenues rather

than selecting one in particular; it determines the best or optimal route from a single source vertex

to all others [33].

Figure 3-2 Breadth-first expansion in the Dijkstra algorithm

20

A* Algorithm

 A* algorithm is also a well-known graph traversal path planning algorithm and it

operates in a similar way to Dijkstra’s algorithm; however, it directs its searching towards the

promising states which saves computational time tremendously. [34]. And also, it is widely used

to approach the optimal solution [35] with the data set that is presented. A* is a best-first search

algorithm which is shown in Figure 3.3. Best-first implies the exploration of nodes in a graph in

the direction of the most promising vertex, according to a specified rule.

Figure 3-3 Best-first expansion in A* Algorithm

3.5.2. Local Planner

 It creates new waypoints whilst considering the vehicle constraints and dynamic

obstacles to transform the global path into suitable waypoints. Thus, it recomputes the path at a

specific rate; the map is scaled down to the vehicle's immediate surroundings and updated as it

goes. Since the sensors are not capable of updating the map in all regions, it is impossible to use

the whole map and the cost of computation raises with a large number of cells. Therefore, the

local planning produces avoidance methods for dynamic obstacles using the updated local map

and global waypoints and strives to match the trajectory as closely as feasible to waypoints

generated by the global planner [36].

 The local planner, from a kinematic standpoint, generates a feasible trajectory from a

starting point to the desired location. The starting and target points are the robot's center and a

point within a few meters respectively. Using points from a grid-based local cost map, the planner

computes a cost function between these two points. The local cost map is a fixed-dimension grid

21

map that is centered on the robot's (𝑥, 𝑦) global map. It calculates the cost of traversing across

the grids, taking into consideration the occupancy value of the grids, the robot's velocities, and

the distances between the global plan and the target. The information about the cost function is

then used by a controller to determine the commanded twist, ([𝑣𝑥, 𝑣𝑦, �̇�])𝑇 that will be sent to

the robot. From the different local planner’s Dynamic Widow Approach (DWA) is tested both

on simulation and experimental tests.

Trajectory Planner

 To begin, it is mandatory to comprehend how Dynamic Window Approach (DWA)

works. The standard part [37] of DWA was created for non-holonomic robots that can only have

velocities along x and around 𝜃 owning to the configuration of their wheel which results in a

twist velocities vector of [𝑣, 𝑤]𝑇.

 DWA executes the following for each iteration:

i. Search Space: The space of all possible velocities is calculated by considering the

factors cited as follows:

• Circular Trajectories: The trajectory that results from the velocity couple (𝑣, 𝑤).

• Admissible Velocities: By restricting admissible velocities it is ensured that only safe

trajectories are taken into account. Speeds are admissible if:

𝑣𝑎 = {(𝑣, 𝑤) | 𝑣 ≤ √2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑡𝑟𝑎𝑛𝑠 ⋀ 𝑤 ≤ √2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑟𝑜𝑡 } (3.15)

where the pair (𝑎𝑡𝑟𝑎𝑛𝑠, 𝑎𝑟𝑜𝑡) is braking accelerations and dist(𝑣, 𝑤) is the distance

of the nearest obstacle on a specific (𝑣, 𝑤) trajectory.

• Dynamic Window: 𝑉𝑑 is the dynamic window set and it contains all of the velocities

that come from a uniform acceleration motion given the accelerations (𝑎𝑡𝑟𝑎𝑛𝑠, 𝑎𝑟𝑜𝑡) and

the initial velocity (𝑣, 𝑤), i.e. the velocity of the robot :

22

𝑉𝑑 = {(𝑣, 𝑤) | 𝑣 ∈ [𝑣𝑎 − 𝑎𝑡𝑟𝑎𝑛𝑠, t; 𝑣𝑎 + 𝑎𝑡𝑟𝑎𝑛𝑠, t] ⋀ 𝑤 ∈ [𝑤𝑎 −

 𝑎𝑟𝑜𝑡t; 𝑤𝑎 + 𝑎𝑟𝑜𝑡t] } (3.16)

 The set of all possible velocities is specified with 𝑉𝑠 and thus the resulting search space

is given by the resulting set 𝑉𝑟 as :

 𝑉𝑟 = 𝑉𝑠 ∩ 𝑉𝑎 ∩ 𝑉𝑑 (3.17)

Figure 3-4 Dynamic-Window Approach (DWA)

 The above sets can be represented as follows in Figure 3-4: the overall search space with

the external rectangle, and the gray region that represents the intersection of the search space and

the dark gray areas, which represent the velocities to discard to avoid collisions, represents the

set of permissible velocities. The white rectangle represents the Dynamic Window that considers

the acceleration; the resulting set 𝑉𝑟 is the intersection of the three sets (𝑉𝑠, 𝑉𝑎 𝑎𝑛𝑑 𝑉𝑑).

• Optimization: The distance, heading, and speed for each group of speed pairs in the

sampling space of speed is computed by the trajectory evaluation function; it evaluates

and chooses the optimal trajectory, and then the robot is driven by the corresponding

speed pair. It is given by

 𝐺(𝑣, 𝑤) = σ (𝛼 ∙ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤) + 𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝑤) + 𝛾 ∙ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝑤)) (3.18)

23

The above function in equation (3.32) is computed for the current pose of the robot and the

function trades off the following features:

• Heading: The angle between the end of the trajectory related to the speed pair (𝑣, 𝑤)

and the desired location given by the heading function (𝑣, 𝑤). The main purpose of the

heading function (𝑣, 𝑤) is for selecting a trajectory with a smaller angle to the target

position and directing the robot to that location; given by 1800 − 𝜃, where 𝜃 is the

angle of the target point with respect to the heading direction of the robot.

• Clearance: The function 𝑑𝑖𝑠𝑡(𝑣, 𝑤) represents the distance between the robot and the

obstacle. Its main purpose is to keep the robot from colliding with obstacles.

• Velocity: The robot’s forward velocity is represented by (𝑣, 𝑤) which causes it to move

faster to the target position.

 The parameters 𝛼, 𝛽, 𝛾 represent the weight coefficients of ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤), 𝑑𝑖𝑠𝑡(𝑣, 𝑤),

and velocity (𝑣, 𝑤) respectively. Normalization is required for the three weighted functions. The

weighted sum of the three components is smoothed by function σ, resulting in more obstacle-

side clearance.

 The trajectory planner [38] is ROS's standard local planner and it is based on the DWA

algorithm. It enables us to specify the number of samples that have to be considered for 𝑣 and 𝑤

to calculate the admissible velocities. And also, whether or not the robot thart is used holonomic.

 DWA Local Planner

 The DWA local planner utilizes the DWA algorithm as the Trajectory planner; however,

the trajectories are computed differently and also, can be applied to holonomic robots [39]. The

major parameter sim_period parameter, which is the duration of the controller loop, is used for

computing Dynamic Window and is inversely proportional to the controller_frequency

parameter, which will be discussed in the following chapter. The procedure for implementing the

DWA local planner algorithm can be found in ROS Wiki [38].

24

 SIMULATION AND HARDWARE SETUPS

In this chapter, the operation of mapping, localization, and navigation of a mobile robot

using ROS shall be covered. Before delving into the simulated and experimental implementations,

the organization of the simulation and experiment setups, as well as the structure of ROS

navigation, will be discussed. ROS integration with the mobile robot and Velodyne lidar sensor,

and also ROS packages for SLAM and autonomous navigation, will also be addressed.

4.1. Simulation Setup

The simulations are done with Gazebo Simulator to visualize the 3D real robot

movement, a physical engine, and Rviz to visualize the robot's internal state and sensor data.

4.1.1. Model of Robot

The mobile robot used for simulation is known as "MRP NRLAB02," and it includes

packages for controlling the robot during simulation and experimentation. In this thesis, a

package is used to observe the completeness of the navigation of mobile robots in the simulation

environment using the robot’s URDF representation which is shown Figure 4-1.

Figure 4-1 The simulated platform of the robot on Gazebo and Rviz from left to right.

4.1.2. Interfacing of Simulated Robot and Lidar Sensor

 In this thesis, the Unified Robot Description Format (URDF) of the Hokuyo 2D lidar

sensor is used to interface it with the mobile robot's URDF (Figure 4.2) for simulation. The

25

URDF of MRP_NRLAB02 is modified by adding the laser scanner plugin model link, joint, and

inertia to visualize the laser information. The URDF file is written in such a way that the robot’s

each link is the parent link’s child (Motor baseplate in our case), with each link connected by

joints. The offset from the parent link's reference frame and the axis of rotation is used to define

joints, as shown in Figure 4-3 and Figure 4-4.

 The simulated Hokuyo lidar sensor has 1800 horizontal field view and a range of

detection up to 15 meters. The rays used have 720 sample points, and the topic published from

this lidar is /hokuyo_lidar/scan, with a message type of sensor_msgs/LaserScan.

(a) (b)

(c) (d)

Figure 4-2 The URDF of Hokuyo lidar sensor and mobile robot in a simulated environment (a) URDF of

Hokuyo lidar sensor on Rviz. (b) Mounting the lidar sensor on the top of the robot using URDF on the Gazebo

simulator. (c) Facing the wall (the light brown color) as an obstacle in front of the robot to observe the lidar

output. The blue color is the ray of the lidar activating Gazebo’s ray visualization plugin.(d) Visualizing the

internal state of the laser scan (the red color shows the detected obstacle in front of the robot from (c)) on Rviz.

26

Figure 4-3 URDF representation of Hokuyo lidar sensor.

Figure 4-4 Transformation tree diagram of the mobile robotSimulation Environment used for Navigation of

Mobile Robot.

4.1.3. Simulation Environment used for Navigation of Mobile Robot

 Before testing in the real environment is done, the environment for simulation is

constructed on Gazebo. The simulation environment can be seen in Figure 4-5, with

17.5𝑚 𝑥 10.1𝑚 (approximately an area of 176.75𝑚2). The simulation environment will be used

later in the result section for mapping, localization, and path planning.

