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ABSTRACT 

 

Real-Time Map-Based Autonomous Navigation of Mobile Robot 

Using ROS 

Henok Tegegn Warku 

Advisor: Prof. Nak Yong Ko, PhD. 

Department of Electronic Engineering 

Graduate School of Chosun University 

 

 Many applications of mobile robotics necessitate the safe planning of a collision-free 

motion to a defined place. Real-time obstacle avoidance strategies enable reactive motion in 

dynamic and unpredictable situations, whereas planning approaches are best suited for achieving 

a goal position in known static environments. A ROS-based approach is presented to address the 

challenge of robot SLAM, which has been used in real-time applications to construct the map 

the environment, localize the robot within the environment, plan paths, and avoid obstacles. It is 

demonstrated that all navigation modules can coexist and work together to reach the destination 

without colliding with static and dynamic obstacles. The goal of this thesis is to provide a 

platform for guiding a mobile robot in a real-world environment while avoiding static and 

dynamic obstacles. Our results were validated at Chosun University in South Korea, through 

simulation and testing in indoor environments, and the effect of mapping and localization 

parameters was studied and investigated for better performance of the robot while navigating 

autonomously in the environment. In addition, a Graphical User Interface (GUI) is being 

developed to guide the mobile robot through various waypoints autonomously.  
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한 글 요 약 

ROS를 사용하는 이동 로봇의 지도 기반 실시간 자율 주행 

Henok Tegegn Warku. 

Advisor: Prof. Nak Yong Ko, PhD. 

Department of Electronic Engineering 

Graduate School of Chosun University 

 

모바일 로봇 공학 분야에서는 모바일 로봇이 정해진 장소로 주행하기 위해 충돌 

없는 안전한 주행이 필요하다. 충돌 없는 안전한 주행을 위한 방법으로는 실시간 

장애물 회피 방법과 경로 계획 방법이 있다. 먼저, 실시간 장애물 회피 방법은 

로봇이 움직이거나 예측할 수 없는 환경에서 주행하기에 적합하고, 경로 계획 방법은 

로봇이 고정된 환경에서 목표 위치에 도착하기에 적합하며 이러한 방법들은 ROS를 

통해 구현되었다. ROS는 항법 모듈인 주변 환경 맵핑, 로봇의 위치 인식, 경로 

계획, 그리고 장애물 회피를 위해 모바일 로봇 분야에서 실시간으로 로봇 SLAM을 

구현하는 데 사용된다. 이 논문은 모든 항법 모듈을 함께 작동하여 고정되어 있거나 

움직이는 장애물을 충돌하지 않게 회피하면서 목적지에 도달할 수 있도록 실제 

환경에서 모바일 로봇을 주행하기 위한 플랫폼을 제공하는 것을 목적으로 한다. 이 

논문의 결과는 대한민국에 있는 조선대학교의 실내 환경에서 시뮬레이션과 실험을 

통해 검증되었으며, 주변 환경을 자율적으로 탐색하면서 로봇의 더 나은 성능을 

위해 맵핑 및 위치 인식 매개변수에 따른 효과를 연구하고 조사했다. 마지막으로, 

다양한 경유점을 통해 모바일 로봇을 자율적으로 주행하기 위한 GUI(Graphical User 

Interface)를 개발하고 있다. 

 



1 

 

 INTRODUCTION 

1.1. Research Background and Paper Reviews 

 Mobile robotics has recently become more popular due to technological advancement, 

the availability of many robot platforms, and robotic system architectures.  Numerous 

autonomous robots have been developed and used for different application areas. Some of them 

are space and ocean exploration, underground mining, underwater exploration, manufacturing 

industries, and an autonomous self-driving car that can operate alongside pedestrians and cars 

driven by humans. 

 When the robots are modeled and designed, they require a software program and code 

that can perform a specific task. Programmers and software developers typically write a program 

for a particular robot that is developed. These programs are frequently customized to the design 

of the robot and are not versatile. Creating a modular design in hardware can be a relatively 

simple task, but designing software that is flexible could be very difficult [1]. 

 Data sensors are used for gathering information from the environment to be used by the 

robot. And also, they play a significant role in deploying Simultaneous Localization and 

Mappings (SLAMs) for the mobile robots to navigate autonomously. These robots have a huge 

impact and are the next frontier for technologies that can impact societal life, including industrial 

manufacturing [2], transport [3], and service robots [4]. Recently, several service robots, such as 

Care-O-bot [5], NAO [6], and KeJia [7], have had a significant influence on the enhancement of 

quality of life for people. First, the robot has to understand the environment wherein it is 

navigating for completing the given task. The conventional way of representing maps are 

topological, metric, and hybrid [8]. The metric map represents the layout of the environment 

geometrically by using geometric features such as points or grids, planes, or lines. Whereas a 

topological map uses a graph for modeling the environment to achieve an abstract representation. 
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Thus, vertices and edges correspond to places and paths respectively. However, to take advantage 

of both metric and topological map representations, hybrid map amalgamates the high 

localization performance of matric map and  high path planning accuracy of topological map for 

the improvement of navigation performance.  

 Metric navigation for small or medium-scale environments is relatively enough based 

on an occupied grid or hybrid maps. Nonetheless, for using mobile robots in the case of the 

domestic scene, it does lack semantic information to be ordered by the users conveniently. For 

instance, geometric coordinates are used to define the goal point, but humans prefer to interact 

using natural language. As a result, several researchers are working to create semantic maps that 

include not only the geometric layout but also the concepts of objects or rooms to improve 

human-robot interactions[9]. SLAM is commonly used to create metric maps since it can build 

a map of the environment whilst localizing the robot [10]. SLAM can be categorized according 

to different sensors used for the collection of information into vision-based and laser-based 

SLAM. SLAM based on the laser is mostly used to generate occupied grid maps. Representative 

algorithms include Hector SLAM [11], Cartographer [12], GMapping [13], and, Karto SLAM 

[14] whereas SLAM based on vision chiefly creates feature maps like lines [15, 16], or planes 

[17, 18] and points [19, 20]. With the rapid development of the uses of mobile robots, the ability 

of mapping and localization is crucial for autonomous navigation through the environment. 

Without the knowledge of the current pose and map of the environment, the robot cannot make 

its own decisions and actions. Simultaneously Localizing and mapping (SLAM) the environment 

is crucial for answering autonomous navigation problems in a given environment. To achieve 

autonomous navigation in indoor environments, mobile robots must be able to obtain information 

from the environment using range sensors (e.g., laser sensor, 3D sensor, ultrasonic sensor) to 

construct a map of their environment and determine their location [21]. 

The ROS navigation stack has been tested using a range of ROS-compatible robots. However, it 

appears that the impact of parameters in packages like Gmapping, AMCL, and move base have 
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not been thoroughly investigated. Because the navigation stack has so many parameters to adjust 

to take the robot from one position to the destination, many had a lot of trouble configuring the 

parameters for using it for autonomous navigation. 

 This thesis addresses the simulation and experimental implementation of map-based 

autonomous navigation for a mobile robot in an indoor environment. We also investigate the 

impact of tuning major parameters of mapping, localization, and path planning, which will be 

described in the results and discussion sections (Chapter 5). We also integrated a Graphical User 

Interface (GUI) with the mobile robot to implement waypoint autonomous navigation of a mobile 

robot in an indoor environment. This GUI can be used with any ROS-based robot and allows 

anyone to handle the navigation system without having to write complex commands.  

We have noticed that many faced a lot of trouble configuring the parameters of the 

navigation stack and their impact on the real robot and actual environment on the ROS Wiki 

platform. Due to this, we tested and recorded data for major parameter change and their effects, 

and we have uploaded the full implementation guidance manual for real-time map-based 

autonomous navigation of a mobile robot in an indoor environment to our lab website 

(https://irlchosun.wixsite.com/nyko) that may help others to use it as a guide to navigating their 

robot autonomously.  

1.2. Objectives 

The main objective of this study is: 

• Testing and visualizing different sensors like lidar, IMU, and camera. 

• 2D and 3D mapping of different environments on simulation and experimental analysis. 

• Localization of the mobile robot inside the constructed map. 

• Path planning of the robot. This includes:  

                                       a) Global path planning and 
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                                              b) Local path planning 

• Obstacle avoidance. This includes  

                                        a) Static obstacle avoidance 

                                               b) Dynamic obstacle avoidance 

• Navigation of mobile robot inside an environment from one point to the desired goal 

point. 

• Development of a Graphical User Interface (GUI) application with multiple options for 

moving the robot to different waypoints and canceling the operation at any time if 

problems arise. 

• The impact of changing the ROS navigation stack parameters on a mobile robot's 

mapping, localization, and path planning in order to make the robot more resilient when 

moving autonomously, as well as investigating some of the factors that can affect the 

robot navigation performance. 

1.3. Organization of Thesis 

 This thesis is organized into six chapters. The first chapter includes the background of 

the research, a review of related works, and the objective. The second chapter contains an 

introduction to ROS and simulation environments that are used such as Gazebo and  Rviz. The 

third chapter is dedicated to the theoretical formulations and algorithms that let the robot localize, 

build, both localize and navigate through the environment including path planning. Simulation, 

hardware setup, and the ROS navigation structure are presented in chapter four. Chapter five 

covers simulation and experimental results. Besides, Graphical User Interface (GUI) based 

autonomously waypoint navigation system is included. Finally, Chapter 6 presents the 

conclusion and future works.  
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 SOFTWARE PLATFORM  

2.1. Software Platform 

 Before the algorithm that has been developed is deployed onto a real robot, verifying 

the algorithms using simulation is a very crucial step. The robot simulations and applications are 

made using the Robot Operating System (ROS) which is the subject of this section. 

2.1.1. Robot Operating System 

 It is an open-source platform for programming robots. It is a collection of libraries, tools, 

and conventions that facilitate the development of robust and scalable robot actions across a wide 

range of robotics platforms. It is used in both research and commercial applications and provides 

robot programming capabilities such as high-level programming language support and tools, 

message passing interface between processes, availability of third-party libraries, community 

support, extensive tools and simulators, and so forth. Despite these capabilities, there are still 

areas in which ROS is not advisable or recommended to develop the actual product owing to 

security and real-time processing problems [22, 23].  

2.1.1.1. ROS Concepts 

 Conceptually, ROS has three levels: filesystem, computational graph, and community 

levels [24]. 

i. Filesystem Level 

 The filesystem-level chiefly contains resources that we encounter in the disk. The 

software in ROS is organized as a package. A package may include nodes, datasets, ROS-

dependent libraries, and others that are well organized together. This provides useful 

functionality, thereby the software can be reused easily. The package follows a common structure 

and has subparts: package manifests, metapackages, repositories, executable files, service types, 

and message types. Meta-packages represent a group of related packages, whereas package 
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manifests contain additional information about a package like a name, description, version, 

dependencies, license, and so on.  The data structure of a message, which is sent in ROS, is 

described by its message type. The response and request data structures for services in ROS are 

defined by service type. Furthermore, repositories are groups of packages that share a similar 

version control system [25].  

i. Computational Graph Level 

 The communication between two or more programs can be accomplished using socket 

programming; however, as the number of programs increases, the complexity as well. This inter 

process communication can be easily handled using ROS. A robot might have many sensors, 

actuators, and computing units. So, by writing independent programs for handling sensor data 

and controlling actuators, the exchange of data between programs can be achieved using ROS, 

which is better than having a single program. The architecture of ROS for communication 

between two programs, which are represented by node 1 and node 2, is illustrated in Figure 2-1.  

 

Figure 2-1 ROS architecture block diagram 

 The communication between nodes is achieved by sending information to the ROS 

master as well as the data type which is to be sent or received. The nodes can send or receive 

(publisher and subscriber nodes respectively) different forms of data with each other. The data 

type of the data (ROS message) can be string, integer, float, and so on. ROS messages are 

transmitted via a message bus or path known as ROS topics. When a ROS node publishes a topic, 
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it transmits a ROS topic together with a ROS message, containing data with the message type 

[22]. 

ii. Community Level 

 ROS community-level concepts are resources of ROS that assist various robotics groups 

throughout the world in sharing their knowledge and programs. These resources are ROS Wiki 

and answers, ROS distributions, repositories, mailing lists, and blogs. A collection of versioned 

stacks, a cluster of packages that provide functionality together, can easily be installed from the 

ROS distributions. To increase the participation of communities, ROS follows a federated 

repository model rather than having one secured place for all packages, thereby users and 

developers can create their repositories and also, they are granted the right to control, and license 

and update their repositories. Moreover, information about ROS is documented in ROS Wiki 

wherein anyone can sign up and share their documentation, make modifications, develop 

tutorials, and so forth. Any ROS-related inquiries can also be answered on the ROS answers site 

[26]. 

