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ABSTRACT

Efficient Deep Learning Methods for Supporting Diagnosis of
Alzheimer’s Disease and Mild Cognitive Impairment

Fazal Ur Rehman Faisal

Advisor: Prof. Kwon, Goo-Rak

Department of Information and

Communication Engineering

Graduate School of Chosun University

A common neuro-degenerative chronic condition, Alzheimer’s disease (AD)

distinguished by memory loss, poor self-care, and behavioral difficulties. This

disease is extremely expensive to treat, with little known about its origins and

due to the unavailability of curative treatments. Correct diagnosis of Alzheimer

is vital for treatment implementation and progression, neuroimaging is the most

promising arenas towards timely detection of AD.

Several high-dimensional classification techniques based on T1-weighted

MR images have recently been developed to automatically distinguish between

patients with AD, late mild cognitive impairment (lMCI), early mild cognitive

impairment (eMCI), and normal control (NC) patients. When working with

machine learning techniques, they frequently encounter issues with data

overfitting and, as a result, accuracy. The time-consuming nature of machine

learning motivates researchers to investigate alternatives to machine learning,

such as deep learning. Ever since, image classification using CNN-based

algorithms has been widely employed in medicine field. Unfortunately,
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constructing an effective classification algorithm capable of providing decent

outcomes is neither practical nor reasonable to use on embedded devices.

This thesis first demonstrates Machine Learning based techniques for

reducing model complexity, that also attributed for an overfitting problem. For

that, an improvised feature selection method (a method that combines Principal

Component Analysis and Recursive Feature Elimination to simultaneously

reduce dimension size and select best features) has been proposed to reduce

model complexity. In this study, subcortical and cortical features from

ADNI-based structural magnetic resonance imaging (sMRI) images were

utilized. Following experiments have been performed to examine the model’s

performance: AD vs lMCI, eMCI vs AD, AD vs CN.

The second experiment included a deep neural technique for detecting

significant AD biomarkers from structural MRI scans (sMRI), as well as

brain scan classification into normal subjects (CN), AD, and mild cognitive

impairment (MCI) groups. The CNN technique was employed in this experiment

to convert medical imaging scans into higher-level information by merging

characteristics from different levels of CNN. The proposed methodology employs

fewer parameters, which simplifies the computing challenge. In comparison to

other cutting-edge AD classification algorithms that are already available, the

suggested strategy produces better results for standard evaluation measures.
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초록

알츠하이머병및경도인지장애진단지원을위한

효율적인딥러닝방법

페이잘파잘얼레흐만

지도교수:권구락

정보통신공학과

조선대학교대학원

일반적으로신경퇴행성만성질환인알츠하이머병(AD)은기억상실,자기

관리의문제및행동장애로인해발생한다.이질병은발병원인을찾기힘들며,

치료비용이매우비싸치료요법을사용하기어렵다.알츠하이머의정확한진

단은치료를진행함에있어서매우중요하며,뇌영상은알츠하이머의발병을

적시에확인하기위해필수적인부분이다.

최근 T1의강조된자기공명영상을기반으로하는여러가지의고차원적인

분류 기술이 AD 환자, 후기 경도인지장애, 초기 경도인지장애 및 정상대조군

환자들을 자동으로 판별하기 위해 개발되었다. 머신러닝 방법을 사용할 때는

데이터의과적합과정확도의문제가결과에서자주발생한다.머신러닝의많

은시간을소비하는특성은연구자들이딥러닝과같은머신러닝의대체를위

한 조사를 할 수 있는 동기를 부여한다. 이에 따라, CNN 기반의 알고리즘을

이용한 영상 분류가 현재 의학 분야에서 많이 활용되고 있다. 하지만, 적절한

결과를 제공할 수 있는 효과적인 분류 알고리즘들은 임베디드 장치에서 사용

하기에는실용성이낮고합리적이지않다.

본 논문에서는 첫 번째로, 과적합 문제에 대한 원인이 되는 모델의 복잡성

을 줄이기 위한 기계 학습 기반의 기술을 보여준다. 이를 위해 모델의 복잡성

을줄이기위한즉석에서특징을선택하는방법(주성분분석과재귀특징제거
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방법을 결합하여 차원의 크기를 줄이는 동시에 최상의 특징을 선택하기 위한

방법)을 제안한다. 이 연구에서는 ADNI 기반의 구조적 자기공명영상(sMRI)

영상의피질하및피질특징을활용한다.모델의성능을조사하기위해다음의

실험을수행한다: AD vs lMCI, eMCI vs AD, AD vs CN.

