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초    록 

뇌 조직 세그멘테이션을 위한 Late 

Fusion Residual Network을 갖는 병렬 

UNet 구조 
 

 프라자파티 루케스 

지도 교수: 김영식 

정보통신공학과 

조선대학교 
 

신경퇴행성 만성질환, 알츠하이머 병 특정 뇌 질환에 대한 확실한 

진단은 뇌의 해부학적 변화를 분석함으로써 가능하다. 뇌 해부학의 

변화를 평가하기 위해 세분화의 정확도가 중요하다. 최근 연구에서 

UNet 기반의 설계는 생물학적 영상 분할에서 딥러닝 아키텍처를 

대체할 정도로 성능이 능가하는 것으로 나타난다. 그러나 의료영상의 

해상도가 낮고 데이터가 부족하여 분할 정확도를 높이는 것이 어렵다. 

본 논문에서는 잔류 네트워크를 사용하여 3개의 병렬 UNet을 결합하는 

고유 아키텍처를 제안한다. 이 디자인은 세 가지 면에서 기본 접근 

방식을 개선한다. 먼저 단일 이미지가 아닌 연속 3장의 이미지를 

입력으로 활용한다. 결과적으로 제안된 모델은 3장의 이미지 사이에서 

자유롭게 학습할 수 있다. 또한 3개의 고유한 UNet을 사용하여 

개별적으로 압축 및 압축해제를 통해 모델의 이미지의 특성을 결합하는 
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것을 방지한다. 마지막으로 UNet의 출력은 잔류 네트워크 설계에 따라 

스킵 연결에 의해 출력에 해당하는 이미지의 특성이 증대되는 방식으로 

병합된다. 뇌 조직 분할을 위해 제안된 방법은 공개적으로 사용 가능한 

데이터 셋에서 테스트 된다. 제안된 모델은 실험데이터에 따라 

뇌척수액(CSF)의 경우 94.9%, 회백질(GM)의 경우 95.8%, 

백질(WM)의 경우 95.93%의 분할 정확도를 달성했다. 이는 제안된 

방법이 자동으로 안정적이며 정확한 방식으로 뇌 MRI 영상을 분할할 

수 있음을 보여준다. 제안된 방법은 다양한 변형된 UNet뿐만  아니라 

기존의 단일 UNet보다 성능이 높다. 

키워드: 조직 세그멘테이션, 병렬 UNet, 잔류 네트워크, 뇌 MRI. 
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Abstract 

Parallel UNet Architecture with Late 
Fusion Residual Network for 
segmentation of Brain Tissues 

 
 

Rukesh Prajapati 
Advisor: Prof. Young-Sik Kim 

Dept. of Information and Communication Engineering 
Chosun University 

 
A reliable diagnosis of particular brain illnesses can be made by analyzing 

changes in brain anatomy. For assessing changes in brain anatomy, 

segmentation accuracy is critical. UNet-based designs have been shown to 

outperform alternative deep learning architectures in biological picture 

segmentation in recent research. However, due to the poor resolution of 

medical pictures and a lack of data, enhancing segmentation accuracy is 

difficult. In this paper, a unique architecture is offered that uses a residual 

network to join three parallel UNets. In three ways, this design improves on 

the basic approaches. To begin, three successive photos are utilized as input 

instead of a single image. As a result, the proposed model is free to learn from 

nearby photos as well. The photos are also compressed and decompressed 

separately using three distinct UNets, preventing the model from combining 

the images' characteristics. Finally, the outputs of the UNets are merged in 

such a way that the characteristics of the picture corresponding to the output 

are augmented by a skip connection, as per the residual network design. For 

brain tissue segmentation, the suggested approach was tested on publicly 



 

8  

 

available datasets. The proposed model achieves segmentation accuracies of 

94.9% for cerebrospinal fluid (CSF), 95.8% for gray matter (GM), and 95.93% 

for white matter (WM), according to the experimental data. This demonstrates 

that the suggested method can automatically segment brain MRI images in a 

reliable and exact manner. The suggested design outperformed a single 

traditional UNet as well as various UNet variations. 

Keywords: Tissue segmentation, parallel UNet, residual network, brain MRI. 
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1. Introduction 
Medical image processing technology has advanced at a rapid pace, 

benefiting mankind and playing a vital role in clinical diagnostics. Medical 

imaging has advanced to the point that it can now be used to observe the human 

body in order to diagnose and monitor medical disorders [1-2]. Image 

information is provided by imaging modalities such as ultrasound (US), 

magnetic resonance imaging (MRI), and X-ray imaging, which the radiologist 

must study and assess extensively in a shorter amount of time [2]. MRI is 

commonly used for structural analysis because it produces pictures with high 

soft-tissue contrast and spatial resolution while posing minimal health risks. 

Different brain illnesses, such as epilepsy, schizophrenia, Alzheimer's disease, 

and other degenerative disorders, are diagnosed using quantitative brain MRI 

scans [3]. For diagnosis and postoperative analysis, MRI is also required to 

detect and pinpoint diseased tissues and healthy structures. As a result, 

segmenting aberrant tissues from medical pictures is critical for the research 

and treatment of many disorders. The observer can follow up on the person if 

brain problems are detected early. As a result, the primary goal is to develop 

better tools that aid in the interpretation of pictures. 