27

(a) (b)

Figure 4-5 Simulation Environment. (a) The built mobile robot inside the environment and lidar rays using

Gazebo. (b) Rviz's internal lidar signal visualization by detecting obstacles in the environment.

4.2. Hardware Setup

 Instead of using the Gazebo simulator, the Rviz simulator is utilized to display the

internal state of the robot, and real-world situations are used to implement the algorithms for the

navigation of the mobile robot autonomously.

4.2.1. Robot Platform

 The mobile robot used for the experiment is a four-wheeled differential robot called

“Scout Mini”. The robot platform is shown in Figure 4.6 and the hardware specification is listed

in Table 4-1.

(a)

28

(b) (c)

Figure 4-6 The hardware platform of the mobile robot used for experimentation. (a) Robot Hardware setup, (b)

Mobile robot on Rviz, and (c) Frame transformation on Rviz.

Table 4-1 Hardware specification.

 Figure 4-6 (a) depicts the Scout Mini mobile robot with the USB-HUB expansion

interface, USB to CAN module, Intel RealSense D435, LCD screen, and Velodyne VLP-16

installed at the top layer. Through the aviation expansion interface of the chassis, Scout Mini

provides a power and communication interface for the upper equipment. The Scout Mini chassis

power expansion interface is powered by the chassis’ battery, which has a maximum power

output support of 24V and 5A. It has voltage regulator modules of 19V and 12V. The 19V voltage

regulator module primarily powers the Nvidia AGX Xavier, while the 12V voltage regulator

module powers the VLP-16, USB-HUB, and wireless routers. Figure 4.7 below shows the

external connection topology of Scout Mini.

29

Figure 4-7 External topology connection of Scout Mini.

 The external topology connection of Nvidia AGX Xavier as the core computing unit is

shown in Figure 4.8. Xavier’s network port is connected to the router’s network port, which is

convenient for remote desktop connection, access, and debugging and easy to expand to other

network devices. The USB-HUB mainly expands and connects D435 binocular camera, and LCD

camera.

Figure 4-8 Nvidia AGX Xavier external topology connection.

4.2.2. Sensors on Scout Mini

i. Intel ReasSense D435 Camera: Binocular vision sensors are used in diverse

robot applications, including robot vision measurement and visual navigation.

The Intel RealSense Depth Camera D435 effectively captures and broadcasts

depth data from objects that are moving and allows mobile prototypes to have

very accurate depth perception. It has a broad field of view and a global image

shutter. The hardware specifications of the D435 camera are detailed in Table

4-2 and Figure 4-9 depicts the visual image of D345.

30

Table 4-2 Hardware specification of Intel RealSense D435 camera.

Figure 4-9 Intel RealSense D435 camera

ii. Velodyne VLP-16 Laser Sensor: The VLP-16 is Velodyne's most advanced

and smallest lidar. The VLP-16 is less expensive than comparable sensors while

retaining some of the basic features of Velodyne's breakthrough lidar, such as

real-time, 360° field of view, 3D coordinates and distance, and reflectance

measurements with calibration. The VLP-16 has a measuring range of up to 100

m, a low power consumption (8 W), is lightweight (830 g), has a small size

(103mm x 72mm), and has dual return capability, making it ideal for man-

machine mounts and other mobile devices. The hardware specifications of the

31

VLP-16 are detailed in Table 4-3 and Figure 4-10 depicts the visual image of

the VLP-16.

Table 4-3 Hardware specification of VLP-16.

Figure 4-10 Velodyne VLP-16 lidar sensor.

4.3. Structure of ROS Navigation

 ROS is an open-source platform that could be considered a middleware (Figure 4-11)

that provides high-level abstraction between low-level hardware and drivers and high-level

software APIs.

32

Figure 4-11 Robot process cycle using ROS

 The problem of navigation is fundamental in robotics and other important technologies.

For the sake of making the mobile robot navigate autonomously, it must first understand where

it is, where it is going, and how it will get there. The major challenges that the mobile robot faces

while navigating in an environment are depicted in Figure 4-12, and these challenges will be

discussed in the following sections with ROS.

 ROS navigation stack is used to accomplish mobile robot navigation from one point to

a target point. The ROS navigation stack is a collection of ROS nodes and algorithms that are

used to autonomously move a robot from one location to another while avoiding any obstacles

in its path. In the coming subsection, each algorithm used in ROS will be explained including

SLAM_gmapping, Adaptive Monte Localization, and Path Planning.

Figure 4-12 Challenges to Navigation of mobile robot

33

 The followings are the input for the navigation stack to send commands to our robot to

move to its desired goal:

• Current pose: The current orientation and position of the robot.

• Goal pose: The robot's desired location for achieving its goal.

• Odometry Data: Using the motion sensor’s data for estimating the change in pose over time.

These sensors include wheel encoders, IMU, GPS, etc…

• Laser Sensor: Data from the laser (lidar) sensor is needed to recognize objects in the

environment.

 Taking the above as an input, the navigation stack in exchange will output the velocity

commands that are needed and send them to the mobile base for moving the robot to the

designated target position. In summary, the basic goal of the navigation stack is to move the

robot from its starting location to its destination while avoiding collisions with objects and

getting lost on its way. The diagram (Figure 4-13) shows the basic building blocks of the

Navigation stack taken from the ROS official website. The sections below provide a quick

overview of all the blocks that have to be submitted as input to the ROS Navigation stack.

i. Odometry Source

 Odometry information refers to an estimated pose of the robot and velocity in free space.

The determination of the odometry information is done through kinematics from the robot’s

motor shafts encoder counts. The robot's odometry data determines its position in relation to its

starting position. The primary sources of odometry are IMUs, wheel encoders, 2D/3D cameras

(for visual odometry), and GPS. We used the information from a wheel encoder to publish the

odom value (Figure 4-14) to the navigation stack with x nav_msgs/Odometry message type that

can hold the robot's position and velocity. The odom data will then be used by the

SLAM_gmapping algorithm to create the 2-dimensional map of the environment.

34

Figure 4-13 ROS Navigation stack structure

(a) (b) (c)

(d)

Figure 4-14 Odometry source information of a mobile robot. (a) Shows the two-wheeled mobile robot that is

used for simulation in this thesis (MRP-NRLAB02 Red-One technology). (b) The odometry data from the

mobile robot's wheel encoder containing position, orientation, linear velocity, and angular velocity with topic

name /odom, and the data can be visualized with ROS command of $ rostopic echo /odom. (c) It shows the type

of message that the /odom topic contains with nav_msgs/Odometry’s message type and it can be extracted with

the ROS command of $ rostopic info /odom.(d) Shows the visual representation of odometry information.

35

ii. Sensor Sources

 Data provided from the sensors is used by the navigation stack to perform two tasks: the

first is to locate the robot on a map using a 2-dimensional laser sensor with a message type of

sensor_msgs/LaserScan or a 3-dimensional laser sensor with a published message

msgs/PointCloud of the sensor, and the second is to detect and avoid obstacles in the robot's path

through the surrounding environment. In this thesis, the Hokuyo 2D lidar sensor's URDF is used

to interface it with the mobile robot's URDF (Figure 4-16) for simulation, and the Velodyne lidar

Puck (VLP-16) lidar sensor is used for practical implementation with a 4-wheeled differential

mobile robot called Scout Mini.

iii. Sensor Transformation (Transform Configuration)

 Sensor transformation is critical when working with mobile robots because the robot

must be aware of both itself and its surroundings. To accomplish this, the robot must be able to

calculate its orientation and position relative to the obstacle relative to the obstacle. The process

of specifying how data expressed in one frame can be transformed into a different frame is known

as coordinate transformation. For instance, provided that the laser detects an obstacle with the

lidar sensor at 20cm in the front (illustrated in Figure 4-15), this means that it is 20cm from the

laser, but not from the center of the robot (base_link of the robot). We must convert the 20cm

from the lidar frame to the robot frame depicted by the dark yellow arrow to determine the

distance from the robot's center.

Figure 4-15 The transformation between the coordinates of laser and robot base link

36

 For comparing data from different sensors, the data collected by numerous robot sensors

should be referenced to a common reference frame(in our case, the base link frame id name of

the robot used for simulation is Motor_baseplate (Figure 4-16)). Using ROS transforms, the

relationship that is between the main robot coordinate frame (Motor_baseplate) should be

published by the robot and the various sensor frames (for the simulated robot case hokuyo_link).

Figure 4-16 URDF of lidar sensor transformation with the simulated robot on Rviz

 The yellow arrow in Figure 4.8 represents the transform visualization from the lidar base

link (hokuyo link) to the mobile robot's base link frame (Motor baseplate), which is then

transformed to the robot's odometry (odom frame).

i. Base Controller

 The navigation stack requires a trajectory planner to send velocity commands to the base

of the robot coordinate frame using a geometry_msgs/Twist message with the "cmd_vel" topic

(for the simulated robot, the topic name is /nrlab/cmd_vel). This necessitates the existence of a

node that subscribes to this topic and is capable of taking linear velocities along the 𝑥 and 𝑦 axes

and converting them into motor commands for a mobile robot. The primary purpose of the base

controller is to convert the navigation stack’s output, that is the message called Twist to the

respective motor velocities of the robot.

37

 Each ROS algorithm, including SLAM_gmapping, Adaptive Monte Localization

(AMCL), and Path Planning, will be explained in the following subsections.

4.3.1. SLAM-gmapping

 SLAM is the process of creating the environment’s map while keeping track of the

position of the robot on the map. This problem is basically what mapping is solving. For reducing

the common depletion problem that is associated with the Rao-Blackwellized particle filter, an

adaptive resampling technique is employed by the gmapping package [32, 40, 41]. To create a

map, a two-dimensional occupancy grid method is used by the gmapping package. An obstacle

is inserted into a cell or the cell is cleared using sensor stream data. Clearing a cell for each

successful laser-scan sample includes ray-tracing through a grid. By comparing current laser

scans to prior laser scans, GMapping can help decrease and fix odometry drift faults.