2.1.1.1. Unified Robot Description Format 

 The Unified Robot Description Format (URDF) is an XML specification that describes 

the model of the robot. It is created to be as general as possible and makes ROS a modular system. 

Nodes are made as general as possible for the robot that utilizes them rather than creating unique 

nodes for different robot types. The robot-specific information that nodes require to do their tasks 

is contained in the URDF file. A URDF file is constructed in such a way that each link is 

connected to joints, each robot link is a child of a parent link, and joints are specified by their 

offset from the parent link's reference frame and rotation axis [27]. 

2.1.1.2. Coordinate Frames and Transforms  

 Typically, a robotic system has many 3D coordinate frames, which vary with time, such 

as base frame, world frame, gripper frame, and so on. Users can use the tf package to track 
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multiple coordinate frames throughout time and keeps track of their relationships in a time-

buffering tree structure. In addition to this, it provides the capability for the transformation of 

points and vectors between any coordinate frame that is chosen at any time [28]. 

2.1.2. ROS Simulation Environment 

i. Gazebo 

 It is a 3D dynamic simulator used to simulate a robot accurately and efficiently by 

developing complex indoor and outdoor environments. It provides a more accurate physical 

simulation of the system, as well as a wider range of sensors with user and program interfaces. 

Among the basic features of Gazebo are various physics engines, a large library of robot models 

and environments, and simple programmatic and graphical interfaces [29].  Figure 2-2 shows the 

ROS Gazebo. 

 

Figure 2-2 ROS Gazebo Simulator. 

 After designing the robot using Gazebo, the robot’s algorithm that is developed using 

ROS can be tested on the simulated robot. By doing so, model validation can be done that is how 

the robot performs well as compared to what it was intended to do. Thus, the algorithm will be 

deployed on the real robot if the predetermined performances have been achieved.  
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ii. Rviz 

 ROS Visualization (Rviz) is an impressive 3D visualization tool for ROS that enables 

users to view or visualize the simulated robot model; that is what is the robot doing, seeing, and 

heading.   It is used to visualize 2D or 3D sensor data from cameras, lidar data as a point cloud, 

and also a 2D laser range, and webcams as image data [30]. The ROS Rviz is shown in Figure 

2-3. 

 

Figure 2-3 ROS Visualization (Rviz) tool. 
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 ALGORITHMS FOR NAVIGATION OF MOBILE 

ROBOT 

3.1. Probability Theory 

 We shall, in this section, commence by introducing the notions and concepts of 

probability theory that will be used to describe the algorithms listed in this chapter. One might 

be curious why probability is involved in robotics. This is because robots operate in a real-world 

that contains numerous uncertainty sources. The interaction with the robot enabled by knowing 

the data measured by the robot’s sensors and the environment is unpredictable. Sensors, on the 

other hand, have limited resolution and perception due to their range, and are also subjected to 

noise, which unpredictably disturbs measurements. Since the controls might be noisy and there 

may be mechanical failures, the motors which drive the robot are not predictable. Finally, the 

actual information that is required, for instance, the position of the robot on a map, cannot mostly 

be measured directly and must be inferred. A stochastic model based on probabilistic theory is 

required to deal with the uncertainties of robot perception and actuation. Most of the explanations 

of the theoretical concepts and algorithms in this chapter for autonomous navigation of mobile 

robots are taken from [31]and [32]. 

 The first tool to be introduced deals with the conditional probability, which is the 

likelihood of an event given the occurrence of another event: 

                         𝑝(𝑥|𝑦) =
𝑝(𝑥,𝑦)

𝑝(𝑦)
                                                                                               (3.1) 

The Theorem of total probability follows: 

                            𝑝(𝑥) = ∑ 𝑝(𝑥, 𝑦)𝑝(𝑦)𝑦       (for discrete)                                                                          (3.2) 
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                       𝑝(𝑥) =  ∫ 𝑝(𝑥, 𝑦)𝑝(𝑦)𝑑𝑦      (for continuous)                                                                (3.3) 

In light of this, the important Bayes’ rule on multiple random variables can be determined: 

                                   𝑝(𝑥|𝑦, 𝑧) =
𝑝(𝑦|𝑥,   𝑧)𝑝(𝑥|𝑧)

𝑝(𝑦|𝑧)
                                                                                                 (3.4) 

From the above equations, 𝑥  is the quantity to infer from 𝑦 , 𝑝(𝑥)  is the prior probability 

distribution and 𝑦 is the data. Other notions used in [32] are shown below: 

• Time is discrete, which refers to occurrences that occur at discrete time instants of t = 0, 

1, 2, ... 

• 𝑥𝑡 is the environment at time 𝑡 and the robot’s state. The state can be thought of as the 

gathering of the environment that can affect the feature (pose, location of the obstacles, 

the velocity of the robot,  and so on) and all properties of the robot. 

• 𝑧𝑡 is the measured data time instant t, which is knowledge regarding the environment’s 

state. Provided that the measurements between the time interval 𝑡1 and 𝑡2 are taken into 

account, hence the notation would be 𝑧𝑡1:𝑡2. 

• 𝑢𝑡 is control data which is the corresponding change of the states between time instants 

(t-1;t].  Like the previous case, control data sequences are indicated by 𝑢𝑡1:𝑡2. 

 It is essential to note that noise frequently influences both measurement data and control. 

Because the probabilistic laws govern the measurement and state’s evolution,  the probability 

distribution which produces 𝑥𝑡 could be written as: 

                                 𝑝(𝑥𝑡|𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡 )                                                                                                  (3.5) 

 However, when the state is complete, which is, knowledge of previous measurements, 

states, or controls doesn’t provide more information to support future predictions, the probability 

distribution will be: 

           𝑝(𝑥𝑡|𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡 ) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡  )                                                                                           (3.6)   
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 This is because the knowledge of 𝑥𝑡−1  includes measurement data and controls until the time 

instant 𝑡 − 1. 

 The other concept in probabilistic theory is belief. It is knowledge of the robot regarding 

the environment. According to the probability theory, beliefs are expressed as a conditional 

probability distribution, which is the posterior probabilities of the state variables given the 

measurements and control inputs data: 

                    𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡 )                                                                                                                 (3.7)    

All of these tools are used to clarify algorithms’ mathematical formalization which is used in 

practice so that the robot creates a map while it localizes itself inside the environment.        

3.2. Monte Carlo Localization 

 The estimation of the robot’s pose relative to the known environment of the map is called 

localization. The 3 localization issues which differ on the available knowledge during the task 

and initially: 

I. Local localization: is also known as position tracking and it takes an assumption that 

the initial pose of the robot is known with small noise. The uncertainty is close to the 

actual value of the pose of the robot.  

II. Global localization: the starting pose of the robot is unknown. It is achieved by 

spreading the particles throughout the map (Figure 3.1. shows Global localization on 

real robots used for experimentation) 

III. Kidnapped robot problem: here the robot can vanish and be teleported to a different 

location.  
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 The MCL algorithm is a particle filter method that uses a set of particles to represent the 

pose (position and orientation) of the robot. Particle filters are widely used because they are 

simple to implement and non-parametric, allowing them to represent multimodal probability 

distributions. Each particle is a separate sample of the robot's state, such as x,y, and heading. 

Furthermore, each particle has a weighting that indicates how likely it is that a particle represents 

the actual state of the system. The algorithm works by running the Bayes filter algorithm on each 

particle. The algorithm has the following steps: 

• Particle sampling: Calculate the weight from the previous distribution. 

• Motion model: Updating particle's position using a robot motion model noise. 

• Measurement model: The given new measurements re-weight particles based on the 

likelihood that a measurement matches the state of the particle. 

• Resampling: Replacing unlikely particles of low weight with more likely particles. 

• Compute mean: Computation of the weighted mean to get the estimated state. 

 Kalman filter is among the most powerful and important filters used for state estimation 

in the presence of process disturbance and measurement noise. In mobile robotics, Extended 

Kalman Filter (EKF) is usually applied to a nonlinear system. The process and measurement 

models are needed. And additive noises, which are characterized by covariance matrices, are also 

incorporated in both models. Even though EKF is a robust filter, it has the following drawbacks: 

• It depends on the basic principle that is the added noise and the initial belief, 𝑏𝑒𝑙(𝑥0) 

have a Gaussian distribution. 

• As the initial belief is required in EKF, the global localization problem can not be 

addressed using it. 

• Feature-dependent maps, for instance, point landmarks are needed for the localization 

of the robot. The measurements used by the filter for the estimation of the robot's 

position are represented using the features. 
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• The filter is found by linearizing the system using Taylor’s Expansion, hence it 

approximates a non-linear system.  

 
(a) (b) 

Figure 3-1 Visualization of Adaptive Monte Carlo Localization (AMCL) for different states.  (a) shows the 

particle filter after running Global Localization, where all particles have been spread evenly throughout the 

map.  (b) depicts that the particle filter has converged to low variance. 

 The Monte Carlo Localization (MCL) can process raw sensor measurements which 

makes it a great alternative to the EKF.  It also avoids the EKF’s assumption of uni-modal 

distribution assumption because of its non-parametric nature. The sensor’s range finder is 

represented using a measurement model algorithm and it returns a probability 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚𝑡  ) (m 

represents map) that is the combination of discrete, Gaussian, and exponential distributions. The 

fundamental idea of MCL is to represent the the 𝑏𝑒𝑙(𝑥𝑡) with particles a set of samples that are 

random states, taken from the belief itself. However, the computational time increases with the 

number of particles exponentially.  

3.3. Occupancy Grid Mapping 

 Mapping is the way of generating a map of the environment from the noisy 

measurements provided by the robot's pose. We use mapping algorithms to deal with such 

problems. This algorithm is based on: 
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i. Features: Recognizing objects within the environment and 

ii. Occupancy grids: A map can be represented by a grid. Each part of the grid denotes either 

a free space or an obstacle and a binary value is assigned accordingly. 

 The posterior over the maps with the given data is: 

                                                    𝑝(𝑚|𝑧1:𝑡, 𝑥1:𝑡)                                                             (3.8) 

 Where the map is represented by 𝑚 , 𝑧1:𝑡 is the set of all measurements up to the time 

instant 𝑡, and 𝑥1:𝑡 is the sequence of all the poses [13].  

3.4. Simultaneous Localization and Mapping Algorithm 

 It is building a map of the environment that is not known to the robot while localizing 

itself on the map and only the command inputs 𝑢1:𝑡 and the measurements 𝑧1:𝑡 are known by the 

robot. The robot can build the environment’s map while its location is estimated with respect to 

the map using SLAM. According to the posterior estimate, the problem of SLAM could come in 

two different forms. 

o Online SLAM: If the current state and map are estimated given the measurement 

and control input up to the current time instant and can be expressed as: 

                                         𝑝(𝑥𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡)                                                                                                   (3.9) 

o Full SLAM: If the posterior is computed throughout the whole path, 𝑥1:𝑡, along 

with the map and it is given by: 

                                            𝑝(𝑥1:𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡)                                                                                            (3.10) 

 Derivation of online SLAM from full SLAM is by integrating the poses:  

  𝑝(𝑥𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡) =  ∬ … ∫ 𝑝(𝑥1:𝑡, 𝑚|𝑧1:𝑡, 𝑢1:𝑡)𝑑𝑥1𝑑𝑥2 …  𝑑𝑥𝑡−1                                                 (3.11)          

 For convenience, let's take a state vector which is the combination of both the robot pose 

and the map: 
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                                                       𝑦𝑡 =  (
𝑥𝑡

𝑚
)                                                                                                (3.12)       

    The posterior (3.17) can be rewritten as: 

                                                      𝑝(𝑦1:𝑡|𝑧1:𝑡, 𝑢1:𝑡)                                                                                      (3.13)   

 SLAM based on the Rao-Blackwellized approach uses a combination of particles and 

Gaussians for representing state variables. A SLAM algorithm that depends on this particle filter 

version is FastSLAM. In the case of FastSLAM, the robot path is estimated using particle filters 

so that the errors of each map are conditionally not dependent on each particle. FastSLAM 

algorithm has the following features: 

• It makes use of particle filters to deal with non-linear robot motion models without 

resorting to linearization. 