Section 1.1 of this chapter gives a brief overview of MRI and how it is used 

to diagnose various brain illnesses. The suggested work's summary and 

motivation are presented in Section 1.2. The research aims and key 

contributions of the thesis are presented in Section 1.3. The thesis outline is 

explained in Section 1.4. 
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1.1. A Brief Review of MRI 

MRI is a medical imaging technique that uses a magnetic field and computer-

generated radio waves to obtain detailed pictures of organs and tissues [2]. The 

bulk of MRI machines employ large, tube-shaped magnets. While we are 

inside an MRI scanner, the magnetic field realigns the water molecules in our 

bodies for a brief duration. Similar to slices in a loaf of bread, these aligned 

atoms generate small signals that are utilized to form cross-sectional MRI 

images. In addition, the MRI scanner can provide three-dimensional pictures 

that may be seen from various angles. An MRI scan is a non-invasive way for 

a doctor to examine the organs, tissues, and skeletal system. It generates high-

resolution pictures of the interior of the body to assist in the diagnosis of a 

variety of illnesses. The most frequent imaging test for the brain is MRI. The 

functional MRI of the brain (fMRI) is a one-of-a-kind MRI technique [3]. It 

creates pictures of blood flow to specific parts of the brain. It may be used to 

examine the brain's anatomy and determine which parts of the brain are in 

charge of critical functions. Functional MRI can also be used to diagnose 

damage after a head injury or disorders like Alzheimer's disease. 

1.2. MRI for Brain Disorders Diagnosis 

MRI of the brain and brain stem is a non-invasive, painless procedure that 

produces comprehensive pictures of the brain and brain stem. The value of 

MRI in brain diagnosis is widely understood, and it has been incorporated into 

a number of novel brain diagnostic criteria [4-5]. An MRI scan can reveal 

cysts, tumors, bleeding, edema, developmental and anatomical anomalies, 

infections, inflammatory illnesses, and blood vessel issues. High-resolution 

MRI may detect the presence and degree of brain atrophy, which can help with 

Alzheimer's disease diagnosis in vivo [6] and even indicate the presence of 
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neurofibrillary tangles (NFTs), which are considered a hallmark pathology of 

the illness [7]. While MRI-measured brain shrinkage is a reliable and sensitive 

predictor of neurodegeneration in general [8], it may also be utilized to 

distinguish between a variety of dementias with comparable atrophy patterns 

[9]. 

1.3. Overview and Motivation 

Neurodegenerative diseases cause the brain and nerves to degrade over time. 

These illnesses have the ability to change people's personalities and lead them 

to become confused. They can also harm the brain's cells and neurons. 

Alzheimer's disease, for example, is a progressive brain illness that affects 

people as they age [10]. Over time, they can cause havoc with the memory 

system and brain functions. Other disorders, such as Tay-Sachs disease, are 

hereditary and appear early in life. 

While certain therapies might temporarily relieve symptoms, none will stop 

or reverse the disease's progression. In today's lifestyle, prevention is the key 

to minimizing the prevalence of neurological disorders and, as a result, the 

number of global mortality. As a result, a strong predictor of clinical diagnosis 

is an early sign of a greater chance of neurodegenerative illness [10]. 

Furthermore, medical test findings, clinical history, and medical picture 

collection are all used to detect neurological brain illnesses. The capacity of 

an expert to understand a large amount of data in a short amount of time might 

make diagnosis more difficult in some cases [11]. Medical imaging 

technologies and computer software advancements are being used to help 

doctors swiftly diagnose and analyze disorders. These systems diagnose the 

illness exclusively on the basis of visual data [12]. One of the most difficult 

problems in the medical profession is developing software for radiological 
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image processing. Because accurate sickness detection is based on both picture 

capture and interpretation, modern diagnostic systems are built using cutting-

edge computer and data processing technologies. Despite the availability of 

commercially accessible computer-based diagnostic equipment, completely 

automated techniques are still lacking in the literature [10-12]. They are 

difficult to use for diagnostic purposes as a result of this flaw. The loss of brain 

tissue is the first indicator of the development of a brain ailment. 

 

Figure 1-1. Binary map of the brain MRI ground truth image and its segmented 
structures. 

For example, MRI is a non-invasive and accurate method of assessing brain 

tissue for the diagnosis of brain diseases. As a result, the expert's main goal is 

obtaining meaningful information on brain tissue segmentation. The usage of 

highly qualified specialists is required for this activity. The brain MRI ground 

truth picture and its segmented structures are shown in Figure 1-1. On the other 

hand, manual tracing of brain components including grey matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF) yields conflicting findings. A 
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CNN-based automated segmentation of brain regions from brain MRI, such as 

WM, GM, and CSF, is proposed which assists in the diagnosis and successful 

treatment of various brain illnesses. 

1.4. Objectives 

The utilization of numerous frames to provide coherent results and parallel 

structure to depict extremely sophisticated interactions between surrounding 

slices motivates the suggested innovative architecture for brain MRI image 

segmentation. Instead of a conventional way of using single input for the 

model, the input consists of three 2D slices labeled "late," "middle," and 

"early," with the "middle" slice in the middle expected. 

The following is a list of the proposed model’s major contributions: 

• To extract associated information from many slices, using several 

slices is suggested as input, including nearby slices. 

• A unique parallel UNet that preserves each input slice's distinct spatial 

information. 

• To boost performance, merging the filters from UNets at the end with 

a residual network. 

• Experimentation around with scaling pictures generated using OASIS 

data. The suggested technique does not employ additional or extra 

procedure, or pre- or post-processing of the photographs, except from 

scaling the 2D images. 