 The gmapping ROS package is an implementation of the SLAM algorithm. It is used to

generate a 2D map from the robot's lidar sensor and odometry data as it moves around the area.

It also includes a slam gmapping node, which reads data from the laser and transforms it from

the laser source to the base link, broadcasting the transform from the "map" to "odom" frames,

resulting in an occupancy grid map (OGM). To obtain the data needed to build a map, the

slam_gmapping node subscribes to the laser topic (/hokuyo_lidar/scan topic for simulation and

/scan topic for hardware implementation) and an extensive transform topic (/tf). Throughout the

process of slam_gmapping, the generated map is published into the /map topic, which uses the

message type nav_msgs/OccupancyGrid. An occupancy grid map is shown in Figure 4-17.

Occupancy is expressed as an integer in the range [0, 100], with 0 (entirely free or white color),

100 (entirely occupied or black color), and -1 for an unknown location.

38

Figure 4-17 Example of Occupancy Grid Map (OGM).

 The map_server package, which is part of the ROS navigation stack, saves the OGM

map output and provides the map_saver node that allows the access to map data from the ROS

service, and saves it into a file. As shown in Figure 4-18, the map data is saved in two files:

a. YAML file: containing the image name and map metadata.

b. PGM image: the image itself with the encoded data of the OGM.

Figure 4-18 The PGM file and the metadata of the YAML file.

 The command rosrun map_server map_saver -f name_of_map can be used to save the

map and the resulting map is a static map that is required for localization and path planning. The

gmapping ROS package includes a set of parameters for modifying the SLAM algorithm’s

behavior described in Chapter 3 [42]. The map’s size does limit the selectable area for exploration

in gmapping; inorder for exploring the whole environment at once, the size of the map must be

regulated accordingly. The proper configuration of the parameters is essential to building a

proper map. Without a proper configuration of the robot with the algorithm, it will be impossible

for us to create a good map of the environment, and without a good environment, it will not be

possible to properly navigate the robot inside the environment.

39

 To build the map with gmapping, we must meet two requirements: the first is to provide

good laser data (Velodyne lidar is used for real-time implementation), and the second is to

provide good odometry data (in our case wheel encoder is used for odometry data).

Table 4-4 Major parameters of gmapping

40

 Aside from that, the coordinate transformation between the lidar sensor's base and the

robot's base is required, as shown before in Figure 4-16. Table 4-4 shows the major parameters

that must be configured while mapping and the effect of the parameters on map quality will be

discussed in the results section.

4.3.2. Adaptive Monte Carlo Localization

 Determining the robot’s pose inside a mapped environment is known as localization.

Robot Localization occurs when a robot moves around a map and needs to know its position and

orientation within the map using sensor readings. The Monte Carlo Localization (MCL) from the

previous chapter is the most popular algorithm in robotics, after the deployment of MCL, the

robot would be navigating through its known map and collect sensory information by the use of

range-finder sensors and RGB cameras. Then, the MCL will use this sensor for measuring and

keeping track of the pose of the robot [43].

 MCL is also known as Particle Filter Localization because it uses particles for locating

the robot. Because the robot does not always move expectedly, it creates a huge number of

random estimates about where it will go, which is the next pose. As shown in Figure 4.19, these

guesses are known as particles; every particle has an orientation and a position and represents a

guess as to where the robot could be located. The particles depicted by the red arrow in Figure

4-19 are used to estimate the pose of the robot.

 The ROS package AMCL [44] includes the amcl node, which employs the MCL

algorithm to track the location of the movement of the robot in a two-dimensional space. This

node subscribes to laser data, the laser-based map, and the robot's transformation, and then

publishes the estimated pose on the map.

41

Figure 4-19 Examples of AMCL

Figure 4-20 AMCL node data subscription and publication

 As shown in Figure 4-20, three basic requirements must be met to properly localize a

mobile robot within a map: providing good laser data with the proper transformation of its base

link with the robot base link, good odometry data from the encoder or IMU, and properly

constructed laser-based map data. Furthermore, as with the mapping algorithm, the proper

parameter configuration is critical for localizing a mobile robot in its environment. The amcl

node, most importantly, has two major requirements for the robot's transformation, which are as

follows:

42

i. The amcl converts an incoming laser scan with the laser's frame id to an odometry frame,

which needs a path from the frame where the laser scans are published to the odometry

frame through the tf tree.

ii. AMCL searches the transformation between the laser frame and the base frame and

latches it forever to ensure proper localization. This means that a moving laser relative

to the base can’t be handled by the amcl node and requires a fixed or static

transformation between the two frames.

 The major parameters of the amcl algorithm that are useful for proper localization of the

robot in the environment are shown in Table 4-5, and the effect of the parameters on localization

quality will be discussed in the results section.

Table 4-5 Major parameters of AMCL.

43

44

4.3.3. Move-Base Package

 Move base is a key component of the ROS navigation stack that connects all planner

and controller behaviors. The move base package includes the move_base node, which moves

the robot from its current position to the target point. It is a SimpleActionServer implementation

that accepts a target pose with geometry_msgs/PoseStamped message type so that

SimpleActionClient can send a target point to this node. One of the topics provided by the move

base action server is move_base/goal, which is the navigation stack’s input that will be used to

provide the goal pose. Table 4-6 shows some of the moving base [45] parameters that are

responsible for the planner and controller frequencies.

Table 4-6 Move base parameters

 The frequency is determined by the computer's computation power and the quality of

the communication. If the values of these parameters are not properly configured, they may cause

a jerk motion. This jerking behavior is caused primarily by a lack of time to complete the

computation, as well as the fact that when the controller completes its task, it must wait for the

next one. When the robot becomes stuck, the controller and the waiting time of the controller or

planner before the computation is restarted if determined by the planner’s patience.

45

 As stated in the previous description, sending a goal to the move base node activates

some other processes that involve some other nodes that result in moving the robot to the target

pose. For the sake of using the move_base node in the navigation stack, a local and global planner

is needed.

 4.3.3.1 Global Planner on ROS

 When the move base node receives a new goal, it immediately sends it to the global

planner. The global planner is responsible for the safe path calculation depicted in Figure 4-21

to achieve the desired goal pose. This path is calculated before the movement of the robot starts;

it doesn’t consider the readings made by the robot's sensors while it is moving. The light green

line in Figure 4-21 represents the global path to take to reach the goal position.

Figure 4-21 Example of a global planner

 Depending on the setup the robot use and the environment it navigates, there exist three

global planners that adhere to the nav_core:: BaseGlobalPlanner interface: Navfn,

global_planner, and carrot_planner [46].

• Navfn: it is the most widely used global planner for navigation in ROS. It employs

Dijkstra’s algorithm is employed, as described in section 3.1.5.1, to determine the

shortest path with the lowest cost between the initial and goal poses.

46

• CarrotPlanner: : it is the simplest, take the target pose and check whether it's an

obstacle, then choose an alternate goal that's close to the original by going back along

the vector between the target point and the robot. This planner is useful if we need our

robot to move near a given target, even though the target is out of reach. This planner is

ineffective in a complex indoor environment.

• GlobalPlanner It is a more versatile and customizable replacement for navfn. And also,

it includes more options such as toggling grid path, toggling quadratic approximation,

and support for A*. Navfn and global planner are based on [47], which allows us to

change the algorithm that navfn uses to calculate the path.

Table 4-7 Global planner parameters

Table 4-7 shows some of the major navfn [48] and global_planner [49] parameters.

47

 When the planner creates a trajectory, it must be done in accordance with a map. The

global planner calculates its path using a map called a costmap. A costmap is a map that

represents places in a grid of cells using binary values that represents either a free space or the

presence of an obstacle. The costmap values are binary, representing either free space or paces

where the robot would collide. In ROS, costmap consists of an obstacle map layer, static map

layer, and inflation layer.

• Static map layer: It is the fixed map given as an input to the navigation stack.

• Obstacle map layer: It includes 2-dimensional and 3-dimensional obstacles (voxel

layer).

• Inflation layer: It is where the cost of each 2D costmap cell is calculated by inflating

obstacles.

 There exist two types of costmap: local costmap and global costmap. The global costmap

depicted in Figure 4-22 will be discussed in this section, while the local costmap will be presented

in the following section.

Global Costmap

 A global costmap is constructed from the map obtained by SLAM gmapping by inflating

the obstacles on the map provided to the navigation stack. The costmap is initialized to match

the static map's height, width, and obstacle data. The global costmap has its own set of parameters

(Some of these are listed in Table 4-8 that should be optimized as much as possible. The global

planner uses the global costmap to calculate the path to follow.

48

Figure 4-22 Example of global costmap

Table 4-8 Global costmap parameters.

 4.3.3.2 Local Planner on ROS

 Once the global planner has calculated the path to take, this path is given to the local

planner, which then executes each segment of the global plan. This means that given a plan to

follow provided by the global planner and a map, the local planner will provide a velocity

command to move the robot. The local planner (shown in Figure 4-23 with a yellow line), as

opposed to the global planner, monitors odometry and lidar data and selects a collision-free local

plan for the robot by recomputing the path to follow to keep the robot from colliding with objects.

49

 In addition to the global planner, there are various types of local planners depending on

the robot configuration and environment to navigate. These local planners are

eband_local_planner, dwa_local_planner, and teb_local_ that adhere to nav core:: Base Local

Planner. For the mobile robot's local planning, we used dwa_local_planner.

Figure 4-23 Example of a local planner

 The configuration of the local planner parameters is more critical, complicated, and

delicate than that of the global planner. Table 4.9 from the ROS Wiki [39] lists some of the

dwa_local_planner parameters and their applications in planning.