• Since it computes the whole path posterior, which makes feature locations independent, 

it addresses both online and full SLAM problems, although it merely estimates one pose 

at a given time.  

 FastSLAM algorithm has two major different versions: feature-based and grid-based 

Fast SLAM.  

3.4.3. Feature-Based FastSLAM 

 This type of FastSLAM algorithm depends on the model of feature-based measurement. 

In this algorithm, features (𝑓) are extracted from the range measurements, 𝑓(𝑧𝑡), and thus the 

computational complexity is minimized greatly. It does, however, necessitate the use of 

additional specialized algorithms for the extraction of features and recognition. 

 Particles, in feature-based FastSLAM,  contain an estimation of pose  𝑧𝑡
[𝑘]

 as well as a 

collection of Kalman filters for each of the map's 𝑚𝑗 features. For estimation of the location of a 

feature, the Kalman filter is used. The first and second moments are used to characterize it, 𝜇𝑗,𝑡
[𝑘]
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and 𝛴 𝑗,𝑡
[𝑘]

 , for the 𝑘𝑡ℎ particle. Like other particle filter algorithms, it obtains the particle at time 

instant  𝑡 − 1 and the new pose at time 𝑡 is sampled. It then updates the Extended Kalman Filters 

(EKF) whenever a new feature is found. Finally, the important weight of the particle is updated, 

which is used for the resampling process. The representation of the map using feature-based 

enables the factorization of the posterior (3.17): 

  𝑝(𝑦1:𝑡|𝑧1:𝑡, 𝑢1:𝑡, 𝑐1:𝑡) =  𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡, 𝑐1:𝑡) ∏ 𝑝(𝑚𝑛|𝑥1:𝑡, 𝑧1:𝑡, 𝑐1:𝑡)𝑁
𝑛=1                                     (3.14) 

  where 𝑐1:𝑡  is a variable of the correspondence between the observed feature and the 

map's genuine feature. It aids in the identification of the observed feature. The underlying 

principle of the algorithm depends on this factorization since the posterior over robot paths 

𝑝(𝑥1:𝑡|𝑧1:𝑡, 𝑢1:𝑡, 𝑐1:𝑡)is computed using particle filter whilst each posterior 𝑝(𝑚𝑛|𝑥1:𝑡, 𝑧1:𝑡, 𝑐1:𝑡) 

is handled by EKF. The posterior is now factored into N+1 products, but the actual number of 

filters is MN+1 because each of the M particles is subjected to N Kalman estimations. 

3.4.4. Grid-Based FastSLAM 

 The Grid-based FastSLAM algorithm does not rely on EKFs to estimate feature 

localization because it does not employ a feature-based map; however, it combines MCL with 

Occupancy Grid Mapping. 

 The function used for the FastSLAM has the following particular properties: 

✓ The sample_motion_model function computes the sample 𝑥𝑡
[𝑘]

 by integrating the motion 

model that is the impact of the input 𝑢𝑡 on the sample of the previous time instant,  𝑥𝑡−1
[𝑘]

; 

which implies that it computes the posterior 𝑝(𝑥𝑡|𝑥𝑡−1
[𝑘]

, 𝑢𝑡). 

✓ The measurement_model_map function: The significance of the weight 𝑤𝑡 of the 𝑘𝑡ℎ 

particle is depicted using this function via the probability distribution, 𝑝(𝑧𝑡|𝑥𝑡
[𝑘]

, 𝑚𝑡−1
[𝑘]

) 
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of the measurement 𝑧𝑡  given the pose 𝑥𝑡  and map 𝑚𝑡−1  that is computed using the 

previous measurement and the trajectory followed by the particle. 

✓ The updated_occupancy_grid function: This function  utilizes the pose of the 𝑘𝑡ℎ 

particle, the associated map with it, and the measurement for computation of a new 

occupancy grid. 

 To summarize, the main benefit of the feature-based FastSLAM approach is that the 

computational complexity can be controlled. This is achieved by varying both the number N of 

features and the size of the M set of particles characterizing the map that are localized using EKF. 

The grid-based technique, on the other hand, leverages particle filters to take advantage of both 

MCL and Occupancy Grid Mapping. Therefore, a grid-based approach is generally preferred 

over a feature-based since it does not need features or the use of feature recognition algorithms. 

Besides, it is more portable since it can model any type of environment.  

3.5. Path Planning 

 Path planning is the problem of creating the path of the robot while navigating from one 

point to the goal point by avoiding obstacles. The two major tools that are used in path planning 

are: 

✓ A global planner is responsible for determining the best path from a current point to the 

desired destination. 

✓ A local planner tells the robot how to act or handles the command that has to be sent to 

the robot’s wheels for following the global planner. 

 To put it another way, the global planner seeks the shortest possible path in a known 

map (a graph or a grid) that is represented digitally whereas the local planner determines how 

and where the robot should travel. Furthermore, another algorithm is needed to direct the robot 

which goal to reach to explore the map while the robot is executing autonomous SLAM: frontier 
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exploration algorithm. Because searching for a goal is one part of path planning, hence frontier 

exploration is presented [33]. 

3.5.1. Global Planner 

 This algorithm determines the optimal path the robot has to take from its starting point 

to its destination. In SLAM, a map of the surroundings is created from the data that is collected 

using sensors as the robot moves. Using the map that is created, the global planner finds the 

optimal trajectory by considering the path length and obstacle avoidance. Provided that the 

endpoint is in an unknown location, the global planner uses the straight line connecting the 

desired point to its closest possible known point as a trajectory. 

 Dijkstra and A* are two widely used path planning algorithms in a 2-Dimensional grid 

map. Both will be covered in the following sections. 

Dijkstra Algorithm 

 In this algorithm, the shortest possible distance is computed in a given path whilst taking 

into account the lowest cost of the distance between the current points to the target point. It 

utilizes nodes in its computation and the points where the cost of the distance is low are saved. 

Figure 3.2 shows operating graphs of the Dijkstra algorithm which is a breadth-first-search 

algorithm. The term "breadth-first" refers to expanding the search in all feasible avenues rather 

than selecting one in particular; it determines the best or optimal route from a single source vertex 

to all others [33]. 

 

Figure 3-2 Breadth-first expansion in the Dijkstra algorithm 
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A* Algorithm 

 A* algorithm is also a well-known graph traversal path planning algorithm and it 

operates in a similar way to Dijkstra’s algorithm; however, it directs its searching towards the 

promising states which saves computational time tremendously.  [34].  And also, it is widely used 

to approach the optimal solution [35] with the data set that is presented. A* is a best-first search 

algorithm which is shown in Figure 3.3. Best-first implies the exploration of nodes in a graph in 

the direction of the most promising vertex, according to a specified rule. 

 

Figure 3-3 Best-first expansion in A* Algorithm 

3.5.2. Local Planner 

 It creates new waypoints whilst considering the vehicle constraints and dynamic 

obstacles to transform the global path into suitable waypoints. Thus, it recomputes the path at a 

specific rate; the map is scaled down to the vehicle's immediate surroundings and updated as it 

goes. Since the sensors are not capable of updating the map in all regions, it is impossible to use 

the whole map and the cost of computation raises with a large number of cells. Therefore, the 

local planning produces avoidance methods for dynamic obstacles using the updated local map 

and global waypoints and strives to match the trajectory as closely as feasible to waypoints 

generated by the global planner [36]. 

  The local planner, from a kinematic standpoint,  generates a feasible trajectory from a 

starting point to the desired location. The starting and target points are the robot's center and a 

point within a few meters respectively. Using points from a grid-based local cost map, the planner 

computes a cost function between these two points. The local cost map is a fixed-dimension grid 
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map that is centered on the robot's (𝑥, 𝑦) global map. It calculates the cost of traversing across 

the grids, taking into consideration the occupancy value of the grids, the robot's velocities, and 

the distances between the global plan and the target. The information about the cost function is 

then used by a controller to determine the commanded twist, ([𝑣𝑥, 𝑣𝑦, �̇�])𝑇 that will be sent to 

the robot. From the different local planner’s Dynamic Widow Approach (DWA) is tested both 

on simulation and experimental tests. 

Trajectory Planner 

 To begin, it is mandatory to comprehend how Dynamic Window Approach (DWA) 

works. The standard part [37] of DWA was created for non-holonomic robots that can only have 

velocities along x and around 𝜃 owning to the configuration of their wheel which results in a 

twist velocities vector of [𝑣, 𝑤]𝑇.  

 DWA executes the following for each iteration: 

i. Search Space: The space of all possible velocities is calculated by considering the 

factors cited as follows:  

• Circular Trajectories: The trajectory that results from the velocity couple (𝑣, 𝑤). 

• Admissible Velocities: By restricting admissible velocities it is ensured that only safe 

trajectories are taken into account. Speeds are admissible if: 

𝑣𝑎  = {(𝑣, 𝑤) | 𝑣 ≤ √2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑡𝑟𝑎𝑛𝑠 ⋀  𝑤 ≤ √2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑟𝑜𝑡 }                  (3.15)   

where the pair (𝑎𝑡𝑟𝑎𝑛𝑠, 𝑎𝑟𝑜𝑡) is braking accelerations and dist(𝑣, 𝑤) is the distance 

of the nearest obstacle on a specific (𝑣, 𝑤) trajectory. 

• Dynamic Window: 𝑉𝑑 is the dynamic window set and it contains all of the velocities 

that come from a uniform acceleration motion given the accelerations (𝑎𝑡𝑟𝑎𝑛𝑠, 𝑎𝑟𝑜𝑡) and 

the initial velocity (𝑣, 𝑤), i.e. the velocity of the robot : 
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𝑉𝑑  = {(𝑣, 𝑤) |  𝑣 ∈ [𝑣𝑎 − 𝑎𝑡𝑟𝑎𝑛𝑠, t; 𝑣𝑎 + 𝑎𝑡𝑟𝑎𝑛𝑠, t] ⋀ 𝑤 ∈ [𝑤𝑎 −

                                                                                     𝑎𝑟𝑜𝑡t; 𝑤𝑎 + 𝑎𝑟𝑜𝑡t] }                       (3.16) 

 The set of all possible velocities is specified with 𝑉𝑠 and thus the resulting search space 

is given by the resulting set 𝑉𝑟 as : 

                                𝑉𝑟 =  𝑉𝑠 ∩ 𝑉𝑎 ∩ 𝑉𝑑                                                                                                               (3.17) 

 

Figure 3-4 Dynamic-Window Approach (DWA) 

 The above sets can be represented as follows in Figure 3-4: the overall search space with 

the external rectangle, and the gray region that represents the intersection of the search space and 

the dark gray areas, which represent the velocities to discard to avoid collisions, represents the 

set of permissible velocities. The white rectangle represents the Dynamic Window that considers 

the acceleration; the resulting set 𝑉𝑟 is the intersection of the three sets (𝑉𝑠, 𝑉𝑎 𝑎𝑛𝑑 𝑉𝑑).  

• Optimization: The distance, heading, and speed for each group of speed pairs in the 

sampling space of speed is computed by the trajectory evaluation function; it evaluates 

and chooses the optimal trajectory, and then the robot is driven by the corresponding 

speed pair. It is given by    

 𝐺(𝑣, 𝑤) = σ (𝛼 ∙ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤) +  𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝑤) +  𝛾 ∙ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝑤))                               (3.18) 
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The above function in equation (3.32) is computed for the current pose of the robot and the 

function trades off the following features: 

• Heading: The angle between the end of the trajectory related to the speed pair (𝑣, 𝑤) 

and the desired location given by the heading function (𝑣, 𝑤). The main purpose of the 

heading function (𝑣, 𝑤) is for selecting a trajectory with a smaller angle to the target 

position and directing the robot to that location; given by 1800 −  𝜃, where 𝜃 is the 

angle of the target point with respect to the heading direction of the robot.  