• Examination of the most up-to-date approaches, including traditional 

UNet and a three image input accepting modified UNet. The suggested 

strategy outperforms the other approaches. 
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1.5. Thesis Layout 

There are five chapters in this thesis. Following the introduction in Chapter 

1, Chapter 2 gives an overview of sematic segmentation algorithms for medical 

and natural photos. The suggested approach and pipeline are explained in 

Chapter 3, notably the parallel UNet architecture and fusion with residual 

network. The experimental results are compared to the results of state-of-the-

art algorithms in Chapter 4. Finally, Chapter 5 wraps up with a brief overview 

of the study's findings. 
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2. Related Works 
In image processing, semantic segmentation assigns a distinct class label to 

each pixel for localization [13]. MRI is the most widely used non-invasive 

technique for studying the brain in medical image processing, producing a 

contrast picture in the tissue for the characteristics of interest by repeating 

various excitations [37]. MRI can identify disorders that affect the brain, such 

as Alzheimer's disease (AD) and multiple sclerosis (MS) [38]. The term "tissue 

atrophy" is frequently used to describe the symptoms of Alzheimer's disease. 

It's critical to accurately identify and categorize the sick tissue and its 

surrounding healthy tissues when diagnosing disorders like Alzheimer's. For a 

more accurate diagnosis, a vast amount of data is necessary. Physicians, on the 

other hand, may find manually evaluating vast and complex MRI datasets and 

extracting critical information challenging. In addition, manual brain MRI 

image analysis is time-consuming and error-prone [39]. As a result, for precise 

and dependable findings, an automated segmentation approach must be 

devised. Large datasets have recently been utilized to evaluate computer aided 

MRI segmentation to aid clinicians in making qualitative diagnoses. The 

brain's structural alterations may also be assessed by MRI segmentation at 

different time periods.  

2.1.  Medical Image Segmentation 

Conventional approaches for picture segmentation, such as clustering and 

thresholding, were utilized before convolutional neural networks (CNN) to 

locate object boundaries with low-level information [15]. For pixel-level 

localization of scene labels, a number of graphical models have been utilized 

[15]. When it comes to segmenting neighboring class labels, these solutions 

fall short. Graphical models, such as Conditional Random Forests (CRFs) [16], 
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are still employed as refinement layers to increase performance. Deep learning 

algorithms from the beginning fine-tuned fully linked categorization layers 

[17]. Overfitting and insufficient depth for developing abstract features were 

solved using a refinement method in these investigations [17, 18]. CNN has 

been widely employed in several segmentation tasks in recent studies [14]. The 

limits of classical pixel classification have been solved by CNN. The capacity 

of deep convolutional neural networks to autonomously learn features has 

been shown to improve performance [20]. Patches, sliding windows, and fully 

connected CRFs, among other things, were used in previous CNN techniques 

to picture segmentation. These methods contain redundant calculations and are 

unable to learn global characteristics [21]. In the absence of completely 

connected layers from CNN, a fully convolutional network (FCN) architecture 

for supervised pixel-wise prediction with marginal number of weights in 

convolution layers was significantly quicker, avoiding the constraints of prior 

techniques [19]. This design was significant in segmentation research since it 

allowed for the generation of segmentation maps for pictures of any resolution 

[15]. The combining of information from various filter layers is possible with 

FCN and the "Skip" design [19]. 

2.2. Parallel UNet Architecture 

UNet uses the same architecture as FCN and SegNet [1], which is entirely 

made up of convolutional layers. UNet has a symmetric design and comprises 

of an encoder and a decoder [22]. The encoder reduces the spatial dimension 

by using pooling layers, whereas the decoder recovers it [23]. The skip 

connections allow information to be sent at the same level from the encoder to 

the feature map of the decoder. Several research have recently proposed 

several UNet versions to increase the performance of medical picture 
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segmentation [24]. Most of the research [25, 26, 27, 28] employed single UNet 

topologies with a variety of changes such batch normalization, data 

augmentation, and patch-wise segmentation. Few designs have been described 

in recent years that use more than one UNet. For X-ray picture recognition and 

localization, a two-parallel UNet technique was presented [29]. Multi-Inputs 

UNet (MI-UNet) is another variation that uses several inputs to extract 

parcellation information from brain MRI [30]. When many UNets are used, 

merging the output or layers within them becomes a difficult operation. One 

method involves feeding the output of one parallel UNet to the watershed 

algorithm as a seed for segmenting the output of another UNet [31]. To make 

use of multimodal data, inputs were contracted separately and then 

concatenated before being decoded into a single output [32]. TMD-UNet 

consists of three concurrent sub-UNet models with modified node topologies 

[33]. TMD-UNet, unlike the typical UNet architecture, uses all of the 

convolutional units' output features as input for the following nodes. 

2.3. Late Fusion Approach 

As the neural network's depth grows, the accuracy becomes saturated and 

eventually deteriorates. The residual network [35] proposed a paradigm for 

addressing the deterioration problem. In this strategy, the shortcut connections 

conduct identity mapping, and the outputs of these connections are added to 

the stacked layer's outputs. Identity shortcut connections can be readily created 

and taught end-to-end with backpropagation [35], with no additional 

parameters or computational complexity. ResUnet-a modified residual blocks 

to replace the UNet architecture's building blocks [36]. The change allowed 

for the semantic segmentation of high-resolution pictures to be labeled. 
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3. Proposed Method 
A novel architecture is offered for the segmentation of brain MRI images, 

motivated by the use of multiple frames to produce coherent findings and 

multi-path parallel architecture to describe very complicated interactions 

between surrounding slices. Rather of using a single slice as input, three 

sequential 2D slices is employed labeled 'early, middle, and late,' with the 

central 'middle' slice predicted as shown in Figure 3-1(a) and -(c).  

Figure 3-1. Input for the proposed model (a) 3 sequential input where (n+1)th 

, nth, and (n-1)th slice are later, central, and early images/slices respectively, (b) 

the proposed novel model, and (c) segmentation result generated for the nth 

slice. 