Table 4-9 DWA planner parameters

50

51

 The impact of the aforementioned parameters on local planning will also be discussed

in the results section later. The DWA planner relies on the local costmap that provides

information about obstacles. Due to this, for the optimal behavior of the DWA local planner,

fine-tuning the parameters for the local costmap is critical.

Local Costmap

 A local costmap is created by inflating obstacles sensed in real-time by the robot's

sensors. Given a width and a height for the costmap defined by the user that keeps the robot in

the center of the costmap while it is moving throughout the environment, it drops information

from the map about obstacles as the robot moves. We have created a small environment on

Gazebo with an obstacle to illustrate the local costmap (shown in Figure 4-24) around the

obstacle. This environment also is used in this chapter.

(a) (b)

Figure 4-24 Example of local costmap.

 Because the global and local cost maps do not have the same property, they have

different parameters. Table 4-10 shows some of the local costmap parameters and common

costmap parameters for both global and local cost maps.

52

Table 4-10 Local costmap and common costmap parameters

 The concepts and implementation of ROS algorithms discussed with the robots in this

section will be implemented in the simulation and experiment in the following chapter.

53

 RESULTS AND DISCUSSIONS

 In this chapter, autonomous navigation to achieve the goal pose (position and orientation)

by avoiding obstacles with the pre-constructed map, and the development of a Graphical User

Interface (GUI) for waypoint navigation of mobile robots will be discussed. To test the

abovementioned algorithms, we divided the result into two parts: simulation results and

experimental results. We will also investigate the parameters used and their effects on mapping,

localization, and path planning quality in the experimental result section.

5.1. Simulation Results

 We use Gazebo platform to create a simulation environment for the experiment depicted

in Figure 5-1. The virtual environment has real physical properties, and the simulation results are

a close match to the real world.

Figure 5-1 Simulation environment constructed on Gazebo.

54

(a) Mapping of the Virtual Environment

 The simulation experiment below was carried out in accordance with the virtual

environment. The first phase entails integrating the MRP NRLAB02 mobile robot platform with

the hokuyo 2d lidar scanner (hokuyo.dae mesh was used to render it) as illustrated in Figure 4.8

under the ROS Navigation Structure section. We tested ROS gmapping to map the unknown

environment after we interfaced with the robot's URDF and lidar sensor by taking lidar and wheel

encoder information and using the teleoperation node that receives keyboard inputs to send

velocity commands to the robot's /nrlab/cmd_vel topic. The mapping algorithms are tested using

the ROS robot system's simulation platform, and the simulation results are shown in Figure 5-2.

Figure 5-2 Occupancy Grid Map of the virtual environment on Gazebo and Rviz

 Figure 5-1 depicts the robot's behavior during the simulation process while using SLAM

gmapping. The robot is positioned in the center of the simulation environment's left wall, and the

55

lidar data is highlighted in red, with the blue ray on Gazebo representing the lidar's ray by

activating the lidar visualization plugin on the URDF of the hokuyo sensor. The simulated

hokuyo lidar has 1800 horizontal fields of view and a maximum detection range of 15m, which

we cropped to 10m for mapping the virtual environment. The area, when scanned by lidar,

changes from light gray to white and black when the robot is moving through the environment.

When the robot moves through the environment, the scanned area changes from light gray to

white and black until the entire map is completed. The light gray shade represents the absence of

information about the area, free space is represented by white shade, and the detection of

obstacles in the environment is represented the black lines by the black lines. Table 5-1 shows

the coordinate values for the four poses in Figure 5-2, with a position offset of

(−0.089𝑚, −0.1𝑚, 0.0012𝑟𝑎𝑑) from the origin of the robot to the coordinate system of the map

at (0,0,0). Figure 5.3 depicts the communication between nodes and topics, while Figure 5-4

depicts the transformation tree of robot links, lidar sensor, and parent frame id map.

Table 5-1 Some positions and orientations of the mobile robot during the mapping operation.

56

Figure 5-3 Communication between nodes and topics using rqt_graph

Figure 5-4 Transformation tree after launching the mapping algorithm.

 According to the simulation results, a compatible map of the environment with the same

dimensions and features as the virtually constructed environment was created. The optimization

57

of several slam_gmapping node parameters has been done. In the simulation, the built-up map

of the environment will be used for the mobile robot's autonomous navigation. The effect of

mapping parameters will be discussed in the experimental section.

(b) Navigation of Mobile Robot in the Constructed Map

 After creating the static map, the navigation task can be carried out. Before the robot

can move from one point to the next, it must first locate itself on the map. This is accomplished

by the AMCL node, which, as explained in section 4.3.2, estimates the position of the robot using

particles.

 In the simulation section, we tested the navigation of the MRP_NRLAB02 mobile robot

from one point to the target goal in two cases: navigation by avoiding static and dynamic

obstacles inside the grid map. In the practical experimental section, the parameters and their

effect on navigation, as well as the operation of the algorithms used for each component of the

navigation system, will be explained in detail.

i. Navigation of the simulated robot inside the map with static obstacles

 The map which is created from SLAM gmapping has been loaded via the map server

package from the path where the map is saved to use to autonomously navigate the robot in the

environment.

 Figure 5-5 (a) on Rviz shows the laser signal, the loaded map, the global costmap, the

local costmap, particles to estimate the robot's pose, and static obstacles in the static map before

navigation begins. Figure 5-5 (b) depicts the environment and the robot's true pose for

comparison with the robot's internal computation. Figure 5-5 (a) demonstrates that the particles

distributed around the map show the robot uncertainty about its true position and orientation

when compared to the one shown in the Gazebo environment (b).

58

(a)

(b)

Figure 5-5 Preparing the simulated mobile robot for navigation on Rviz (a) and Gazebo (b) on the static

obstacles in the environment.

 The laser signal does not match the environment, as shown in Figure 5-5 (a), because

the internal pose state of the robot and the real robot (Figure 5-5 (b)) have some position and

orientation offsets, which also dispersed the particle's pose to guess the robot's location. This can

be corrected by teleoperating the robot around the environment to collect more information from

the laser and the map depicted in Figure 5-6, or we can use Rviz's 2D pose estimator to estimate

the exact pose of the robot in the environment; in our case, both work perfectly fine. The

59

constructed simulated environment on Gazebo (Figure 5-5 (b)) depicts a collection of static

obstacles in the environment ready for autonomous navigation

(a) (b)

Figure 5-6 Correction of the robot's pose for navigation on Rviz (a) and Gazebo (b) following a small robot

motion

(a)

(b)

60

(c)

(d)

Figure 5-7 Autonomous navigation of mobile robot in a simulated environment with static obstacles of the

environment.

Table 5-2 Comparison of target goal pose and robot estimated pose with their respective errors of static

obstacles in the environment ready for autonomous navigation.

61

 Figure 5-7 depicts the outcome of the path planning for both global and local paths

through the static obstacles inside the static map. The red arrow in the image (a) indicates the

navigation target position and orientation, and its coordinate values are listed in Table 5-2.

Pictures (b) and (c) depict path planning and navigation execution while the robot is moving to

the target, and picture (d) depicts when the robot achieves the target point, which is also indicated

by the smaller yellow patch denoting the convergence of particles to the final pose. The

communication of the nodes and topics after launching the amcl and move_base node is shown

in Figure 5-8.

Figure 5-8 Communication of node and topic of the navigation system.

62

ii. Navigation of the simulated robot inside the map with dynamic obstacles

 To test the navigation system in the simulated environment with dynamic obstacles, we

added dynamic obstacles such as a standing person, a walking person, and a box with a 1𝑚 𝑋 1𝑚

size as shown in Figure 5-9 on Gazebo to resemble the real-world scenario.

Figure 5-9 Dynamic obstacles in the simulated environment.

 The dynamic obstacles are scattered throughout the environment. When the robot plans

its trajectory to reach the required goal point, the global costmap is created by inflating the

obstacles on the navigation stack's map, as shown in Figure 5-7; however, if there are dynamic

obstacles, as shown in Figure 5-9, that are not known by the previously stored map data, the local

costmap inflates obstacles detected by the robot's lidar sensor (Figure 5-10) in real-time, hence

the local planner can determine the trajectory.

 Figure 5-10 shows how the three new obstacles in the environment affect the global

trajectory of the global planner generated by the Dijkstra algorithm because the new obstacle is

detected by the laser so that the path sent to the local planner will execute each segment of the

63

global planner and once the new obstacles are inflated by the local costmap, the inflated obstacles

are avoided and a new path is generated to reach the required goal.

Figure 5-10 Autonomous navigation of a mobile robot in a simulated environment with dynamic obstacles of

the environment.

64

 The green line in the above figure represents the path that the robot takes to reach the

goal pose given by Rviz's 2D Nav Goal tool, and the red arrow represents the target goal pose

that the robot must address, and the target pose values and the robot estimated pose in the

environment is shown in Figure 5-11.

(a) (b)

Figure 5-11 The target position and orientation (a) and the estimated pose (b) of the robot in Figure 5.10

5.2. Experimental Results

 The final set of results is generated and observed using the actual environment setup

shown in Figure 5-12. We carried out the experiments in two real-world environments that we

divided into two scenarios (Scenario 1 and Scenario 2), and we used the Rviz platform to analyze

the internal state of the robot and compare it to the actual robot status.

65

(a)

(b)

Figure 5-12 Experimental indoor environments for navigation of a mobile robot

(a) The first indoor environment used in Scenario 1 is our lab experiment room with an area of

approximately 34𝑚2.

(b) The second indoor environment used in Scenario 2 is the 6th floor of the IT-Convergence

building at Chosun University, South Korea with an area of 114.25𝑚2, the collection of images

is taken from different side views.