두 번째 실험에서는 구조적 자기공명영상의 스캔에서 중요한 알츠하이머

병의 바이오마커를 검출하기 위한 심층신경 기술과 알츠하이머병과 정상대

조군, 경도인지장애 그룹으로 분류하는 방법이 포함된다. 이 실험에서 CNN

방법을사용하여다양한수준의 CNN의특성을병합하여의료영상스캔에서

더 높은 수준의 정보로 변환된다. 제안된 방법은 적은 양의 매개변수를 사용

하여 컴퓨팅 문제를 단순화한다. 이미 사용 가능한 다른 AD 분류 알고리즘과

비교하여제안된방법은표준평가측정에서더나은결과를제공한다.
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1 Introduction

1.1 Motivation

A common neurological condition Alzheimer’s disease (AD) cited as an

important issue in the 21st century. Over 50 million individuals were diagnosed

with Alzheimer so far, and the number is increasing rapidly [1]. There are some

common symptoms through which AD can be characterized such as: Impaired

memory, mental confusion, and visual difficulties [2].

Many attempts have been made so far to detect and diagnose the condition

at an early stage. In this regards, many well-known biomarkers for AD has

already been identified, which are mostly related with a clinical observation,

or cognitive evaluation [3]. Whereas, in recent studies the ”position emission

tomography scans and magnetic resonance imaging (MRI)” proved to become

a widely utilized structural and molecular biomarkers [4] for AD diagnosis. In

distinctive, MRI is a widely used biomarker that is an effective technology for

analyzing functional and anatomical brain alterations which are linked with AD.

The anatomical and functional brain alterations are acknowledged as essential

part in the evolution of AD [5]–[7].

Due to the rapid developments in neuroimaging techniques, integrating high-

dimensional neuroimaging data has become more difficult in disease findings [8],

[9]. As a consequence, curiosity in cognitive machine learning (ML) approaches

for integrative framework has increased [10], [11]. These methods were utilized

to produce the required outcome from a collection of training examples, which

included spatial intensities, tissue volume, and shape descriptor characteristics.

Therefore, many studies looked into the possibility of machine learning-based
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approaches on MRI data to determine AD [12]–[15].

1.2 Research Objectives

In the field of digital health care, Machine Learning (ML) is gaining popularity

owing to its special capacity to incorporate data on a wide scale [16],

[17]. However, suitable architectures or time-consuming and computationally

expensive preparatory processes such as feature engineering must be established

in order to use ML techniques. Deep Learning (DL) approaches, in contrast, are

being investigated by the researchers as an alternative to standard ML methods.

DL, in particular, are a subtype of feature representation techniques given that

they may efficiently identify the correct description from real data without the

need for feature selection beforehand [18]. Because of its effectiveness in image

analysis and classification, deep learning has gotten interest in medical image

analysis [19], [20]. These achievements have aroused researchers’ intention of

improving CNN-based solutions for Alzheimer diagnosis. Considering benefits

of ML and DL algorithms in medical image analysis. The objectives of this

research is identified as follows:

• The ADNI database was utilized to collect and evaluate pre-processed

sMRI scans.

• Examine the idea of employing a ”machine and deep learning algorithms”

to automatically classify AD using a sMRI scan of subject’s brain.

• For ML, the purpose is to resolve the accuracy and data overfitting

problem by employing features selection procedures that help to categorize

individual subjects into four classes using different classifiers.
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• For DL, the aim is to provide a computationally less expensive and

automated model capable of effectively classifying brain scans into AD,

MCI, and healthy groups.

1.3 Contributions

The efficacy of machine learning (ML) algorithms for AD detection have been

hotly contested. However, researchers are constantly thinking about how to

identify the critical features for enhancing the efficacy of AD diagnosis using

machine learning models. This work contributes:

• Extraction of cortical and subcortical features of the brain by using

Freesurfer.

• A combination of feature reduction and selection algorithm based on

Principal Component Analysis (PCA) and Recursive Feature Elimination

(RFE) has been presented, which can help to overcome the issues of

overfitting and ultimately enhancing the model accuracy.

• Comparision of various ML classifiers perfromance (Naı̈ve Bayes, SVM,

Random Forest(RF),Softmax classifier, and KNN) for the identification

of AD, early mild cognitive impairment (eMCI), late mild cognitive

impairment (lMCI) and cognitive normal (CN) groups.