The spatial information is believed to be connected with the 'middle' slice is 

made up of the nearby slices 'early' and 'late.' The three slices are run through 

three distinct UNets before being fused to forecast the 'middle' slice. The 

model's multi-paths fusion is driven by Nie et al., who discovered that late 

fusion improves performance [42]. A unique way is presented for fusing 

parallel UNets with the help of a late merging residual network. To the stacked 
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outputs residual network, UNet outputs are added for the 'middle' slice. To 

improve performance, the model may learn from nearby layers as well as 

reinforce and maintain the attributes of the center slice. 

3.1. Proposed Architecture 

The proposed serial-input parallel UNet (SIP-UNet) differs from traditional 

UNet in that it may use and extract characteristics from surrounding slices or 

pictures. In a normal UNet, there is just one related picture that is utilized as 

input. However, in SIP-UNet, the segmentation result of the core slice is also 

obtained using two nearby slices ('early' and 'later'). MRI images are sliced for 

input data having three consecutive slices for each individual and then fed into 

SIP-UNet together. The difference between the input for a regular UNet and 

the proposed SIP-UNet is seen in Figure 3-2(a) and -(b).  

Figure 3-2. Illustration of difference between: (a) conventional UNet and 

(b) proposed model 



 

20  

 

 

A traditional UNet and the UNet utilized in the SIP-UNet are shown in Figure 

3-3(a) and –(b). The proposed SIP-UNet is made up of two primary 

components: a parallel UNet and a residual network for late fusion. For 

different views (axial, sagittal, and coronal) of brain MRI, the model is trained 

and tested separately. 

3.2. Parallel UNets 

 

Figure 3-3. Architecture of: (a) a conventional segmentation UNet and (b) one 

of the UNets utilized to encode and decode single input in SIP-UNet. 
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The parallel UNet is made up of three typical UNets that are all the same. 

Each of the slices from the input data is passed to a separate UNet. Figure 3-

3(a) and -(b) depicts the architecture of each unique UNet that constructs the 

parallel structure in Figure 3-2(b). An encoder path and a decoder path make 

up the UNet architecture. A completely convolutional network design is used 

in both the encoder and decoder. A 3 × 3 convolution is done twice in the 

decoder route, followed by a 2 × 2 max pooling operation, which doubles the 

number of feature channels at each down-sampling step. Alternatively, the 

decoder route includes a 2 × 2 up-convolution, which reduces the number of 

feature channels by half, followed by concatenation with the equivalent 

encoder path feature map and two 3 × 3 convolutions. At the end of the 

process, a feature map with 32 layers is created. In both the encoder and 

decoder parts, each convolutional operation is followed by a ReLU [31] 

activation. Table 1 shows the structural features of a typical UNet. The last 

convolution block, which is followed by the Softmax function, is omitted from 

the parallel UNet's construction block. Later, a suggested residual network is 

employed to merge the feature maps from the several UNet pathways. 

3.3. Proposed Fusion Using Residual Network 

Using a residual network, a new way for combining the features of parallel 

UNet designs is presented. To begin, each UNet's 32 feature maps are 

concatenated as illustrated in Figure 3-4. Two three-by-three convolutions are 

conducted on the concatenated feature maps, as illustrated in Figure 3-4. The 

feature maps of the core slice are then updated with the output of the stacked 

layers. The skip connection is only utilized for the core slice's feature maps. 

Skipping the link for the 'central' slice feature maps  is believed to maintain 
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and reinforce the information while preventing the model from learning 

superfluous features from nearby slices. 

Formally, the feature maps from ‘early’, ‘central’, and ‘later’ slices are 

denoted as 𝑥!, 𝑥", and 𝑥# respectively, and concatenated layers as 𝑥$, and the 

concatenated layers are allowed to fit another mapping of F (𝑥$) . The 

underlying mapping H(𝑥$) is defined as: 

                                     H(𝑥!)	=	F(𝑥!) + 𝑥"                              (1) 

 

Figure 3-4. The building block of late fusion residual learning for merging the 

UNets. 𝑥!  represents early slice processing UNet’s final features, 𝑥# 

represents later slice processing UNet’s final features, and 𝑥"  represents 

central slice processing UNet’s final features, which is also passed using the 

skip connection in fusion model. 

To maintain equal dimension of 𝑥"  and F, a linear projection 𝑊% within a 

skip connections is performed. The building block of the residual network 

considered in this paper is defined as: 
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                                                  𝑦 =F(𝑥!, {𝑊#}) +𝑊$𝑥"                                           (2) 

Here, 𝑥$ and 𝑦 are the considered building block’s input and output vectors 

respectively. F (𝑥$, {𝑊&})  function represents a residual mapping to be 

learned. In Figure 3-4, to omit biases for simplification of notations, we get          

F		= 𝑊'𝑟(𝑊(𝑥$), where r denotes the ReLU [43]. In proposed model, the 

flexible residual function F has two layers as shown in Figure 3-5. Even 

though more layers are possible, it will represent a linear layer while using a 

single layer. For the linear layer:   𝑦 = 	𝑊(𝑥$ +𝑊%𝑥" there are no observed 

advantages in the residual network [37]. The function F(𝑥$, {𝑊&}) in Equation 

2 represents convolutional layers. The structure detail of the proposed residual 

block is shown in Table 2. 

3.4.   Loss Function 

The goal of this research is to categorize brain MRI pictures down to the pixel 

level. The model is trained to predict which of the four groups each pixel 

belongs to. After the final convolution layer, the softmax activation function 

is applied for the multi-class prediction model. In the ground truth, the truth 

labels are integer encoded. Background is 0, CSF is 1, GM is 2, and WM is 3. 