• Clearance: The function 𝑑𝑖𝑠𝑡(𝑣, 𝑤) represents the distance between the robot and the 

obstacle. Its main purpose is to keep the robot from colliding with obstacles. 

• Velocity: The robot’s forward velocity is represented by (𝑣, 𝑤) which causes it to move 

faster to the target position. 

 The parameters 𝛼, 𝛽, 𝛾 represent the weight coefficients of ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝑤), 𝑑𝑖𝑠𝑡(𝑣, 𝑤), 

and velocity (𝑣, 𝑤) respectively. Normalization is required for the three weighted functions. The 

weighted sum of the three components is smoothed by function σ, resulting in more obstacle-

side clearance. 

 The trajectory planner [38] is ROS's standard local planner and it is based on the DWA 

algorithm. It enables us to specify the number of samples that have to be considered for 𝑣 and 𝑤 

to calculate the admissible velocities. And also, whether or not the robot thart is used holonomic. 

 DWA Local Planner 

 The DWA local planner utilizes the DWA algorithm as the Trajectory planner; however, 

the trajectories are computed differently and also, can be applied to holonomic robots [39]. The 

major parameter sim_period parameter, which is the duration of the controller loop,  is used for 

computing Dynamic Window and is inversely proportional to the controller_frequency 

parameter, which will be discussed in the following chapter. The procedure for implementing the 

DWA local planner algorithm can be found in ROS Wiki [38].  
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 SIMULATION AND HARDWARE SETUPS 

In this chapter, the operation of mapping, localization, and navigation of a mobile robot 

using ROS shall be covered. Before delving into the simulated and experimental implementations, 

the organization of the simulation and experiment setups, as well as the structure of ROS 

navigation, will be discussed. ROS integration with the mobile robot and Velodyne lidar sensor, 

and also ROS packages for SLAM and autonomous navigation, will also be addressed.  

4.1. Simulation Setup 

The simulations are done with Gazebo Simulator to visualize the 3D real robot 

movement, a physical engine, and Rviz to visualize the robot's internal state and sensor data. 

4.1.1.  Model of Robot 

The mobile robot used for simulation is known as "MRP NRLAB02," and it includes 

packages for controlling the robot during simulation and experimentation. In this thesis, a 

package is used to observe the completeness of the navigation of mobile robots in the simulation 

environment using the robot’s URDF representation which is shown Figure 4-1. 

 

Figure 4-1 The simulated platform of the robot on Gazebo and Rviz from left to right. 

4.1.2.  Interfacing of Simulated Robot and Lidar Sensor 

 In this thesis, the Unified Robot Description Format (URDF) of the Hokuyo 2D lidar 

sensor is used to interface it with the mobile robot's URDF (Figure 4.2) for simulation. The 
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URDF of MRP_NRLAB02 is modified by adding the laser scanner plugin model link, joint, and 

inertia to visualize the laser information. The URDF file is written in such a way that the robot’s 

each link is the parent link’s child (Motor baseplate in our case), with each link connected by 

joints. The offset from the parent link's reference frame and the axis of rotation is used to define 

joints, as shown in Figure 4-3 and Figure 4-4. 

 The simulated Hokuyo lidar sensor has 1800 horizontal field view and a range of 

detection up to 15 meters. The rays used have 720 sample points, and the topic published from 

this lidar is /hokuyo_lidar/scan, with a message type of sensor_msgs/LaserScan. 

 
(a) (b) 

 
(c) (d) 

Figure 4-2 The URDF of Hokuyo lidar sensor and mobile robot in a simulated environment (a) URDF of 

Hokuyo lidar sensor on Rviz. (b) Mounting the lidar sensor on the top of the robot using URDF on the Gazebo 

simulator. (c) Facing the wall (the light brown color) as an obstacle in front of the robot to observe the lidar 

output. The blue color is the ray of the lidar activating Gazebo’s ray visualization plugin.(d) Visualizing the 

internal state of the laser scan (the red color shows the detected obstacle in front of the robot from (c)) on Rviz. 
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Figure 4-3 URDF representation of Hokuyo lidar sensor. 

 
Figure 4-4 Transformation tree diagram of the mobile robotSimulation Environment used for Navigation of 

Mobile Robot. 

4.1.3. Simulation Environment used for Navigation of Mobile Robot 

 Before testing in the real environment is done, the environment for simulation is 

constructed on Gazebo. The simulation environment can be seen in Figure 4-5, with 

17.5𝑚 𝑥 10.1𝑚 (approximately an area of 176.75𝑚2). The simulation environment will be used 

later in the result section for mapping, localization, and path planning. 
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(a) (b) 

Figure 4-5 Simulation Environment. (a) The built mobile robot inside the environment and lidar rays using 

Gazebo.  (b) Rviz's internal lidar signal visualization by detecting obstacles in the environment. 

4.2. Hardware Setup 

 Instead of using the Gazebo simulator, the Rviz simulator is utilized to display the 

internal state of the robot, and real-world situations are used to implement the algorithms for the 

navigation of the mobile robot autonomously. 

4.2.1. Robot Platform 

 The mobile robot used for the experiment is a four-wheeled differential robot called 

“Scout Mini”. The robot platform is shown in Figure 4.6 and the hardware specification is listed 

in Table 4-1. 

 
(a) 
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(b) (c) 

Figure 4-6 The hardware platform of the mobile robot used for experimentation. (a) Robot Hardware setup, (b) 

Mobile robot on Rviz, and (c) Frame transformation on Rviz. 

Table 4-1 Hardware specification. 

 

 Figure 4-6 (a) depicts the Scout Mini mobile robot with the USB-HUB expansion 

interface, USB to CAN module, Intel RealSense D435, LCD screen, and Velodyne VLP-16 

installed at the top layer. Through the aviation expansion interface of the chassis, Scout Mini 

provides a power and communication interface for the upper equipment. The Scout Mini chassis 

power expansion interface is powered by the chassis’ battery, which has a maximum power 

output support of 24V and 5A. It has voltage regulator modules of 19V and 12V. The 19V voltage 

regulator module primarily powers the Nvidia AGX Xavier, while the 12V voltage regulator 

module powers the VLP-16, USB-HUB, and wireless routers. Figure 4.7 below shows the 

external connection topology of Scout Mini. 
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Figure 4-7 External topology connection of Scout Mini. 

 The external topology connection of Nvidia AGX Xavier as the core computing unit is 

shown in Figure 4.8. Xavier’s network port is connected to the router’s network port, which is 

convenient for remote desktop connection, access, and debugging and easy to expand to other 

network devices. The USB-HUB mainly expands and connects D435 binocular camera, and LCD 

camera. 

 

Figure 4-8 Nvidia AGX Xavier external topology connection. 

4.2.2. Sensors on Scout Mini  

i. Intel ReasSense D435 Camera: Binocular vision sensors are used in diverse 

robot applications, including robot vision measurement and visual navigation. 

The Intel RealSense Depth Camera D435 effectively captures and broadcasts 

depth data from objects that are moving and allows mobile prototypes to have 

very accurate depth perception. It has a broad field of view and a global image 

shutter. The hardware specifications of the D435 camera are detailed in Table 

4-2 and Figure 4-9 depicts the visual image of D345. 

 



30 

 

 

Table 4-2  Hardware specification of Intel RealSense D435 camera. 

 

 

Figure 4-9 Intel RealSense D435 camera 

ii. Velodyne VLP-16 Laser Sensor: The VLP-16 is Velodyne's most advanced 

and smallest lidar. The VLP-16 is less expensive than comparable sensors while 

retaining some of the basic features of Velodyne's breakthrough lidar, such as 

real-time, 360° field of view, 3D coordinates and distance, and reflectance 

measurements with calibration. The VLP-16 has a measuring range of up to 100 

m, a low power consumption (8 W), is lightweight (830 g), has a small size 

(103mm x 72mm), and has dual return capability, making it ideal for man-

machine mounts and other mobile devices. The hardware specifications of the 
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VLP-16 are detailed in Table 4-3 and Figure 4-10 depicts the visual image of 

the VLP-16. 

Table 4-3 Hardware specification of VLP-16. 

 

 

Figure 4-10 Velodyne VLP-16 lidar sensor. 

4.3. Structure of ROS Navigation 

 ROS is an open-source platform that could be considered a middleware (Figure 4-11) 

that provides high-level abstraction between low-level hardware and drivers and high-level 

software APIs. 
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Figure 4-11 Robot process cycle using ROS 

 The problem of navigation is fundamental in robotics and other important technologies. 

For the sake of making the mobile robot navigate autonomously, it must first understand where 

it is, where it is going, and how it will get there. The major challenges that the mobile robot faces 

while navigating in an environment are depicted in Figure 4-12, and these challenges will be 

discussed in the following sections with ROS. 

 ROS navigation stack is used to accomplish mobile robot navigation from one point to 

a target point. The ROS navigation stack is a collection of ROS nodes and algorithms that are 

used to autonomously move a robot from one location to another while avoiding any obstacles 

in its path. In the coming subsection, each algorithm used in ROS will be explained including 

SLAM_gmapping, Adaptive Monte Localization, and Path Planning. 

 

Figure 4-12 Challenges to Navigation of mobile robot 
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 The followings are the input for the navigation stack to send commands to our robot to 

move to its desired goal: 

• Current pose: The current orientation and position of the robot. 

• Goal pose: The robot's desired location for achieving its goal. 

• Odometry Data: Using the motion sensor’s data for estimating the change in pose over time. 

These sensors include wheel encoders, IMU, GPS, etc…  

• Laser Sensor: Data from the laser (lidar) sensor is needed to recognize objects in the 

environment. 

 Taking the above as an input, the navigation stack in exchange will output the velocity 

commands that are needed and send them to the mobile base for moving the robot to the 

designated target position. In summary, the basic goal of the navigation stack is to move the 

robot from its starting location to its destination while avoiding collisions with objects and 

getting lost on its way. The diagram (Figure 4-13) shows the basic building blocks of the 

Navigation stack taken from the ROS official website.  The sections below provide a quick 

overview of all the blocks that have to be submitted as input to the ROS Navigation stack. 

i. Odometry Source 

 Odometry information refers to an estimated pose of the robot and velocity in free space. 

The determination of the odometry information is done through kinematics from the robot’s 

motor shafts encoder counts. The robot's odometry data determines its position in relation to its 

starting position. The primary sources of odometry are IMUs, wheel encoders, 2D/3D cameras 

(for visual odometry), and GPS. We used the information from a wheel encoder to publish the 

odom value (Figure 4-14) to the navigation stack with x nav_msgs/Odometry message type that 

can hold the robot's position and velocity. The odom data will then be used by the 

SLAM_gmapping algorithm to create the 2-dimensional map of the environment. 
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Figure 4-13 ROS Navigation stack structure 

 
(a) (b) (c) 

 
(d) 

Figure 4-14 Odometry source information of a mobile robot. (a) Shows the two-wheeled mobile robot that is 

used for simulation in this thesis (MRP-NRLAB02 Red-One technology). (b) The odometry data from the 

mobile robot's wheel encoder containing position, orientation, linear velocity, and angular velocity with topic 

name /odom, and the data can be visualized with ROS command of $ rostopic echo /odom. (c) It shows the type 

of message that the /odom topic contains with nav_msgs/Odometry’s message type and it can be extracted with 

the ROS command of $ rostopic info /odom.(d) Shows the visual representation of odometry information. 
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ii. Sensor Sources 

 Data provided from the sensors is used by the navigation stack to perform two tasks: the 

first is to locate the robot on a map using a 2-dimensional laser sensor with a message type of 

sensor_msgs/LaserScan or a 3-dimensional laser sensor with a published message 

msgs/PointCloud of the sensor, and the second is to detect and avoid obstacles in the robot's path 

through the surrounding environment. In this thesis, the Hokuyo 2D lidar sensor's URDF is used 

to interface it with the mobile robot's URDF (Figure 4-16) for simulation, and the Velodyne lidar 

Puck (VLP-16) lidar sensor is used for practical implementation with a 4-wheeled differential 

mobile robot called Scout Mini. 

iii. Sensor Transformation (Transform Configuration) 

 Sensor transformation is critical when working with mobile robots because the robot 

must be aware of both itself and its surroundings. To accomplish this, the robot must be able to 

calculate its orientation and position relative to the obstacle relative to the obstacle. The process 

of specifying how data expressed in one frame can be transformed into a different frame is known 

as coordinate transformation. For instance, provided that the laser detects an obstacle with the 

lidar sensor at 20cm in the front (illustrated in Figure 4-15), this means that it is 20cm from the 

laser, but not from the center of the robot (base_link of the robot). We must convert the 20cm 

from the lidar frame to the robot frame depicted by the dark yellow arrow to determine the 

distance from the robot's center. 