On the other hand, deep learning (DL) demonstrated great performance

in a number of medical imaging tasks, such as CT scans, MRIs, and X-rays

[21]. Despite the fact that previous approaches have yielded positive diagnostic

outcomes, minimal effort has made to enhance the convolution technique for the

3



determination of AD. In this context, this work present a better CNN architecture

for Alzheimer detection using MRI scans. The contributions in DL methods are

four-fold:

• This thesis investigates the computational cost of the convolutional layer,

builds a convolutional structure, and focuses in depth on the convolutional

structure. This minimizes the computational complexity and computational

costs while maintaining classification accuracy.

• Each block is represented with the same resolution and size in a CNN

model. Its usefulness was established by the fact that it improved an

automatic CNN classifier’s classification performance.

• The proposed model extracts important characteristics from the data

without the necessity for pre-processing, and it performs well.

• The proposed method was tested against two cutting-edge classification

models: VGG and ResNet50. Our proposed model achieved higher

accuracy results with fewer parameters as compared to others.

1.4 Thesis Scheme

The thesis study is arranged and organized in the format of five chapters, which

are outlined below:

i) Chapter 2 provides a formal background information about the AD,

dataset and data base organization. Lastly, it will describe the advanced

technique for diagnosis and the previous work regarding those techniques.

4



ii) Chapter 3 presents the pipelined implementation of the proposed model

which consist of ML and DL methods.

iii) Chapter 4 presents the results and the evaluation of the proposed models.

iv) Chapter 5 highlights the summary and conclusions of thesis.

5



2 Background

2.1 Alzheimer’s Disease

A progressive neurological disease Alzheimer is acknowledge as the most

widespread type of disability. Linked with brain neurodegeneration disorder

that causes issues including memory damage and other cognitive impairments

extreme enough to interfere with regular activities [22]. This is one of most

prominent forms of dementia, contributing for 60-80% among all dementia cases

[23]. In developed countries, AD is one of the most expensive neurodegenerative

diseases. In 2006, 25 million people were suffered by Alzheimer’s, and by 2050,

1 in 85 people will be affected [24]. According to the same article [24], over 2/3

of dementia sufferers live in a under develop nations, which are likely to witness

a significant increase in dementia cases in the next years as the regions develop

swiftly. It will be challenging for a variety of reasons, the first is that dementia

patients in these nation rely significantly on informal care, making it extremely

difficult to sustain effective treatment and care for such a huge number of older

people as disease prevalence rises [25]. Financially, dementia has a massive social

impact at the moment, accounting for 1.01 percent of global Gross National

Product [26]. This issue is predicted to deteriorate in the coming years, with a

projected 85% rise in worldwide societal expenses by 2030 [27], assuming no

changes in other background factors (e.g. macroeconomic, dementia occurrence

and prevalence, accessibility, and treatment efficacy).

While some of its symptoms may resemble those of progressive aging, it

is vital to remember that AD (and certainly dementia in general) is not natural

part of the aging process. Dementia symptoms grow as the disease progresses.
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AD currently has no cure; the goal is to slow the disease’s progression, restore

symptoms, treat behavioral issues, and improve overall quality of life [28].

However, if dementia symptoms are detected early enough, these existing

medicines can temporarily slow the progression of the condition. While more

effective treatments, prevention, and finally treatment are all significant (long-

term) goals, early diagnosis may provide patients with better cure results. Except

in rare cases of observable genetic variations, the exact cause of AD remains

unknown. However, new study suggests that it is connected with neurotic plaques

and neurofibrillary tangles inside the brain [29]. While Amyloid beta, a protein

that composes neurotic plaques, is known to have a role in the course of AD,

many studies investigate whether it is still a causal element. It is, however, often

recognized as a symptom of the condition [30].

The capability to detect the disease and follow its evolution before symptoms

arise is constantly increasing. Recently, some advancements in research have

seen, the most notable of which is the finding of biomarkers (especially brain

imaging technologies) that allow for the recognition of AD-related courses over

decades [27]. The biomarkers for Alzheimer’s disease are mostly based on their

behavior, which is generally evaluated in amyloid deposition in the brain (e.g.,

PET scans, CSF amyloid), and other biomarkers, which commonly compute

neurodegeneration volume (e.g. sMRI, FDG-PET, CSF-tau) [31].