The sparse categorical cross-entropy loss function is the most widely utilized 

loss function for this type of multi-class segmentation problem. The following 

is a definition of cross-entropy: 

                                  L =  − %
|'|
	∑ 𝑙𝑜𝑔	(𝜎#)(	∈	'                                          (3) 
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Table 1. Architecture of a single UNet 

Layer Name Output Shape Connected To 

Input_1 256 × 256 × 1  

Conv2d 256 × 256 × 32 Input_1 

Conv2d_1 256 × 256x 32 Conv2d 

Max_pooling2d 128 × 128 × 32 Conv2d_1 

Conv2d_2 128 × 128 × 64 Max_pooling2d 

Conv2d_3 128 × 128 × 64 Conv2d_2 

Max_pooling2d_1 64 × 64 × 64 Conv2d_3 

Conv2d_4 64 × 64 × 128 Max_pooling2d_1 

Conv2d_5 64 × 64 × 128 Conv2d_4 

Max_pooling2d_2 32 × 32 × 128 Conv2d_5 

Conv2d_6 32 × 32 × 256 Max_pooling2d_2 

Conv2d_7 32 × 32 × 256 Conv2d_6 

Max_pooling2d_3 16 × 16 × 256 Conv2d_7 

Conv2d_8 16 × 16 × 512 Max_pooling2d_3 

Conv2d_9 16 × 16 × 512 Conv2d_8 

Conv2d_transpose 32 × 32 × 256 Conv2d_9 

Concatenate 32 × 32 × 512 
Conv2d_transpose 

Conv2d_7 

Conv2d_10 32 × 32 × 256 Concatenate 

Conv2d_11 32 × 32 × 256 Conv2d_10 

Conv2d_transpose_1 64 × 64 × 128 Conv2d_11 

Concatenate_1 64 × 64 × 256 
Conv2d_transpose_1 

Conv2d_5 
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Layer Name Output Shape Connected To 

Conv2d_12 64 × 64 × 128 Concatenate_1 

Conv2d_13 64 × 64 × 128 Conv2d_12 

Conv2d_transpose_2 128 × 128 × 64 Conv2d_13 

Concatenate_2 128 × 128 × 128 
Conv2d_transpose_2 

Conv2d_3 

Conv2d_14 128 × 128 × 64 Concatenate_2 

Conv2d_15 128 × 128 × 64 Conv2d_14 

Conv2d_transpose_3 256 × 256 × 32 Conv2d_15 

Concatenate_3 256 × 256 × 64 
Conv2d_transpose_3 

Conv2d_1 

Conv2d_16 256 × 256 × 32 Concatenate_3 

Conv2d_17 256 × 256 × 32 Conv2d_16 

Conv2d_18 256 × 256 × 4 Conv2d_17 

All “conv2d” corresponds to a 3x3 convolution block followed by ReLU 

activation function except for the last convolution block which is followed by 

the Softmax Function. 
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Table 2. Architecture of the proposed residual network for fusion of the 

parallel UNets 

Layer name Output shape Connected to 

Concatenate_12 256 × 256 × 96 

Conv2d_16 

Conv2d_33 

Conv2d_50 

Conv2d_51 256 × 256 × 64 Concatenate_12 

Conv2d_52 256 × 256 × 64 Conv2d_51 

Conv2d_53 256 × 256 × 64 Conv2d_33 

Add 256 × 256 × 64 
Conv2d_52 

Conv2d_53 

Conv2d_54 256 × 256 × 32 Add 

Conv2d_55 256 × 256 × 32 Conv2d_54 

Conv2d_56 256 × 256 × 32 Add 

Add_1 256 × 256 × 32 
Conv2d_55 

Conv2d_56 

Conv2d_57 256 × 256 × 4 Add_1 

Two convolution blocks: conv2d_51 and conv2d_54 are followed by ReLU 

activation function. Similarly, two addition blocks: add and add_1 are also 

followed by ReLU activation function. The final convolution block 

“conv2d_57” is followed by Softmax function and generates segmented 

output. 
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Figure 3-5. The proposed residual network for the fusion of the filters from 

parallel UNets. The corresponding layer names are from the Table 2. Showing 

the connections of the convolutional layers. 
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4. Experimental Analysis 

4.1. Datasets 

The proposed method was trained and evaluated using OASIS dataset. A 

detailed description of the dataset is discussed as follow. 

4.2.  OASIS Dataset 

The Open Access Series of Imaging Studios (OASIS) dataset [45] is used to 

test the suggested approach. In OASIS, there are 413 demented individuals 

and 20 non-demented participants. 50 participants were chosen at random for 

training and the remaining 386 subjects for testing the model out of the 436 

total. The MRI scan and segmented 3D picture of each participant have 

dimensions of 176 × 208 × 176. Two-dimensional pictures are created in three 

planes: axial, coronal, and sagittal. There are certain empty photos that do not 

have information about the brain in all planes when converting each image to 

2D data. To eliminate empty 2D pictures, only slices from 15 to 145 in the 

axial plane, 30 to 180 slices in the coronal plane, and 25 to 145 slices in the 

sagittal plane are used. All photos are scaled to 256 × 256 dimensions since 

these 2D slices vary in size across different dimensions and planes. Three 

successive photographs are concatenated after resizing them to produce an 

input for the proposed model. The size after concatenation is 256 × 256 × 3. 

Because colorless photos are utilized, the third dimension represents various 

slices rather than channels. The 'early' slice is represented by the first slice, the 

'center' slice by the second slice, and the 'late' slice by the third slice. 

For training, 50 patients are employed from the OASIS dataset. The models 

for various planes are trained using the same subjects. In the axial plane, 130 

2D slices (ranging from 15 to 145) are collected from each individual. In the 
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coronal and sagittal planes, 150 2D slices (from 30 to 180) and 120 2D slices 

(from 25 to 145) are retrieved from each unique patient. The axial, coronal, 

and sagittal planes yield 6500, 7500, and 6000 pictures, respectively. For each 

plane, the models are trained and evaluated individually. The remaining 386 

participants are utilized for testing and extract the photos in the same way as 

for training. In total 50180, 57900, and 46320 pictures are obtained as test data 

from the axial, coronal, and sagittal planes, respectively. 