 

Figure 4-15 The transformation between the coordinates of laser and robot base link 
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 For comparing data from different sensors, the data collected by numerous robot sensors 

should be referenced to a common reference frame(in our case, the base link frame id name of 

the robot used for simulation is Motor_baseplate (Figure 4-16)). Using ROS transforms, the 

relationship that is between the main robot coordinate frame (Motor_baseplate) should be 

published by the robot and the various sensor frames (for the simulated robot case hokuyo_link).  

 

Figure 4-16 URDF of lidar sensor transformation with the simulated robot on Rviz 

 The yellow arrow in Figure 4.8 represents the transform visualization from the lidar base 

link (hokuyo link) to the mobile robot's base link frame (Motor baseplate), which is then 

transformed to the robot's odometry (odom frame). 

i. Base Controller  

 The navigation stack requires a trajectory planner to send velocity commands to the base 

of the robot coordinate frame using a geometry_msgs/Twist message with the "cmd_vel" topic 

(for the simulated robot, the topic name is /nrlab/cmd_vel). This necessitates the existence of a 

node that subscribes to this topic and is capable of taking linear velocities along the 𝑥 and 𝑦 axes 

and converting them into motor commands for a mobile robot. The primary purpose of the base 

controller is to convert the navigation stack’s output, that is the message called Twist to the 

respective motor velocities of the robot. 
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 Each ROS algorithm, including SLAM_gmapping, Adaptive Monte Localization 

(AMCL), and Path Planning, will be explained in the following subsections. 

4.3.1.  SLAM-gmapping 

 SLAM is the process of creating the environment’s map while keeping track of the 

position of the robot on the map. This problem is basically what mapping is solving. For reducing 

the common depletion problem that is associated with the Rao-Blackwellized particle filter, an 

adaptive resampling technique is employed by the gmapping package [32, 40, 41]. To create a 

map, a two-dimensional occupancy grid method is used by the gmapping package. An obstacle 

is inserted into a cell or the cell is cleared using sensor stream data. Clearing a cell for each 

successful laser-scan sample includes ray-tracing through a grid. By comparing current laser 

scans to prior laser scans, GMapping can help decrease and fix odometry drift faults. 

 The gmapping ROS package is an implementation of the SLAM algorithm. It is used to 

generate a 2D map from the robot's lidar sensor and odometry data as it moves around the area. 

It also includes a slam gmapping node, which reads data from the laser and transforms it from 

the laser source to the base link, broadcasting the transform from the "map" to "odom" frames, 

resulting in an occupancy grid map (OGM). To obtain the data needed to build a map, the 

slam_gmapping node subscribes to the laser topic (/hokuyo_lidar/scan topic for simulation and 

/scan topic for hardware implementation) and an extensive transform topic (/tf). Throughout the 

process of slam_gmapping, the generated map is published into the /map topic, which uses the 

message type nav_msgs/OccupancyGrid. An occupancy grid map is shown in Figure 4-17. 

Occupancy is expressed as an integer in the range [0, 100], with 0 (entirely free or white color), 

100 (entirely occupied or black color), and -1 for an unknown location.  
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Figure 4-17 Example of Occupancy Grid Map (OGM). 

 The map_server package, which is part of the ROS navigation stack, saves the OGM 

map output and provides the map_saver node that allows the access to map data from the ROS 

service, and saves it into a file. As shown in Figure 4-18, the map data is saved in two files: 

a. YAML file: containing the image name and map metadata. 

b. PGM image: the image itself with the encoded data of the OGM. 

 

Figure 4-18 The PGM file and the metadata of the YAML file. 

 The command rosrun map_server map_saver -f name_of_map can be used to save the 

map and the resulting map is a static map that is required for localization and path planning. The 

gmapping ROS package includes a set of parameters for modifying the SLAM algorithm’s 

behavior described in Chapter 3 [42]. The map’s size does limit the selectable area for exploration 

in gmapping; inorder for exploring the whole environment at once, the size of the map must be 

regulated accordingly. The proper configuration of the parameters is essential to building a 

proper map. Without a proper configuration of the robot with the algorithm, it will be impossible 

for us to create a good map of the environment, and without a good environment, it will not be 

possible to properly navigate the robot inside the environment.  
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 To build the map with gmapping, we must meet two requirements: the first is to provide 

good laser data (Velodyne lidar is used for real-time implementation), and the second is to 

provide good odometry data (in our case wheel encoder is used for odometry data).  

Table 4-4 Major parameters of gmapping 
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 Aside from that, the coordinate transformation between the lidar sensor's base and the 

robot's base is required, as shown before in Figure 4-16. Table 4-4 shows the major parameters 

that must be configured while mapping and the effect of the parameters on map quality will be 

discussed in the results section. 

4.3.2. Adaptive Monte Carlo Localization 

 Determining the robot’s pose inside a mapped environment is known as localization. 

Robot Localization occurs when a robot moves around a map and needs to know its position and 

orientation within the map using sensor readings. The Monte Carlo Localization (MCL) from the 

previous chapter is the most popular algorithm in robotics, after the deployment of MCL, the 

robot would be navigating through its known map and collect sensory information by the use of 

range-finder sensors and RGB cameras. Then, the MCL will use this sensor for measuring and 

keeping track of the pose of the robot [43]. 

 MCL is also known as Particle Filter Localization because it uses particles for locating 

the robot. Because the robot does not always move expectedly, it creates a huge number of 

random estimates about where it will go, which is the next pose. As shown in Figure 4.19, these 

guesses are known as particles; every particle has an orientation and a position and represents a 

guess as to where the robot could be located. The particles depicted by the red arrow in Figure 

4-19 are used to estimate the pose of the robot. 

 The ROS package AMCL [44] includes the amcl node, which employs the MCL 

algorithm to track the location of the movement of the robot in a two-dimensional space. This 

node subscribes to laser data, the laser-based map, and the robot's transformation, and then 

publishes the estimated pose on the map. 
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Figure 4-19 Examples of AMCL 

 

Figure 4-20 AMCL node data subscription and publication 

 As shown in Figure 4-20, three basic requirements must be met to properly localize a 

mobile robot within a map: providing good laser data with the proper transformation of its base 

link with the robot base link, good odometry data from the encoder or IMU, and properly 

constructed laser-based map data. Furthermore, as with the mapping algorithm, the proper 

parameter configuration is critical for localizing a mobile robot in its environment. The amcl 

node, most importantly, has two major requirements for the robot's transformation, which are as 

follows: 
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i. The amcl converts an incoming laser scan with the laser's frame id to an odometry frame, 

which needs a path from the frame where the laser scans are published to the odometry 

frame through the tf tree. 

ii. AMCL searches the transformation between the laser frame and the base frame and 

latches it forever to ensure proper localization. This means that a moving laser relative 

to the base can’t be handled by the amcl node and requires a fixed or static 

transformation between the two frames. 

 The major parameters of the amcl algorithm that are useful for proper localization of the 

robot in the environment are shown in Table 4-5, and the effect of the parameters on localization 

quality will be discussed in the results section. 

Table 4-5 Major parameters of AMCL.  
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4.3.3. Move-Base Package 

 Move base is a key component of the ROS navigation stack that connects all planner 

and controller behaviors. The move base package includes the move_base node, which moves 

the robot from its current position to the target point. It is a SimpleActionServer implementation 

that accepts a target pose with geometry_msgs/PoseStamped message type so that 

SimpleActionClient can send a target point to this node. One of the topics provided by the move 

base action server is move_base/goal, which is the navigation stack’s input that will be used to 

provide the goal pose. Table 4-6 shows some of the moving base [45] parameters that are 

responsible for the planner and controller frequencies. 

Table 4-6 Move base parameters 

 

 The frequency is determined by the computer's computation power and the quality of 

the communication. If the values of these parameters are not properly configured, they may cause 

a jerk motion. This jerking behavior is caused primarily by a lack of time to complete the 

computation, as well as the fact that when the controller completes its task, it must wait for the 

next one. When the robot becomes stuck, the controller and the waiting time of the controller or 

planner before the computation is restarted if determined by the planner’s patience. 
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 As stated in the previous description, sending a goal to the move base node activates 

some other processes that involve some other nodes that result in moving the robot to the target 

pose. For the sake of using the move_base node in the navigation stack, a local and global planner 

is needed. 

 4.3.3.1 Global Planner on ROS 

 When the move base node receives a new goal, it immediately sends it to the global 

planner. The global planner is responsible for the safe path calculation depicted in Figure 4-21 

to achieve the desired goal pose. This path is calculated before the movement of the robot starts; 

it doesn’t consider the readings made by the robot's sensors while it is moving. The light green 

line in Figure 4-21 represents the global path to take to reach the goal position. 

 

Figure 4-21 Example of a global planner 

 Depending on the setup the robot use and the environment it navigates, there exist three 

global planners that adhere to the nav_core:: BaseGlobalPlanner interface: Navfn, 

global_planner, and carrot_planner [46]. 

• Navfn: it is the most widely used global planner for navigation in ROS. It employs 

Dijkstra’s algorithm is employed, as described in section 3.1.5.1, to determine the 

shortest path with the lowest cost between the initial and goal poses. 
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• CarrotPlanner: : it is the simplest, take the target pose and check whether it's an 

obstacle, then choose an alternate goal that's close to the original by going back along 

the vector between the target point and the robot. This planner is useful if we need our 

robot to move near a given target, even though the target is out of reach. This planner is 

ineffective in a complex indoor environment. 

• GlobalPlanner It is a more versatile and customizable replacement for navfn. And also,  

it includes more options such as toggling grid path, toggling quadratic approximation, 

and support for A*. Navfn and global planner are based on [47], which allows us to 

change the algorithm that navfn uses to calculate the path. 

Table 4-7 Global planner parameters 

 

Table 4-7 shows some of the major navfn [48] and global_planner [49] parameters. 
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 When the planner creates a trajectory, it must be done in accordance with a map. The 

global planner calculates its path using a map called a costmap. A costmap is a map that 

represents places in a grid of cells using binary values that represents either a free space or the 

presence of an obstacle. The costmap values are binary, representing either free space or paces 

where the robot would collide. In ROS, costmap consists of an obstacle map layer, static map 

layer, and inflation layer. 

• Static map layer:  It is the fixed map given as an input to the navigation stack. 

• Obstacle map layer: It includes 2-dimensional and 3-dimensional obstacles (voxel 

layer). 

• Inflation layer: It is where the cost of each 2D costmap cell is calculated by inflating 

obstacles. 

 There exist two types of costmap: local costmap and global costmap. The global costmap 

depicted in Figure 4-22 will be discussed in this section, while the local costmap will be presented 

in the following section.  

Global Costmap 

 A global costmap is constructed from the map obtained by SLAM gmapping by inflating 

the obstacles on the map provided to the navigation stack. The costmap is initialized to match 

the static map's height, width, and obstacle data. The global costmap has its own set of parameters 

(Some of these are listed in Table 4-8 that should be optimized as much as possible. The global 

planner uses the global costmap to calculate the path to follow.  
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Figure 4-22 Example of global costmap 

Table 4-8 Global costmap parameters. 

 

 4.3.3.2 Local Planner on ROS 

 Once the global planner has calculated the path to take, this path is given to the local 

planner, which then executes each segment of the global plan. This means that given a plan to 

follow provided by the global planner and a map, the local planner will provide a velocity 

command to move the robot. The local planner (shown in Figure 4-23 with a yellow line), as 

opposed to the global planner, monitors odometry and lidar data and selects a collision-free local 

plan for the robot by recomputing the path to follow to keep the robot from colliding with objects. 