66

(a) Mapping of the Experimental Environments

 The gmapping algorithm's experimental performance was evaluated in the two scenarios

depicted in Figure 5-12. Figure 5-13 depicts the mapping result obtained from the experiments

while the Scout Mini mobile robot is teleoperated around the two environments and the final

mapping outputs, as well as the real-time data visualization from the realsense camera, which is

used to compare the obstacles detected by the grid map with the robot's actual position and

attitude. The experimental results for the two scenarios showed the creation of a compatible map

of the actual environment with the same dimensions and features. To demonstrate this, the

numbers 1 through 6 are marked on the two environments in Figure 5-13 with their respective

maps.

(a)

67

(b)

Figure 5-13 Mapping of the actual environments for Scenarios 1 (a) and 2 (b), with comparisons of

environmental features and the constructed map on Rviz.

 During the experiment, the gmapping algorithm uses a static transformation between the

laser's base link frame (with link name “velodyne”) and the robot base link frame (with link name

of base_link) to generate three-dimensional measurement data with a topic of /velodyne_points,

which is changed to 2D laser scan data using the ROS package called pointcloud_to_laserscan

to publish a /scan topic with a message of sensor_msgs/msg/LaserScan from the point cloud.

The data from the wheel encoder is used to provide odometry data to the slam_gmapping node

with the topic /odom, which is then interfaced with the lidar topic to publish the /map topic to

generate the map of the environment, as shown in Figure 5-14. Additionally, several parameters

of the slam_gmapping node has been optimized, and some of the major parameters and their

values for our experimental case are shown in Table 5-3. The created map is used by localization

and path planning algorithms to complete real-time robot navigation.

68

Figure 5-14 Block diagram representation of the mapping algorithm of the experiment

Table 5-3 Some gmapping parameter values used for the experiment

(b) Localization of a Mobile Robot Inside the Environment

 The map generated in the previous section from actual environments is used to localize

the robot using the AMCL method, just like the simulation results. In the experimental analysis

of the localization, we have divided it into two cases for the two scenarios. Table 5-4 shows some

of the major parameters used in the AMCL ROS package for the two cases.

69

Table 5-4 Some of the AMCL parameters for the two cases

i. Localization of the mobile robot with Case-1 parameters

 For the case-1 experiment, we used 500 min_particles and 5000 max_particles for the

estimation of the robot's pose in the environment. To localize the robot, we used two methods:

manual localization and global localization. Figure 5-15 depicts the explanation for Scenarios 1

and 2 for manual localization, while Figure 5-16 represents global localization for both scenarios.

(a) (b)

70

(c) (d)

Figure 5-15 Manual localization of mobile robot for Scenario 1 and Scenario 2 using 2D pose estimator tool

(a), (c) The yellow color arrow of the particles used to estimate the robot pose in Scenarios 1 and 2 depicts the

uncertainty in robot position at the beginning of AMCL. The green arrow represents the robot's manual pose

estimation in the environment using the 2D pose estimator tool of Rviz. (b), (d) Represents the condensation of

particles after the robot translates 1.6 meters in the positive x-direction for Scenario 1 and 3.29 meters forward

in Scenario 2.

(a) (b)

71

(c) (d)

Figure 5-16 Global localization of a mobile robot for Scenario 1 and Scenario 2. (a), (c) After calling AMCL's

global localization service, the particles are distributed uniformly (yellow arrows) across the entire map, with

equal guesses about the robot's pose. Because the robot pose estimation and the actual robot poses differ, the

lidar measurement (white line) does not match the map. (b), (d) The convergence of particles after the robot

moves and when the filter updates its belief due to the motion, the measurements were projected from the

robot’s pose point of view. For Scenario 1 the distance the filter took to converge is 4.15 meters and 21.38

meters for Scenario 2.

ii. Localization of the mobile robot with Case-2 parameters

 In the case-2 experiment, we estimated the robot pose in the environment using 5 min

particles and 10 max particles, as shown in Figure 5-17 which depicts the filter's pose estimation

after moving the robot around the environment in Scenarios 1 and 2. The results show that even

if the robot is teleoperated around the environment for a long time, it may be unable to localize

itself. This is because there are no particles close to the robot's true position during the particle

filter's correction and resampling step. Figure 5-19 depicts the operation of the particle filter,

which demonstrates the internal analysis of the algorithm used to localize the robot.

72

Figure 5-17 Particles used for Case-2 parameters.

(a) (b)

(c) (d)

Figure 5-18 The effect of small particles on the localization of the robot.

73

Figure 5-19 Structure of particle filter.

• Particle Initializations: each particle is a belief of where the robot can be located, and

each particle has a position (x,y) and orientation to keep the detail of the particle’s

position guess. Each particle also has an associated weight. This is shown in Figure 5-15.

From the computational perspective, adding more particles can increase the filter’s

precision, but the number of computations required in the localization process is also

much higher.

• Prediction step: when the robot moves, all the particles move with the same motion.

To account for process noise, the prediction step adds multivariate Gaussian noise to

each particle motion, causing particle dispersion across the map. This distribution of

particles is essential to ensuring that the robot's true pose is covered by particles,

regardless of the robot's noise motion. During the prediction step, particles are

propagated forward as determined by the noisy odometry motion model.

• Correction step: sensor measurements are processed in this step. It corrects the state

for the next filter iteration based on sensor measurements. It processes incoming

measurements, compares them to the measurements of the particles on the map, and then

prioritizes particles with the lowest error between measurements and the map. The

74

degree of correspondence between the distances obtained by the real laser scan and the

distances calculated by each particle's expected distance measurement determines the

likelihood of a particle being near the robot's ground truth pose. During this process, a

weight is assigned to each particle. The particle with the highest weight has been used

to estimate the robot's position, while particles with low weights are discarded.

• Resampling step: after the correct step, the weights of the particles have changed.

Resampling is the process of replacing the particles with small weights by others with

high probability poses. Without the resampling step, particles would remain spread out

over the map, without really making use of the information obtained by the

measurements. Resampling helps the particles to condense to the true state of the robot.

 During the experiment, the particle filters took roughly 10 to 15 seconds in Scenario 1,

and 30 to 45 seconds in Scenario 2. We have observed that increasing the number of particles

will improve the amcl’s pose estimation performance when combined with a good translation

and orientation noise parameter (odom_alphas 1 through 4) to improve the robot’s localization

performance. These parameters define how much noise is expected from the robot’s motions as

it navigates inside the map.

(c) Autonomous Navigation of Mobile Robot in the Actual Environments

 Once the map is generated, the robot can determine its position in the environment in

relative to the global map frame and perform path planning and obstacle avoidance. In the

experiment section, we have tested the navigation performance for the static and dynamic

obstacles in the real-world environment for both Scenarios.

i. Navigation of mobile robot inside the actual environment with static obstacles

 The Scout Mini mobile robot's navigation in the static map with static obstacles inside

the environment is inflated by the global costmap, as shown in Figure 5-20, which represents

places in a grid of cells where the robot is safe to be. When the goal is received by the move_base

75

node in the static environment, the global planner shown in Figure 5-21 is in charge of calculating

a safe path to the goal pose that does not consider the readings performed by the robot lidar

sensor while moving.

(a) (b) (c)

76

(d) (e) (f)

Figure 5-20 Autonomous navigation of a mobile robot in the actual indoor environment of the

static map without dynamic obstacles for Scenario 1 and Scenario 2.

(a) (b)

Figure 5-21 Global planner of the robot in the static map of the environment.

Figure 5-20 shows the operation of the path planning while moving from starting point

to the target pose without any dynamic obstacles for both scenarios. The assigned letters in Figure

77

5-20 (a), (b), and (c) are Scenario 1 results, while (d), (e), and (f) is Scenario 2 experiment results,

have the following intuitions:

(a) and (d): scenarios 1 (a) and 2 (b) show the start of the navigation system in a static

environment with static obstacles on Rviz and the actual environment. The pink arrow represents

the target pose given to the robot by Rviz's 2D Nav Goal tool, which is sent to the move_base

node to initiate global planning.

(b), (c), (e), and (f): shows the planning operation as the robot moves towards the target goal.

The position that is estimated is very close to the robot's goal. Thus, we can say that the robot

repeatedly achieves a good precision to reach the goal. Table 5-5 shows the quantitative value of

the target pose and the estimated pose with distance and orientation error.

Table 5-5 Experimental comparisons of the target goal pose and the real robot estimated pose of Scenario 1 (a)

and Scenario 2 (b) of Figure 5.20.

78

ii. Navigation of mobile robot inside the actual environment with dynamic obstacles

 We added a dynamic obstacle with a size of 30cm by 60cm wooden box in Scenario 1

and a person in Scenario 2 to test the navigation system in the actual environment with the Scout

Mini mobile robot with dynamic obstacles, as shown in Figure 5-22. The dynamic obstacles in

Figure 5-22 are detected by raw lidar sensor data before the navigation system is launched, as

indicated by the red line on Rviz. Once the navigation begins, the local costmap is generated

using the robot sensor readings to inflate the dynamic obstacles.

(a)

(b)

Figure 5-22 Dynamic obstacles on Rviz and the actual environment from left to right for Scenario 1 (a) and

Scenario 2 (b).

79

 The local planner (DWA algorithm discussed in Section 3 of the thesis) uses this local

costmap to calculate the local plans shown in Figure 5-23 for both scenarios. Table 5.6 also

shows the quantitative value of the target pose and the estimated pose with distance and

orientation when the dynamic obstacle is placed in the robot's path.

(a)

80

(b)

Figure 5-23 Autonomous navigation of a mobile robot in the actual indoor environment of the static map with

dynamic obstacles for Scenario 1 and Scenario 2.

81

Table 5-6 Experimental comparisons of the target goal pose and the real robot estimated pose of Scenario 1 (a)

and Scenario 2 (b) for the dynamic obstacle.

(a)

(b)

The experimental results demonstrated that the absolute distance and orientation error

values differed from the simulation values due to noises in the sensors (wheel encoder, lidar),

82

the slipperiness of the ceramic environment we used for the experiment, the robot wheels, and

the effects of parameters in AMCL and planners discussed in section 4 of the thesis. We observed

a distance error range of 3cm to 350cm and an orientation error range of 0.08rad to 0.45rad after

extensive testing. Tuning parameters carefully improves the navigation system's performance.