4.3. Evaluation Matrics 

The Dice Similarity Coefficient (DSC) and the Jaccard Index are used to 

assess performance (JI). JI is the ratio of the expected and ground-truth 

pictures' overlapping area to the union area between them. Another statistic is 

the DSC, which is the ratio of the total number of pixels to two times the 

overlapping area of the ground truth and forecasted pictures. 

For the ground truth segmentation map 𝐼	and the predicted segmentation map 

𝐼$, JI and DSC are defined in Equation 4 and Equation 5 respectively, 

                                                        JI =	 |+∩+
!|

|+∪+!|
                                                      (4) 

                                                            DSC= .|+∩+!|
|+|/|+!|

                                                         (5) 

Because the segmentation has four classes, JI and DSC are computed 

independently for each class. Performance on background segmentation is not 

tested among the four classes. Simpler models can also be used for background 

segmentation. For the remaining three classes, CSF, GM, and WM, the 

performance of the models are compared. The evaluation metrics for each class 

are determined individually in multi-class segmentation. If we wish to 

compute JI for CSF, for example, pixels connected to CSF are given a value 
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of 1, while the rest of the pixels are given a value of 0. For GM and WM, the 

same approach is used. 

4.4. Experimental Setup 

The Keras platform will be used to implement the proposed network. This 

experiment was conducted on a workstation with an Intel® CoreTM i9-10900K 

CPU, 64 GB RAM, and an NVIDIA RTX 3090 GPU. The proposed model is 

designed for the problem of 2D segmentation. There are several views/planes 

in the 3D medical picture data: (i) axial, (ii) sagittal, and (iii) coronal. The 

model is trained for each plane separately and use it to generate predictions 

and test it. Initially 2D slices from 3D data are extracted before concatenating 

three successive slices. The 'center' slice is anticipated from these three slices. 

As a result, the 'central' slice's ground truth is taken as the training output. 255 

× 255 × 3 is the input dimension for the proposed model. The 2D segmentation 

problem is what the proposed model is for. There are three types of 

views/planes in the 3D medical picture data: axial, sagittal, and coronal. For 

each plane, the model is trained separately and use it to generate predictions 

and test it. Two-dimensional slices are extracted from three-dimensional data 

before concatenating three slices together. The 'center' slice is calculated from 

these three segments. As a result, the 'central' slice's ground truth is used as the 

training output. The proposed model requires a 255 × 255 × 3 input dimension. 

The plane that corresponds to the training plane is extracted and predicted 

during testing. When a model is trained using an axial plane, for example, the 

data connected to the axial plane is tested. The test input, like the training data, 

consists of three successive 2D slices that are delivered to the model. The 

'central' slice's ground truth is also saved, and this is eventually used to 

evaluate the model by comparing it to the result. 
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4.5. Results and Discussions 

In section 4.5.1, a research utilizing the input of a single slice and many slices 

is run in a basic UNet model and illustrate how SIP-UNet improves 

segmentation. In section 4.5.2, the segmentation performance is analyzed and 

compared with several existing models. 

4.5.1.  Analysis and Comparison with Single and Multiple slice UNet 

When it comes to segmenting biological pictures, UNet outperforms the 

competition. For segmentation, first the UNet is put to the test using a single 

slice input. The goal of testing with a single slice input is to examine if the 

results are better with or without the surrounding slice's features as compared 

to testing with a multi-slices input. Later, the input layer of the same UNet is 

adjusted to make it appropriate for processing inputs with nearby slices. This 

UNet's input will consist of three 2D planes. The planes are made up of slices 

that are next to each other. 

The majority of prior research [20, 23, 46] only used a limited number of 

slices. In [23, 46], the slices were alternated or only one slice was chosen from 

a group of many slices. Because the 2D slices are similar, the goal of predicting 

and training just a limited number of slices is to avoid duplicating information 

from surrounding slices. These approaches, however, are insufficient for 

quantifying brain alterations since they do not take into account the complete 

brain. All of the slices that make up portions of the brain are included in the 

investigation. This aids in measuring changes in each layer and, in turn, leads 

to matching 3D quantification findings. 

Table 3 shows the results of the DSC and JI scores for UNet with single and 

multiple slices using the planned SIP-UNet. The results are the averages of the 
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test photos for the relevant plane. The DSC score in the SIP-UNet is marginally 

improved for the single slice and multi-slice UNets, as seen in the table. For 

WM, GM, and CSF, the DSC values obtained using the standard UNet are 

0.953, 0.955, and 0.941, respectively, whereas the DSC scores obtained using 

the SIP-UNet are 0.954, 0.959, and 0.949, respectively. The DSC score of the 

UNet with single input and the UNet with multi-slices input is nearly 

comparable. The coronal and sagittal planes show a small improvement in 

DSC values, similar to the axial plane.  

The enhanced JI scores in Table 3 for the identical testing pictures 

demonstrate the usefulness of the SIP-UNet. The JI of the GM and CSF in the 

axial plane is much superior than the other conventional UNets. The JI score 

improves by 1% for both tissue segmentations in this case. In the same way, 

WM and GM improve by the same proportion in the sagittal plane, while WM 

improves by the same amount in the coronal plane. In the JI of the GM and 

CSF in the coronal plane and CSF in the sagittal plane, the suggested SIP-

UNet scores 2% higher. On the same data, the suggested SIP-UNet model has 

a higher JI, hence the results are better than the standard UNet model. 