49 

 

 In addition to the global planner, there are various types of local planners depending on 

the robot configuration and environment to navigate. These local planners are 

eband_local_planner, dwa_local_planner, and teb_local_ that adhere to nav core:: Base Local 

Planner. For the mobile robot's local planning, we used dwa_local_planner. 

 

Figure 4-23 Example of a local planner 

 The configuration of the local planner parameters is more critical, complicated, and 

delicate than that of the global planner. Table 4.9 from the ROS Wiki [39] lists some of the 

dwa_local_planner parameters and their applications in planning. 

Table 4-9 DWA planner parameters 
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 The impact of the aforementioned parameters on local planning will also be discussed 

in the results section later. The DWA planner relies on the local costmap that provides 

information about obstacles. Due to this,  for the optimal behavior of the DWA local planner, 

fine-tuning the parameters for the local costmap is critical. 

Local Costmap 

 A local costmap is created by inflating obstacles sensed in real-time by the robot's 

sensors. Given a width and a height for the costmap defined by the user that keeps the robot in 

the center of the costmap while it is moving throughout the environment, it drops information 

from the map about obstacles as the robot moves. We have created a small environment on 

Gazebo with an obstacle to illustrate the local costmap (shown in Figure 4-24) around the 

obstacle. This environment also is used in this chapter.   

 
(a) (b) 

Figure 4-24 Example of local costmap. 

 Because the global and local cost maps do not have the same property, they have 

different parameters. Table 4-10 shows some of the local costmap parameters and common 

costmap parameters for both global and local cost maps. 

 



52 

 

Table 4-10 Local costmap and common costmap parameters 

 

 

 The concepts and implementation of ROS algorithms discussed with the robots in this 

section will be implemented in the simulation and experiment in the following chapter. 
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 RESULTS AND DISCUSSIONS 

 In this chapter, autonomous navigation to achieve the goal pose (position and orientation) 

by avoiding obstacles with the pre-constructed map, and the development of a Graphical User 

Interface (GUI) for waypoint navigation of mobile robots will be discussed. To test the 

abovementioned algorithms, we divided the result into two parts: simulation results and 

experimental results. We will also investigate the parameters used and their effects on mapping, 

localization, and path planning quality in the experimental result section. 

5.1. Simulation Results 

 We use Gazebo platform to create a simulation environment for the experiment depicted 

in Figure 5-1. The virtual environment has real physical properties, and the simulation results are 

a close match to the real world. 

 

Figure 5-1 Simulation environment constructed on Gazebo. 
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(a) Mapping of the Virtual Environment 

 The simulation experiment below was carried out in accordance with the virtual 

environment. The first phase entails integrating the MRP NRLAB02 mobile robot platform with 

the hokuyo 2d lidar scanner (hokuyo.dae mesh was used to render it) as illustrated in Figure 4.8 

under the ROS Navigation Structure section. We tested ROS gmapping to map the unknown 

environment after we interfaced with the robot's URDF and lidar sensor by taking lidar and wheel 

encoder information and using the teleoperation node that receives keyboard inputs to send 

velocity commands to the robot's /nrlab/cmd_vel topic. The mapping algorithms are tested using 

the ROS robot system's simulation platform, and the simulation results are shown in Figure 5-2. 

 

Figure 5-2 Occupancy Grid Map of the virtual environment on Gazebo and Rviz 

 Figure 5-1 depicts the robot's behavior during the simulation process while using SLAM 

gmapping. The robot is positioned in the center of the simulation environment's left wall, and the 
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lidar data is highlighted in red, with the blue ray on Gazebo representing the lidar's ray by 

activating the lidar visualization plugin on the URDF of the hokuyo sensor. The simulated 

hokuyo lidar has 1800 horizontal fields of view and a maximum detection range of 15m, which 

we cropped to 10m for mapping the virtual environment. The area, when scanned by lidar, 

changes from light gray to white and black when the robot is moving through the environment. 

When the robot moves through the environment, the scanned area changes from light gray to 

white and black until the entire map is completed. The light gray shade represents the absence of 

information about the area, free space is represented by white shade, and the detection of 

obstacles in the environment is represented the black lines by the black lines. Table 5-1 shows 

the coordinate values for the four poses in Figure 5-2, with a position offset of 

(−0.089𝑚, −0.1𝑚, 0.0012𝑟𝑎𝑑) from the origin of the robot to the coordinate system of the map 

at (0,0,0). Figure 5.3 depicts the communication between nodes and topics, while Figure 5-4 

depicts the transformation tree of robot links, lidar sensor, and parent frame id map. 

Table 5-1 Some positions and orientations of the mobile robot during the mapping operation. 
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Figure 5-3 Communication between nodes and topics using rqt_graph 

 

Figure 5-4 Transformation tree after launching the mapping algorithm. 

 According to the simulation results, a compatible map of the environment with the same 

dimensions and features as the virtually constructed environment was created. The optimization 
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of several slam_gmapping node parameters has been done. In the simulation, the built-up map 

of the environment will be used for the mobile robot's autonomous navigation. The effect of 

mapping parameters will be discussed in the experimental section. 

(b) Navigation of Mobile Robot in the Constructed Map 

 After creating the static map, the navigation task can be carried out. Before the robot 

can move from one point to the next, it must first locate itself on the map. This is accomplished 

by the AMCL node, which, as explained in section 4.3.2, estimates the position of the robot using 

particles.  

 In the simulation section, we tested the navigation of the MRP_NRLAB02 mobile robot 

from one point to the target goal in two cases: navigation by avoiding static and dynamic 

obstacles inside the grid map. In the practical experimental section, the parameters and their 

effect on navigation, as well as the operation of the algorithms used for each component of the 

navigation system, will be explained in detail. 

i. Navigation of the simulated robot inside the map with static obstacles 

 The map which is created from SLAM gmapping has been loaded via the map server 

package from the path where the map is saved to use to autonomously navigate the robot in the 

environment. 

 Figure 5-5 (a) on Rviz shows the laser signal, the loaded map, the global costmap, the 

local costmap, particles to estimate the robot's pose, and static obstacles in the static map before 

navigation begins. Figure 5-5 (b) depicts the environment and the robot's true pose for 

comparison with the robot's internal computation. Figure 5-5 (a) demonstrates that the particles 

distributed around the map show the robot uncertainty about its true position and orientation 

when compared to the one shown in the Gazebo environment (b). 
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(a) 

 
(b) 

Figure 5-5 Preparing the simulated mobile robot for navigation on Rviz (a) and Gazebo (b) on the static 

obstacles in the environment. 

 The laser signal does not match the environment, as shown in Figure 5-5 (a), because 

the internal pose state of the robot and the real robot (Figure 5-5 (b)) have some position and 

orientation offsets, which also dispersed the particle's pose to guess the robot's location. This can 

be corrected by teleoperating the robot around the environment to collect more information from 

the laser and the map depicted in Figure 5-6, or we can use Rviz's 2D pose estimator to estimate 

the exact pose of the robot in the environment; in our case, both work perfectly fine. The 



59 

 

constructed simulated environment on Gazebo (Figure 5-5 (b)) depicts a collection of static 

obstacles in the environment ready for autonomous navigation 

 
(a) (b) 

Figure 5-6 Correction of the robot's pose for navigation on Rviz (a) and Gazebo (b) following a small robot 

motion 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5-7 Autonomous navigation of mobile robot in a simulated environment with static obstacles of the 

environment. 

Table 5-2 Comparison of target goal pose and robot estimated pose with their respective errors of static 

obstacles in the environment ready for autonomous navigation. 
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 Figure 5-7 depicts the outcome of the path planning for both global and local paths 

through the static obstacles inside the static map. The red arrow in the image (a) indicates the 

navigation target position and orientation, and its coordinate values are listed in Table 5-2. 

Pictures (b) and (c) depict path planning and navigation execution while the robot is moving to 

the target, and picture (d) depicts when the robot achieves the target point, which is also indicated 

by the smaller yellow patch denoting the convergence of particles to the final pose. The 

communication of the nodes and topics after launching the amcl and move_base node is shown 

in Figure 5-8. 

 

Figure 5-8 Communication of node and topic of the navigation system. 
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ii. Navigation of the simulated robot inside the map with dynamic obstacles 

 To test the navigation system in the simulated environment with dynamic obstacles, we 

added dynamic obstacles such as a standing person, a walking person, and a box with a 1𝑚 𝑋 1𝑚 

size as shown in Figure 5-9 on Gazebo to resemble the real-world scenario. 

 

Figure 5-9 Dynamic obstacles in the simulated environment. 

 The dynamic obstacles are scattered throughout the environment. When the robot plans 

its trajectory to reach the required goal point, the global costmap is created by inflating the 

obstacles on the navigation stack's map, as shown in Figure 5-7; however, if there are dynamic 

obstacles, as shown in Figure 5-9, that are not known by the previously stored map data, the local 

costmap inflates obstacles detected by the robot's lidar sensor (Figure 5-10) in real-time, hence 

the local planner can determine the trajectory. 

 Figure 5-10 shows how the three new obstacles in the environment affect the global 

trajectory of the global planner generated by the Dijkstra algorithm because the new obstacle is 

detected by the laser so that the path sent to the local planner will execute each segment of the 
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global planner and once the new obstacles are inflated by the local costmap, the inflated obstacles 

are avoided and a new path is generated to reach the required goal. 

 

Figure 5-10 Autonomous navigation of a mobile robot in a simulated environment with dynamic obstacles of 

the environment. 
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 The green line in the above figure represents the path that the robot takes to reach the 

goal pose given by Rviz's 2D Nav Goal tool, and the red arrow represents the target goal pose 

that the robot must address, and the target pose values and the robot estimated pose in the 

environment is shown in Figure 5-11. 

 
(a) (b) 

Figure 5-11 The target position and orientation (a) and the estimated pose (b) of the robot in Figure 5.10 

5.2. Experimental Results 

 The final set of results is generated and observed using the actual environment setup 

shown in Figure 5-12. We carried out the experiments in two real-world environments that we 

divided into two scenarios (Scenario 1 and Scenario 2), and we used the Rviz platform to analyze 

the internal state of the robot and compare it to the actual robot status. 
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(a) 

 
(b) 

Figure 5-12 Experimental indoor environments for navigation of a mobile robot 

(a) The first indoor environment used in Scenario 1 is our lab experiment room with an area of 

approximately 34𝑚2. 

(b) The second indoor environment used in Scenario 2 is the 6th floor of the IT-Convergence 

building at Chosun University, South Korea with an area of 114.25𝑚2, the collection of images 

is taken from different side views. 
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(a) Mapping of the Experimental Environments 

 The gmapping algorithm's experimental performance was evaluated in the two scenarios 

depicted in Figure 5-12. Figure 5-13 depicts the mapping result obtained from the experiments 

while the Scout Mini mobile robot is teleoperated around the two environments and the final 

mapping outputs, as well as the real-time data visualization from the realsense camera, which is 

used to compare the obstacles detected by the grid map with the robot's actual position and 

attitude. The experimental results for the two scenarios showed the creation of a compatible map 

of the actual environment with the same dimensions and features. To demonstrate this, the 

numbers 1 through 6 are marked on the two environments in Figure 5-13 with their respective 

maps.  

 
(a) 
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(b) 

Figure 5-13 Mapping of the actual environments for Scenarios 1 (a) and 2 (b), with comparisons of 

environmental features and the constructed map on Rviz. 

 During the experiment, the gmapping algorithm uses a static transformation between the 

laser's base link frame (with link name “velodyne”) and the robot base link frame (with link name 

of base_link) to generate three-dimensional measurement data with a topic of /velodyne_points, 

which is changed to 2D laser scan data using the ROS package called pointcloud_to_laserscan 

to publish a /scan topic with a message of sensor_msgs/msg/LaserScan from the point cloud. 