Table 5-7 shows the major parameters that we used for the navigation of the move_base node.

Section 4 of this thesis discusses the meaning and functions of these parameters.

Table 5-7 Some of the navigation parameters used during the experiment of Scenario 1 and Scenario 2. (a)

Global planner params, (b) Global costmap params, (c) DWA local planner params, (d) local costmap params,

and (e) common costmap params

 (a) (b)

 (c) (d)

83

5.3. Development of Graphical User Interface

 The Graphical User Interface (GUI) designed to control the mobile robot's navigation in

both simulation and hardware implementation. The experimental implementation of the GUI for

the mobile robot will be the focus of this thesis.

 The PyQt toolkit is used to create the robot's graphical user interface. PyQt is a Python

binding for the Qt cross-platform widget toolkit and application framework [50]. The QT

company develops Q that is used for the development of user interfaces and other applications.

 QT can be installed in Ubuntu via the Advanced Packaging Tool (APT). To install, we

can use the following command Qt/Qt SDK: "$ sudo apt-get install qt-sdk". This command

installs the whole QT SDK and its libraries, which are required to complete our designed GUI.

After installing the Qt SDK, PyQt must be installed on Ubuntu to bind with Qt cross-platform.

 The Qt designer is used to create and insert controls into the Qt GUI. The Qt graphical

user interface (GUI) is an XML file that has information about its controls and components. To

control the robot with Qt GUI, we must first create the platform in Qt designer. The Qt designer

provides a variety of options and tools to make the user interface simple and convenient. Figure

5.24 depicts the Qt designer platform and used Qt 5 Designer to develop the GUI.

84

Figure 5-24 Qt 5 Designer tool.

 To use the tool, we must first create an empty widget by selecting the Widget option

from the New Forum window lists. The fundamental building blocks of the Qt graphical user

interface are Qt widgets. Using this tool, we created an application for a mobile robot’s

autonomous navigation in a mapped environment via a different waypoint based on the pose that

we want the robot to take, as discussed in the following section.

5.4. GUI-Based Autonomous Waypoint Navigation of Mobile

Robot

 The main goal of developing a GUI is easy to control a mobile robot to send it to the

desired location and cancel the operation at any time without having to know complex commands

to start and stop the robot. PyQt, ROS, and the Python interface are used to create the GUI. Figure

5-25 shows the developed graphical user interface platform for controlling the robot navigation

system in both scenarios.

85

(a)

(b)

Figure 5-25 The designed GUI for autonomous navigation of a mobile robot through different waypoints(a),

(b): GUI platforms that contain the actual environments and the map of the environments on the right side, and

also contain 5 tools for controlling the navigation system for Scenario (a) and Scenario (b).

86

The GUI in Figure 5-25 has the following features:

• SpinBox: this widget is used to insert the waypoint position numbers as shown in the

environment map, ranging from 0 to 3 in Scenario 1 and 0 to 4 in Scenario 2. To

navigate the robot to the target goal in Scenarios 1 and 2, we considered three pose

values and four poses, respectively. We can select or insert any waypoint from the list

to send the goal. It is also possible to use any waypoint we want the robot to go inside

the environment. The quantitative value of these goal positions and attitudes are listed

in Table 5-8.

• Go to the goal: this button has a function called “Go” and it is used to command the

robot to go to the goal pose to the specified position given from the spinbox. By pressing

the Go to the goal button, the position is sent to the navigation stack, where the robot

plans its path and arrives at the desired destination.

• Home: this button has a function called “Home” to return the robot from any location

in the environment to the initial position.

• Cancel: this button has a "Cancel" function that allows canceling the robot's current

operation. When clicking the Cancel button, the robot will stop moving to any point on

the map.

87

• Navigate through the waypoint: this button has a function called "navigating through

waypoints" that allows the mobile robot to autonomously navigate through the poses

shown in Table 5.8 in an ordered manner from 0 → 1 → 2 → 3 → 4 → 0 indefinitely.

Table 5-8 Position and attitude quantitative values of the waypoints for autonomous navigation using GUI of

Figure 5.25. (a) Scenario 1 and (b) Scenario 2

(a)

(b)

88

 Figure 5-26 shows the real-time autonomous navigation of the Scout Mini mobile robot

through all waypoints while controlled via the GUI platform in Scenarios 1.

(a)

(b)

(c)

89

(d)

Figure 5-26 GUI-based autonomous navigation of a mobile robot for Scenario 1. (a): shows the mobile robot's

real-time autonomous navigation to the first waypoint (1) on the map using the GUI platform. (b): depicts the

mobile robot's real-time autonomous navigation to the second waypoint (2) of Table 5-8 Scenario 1. (c): shows

the mobile robot's real-time autonomous navigation to the third waypoint (3) on the map using the GUI

platform. (d): shows the mobile robot's real-time autonomous navigation to the map's initial pose (0) using the

GUI platform.

5.5. Effects of Parameters on the Mobile Robot Performance

 The ROS navigation stack has many parameters that can be configured to improve the

performance of a mobile robot's autonomous navigation. This section discusses some of the

major parameters that influence a mobile robot's autonomous navigation. We used the Scenario-

1 experiment to test the effect of each parameter on the performance of the parameters for

mapping, localization, and path planning.

i. Quantitative tuning effects of Gmapping parameters

 Figure 5-27 depicts the real environment (a) for testing the effect of change of

parameters and the path of the robot (b) around the environment. It displays data from the robot's

(encoder's) odometry with /odom topic while teleoperating around the environment.

There are different parameters of the Gmapping algorithm such as the map's resolution

(delta), the sensor’s maximum range (maxRange), and the maximum usable range (maxUrange)

90

of the laser parameters. From the list of Gmapping parameters, in this thesis, we will cover the

effect of the map resolution parameter (delta) on the quality of the map of the environment.

(a)

(b)

Figure 5-27 Robot path for Scenario-1environment. (a) Robot inside the environment., (b) The path of the

robot with its position values.

91

The delta parameter is defined as the environmental map's resolution expressed in meters per

occupancy grid block. Figure 5-28 depicts the tuning parameter effects of delta and its effect on

the time required to map the environment for two different values of delta.

(a) (b)

Figure 5-28 Effects of map resolution at the start of gmapping.

(a): the environment map with 0.05 delta (map resolution) values. As shown in the figure, the

spaces around the environment are completely covered, and it takes less time to collect all of the

environment's measurement data.

(b): In contrast, when a delta value of 0.01 is used, the algorithm may miss important

environmental features and it takes a long time to obtain all measurement data from the

environment, resulting in a poorly constructed map as shown with a red circle.

 With the same robot speed of 0.2 m/sec and the same path, the Table 5-9 shows how

long it took the algorithms to completely cover the environment in our case for two delta values.

Table 5-9 The effects of map resolution tuning on the time it took the robot to fully explore the environment.

92

 When the resolution parameter is tuned, using less resolution than the lidar resolution

results in poor map quality. To properly tune the resolution parameter of Gmapping, the laser

sensor resolution value must be checked. Table 5-9

ii. Quantitative effects of Adaptive Monte Carlo Localization parameter

 Localization of a mobile robot is crucial to use the robot for autonomous navigation.

AMCL (Adaptive Monte Carlo Localization) has over 40 parameters. In this thesis, we will focus

on eight of them that can affect the robot's localization and navigation. This includes

min_particles, max_particles, update_min_d, update_min_a, odom_alpha1, odom_alpha2,

odom_alpha3, and odom_alpha4. To check the performance of the algorithm for different

parameter values, we considered:

▪ The same environment for all parameters.

▪ The same path to follow to test the performance.

▪ The robot's initial pose is estimated manually on Rviz using a 2D pose estimate

tool by comparing it with the actual scenario.

 To illustrate the effect on the localization of the above-mentioned parameters, we

divided it into 3 cases:

Case-1: Number of particles.

 These particles are represented as min_particles (for a minimum number of particles)

and max_particles (for a maximum number of particles) which shows the pose estimation of the

robot. In the experiment, we used 3 intervals to test the effect of the number of particles on the

performance of pose estimation of the robot. Figure 5-29 and Figure 5-30 depict the position

estimation quantitatively and the pose of the robot in Rviz in the Scenario-1 environment for the

three-particle interval values respectively.

93

Figure 5-29 AMCL pose estimation for the three particles interval.

 In the Figure 5-29, the red path represents AMCL position estimation with min_particles

= 500 and max_particles = 5000. From the result of the experiment, increasing the number of

particles improves localization performance, but the computation takes time. For a small indoor

environment, a moderate number of particles is sufficient because the filter can obtain all of the

information after collecting some data via its sensor. The blue star in Figure 5-29 represents the

estimated position with min_particles = 100 and max_particles = 1000, which is quite fine due

to the small area in Scenario-1, and the particles also converge to one point, as shown in Figure

5-30 (b). The third experiment is the extreme case (green path), where the min_particles = 5 and

max_particles = 20. In this case, despite being teleoperated for a longer period of time to gather

more information about the environment, the robot is unable to localize itself in the environment.

This is due to a lack of particles during the particle filter's correction and resampling step that

estimates the robot's true pose (depicted in Figure 5-30 (c)).

94

(a) (b)

(c)

Figure 5-30 The pose estimates of the robot for the three-particle intervals on Rviz. The figures depict how the

particle clouds are dispersed with the lidar matching the environment. (a) min =500, max = 5000 , (b) min =

100, max = 5000, (c) min = 5, max = 20

Case-2: The minimum translation and rotation movement before the update of a filter.

 The AMCL package contains odometry information for resampling and updating the

particle filters. These values are represented by the parameters update_min_d and update_min_a,

which show the linear and angular motion required before performing a filter update respectively.