The outcomes are visually examined of specific slices of a random subject to 

assess the improvement in the SIP-UNet result. The binary mapping of the 

related tissue makes comparing particular tissue segmentation easy. A binary 

map of WM, GM, and CSF are built individually, then compare it to the ground 

truth and the outcomes of the various models. The result for the axial plane is 

shown in Figure 4-1. The ground truth and outcomes of the one slice input 

UNet, the multi-slice input UNet, and the suggested SIP-UNet are represented 

in the column. From top to bottom, the row shows a binary map of the various 

tissues: WM, GM, and CSF. The binary map in Figure 4-1 is a 70th axial plane 
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slice from a randomly selected individual. A red box in the figures highlights 

the difference in the pattern of the binary map of the two models. The binary 

map of the multi-slice UNet output in the first row of WM contains a false 

prediction in a location marked by the red box at the top of the picture. In the 

other two models, however, there is no such incorrect prediction. The box in 

the center of the same row depicts the incorrect prediction in all three model 

outputs. In this scenario, there is no such tissue in the area covered by the 

middle red box in the ground truth, yet the incorrect prediction can be seen in 

all of the outputs. However, in close examination, it can be observed that the 

size of the incorrect projected tissue in the middlebox in the SIP-UNet result 

is far smaller. As a consequence, even in the incorrect prediction zone, the 

suggested SIP-UNet model's output is closer to the ground truth than the other 

two models. The location where the single slice UNet failed to predict the 

existence of tissue in that region, but the other two models were successful, is 

shown in the last red box from the top in the first row. The suggested SIP-

UNet produces a result that is closer to the ground truth than the other two 

highlighted locations in the first row. 

The binary map of GM is compared in the second row of Figure 4-1. The 

first highlighted area depicts the area where UNet's multi-slices input predicted 

false. All three models were successful in the remaining three highlighted 

locations, however the shape and edge of the projected outcome in these 

regions varies in the single-slice and multi-slice input UNet. With the 

suggested SIP-UNet model, the proper edge and area of the tissues in these 

locations are right. The CSF findings are found on the third row. The single 

slice and multi-slice UNet models, like GM in the second row, predicted the 

tissues in the highlighted locations but were unable to provide a result with the 
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same area and edge as the ground truth. The SIP-UNet, on the other hand, 

predicts tissues in this region with a comparable edge and shape to the ground 

truth. 

The segmentation results for the coronal plane are shown in Figure 4-2. The 

subject is chosen at random, and the 30th slice in the coronal plane of this 

subject is segmented using several models and shown in columns. The WM 

binary map is shown in the first row, and it can be seen that the SIP-UNet 

result (last column) can forecast a very tiny region containing WM, however 

the other two UNets with a single slice and multi-slice are unable to do so. A 

area in the upper left corner that was inaccurately predicted is highlighted in 

the lower two rows of GM and CSF. As illustrated in the last row, GM's 

miscalculation resulted in no CSF in that area. This misclassification, however, 

occurs in all three models. Despite the fact that the proposed model isn't ideal, 

it is a noticeable improvement in the highlighted areas. The single slice and 

multi-slice UNets are unable to predict the presence of smaller tissues in the 

remaining highlighted regions. The two highlighted locations to the right of 

the GM projected results (second row) demonstrate that the conventional UNet 

is incapable of detecting finer features. The SIP-UNet, on the other hand, 

worked admirably in these tiny areas, keeping the tissue margins near to the 

ground reality. 
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Figure 4-1. Axial plane segmentation result (binary map) for WM, GM, and 

CSF (top to bottom): (a) ground truth, segmentation obtained by (b) UNet with 

single input, (c) multiple input UNet, and (d) suggested model (SIP-UNet). 

 

 

 

 

 

 

 (a) (b) (c) (d) 
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Figure 4-2. Coronal plane segmentation result (binary map) for WM, GM, and 

CSF (top to bottom): (a) ground truth, segmentation obtained by (b) UNet with 

single input, (c) multiple input UNet, and (d) suggested model (SIP-UNet). 

 

 

 

 

 

 

 

(a) (b) (c) (d) 
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Figure 4-3. Sagittal plane segmentation result (binary map) for WM, GM, and 

CSF (top to bottom): (a) ground truth, segmentation obtained by (b) UNet with 

single input, (c) multiple input UNet, and (d) proposed model (SIP-UNet). 

 

 

 

 (a) (b) (c) (d) 
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In the sagittal plane, the SIP-UNet performed better than the axial and 

coronal planes. The segmented results of the various models are placed in 

separate columns in Figure 4-3, with the rows representing the various tissues 

as previously. In the top highlighted region of the first row, the tissue 

segmentation miss-prediction (WM binary map) can be observed. In this 

location, all models have the incorrect segmented output, but if checked 

closely, the segmented WM in this region is comparably lower in the SIP-UNet 

result, indicating that it is close to the ground truth. In the first row, the bottom 

highlighted region demonstrates how effectively the edge is anticipated in the 

SIP-UNet. The multi-slice input UNet has unconnected tissue in the same 

region, but the SIP-UNet has a region that is near to the ground truth. Similarly, 

both the single-slice and multi-slice input UNets have unconnected tissue in 

the top left highlighted region of the last row (CSF binary map) of Figure 4-3, 

but the SIP-UNet output has linked tissue that fits the ground truth. The rest of 

the highlighted locations in Figure 4-3 second and third rows show how 

effectively the SIP-UNet operates in areas where the standard UNet fails. In 

summary, the suggested architecture is capable of extracting smaller tissue 

details and edges than previous implemented models and traditional UNets. 