The data from the wheel encoder is used to provide odometry data to the slam_gmapping node 

with the topic /odom, which is then interfaced with the lidar topic to publish the /map topic to 

generate the map of the environment, as shown in Figure 5-14. Additionally, several parameters 

of the slam_gmapping node has been optimized, and some of the major parameters and their 

values for our experimental case are shown in Table 5-3. The created map is used by localization 

and path planning algorithms to complete real-time robot navigation.   
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Figure 5-14 Block diagram representation of the mapping algorithm of the experiment 

Table 5-3 Some gmapping parameter values used for the experiment 

 

(b) Localization of a Mobile Robot Inside the Environment 

 The map generated in the previous section from actual environments is used to localize 

the robot using the AMCL method, just like the simulation results. In the experimental analysis 

of the localization, we have divided it into two cases for the two scenarios. Table 5-4 shows some 

of the major parameters used in the AMCL ROS package for the two cases. 
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Table 5-4 Some of the AMCL parameters for the two cases 

 

i. Localization of the mobile robot with Case-1 parameters  

 For the case-1 experiment, we used 500 min_particles and 5000 max_particles  for the 

estimation of the robot's pose in the environment. To localize the robot, we used two methods: 

manual localization and global localization. Figure 5-15 depicts the explanation for Scenarios 1 

and 2 for manual localization, while Figure 5-16 represents global localization for both scenarios. 

 
(a) (b) 



70 

 

 
(c) (d) 

Figure 5-15 Manual localization of mobile robot for Scenario 1 and Scenario 2 using 2D pose estimator tool 

(a), (c) The yellow color arrow of the particles used to estimate the robot pose in Scenarios 1 and 2 depicts the 

uncertainty in robot position at the beginning of AMCL. The green arrow represents the robot's manual pose 

estimation in the environment using the 2D pose estimator tool of Rviz. (b), (d) Represents the condensation of 

particles after the robot translates 1.6 meters in the positive x-direction for Scenario 1 and 3.29 meters forward 

in Scenario 2. 

 
(a) (b) 
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(c) (d) 

Figure 5-16 Global localization of a mobile robot for Scenario 1 and Scenario 2. (a), (c) After calling AMCL's 

global localization service, the particles are distributed uniformly (yellow arrows) across the entire map, with 

equal guesses about the robot's pose. Because the robot pose estimation and the actual robot poses differ, the 

lidar measurement (white line) does not match the map. (b), (d) The convergence of particles after the robot 

moves and when the filter updates its belief due to the motion, the measurements were projected from the 

robot’s pose point of view. For Scenario 1 the distance the filter took to converge is 4.15 meters and 21.38 

meters for Scenario 2. 

ii. Localization of the mobile robot with Case-2 parameters  

 In the case-2 experiment, we estimated the robot pose in the environment using 5 min 

particles and 10 max particles, as shown in Figure 5-17 which depicts the filter's pose estimation 

after moving the robot around the environment in Scenarios 1 and 2. The results show that even 

if the robot is teleoperated around the environment for a long time, it may be unable to localize 

itself. This is because there are no particles close to the robot's true position during the particle 

filter's correction and resampling step. Figure 5-19 depicts the operation of the particle filter, 

which demonstrates the internal analysis of the algorithm used to localize the robot. 
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Figure 5-17 Particles used for Case-2 parameters. 

 
(a) (b) 

 
(c) (d) 

Figure 5-18 The effect of small particles on the localization of the robot. 
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Figure 5-19 Structure of particle filter. 

• Particle Initializations: each particle is a belief of where the robot can be located, and 

each particle has a position (x,y) and orientation to keep the detail of the particle’s 

position guess. Each particle also has an associated weight. This is shown in Figure 5-15. 

From the computational perspective, adding more particles can increase the filter’s 

precision, but the number of computations required in the localization process is also 

much higher. 

• Prediction step: when the robot moves, all the particles move with the same motion. 

To account for process noise, the prediction step adds multivariate Gaussian noise to 

each particle motion, causing particle dispersion across the map. This distribution of 

particles is essential to ensuring that the robot's true pose is covered by particles, 

regardless of the robot's noise motion. During the prediction step, particles are 

propagated forward as determined by the noisy odometry motion model. 

• Correction step: sensor measurements are processed in this step. It corrects the state 

for the next filter iteration based on sensor measurements. It processes incoming 

measurements, compares them to the measurements of the particles on the map, and then 

prioritizes particles with the lowest error between measurements and the map. The 
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degree of correspondence between the distances obtained by the real laser scan and the 

distances calculated by each particle's expected distance measurement determines the 

likelihood of a particle being near the robot's ground truth pose. During this process, a 

weight is assigned to each particle. The particle with the highest weight has been used 

to estimate the robot's position, while particles with low weights are discarded. 

• Resampling step: after the correct step, the weights of the particles have changed. 

Resampling is the process of replacing the particles with small weights by others with 

high probability poses. Without the resampling step, particles would remain spread out 

over the map, without really making use of the information obtained by the 

measurements. Resampling helps the particles to condense to the true state of the robot. 

 During the experiment, the particle filters took roughly 10 to 15 seconds in Scenario 1, 

and 30 to 45 seconds in Scenario 2. We have observed that increasing the number of particles 

will improve the amcl’s pose estimation performance when combined with a good translation 

and orientation noise parameter (odom_alphas 1 through 4) to improve the robot’s localization 

performance. These parameters define how much noise is expected from the robot’s motions as 

it navigates inside the map.               

(c) Autonomous Navigation of Mobile Robot in the Actual Environments 

 Once the map is generated, the robot can determine its position in the environment in 

relative to the global map frame and perform path planning and obstacle avoidance. In the 

experiment section, we have tested the navigation performance for the static and dynamic 

obstacles in the real-world environment for both Scenarios. 

i. Navigation of mobile robot inside the actual environment with static obstacles 

 The Scout Mini mobile robot's navigation in the static map with static obstacles inside 

the environment is inflated by the global costmap, as shown in Figure 5-20, which represents 

places in a grid of cells where the robot is safe to be. When the goal is received by the move_base 
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node in the static environment, the global planner shown in Figure 5-21 is in charge of calculating 

a safe path to the goal pose that does not consider the readings performed by the robot lidar 

sensor while moving.  

 
(a) (b) (c) 
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(d) (e) (f) 

Figure 5-20 Autonomous navigation of a mobile robot in the actual indoor environment of the 

static map without dynamic obstacles for Scenario 1 and Scenario 2. 

 
(a) (b) 

Figure 5-21 Global planner of the robot in the static map of the environment. 

Figure 5-20 shows the operation of the path planning while moving from starting point 

to the target pose without any dynamic obstacles for both scenarios. The assigned letters in Figure 
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5-20 (a), (b), and (c) are Scenario 1 results, while (d), (e), and (f) is Scenario 2 experiment results, 

have the following intuitions:  

(a) and (d): scenarios 1 (a) and 2 (b) show the start of the navigation system in a static 

environment with static obstacles on Rviz and the actual environment. The pink arrow represents 

the target pose given to the robot by Rviz's 2D Nav Goal tool, which is sent to the move_base 

node to initiate global planning.   

(b), (c), (e), and (f): shows the planning operation as the robot moves towards the target goal. 

The position that is estimated is very close to the robot's goal. Thus, we can say that the robot 

repeatedly achieves a good precision to reach the goal. Table 5-5 shows the quantitative value of 

the target pose and the estimated pose with distance and orientation error.  

Table 5-5 Experimental comparisons of the target goal pose and the real robot estimated pose of Scenario 1 (a) 

and Scenario 2 (b) of Figure 5.20. 
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ii. Navigation of mobile robot inside the actual environment with dynamic obstacles 

 We added a dynamic obstacle with a size of 30cm by 60cm wooden box in Scenario 1 

and a person in Scenario 2 to test the navigation system in the actual environment with the Scout 

Mini mobile robot with dynamic obstacles, as shown in Figure 5-22. The dynamic obstacles in 

Figure 5-22 are detected by raw lidar sensor data before the navigation system is launched, as 

indicated by the red line on Rviz. Once the navigation begins, the local costmap is generated 

using the robot sensor readings to inflate the dynamic obstacles.  

 
(a) 

 
(b) 

Figure 5-22 Dynamic obstacles on Rviz and the actual environment from left to right for Scenario 1 (a) and 

Scenario 2 (b). 
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 The local planner (DWA algorithm discussed in Section 3 of the thesis) uses this local 

costmap to calculate the local plans shown in Figure 5-23 for both scenarios. Table 5.6 also 

shows the quantitative value of the target pose and the estimated pose with distance and 

orientation when the dynamic obstacle is placed in the robot's path. 

 
(a) 
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(b) 

Figure 5-23 Autonomous navigation of a mobile robot in the actual indoor environment of the static map with 

dynamic obstacles for Scenario 1 and Scenario 2. 
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Table 5-6 Experimental comparisons of the target goal pose and the real robot estimated pose of Scenario 1 (a) 

and Scenario 2 (b) for the dynamic obstacle. 

 

(a) 

 

(b) 

The experimental results demonstrated that the absolute distance and orientation error 

values differed from the simulation values due to noises in the sensors (wheel encoder, lidar), 
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the slipperiness of the ceramic environment we used for the experiment, the robot wheels, and 

the effects of parameters in AMCL and planners discussed in section 4 of the thesis. We observed 

a distance error range of 3cm to 350cm and an orientation error range of 0.08rad to 0.45rad after 

extensive testing. Tuning parameters carefully improves the navigation system's performance. 

Table 5-7 shows the major parameters that we used for the navigation of the move_base node. 

Section 4 of this thesis discusses the meaning and functions of these parameters. 

Table 5-7 Some of the navigation parameters used during the experiment of Scenario 1 and Scenario 2. (a) 

Global planner params, (b) Global costmap params, (c) DWA local planner params, (d) local costmap params, 

and (e) common costmap params    

 
                           (a)                                                                                (b)                      

       

 
                                         (c)                                                      (d) 
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5.3. Development of Graphical User Interface 

 The Graphical User Interface (GUI) designed to control the mobile robot's navigation in 

both simulation and hardware implementation. The experimental implementation of the GUI for 

the mobile robot will be the focus of this thesis. 

 The PyQt toolkit is used to create the robot's graphical user interface. PyQt is a Python 

binding for the Qt cross-platform widget toolkit and application framework [50]. The QT 

company develops Q that is used for the development of user interfaces and other applications.  

 QT can be installed in Ubuntu via the Advanced Packaging Tool (APT). To install, we 

can use the following command Qt/Qt SDK: "$ sudo apt-get install qt-sdk". This command 

installs the whole QT SDK and its libraries, which are required to complete our designed GUI. 

After installing the Qt SDK, PyQt must be installed on Ubuntu to bind with Qt cross-platform.  

 The Qt designer is used to create and insert controls into the Qt GUI. The Qt graphical 

user interface (GUI) is an XML file that has information about its controls and components. To 

control the robot with Qt GUI, we must first create the platform in Qt designer. The Qt designer 

provides a variety of options and tools to make the user interface simple and convenient. Figure 

5.24 depicts the Qt designer platform and used Qt 5 Designer to develop the GUI. 
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Figure 5-24 Qt 5 Designer tool. 

 To use the tool, we must first create an empty widget by selecting the Widget option 

from the New Forum window lists. The fundamental building blocks of the Qt graphical user 

interface are Qt widgets. Using this tool, we created an application for a mobile robot’s 

autonomous navigation in a mapped environment via a different waypoint based on the pose that 

we want the robot to take, as discussed in the following section. 

5.4. GUI-Based Autonomous Waypoint Navigation of Mobile 

Robot 

 The main goal of developing a GUI is easy to control a mobile robot to send it to the 

desired location and cancel the operation at any time without having to know complex commands 

to start and stop the robot. PyQt, ROS, and the Python interface are used to create the GUI. Figure 

5-25 shows the developed graphical user interface platform for controlling the robot navigation 

system in both scenarios. 
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(a) 

 
(b) 

Figure 5-25 The designed GUI for autonomous navigation of a mobile robot through different waypoints(a), 

(b): GUI platforms that contain the actual environments and the map of the environments on the right side, and 

also contain 5 tools for controlling the navigation system for Scenario (a) and Scenario (b).  
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The GUI in Figure 5-25 has the following features: 

• SpinBox: this widget is used to insert the waypoint position numbers as shown in the 

environment map, ranging from 0 to 3 in Scenario 1 and 0 to 4 in Scenario 2. To 

navigate the robot to the target goal in Scenarios 1 and 2, we considered three pose 

values and four poses, respectively. We can select or insert any waypoint from the list 

to send the goal. It is also possible to use any waypoint we want the robot to go inside 

the environment. The quantitative value of these goal positions and attitudes are listed 

in Table 5-8.  