95

To evaluate the update rate, we run the experiments with four different values. The result

depicted in Figure 5-31 shows the effect of the particle point cloud dispersion. The results were

obtained from the robot's various poses in the environment. We also used data from the robot's

rotation around the corner to visualize the rotational motion effect in the filter update.

(a)

(b)

96

(c)

(d)

Figure 5-31 The effect of changing the value of the minimum linear and angular distance to perform filter

updates. (a) update_min_d = 0.1, update_min_a = 0.1., (b) update_min_d = 0.03, update_min_a = 0.03., (c)

update_min_d = 0.25, update_min_a = 0.2., (d) update_min_d = 0.75, update_min_a = 0.7.

 As illustrated in Figure 5-31 (a), (b), the higher the filter update, the smaller the linear

and angular distance values required before the update. This means that the particle cloud

variance decreases rapidly as the robot moves a short distance. In contrast, increasing the

update_min_d and update_min_a parameter values, as shown in Figure 5-32 (d), increases the

particle cloud distribution while lowering the filter update as shown with the white cloud arrows

results in an increase in the uncertainty of the robot pose.

97

Case-3: Odometry noise parameters.

 Depending on the model of the robot, the AMCL has a total of five parameters that

describe the odometry noise of the robot. This parameter is composed of the values odom_alpha1

(𝛼1), odom_alpha2 (𝛼2), odom_alpha3 (𝛼3), odom_alpha4 (𝛼4), and odom_alpha5 (𝛼5). We

do not investigate the effect of odom_alpha5, because it is for a robot with an Omni model,

because the mobile robot model we used in this thesis is differential. This Omni-directional

model of the robot is the one that allows a non-holonomic robot to be converted into a holonomic

robot. This type of wheeled robot can move back and forth, sideways, and rotate in place. The

meaning and function of the odometry noise parameters can be found in section 4 of Table 4-5.

 Figure 5-32 depicts the effect of different odometry noise parameter values. The effect of odometry

noise parameters is investigated and compared together with filter update parameters (update_min_d and

update_min_a). The values taken for experimentation are listed in

Table 5-10.

98

(a)

(b)

(c)

Figure 5-32 The effects of the odometry noise and the filter update parameters adjustments and comparisons. (a)

case 1, (b) case 2, and (c) case 3

99

Table 5-10 The odometry noise and filter update parameter values.

 For Figure 5.33 Case1 (a), we used the minimum values of the odometry noise parameters as well as

the minimum linear and angular distance as shown in

Table 5-10. The experimental results show that the particles cloud converges quickly within six

seconds because of the low odometry noise and filter update parameter values, but there is some

offset or mismatch between the map of the actual environment and the laser scan data, as

indicated by the red circle.

 We used the same odometry noise values as Case 1 for Case 2 of Figure 5-32 but

increased the values of update_min_d and update_min_a by 0.55. Even if the particles do not

converge quickly, as in Case 1, the localization estimate increases and there is no offset between

the map of the environment and the laser measurement data, as indicated by a green circle. The

result shows that the large update_min_d and update_min_a values compensate for the small

odometry noise parameter values.

 In Figure 5-32 Case3, we considered the high value of the odometry noises and the

moderate value of the filer updates. In this case, there is high noise in the translational as well as

the rotational motion of the robot. The particles are dispersed throughout the map even if the

robot gets more information from the environment when teleoperating around.

100

 The experimental results revealed that the odometry noise parameters selected are

dependent on the quality of the wheel encoder used. Because our system has a good odometry

data value in our case, using high odometry noise parameters generates a lot of uncertainty about

the robot's pose, as shown in Figure 5.33 Case3. If a robot has bad odometry information,

increasing the odometry noise parameters improves the robot's localization performance. The

selection of the odometry noise parameters must be done carefully because it can have an impact

on the robot's performance when used for autonomous navigation.

101

 CONCLUSION

 In this thesis, we have done both simulation and practical experiments to test and

validate the autonomous navigation algorithm of a mobile robot that is developed using the ROS

platform. The lidar data is used for mapping, localization of the robot inside the environment

using particle filters, path planning (global and local), and navigating through the environment

from one location to the goal pose while avoiding static and dynamic obstacles. We used a 16-

channel Velodyne sensor to generate the map of the two-dimensional environment and to detect

obstacles in the 2D map. We also developed a Graphical User Interface (GUI) based autonomous

navigation of a mobile robot through different waypoints of the actual environment that controls

the robot using various buttons, as well as an emergency button to stop the robot at any time.

 Furthermore, we analyzed and investigated some of the effects of the various parameters

used for mobile robot mapping and localization. The proper tuning and understanding of each

parameter's effect is critical for a mobile robot's map-based autonomous navigation. According

to the experimental results, the mobile robot successfully reached the destination goal with a

minimum localization error, and the performance of the robot's navigation is improved with

careful parameter optimization.

102

REFERENCES

[1] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, and J. Tan, "RGMP-ROS: A real-time

ROS architecture of hybrid RTOS and GPOS on multi-core processor," in 2014

IEEE International Conference on Robotics and Automation (ICRA), 2014: IEEE,

pp. 2482-2487.

[2] F. Vicentini et al., "PIROS: Cooperative, safe and reconfigurable robotic companion

for CNC pallets load/unload stations," in Bringing Innovative Robotic Technologies

from Research Labs to Industrial End-users: Springer, 2020, pp. 57-96.

[3] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, "A survey of autonomous

driving: Common practices and emerging technologies," IEEE access, vol. 8, pp.

58443-58469, 2020.

[4] L. Roveda, "Adaptive interaction controller for compliant robot base applications,"

IEEE Access, vol. 7, pp. 6553-6561, 2018.

[5] I. Spectrum. "Care-O-bot." IEEE. https://spectrum.ieee.org/care-o-bot-4-mobile-

manipulator (accessed Mar 13, 2022).

[6] H.-L. Cao et al., "A collaborative homeostatic-based behavior controller for social

robots in human–robot interaction experiments," International Journal of Social

Robotics, vol. 9, no. 5, pp. 675-690, 2017.

[7] Z. Zhao and X. Chen, "Building 3D semantic maps for mobile robots using RGB-D

camera," Intelligent Service Robotics, vol. 9, no. 4, pp. 297-309, 2016.

[8] S. Thrun, "Learning metric-topological maps for indoor mobile robot navigation,"

Artificial Intelligence, vol. 99, no. 1, pp. 21-71, 1998.

[9] I. Kostavelis and A. Gasteratos, "Semantic mapping for mobile robotics tasks: A

survey," Robotics and Autonomous Systems, vol. 66, pp. 86-103, 2015.

[10] C. Landsiedel, V. Rieser, M. Walter, and D. Wollherr, "A review of spatial

reasoning and interaction for real-world robotics," Advanced Robotics, vol. 31, no.

5, pp. 222-242, 2017.

[11] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, "A flexible and scalable

SLAM system with full 3D motion estimation," in 2011 IEEE international

symposium on safety, security, and rescue robotics, 2011: IEEE, pp. 155-160.

[12] W. Hess, D. Kohler, H. Rapp, and D. Andor, "Real-time loop closure in 2D LIDAR

SLAM," in 2016 IEEE international conference on robotics and automation (ICRA),

2016: IEEE, pp. 1271-1278.

[13] G. Grisetti, C. Stachniss, and W. Burgard, "Improved techniques for grid mapping

with rao-blackwellized particle filters," IEEE transactions on Robotics, vol. 23, no.

1, pp. 34-46, 2007.

[14] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent,

"Efficient sparse pose adjustment for 2D mapping," in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 22-29.

[15] A. Bartoli and P. Sturm, "Structure-from-motion using lines: Representation,

triangulation, and bundle adjustment," Computer vision and image understanding,

vol. 100, no. 3, pp. 416-441, 2005.

[16] R. Gomez-Ojeda, F.-A. Moreno, D. Zuniga-Noël, D. Scaramuzza, and J. Gonzalez-

Jimenez, "PL-SLAM: A stereo SLAM system through the combination of points

103

and line segments," IEEE Transactions on Robotics, vol. 35, no. 3, pp. 734-746,

2019.

[17] R. Guo, K. Peng, W. Fan, Y. Zhai, and Y. Liu, "RGB-D SLAM using point–plane

constraints for indoor environments," Sensors, vol. 19, no. 12, p. 2721, 2019.

[18] X. Zhang, W. Wang, X. Qi, Z. Liao, and R. Wei, "Point-plane slam using supposed

planes for indoor environments," Sensors, vol. 19, no. 17, p. 3795, 2019.

[19] G. Klein and D. Murray, "Parallel tracking and mapping for small AR workspaces,"

in 2007 6th IEEE and ACM international symposium on mixed and augmented

reality, 2007: IEEE, pp. 225-234.

[20] R. Mur-Artal and J. D. Tardós, "Orb-slam2: An open-source slam system for

monocular, stereo, and rgb-d cameras," IEEE transactions on robotics, vol. 33, no.

5, pp. 1255-1262, 2017.

[21] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I,"

IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99-110, 2006.

[22] L. Joseph, Robot Operating System (ROS) for Absolute Beginners. Springer, 2018.

[23] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS: a

practical introduction to the Robot Operating System. " O'Reilly Media, Inc.", 2015.

[24] A. M. R. "ROS/concepts." ROS wiki. http://wiki.ros.org/ROS/Concepts (accessed

Apr. 10, 2022).

[25] I. Saito. "Packages." ROS wiki. http://wiki.ros.org/Packages (accessed Apr. 12,

2022).

[26] M. Yasuyuki. "ROS Distributions." ROS wiki. http://wiki.ros.org/Distributions

(accessed Apr. 13, 2022).

[27] Playfish. "URDF." ROS wiki. http://wiki.ros.org/urdf (accessed Apr. 13, 2022).

[28] T. Foote. "Coordinate Frames, Transforms, and TF." ROS wiki.

http://wiki.ros.org/tf/Overview/Transformations (accessed Apr. 13, 2022).