Despite the fact that the DSC scores of standard UNets are almost comparable 

to those of the suggested approaches, the proposed method's JI score is higher, 

suggesting greater performance. 

4.5.2. Comparison with Other Methods 

On the same dataset, Table 3 compares the performance of Multiresnet, 

SegNet, the traditional UNet, and the proposed UNet. Same data is used to 

train and test all of the models indicated in Table 3. The code from GitHub is 
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Table 4. Comparison of different approaches for brain structure segmentation 

Authors Methods DSC score 
WM GM CSF 

Zhang et al. [48] CNN 86.4% 85.2% 83.5% 
Nie et al. [49] FCN 88.7% 87.3% 85.5% 

Khagi et al. [20] SegNet 81.9% 74.6% 72.2% 

Lee et al. [47] Patch-wise 
UNet 94.33% 93.33% 92.67% 

Yamanakkanavar 
et al. [50] 

Patch-wise 
Mnet 95.17% 94.32% 93.60% 

Proposed method SIP-UNet 95.93% 95.8% 94.9% 
 

used to implement Multiresnet and SegNet in this table. The multi-slice input 

UNet is a variant of the single-slice input UNet in which the model's input 

layer is switched from one 2D input at a time to three 2D inputs at the same 

time. 

When compared to Multiresnet and SegNet, the suggested model has the 

greatest mean DSC score. In all planes, the suggested method's DSC score is 

between 94% and 96% for all three classes. The objective of the proposed 

method is to extract information from surrounding slices without using any 

data augmentations or further pre- or post-processing beyond shrinking the 

picture to fit in the model. Multiresnet only scored between 69% and 76% DSC 

without any extra processing, while SegNet scored between 83% and 89% 

DSC. Table 3 shows that all of the models have a lower DSC value than the 

recommended technique. In addition, among the implemented Multiresnet and 

SegNet, the suggested technique has the greatest JI score. The suggested 

method's average JI score is in the range of 90% to 94%, whereas Multiresnet's 

average JI score is in the range of 55% to 62% and SegNet's average JI score 

is in the range of 71% to 81%. The output for all slices of the brain and all 
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three planes in the developed models has worse performance for both 

evaluation matrices. This suggests that the proposed model is far superior. 

The results in Table 4 for comparison are taken straight from the published 

studies. Four of the methods in this table have yet to be implemented. Three 

of the methods (CNN, FCN, and SegNet) in Table 4 are taken from Khagi et 

al. [20]. Lee et al. [47] provide the outcome of patch-wise UNet. The average 

score of the three separate planes for each tissue is used to determine the DSC 

score for each tissue in Lee et al. [47] and the suggested technique. The patch-

wise Mnet scores are obtained straight from Yamanakkanavar et al. [50]. 

Table 4 shows that deep learning architectures based on UNet outperform 

alternative segmentation models. The proposed SIP-UNet has the highest 

mean DSC score, with 95.93%, 95.8%, and 94.9% for the WM, GM, and CSF, 

respectively. Patch-wise UNet outperforms other approaches and comes close 

to the suggested method in terms of performance. However, according to Lee 

et al. [47], only three-slice intervals are employed, resulting in 48 slices per 

individual. The patch-wise approach's outcome for all of the slices is unknown, 

and despite the fact that just 48 slices per subject each subject were employed 

in that study, the DSC score is lower than the suggested method. Another 

technique employing patch-wise Mnet, similar to the patch-wise UNet method, 

employs 48 slices per subject. The DSC scores of all deep learning-based 

approaches are lower than those of UNet-based deep learning systems. In 

conclusion, regardless of the number of slices or the plane chosen, the 

suggested technique may greatly improve segmentation performance in all 

three planes. 
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5. Conclusion 
The ability to measure changes in the brain relies heavily on brain tissue 

segmentation. In this paper, a completely automated brain tissue segmentation 

algorithm is offered that extracts associated information from surrounding 

slices. Unlike traditional segmenation models, which use single input, the 

proposed SIP-UNet takes use of surrounding slices by extraction of additional 

data from those slices. For the axial, coronal, and sagittal 2D planes, SIP-UNet 

can get a superior segmentation result. The proposed segmentations are both 

qualitatively and quantitatively trustworthy, according to both qualitative and 

quantitative examination. The proposed technique outperforms existing deep 

segmentation models in all three planes, with average DSC and JI scores that 

are much higher. For the three classes/tissues GM, WM, and CSF, the average 

DSC values in OASIS dataset are 95.80%, 95.93%, and 94.9%, respectively. 

In the testing OASIS dataset, the average JI scores for WM, GM, and CSF are 

92.43%, 92.03%, and 90.37%, respectively. The suggested technique provides 

a JI score that is comparable to that of traditional UNets. However, the 

suggested technique is equivalent to others in terms of DSC score, and there is 

yet opportunity for improvement. The objective is to improve by extracting 

information from nearby slices. The proposed model is made up of many 

UNets that are then combined with a residual network. This method’s goal is 

to extract characteristics from individual slices, without suppressing the 

middle/current slice's features. Achievement in extracting features from 

surrounding slices, led to an improvemed segmentation result, based on the 

evaluation matrix scores and visual comparison. The suggested technique 

performed well in terms of extracting fine details about edges and recognizing 

tiny tissue sections. 
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The suggested model takes processing time and more memory in comparison 

with a single UNet, which might be a major restriction of this research. 

However, the proposed technique has demonstrated good segmentation 

results. In the future, the computational efficiency can be increased of the 

proposed SIP-UNet architecture by modifying the UNet utilized in parallel. In 

addition, segmentation efficiency can be boosted even further by combining 

features from parallel UNets using a different technique. One possible 

approach could be increasing the skip connections. Also, establishing a deeper 

residual network could be a viable solution. 
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