 

• Go to the goal: this button has a function called “Go” and it is used to command the 

robot to go to the goal pose to the specified position given from the spinbox. By pressing 

the Go to the goal button, the position is sent to the navigation stack, where the robot 

plans its path and arrives at the desired destination. 

 

• Home: this button has a function called “Home” to return the robot from any location 

in the environment to the initial position. 

 

• Cancel: this button has a "Cancel" function that allows canceling the robot's current 

operation. When clicking the Cancel button, the robot will stop moving to any point on 

the map. 
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• Navigate through the waypoint: this button has a function called "navigating through 

waypoints" that allows the mobile robot to autonomously navigate through the poses 

shown in Table 5.8 in an ordered manner from 0 → 1 → 2 → 3 → 4 → 0 indefinitely. 

 

Table 5-8 Position and attitude quantitative values of the waypoints for autonomous navigation using GUI of 

Figure 5.25. (a) Scenario 1 and (b) Scenario 2                                              

 
(a) 

 

 
(b) 
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 Figure 5-26 shows the real-time autonomous navigation of the Scout Mini mobile robot 

through all waypoints while controlled via the GUI platform in Scenarios 1.  

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 5-26 GUI-based autonomous navigation of a mobile robot for Scenario 1. (a): shows the mobile robot's 

real-time autonomous navigation to the first waypoint (1) on the map using the GUI platform.  (b): depicts the 

mobile robot's real-time autonomous navigation to the second waypoint (2) of Table 5-8 Scenario 1. (c): shows 

the mobile robot's real-time autonomous navigation to the third waypoint (3) on the map using the GUI 

platform.  (d): shows the mobile robot's real-time autonomous navigation to the map's initial pose (0) using the 

GUI platform. 

5.5. Effects of Parameters on the Mobile Robot Performance 

 The ROS navigation stack has many parameters that can be configured to improve the 

performance of a mobile robot's autonomous navigation. This section discusses some of the 

major parameters that influence a mobile robot's autonomous navigation. We used the Scenario-

1 experiment to test the effect of each parameter on the performance of the parameters for 

mapping, localization, and path planning. 

i. Quantitative tuning effects of Gmapping parameters 

 Figure 5-27 depicts the real environment (a) for testing the effect of change of 

parameters and the path of the robot (b) around the environment. It displays data from the robot's 

(encoder's) odometry with /odom topic while teleoperating around the environment. 

There are different parameters of the Gmapping algorithm such as the map's resolution 

(delta), the sensor’s maximum range (maxRange), and the maximum usable range (maxUrange) 
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of the laser parameters. From the list of Gmapping parameters, in this thesis, we will cover the 

effect of the map resolution parameter (delta) on the quality of the map of the environment. 

 
(a) 

 
(b) 

Figure 5-27 Robot path for Scenario-1environment. (a) Robot inside the environment., (b) The path of the 

robot with its position values.  
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The delta parameter is defined as the environmental map's resolution expressed in meters per 

occupancy grid block. Figure 5-28 depicts the tuning parameter effects of delta and its effect on 

the time required to map the environment for two different values of delta.  

 
(a) (b) 

Figure 5-28 Effects of map resolution at the start of gmapping. 

(a): the environment map with 0.05 delta (map resolution) values. As shown in the figure, the 

spaces around the environment are completely covered, and it takes less time to collect all of the 

environment's measurement data. 

(b): In contrast, when a delta value of 0.01 is used, the algorithm may miss important 

environmental features and it takes a long time to obtain all measurement data from the 

environment, resulting in a poorly constructed map as shown with a red circle. 

 With the same robot speed of 0.2 m/sec and the same path, the Table 5-9 shows how 

long it took the algorithms to completely cover the environment in our case for two delta values. 

Table 5-9 The effects of map resolution tuning on the time it took the robot to fully explore the environment. 
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 When the resolution parameter is tuned, using less resolution than the lidar resolution 

results in poor map quality. To properly tune the resolution parameter of Gmapping, the laser 

sensor resolution value must be checked. Table 5-9 

ii. Quantitative effects of Adaptive Monte Carlo Localization parameter  

 Localization of a mobile robot is crucial to use the robot for autonomous navigation. 

AMCL (Adaptive Monte Carlo Localization) has over 40 parameters. In this thesis, we will focus 

on eight of them that can affect the robot's localization and navigation. This includes 

min_particles, max_particles, update_min_d, update_min_a, odom_alpha1, odom_alpha2, 

odom_alpha3, and odom_alpha4. To check the performance of the algorithm for different 

parameter values, we considered: 

▪ The same environment for all parameters.  

▪ The same path to follow to test the performance. 

▪ The robot's initial pose is estimated manually on Rviz using a 2D pose estimate 

tool by comparing it with the actual scenario. 

 To illustrate the effect on the localization of the above-mentioned parameters, we 

divided it into 3 cases: 

Case-1: Number of particles. 

 These particles are represented as min_particles (for a minimum number of particles) 

and max_particles (for a maximum number of particles) which shows the pose estimation of the 

robot. In the experiment, we used 3 intervals to test the effect of the number of particles on the 

performance of pose estimation of the robot. Figure 5-29 and Figure 5-30 depict the position 

estimation quantitatively and the pose of the robot in Rviz in the Scenario-1 environment for the 

three-particle interval values respectively. 
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Figure 5-29 AMCL pose estimation for the three particles interval. 

 In the Figure 5-29, the red path represents AMCL position estimation with min_particles 

= 500 and max_particles = 5000. From the result of the experiment, increasing the number of 

particles improves localization performance, but the computation takes time. For a small indoor 

environment, a moderate number of particles is sufficient because the filter can obtain all of the 

information after collecting some data via its sensor. The blue star in Figure 5-29 represents the 

estimated position with min_particles = 100 and max_particles = 1000, which is quite fine due 

to the small area in Scenario-1, and the particles also converge to one point, as shown in Figure 

5-30 (b). The third experiment is the extreme case (green path), where the min_particles = 5 and 

max_particles = 20. In this case, despite being teleoperated for a longer period of time to gather 

more information about the environment, the robot is unable to localize itself in the environment. 

This is due to a lack of particles during the particle filter's correction and resampling step that 

estimates the robot's true pose (depicted in Figure 5-30 (c)). 
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(a) (b) 

 
(c) 

Figure 5-30 The pose estimates of the robot for the three-particle intervals on Rviz. The figures depict how the 

particle clouds are dispersed with the lidar matching the environment. (a) min =500, max = 5000 , (b) min = 

100, max = 5000, (c) min = 5, max = 20                      

Case-2: The minimum translation and rotation movement before the update of a filter. 

 The AMCL package contains odometry information for resampling and updating the 

particle filters. These values are represented by the parameters update_min_d and update_min_a, 

which show the linear and angular motion required before performing a filter update respectively. 
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To evaluate the update rate, we run the experiments with four different values. The result 

depicted in Figure 5-31 shows the effect of the particle point cloud dispersion. The results were 

obtained from the robot's various poses in the environment. We also used data from the robot's 

rotation around the corner to visualize the rotational motion effect in the filter update. 

 

(a) 

 

(b) 
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(c) 

 
(d) 

Figure 5-31 The effect of changing the value of the minimum linear and angular distance to perform filter 

updates. (a) update_min_d = 0.1, update_min_a = 0.1., (b) update_min_d = 0.03, update_min_a = 0.03.,  (c) 

update_min_d = 0.25, update_min_a = 0.2.,  (d) update_min_d = 0.75, update_min_a = 0.7. 

 As illustrated in Figure 5-31 (a), (b), the higher the filter update, the smaller the linear 

and angular distance values required before the update. This means that the particle cloud 

variance decreases rapidly as the robot moves a short distance. In contrast, increasing the 

update_min_d and update_min_a parameter values, as shown in Figure 5-32 (d), increases the 

particle cloud distribution while lowering the filter update as shown with the white cloud arrows 

results in an increase in the uncertainty of the robot pose. 
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Case-3: Odometry noise parameters. 

 Depending on the model of the robot, the AMCL has a total of five parameters that 

describe the odometry noise of the robot. This parameter is composed of the values odom_alpha1 

(𝛼1), odom_alpha2 (𝛼2), odom_alpha3 (𝛼3), odom_alpha4 (𝛼4), and odom_alpha5 (𝛼5). We 

do not investigate the effect of odom_alpha5, because it is for a robot with an Omni model, 

because the mobile robot model we used in this thesis is differential. This Omni-directional 

model of the robot is the one that allows a non-holonomic robot to be converted into a holonomic 

robot. This type of wheeled robot can move back and forth, sideways, and rotate in place. The 

meaning and function of the odometry noise parameters can be found in section 4 of Table 4-5. 

 Figure 5-32 depicts the effect of different odometry noise parameter values. The effect of odometry 

noise parameters is investigated and compared together with filter update parameters (update_min_d and 

update_min_a). The values taken for experimentation are listed in  

 

 

 

 

Table 5-10.  
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(a) 

 
(b) 

 
(c) 

Figure 5-32 The effects of the odometry noise and the filter update parameters adjustments and comparisons. (a) 

case 1, (b) case 2, and (c) case 3 
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Table 5-10 The odometry noise and filter update parameter values. 

 

 For Figure 5.33 Case1 (a), we used the minimum values of the odometry noise parameters as well as 

the minimum linear and angular distance as shown in  

 

 

 

 

Table 5-10. The experimental results show that the particles cloud converges quickly within six 

seconds because of the low odometry noise and filter update parameter values, but there is some 

offset or mismatch between the map of the actual environment and the laser scan data, as 

indicated by the red circle. 

 We used the same odometry noise values as Case 1 for Case 2 of Figure 5-32 but 

increased the values of update_min_d and update_min_a by 0.55. Even if the particles do not 

converge quickly, as in Case 1, the localization estimate increases and there is no offset between 

the map of the environment and the laser measurement data, as indicated by a green circle. The 

result shows that the large update_min_d and update_min_a values compensate for the small 

odometry noise parameter values. 

 In Figure 5-32 Case3, we considered the high value of the odometry noises and the 

moderate value of the filer updates. In this case, there is high noise in the translational as well as 

the rotational motion of the robot. The particles are dispersed throughout the map even if the 

robot gets more information from the environment when teleoperating around. 
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 The experimental results revealed that the odometry noise parameters selected are 

dependent on the quality of the wheel encoder used. Because our system has a good odometry 

data value in our case, using high odometry noise parameters generates a lot of uncertainty about 

the robot's pose, as shown in Figure 5.33 Case3. If a robot has bad odometry information, 

increasing the odometry noise parameters improves the robot's localization performance. The 

selection of the odometry noise parameters must be done carefully because it can have an impact 

on the robot's performance when used for autonomous navigation. 
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 CONCLUSION  

 In this thesis, we have done both simulation and practical experiments to test and 

validate the autonomous navigation algorithm of a mobile robot that is developed using the ROS 

platform. The lidar data is used for mapping, localization of the robot inside the environment 

using particle filters, path planning (global and local), and navigating through the environment 

from one location to the goal pose while avoiding static and dynamic obstacles. We used a 16-

channel Velodyne sensor to generate the map of the two-dimensional environment and to detect 

obstacles in the 2D map. We also developed a Graphical User Interface (GUI) based autonomous 

navigation of a mobile robot through different waypoints of the actual environment that controls 

the robot using various buttons, as well as an emergency button to stop the robot at any time.  

 Furthermore, we analyzed and investigated some of the effects of the various parameters 

used for mobile robot mapping and localization. The proper tuning and understanding of each 

parameter's effect is critical for a mobile robot's map-based autonomous navigation. According 

to the experimental results, the mobile robot successfully reached the destination goal with a 

minimum localization error, and the performance of the robot's navigation is improved with 

careful parameter optimization. 
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