[29] O. S. R. Foundation. "What is Gazebo?" Gazebo.

https://gazebosim.org/tutorials?cat=guided_b&tut=guided_b1 (accessed May. 13,

2022).

[30] H. Do Quang et al., "Mapping and navigation with four-wheeled omnidirectional

mobile robot based on robot operating system," in 2019 International Conference

on Mechatronics, Robotics and Systems Engineering (MoRSE), 2019: IEEE, pp. 54-

59.

[31] M. Iovino, "Navigation and Grasping with a Mobile Manipulator: from Simulation

to Experimental Results," 2019.

[32] W. B. Sebastian Thrun, Dieter Fox, Probabilistic Robotics. © Massachusetts

Institute of Technology, 2006.

[33] S. A. Fadzli, S. I. Abdulkadir, M. Makhtar, and A. A. Jamal, "Robotic indoor path

planning using dijkstra's algorithm with multi-layer dictionaries," in 2015 2nd

International Conference on Information Science and Security (ICISS), 2015: IEEE,

pp. 1-4.

[34] D. Ferguson, M. Likhachev, and A. Stentz, "A guide to heuristic-based path

planning," in Proceedings of the international workshop on planning under

uncertainty for autonomous systems, international conference on automated

planning and scheduling (ICAPS), 2005, pp. 9-18.

104

[35] S. I. Gass and C. M. Harris, "Encyclopedia of operations research and management

science," Journal of the Operational Research Society, vol. 48, no. 7, pp. 759-760,

1997.

[36] P. Marin-Plaza, A. Hussein, D. Martin, and A. d. l. Escalera, "Global and local path

planning study in a ROS-based research platform for autonomous vehicles," Journal

of Advanced Transportation, vol. 2018, 2018.

[37] D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to collision

avoidance," IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, 1997.

[38] E. P. Eitan Marder-Eppstein. "base_local_planner." ROS Wiki.

http://wiki.ros.org/base_local_planner (accessed May 10, 2022).

[39] E. P. Eitan Marder-Eppstein. "dwa_local_planner." ROS Wiki.

http://wiki.ros.org/dwa_local_planner (accessed May 10, 2022).

[40] R. Tang, X. Q. Chen, M. Hayes, and I. Palmer, "Development of a navigation system

for semi-autonomous operation of wheelchairs," in Proceedings of 2012

IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and

Embedded Systems and Applications, 2012: IEEE, pp. 257-262.

[41] N. Kwak, I.-K. Kim, H.-C. Lee, and B.-H. Lee, "Analysis of resampling process for

the particle depletion problem in FastSLAM," in RO-MAN 2007-The 16th IEEE

International Symposium on Robot and Human Interactive Communication, 2007:

IEEE, pp. 200-205.

[42] B. Gerkey. "gmapping." ROS Wiki. http://wiki.ros.org/gmapping (accessed May 11,

2022).

[43] S. Thrun, "Particle Filters in Robotics," in UAI, 2002, vol. 2: Citeseer, pp. 511-518.

[44] B. P. Gerkey. "amcl." ROS Wiki. http://wiki.ros.org/amcl (accessed May 12, 2022).

[45] E. P. Eitan Marder-Eppstein. "move_base." ROS Wiki.

http://wiki.ros.org/move_base (accessed May 12, 2022).

[46] K. Zheng, "Ros navigation tuning guide," in Robot Operating System (ROS):

Springer, 2021, pp. 197-226.

[47] O. Brock and O. Khatib, "High-speed navigation using the global dynamic window

approach," in Proceedings 1999 ieee international conference on robotics and

automation (Cat. No. 99CH36288C), 1999, vol. 1: IEEE, pp. 341-346.

[48] E. M.-E. Kurt Konolige. "navfn." ROS Wiki. http://wiki.ros.org/navfn (accessed

May 13, 2022).

[49] D. Lu. "global_planner." ROS Wiki. http://wiki.ros.org/global_planner (accessed

May 13, 2022).

[50] J. M. Willman, "Getting Started with PyQt," in Beginning PyQt: Springer, 2022, pp.

1-11.

105

PUBLICATIONS

Journal

1. Yebasse, M., Shimelis, B., Warku, H., Ko, J. and Cheoi, K.J., 2021. Coffee Disease

Visualization and Classification. Plants, 10(6), p.1257.

Conferences

1. Warku, H. T., Ko, N. Y., Yeom, H. G., & Choi, W. (2021, October). Three-

Dimensional Mapping of Indoor and Outdoor Environment Using LIO-SAM. In 2021

21st International Conference on Control, Automation and Systems (ICCAS) (pp.

1455-1458). IEEE.

2. Warku, Henok Tegegn, and Nak Yong Ko*, et al. "Indoor Environment Mapping

Based on ROS Using GMapping Algorithm and Lidar Sensor." 제어로봇시스템학회

국내학술대회 논문집 (2021): 401-402.

3. Warku, Henok Tegegn, Nak Yong Ko*, Gyeonsub Song, and Da Bin Jeong. "Pose

Estimation of a Mobile Robot in a Small Indoor Workspace Using Ultrasonic

Beacons."

106

ACKNOWLEDGEMENTS

 First, I would like to thank the almighty God for letting me through all the difficulties. I

thank him for giving me the strength and ability to learn, understand and complete this research.

Second, I want to express my deepest gratitude to my esteemed advisor, Professor Nak Yong Ko

(Ph.D.), for his sincerity and encouragement throughout my master’s degree. His immense

knowledge and plentiful support have guided me in my academic research and daily life. I am

thankful for the extraordinary experiences he arranged for me and for providing opportunities

for me to grow professionally. This thesis would not have been possible without his guidance

from the initial step, and it is an honor to learn from him.

 Besides my advisor, I would like to thank my dissertation evaluation committee

members, Prof. Hong Gi Yeom and Prof. Sung Hyun You, for their valuable comments and

suggestions on my research. I would like to extend my sincere thanks to my friends and Lab

mates -Gyeongsub Song, Da Bin Jeong, Boeun Lee, Eyasu Derbew Tegen, and Seo Hyun Kim,

for their valuable support, inspiration, and assistance throughout my studies.

 Finally, my profound appreciation goes out to my beloved family and friends who

directly or indirectly helped me with their prayers, encouragement, and emotional support

throughout my years of study. This accomplishment would not have been possible without them.

Thank you.

	1. INTRODUCTION
	1.1. Research Background and Paper Reviews
	1.2. Objectives
	1.3. Organization of Thesis
	2. SOFTWARE PLATFORM
	2.1. Software Platform
	2.1.1. Robot Operating System
	2.1.2. ROS Simulation Environment
	3. ALGORITHMS FOR NAVIGATION OF MOBILE ROBOT
	3.1. Probability Theory
	3.2. Monte Carlo Localization
	3.3. Occupancy Grid Mapping
	3.4. Simultaneous Localization and Mapping Algorithm
	3.4.3. Feature-Based FastSLAM
	3.4.4. Grid-Based FastSLAM
	3.5. Path Planning
	3.5.1. Global Planner
	3.5.2. Local Planner
	4. SIMULATION AND HARDWARE SETUPS
	4.1. Simulation Setup
	4.1.1. Model of Robot
	4.1.2. Interfacing of Simulated Robot and Lidar Sensor
	4.1.3. Simulation Environment used for Navigation of Mobile Robot
	4.2. Hardware Setup
	4.2.1. Robot Platform
	4.2.2. Sensors on Scout Mini
	4.3. Structure of ROS Navigation
	4.3.1. SLAM-gmapping
	4.3.2. Adaptive Monte Carlo Localization
	4.3.3. Move-Base Package
	5. RESULTS AND DISCUSSIONS
	5.1. Simulation Results
	5.2. Experimental Results
	5.3. Development of Graphical User Interface
	5.4. GUI-Based Autonomous Waypoint Navigation of Mobile Robot
	5.5. Effects of Parameters on the Mobile Robot Performance
	6. CONCLUSION
	REFERENCES
	PUBLICATIONS
	ACKNOWLEDGEMENTS

<startpage>17
1. INTRODUCTION 1
1.1. Research Background and Paper Reviews 1
1.2. Objectives 3
1.3. Organization of Thesis 4
2. SOFTWARE PLATFORM 5
2.1. Software Platform 5
2.1.1. Robot Operating System 5
2.1.2. ROS Simulation Environment 8
3. ALGORITHMS FOR NAVIGATION OF MOBILE ROBOT 10
3.1. Probability Theory 10
3.2. Monte Carlo Localization 12
3.3. Occupancy Grid Mapping 14
3.4. Simultaneous Localization and Mapping Algorithm 15
3.4.3. Feature-Based FastSLAM 16
3.4.4. Grid-Based FastSLAM 17
3.5. Path Planning 18
3.5.1. Global Planner 19
3.5.2. Local Planner 20
4. SIMULATION AND HARDWARE SETUPS 24
4.1. Simulation Setup 24
4.1.1. Model of Robot 24
4.1.2. Interfacing of Simulated Robot and Lidar Sensor 24
4.1.3. Simulation Environment used for Navigation of Mobile Robot 26
4.2. Hardware Setup 27
4.2.1. Robot Platform 27
4.2.2. Sensors on Scout Mini 29
4.3. Structure of ROS Navigation 31
4.3.1. SLAM-gmapping 37
4.3.2. Adaptive Monte Carlo Localization 40
4.3.3. Move-Base Package 44
5. RESULTS AND DISCUSSIONS 53
5.1. Simulation Results 53
5.2. Experimental Results 64
5.3. Development of Graphical User Interface 83
5.4. GUI-Based Autonomous Waypoint Navigation of Mobile Robot 84
5.5. Effects of Parameters on the Mobile Robot Performance 89
6. CONCLUSION 101
REFERENCES 102
PUBLICATIONS 105
ACKNOWLEDGEMENTS 106
</body>