The only sole technique to determine whether or not someone has been

impacted by a illness is a post-mortem brain tissue study. However, both

neurotic plaques and neurofibrillary tangles in brain appear to have a role in the

pathogenesis of Alzheimer’s disease. Despite the fact that extensive study has

been done on AD, still there is a need of a (non-invasive) diagnostic tool.
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2.1.1 Mild Cognitive Impairments

MCI are presumed to be an initial phase of Alzheimer or a transitional period

between both the projected cognitive impairment of aging and the extreme

deterioration of dementia, though it’s unclear whether MCI is a wide range of

analytical stage or a prodromal disease stage [32]. Memory, language, reasoning,

and judgment impairments that are more severe than normal age-related declines

are common. Brain pattern changes in patients with MCI have been going on

for ages , and indicators are just now starting to emerge. However, it has yet to

be demonstrated that these indicators are severe enough to interfere with day-

to-day work, a state that would be categorized as dementia. MCI may maximize

your odds of early onset dementia later life due to Alzheimer’s disease or even

other neurological disorders. However, many people with moderate cognitive

impairment never worsen, while others improve over time [33].

2.1.2 Neuropathology

Variations in the brain (such as structural abnormalities) cause symptoms which

could be used to identify a disease. The course of AD is predictable. The

progression of Alzheimer’s disease is divided into six phases based on the supply

of neurofibrillary tangles (NFT): lesions are first placed in the trans-entorhinal

cortical area (phase I), then to phase II (entorhinal cortex), then to hippocampus

and limbic lobe (phase III and IV), then to the neocortex (phase V), and finally to

the primary cortex (phase VI) [22]. These phases are classified into entorhinal

(I and II), limbic (III and IV), and neocortical (V and VI) phases, and they

are all linked to clinical and cognitive impairment, reflecting degradation of the

cortical areas associated with these processes. An NFT makes the hippocampus
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and medial temporal lobe vulnerable, and neuronal death can be detected even in

the early stages of the disease. As a result of the loss of synapses and neurons

caused by AD, we were able to clearly see variations in brain soft tissue, as

describe in Figure 2.1.

Figure 2.1: Healthy brain and Alzheimer’s disease effected brain illustration.

Clinical standards, based on neuropsychological examination, are used to

diagnose AD. The main goal of these studies is to find indicators for the detection

of AD. Furthermore, sMRI allows us to see brain atrophy, which is a reflection of

neuronal death. In recent years, numerous studies have been conducted to identify

diagnostic biomarkers for AD from sMRI images [34].

Researchers and doctors can use magnetic resonance scans to examine

the alterations in the structural part of brain linked with AD. Other imaging
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techniques include the Pittsburgh Compound B PET (PiB - PET) neuroimaging

method, vividly reveals the forms of -amyloid bonds in the brain. This approach

is more invasive, but it does require a minimal quantity of radioactive sugar to be

enmeshed in the patient’s brain [35].

2.1.3 Biomarkers

Whenever AD advances, the magnitudes of its biomarkers approach abnormal

levels, as seen in Figure 2.2. The figure shows biomarkers as dementia indicators,

and the curve shows the changes induced by the five biomarkers examined (in

chronological order):

• Amyloidβ imaging has been observed in the CSF and on PET.

• Increased CSF-tau species and synaptic pathology, as determined by FDG-

PET, indicate neurodegeneration.

• sMRI is used to determine the damaged brain region and neuron loss

(particularly noticeable in the hippocampus, medial temporal lobe, and

caudate nucleus).

• Cognitive testing measures memory loss.

• The cognitive examination measures general cognitive decline.

The first three biomarkers on this list can be noticed before a dementia

diagnosis, but the last two are ”typical signs of dementia diagnosis” [36].

Biomarkers, which are primarily intended for use in research, do not cooperate

with the diagnostic framework in order to provide appropriate therapy. This
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included genetic markers that explicitly simulate AD pathology, including -

amyloid protein and tau, and also biomarkers that have a less direct affect or are

non-specific symptoms of the disorder, such as racking directories of neuronal

damage, which are slightly precise for an AD due to the ROI structure of

anomalies [36].

Figure 2.2: Progression of Alzheimer’s Disease biomarkers [36].

2.1.4 Risk Factors

Although no definite cause for dementia has been identified, certain factors are

significantly connected to the AD progress. Which will be briefly described

further on.
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2.1.4.1 Age A substantial risk for AD. After the age of 65, the likelihood of

developing Alzheimer’s disease increases every five years, reaching roughly 50%

by the age of 85 [37].

2.1.4.2 Family History AD is also linked to family history and background.

Individuals who have a close relative with AD are more likely to be effected. The

risk factor rises in proportion to the number of sufferers in a family. In families,

inherited, environmental, or both attributes may have a job in the development

and progression of diseases [38].

2.1.4.3 Genetics Genetics might have a role in the course of AD. There are

two categories of genes that impact Alzheimer’s disease progression:

• Genes associated with risk (growth in likelihood).

• Genes that are deterministic (believe to have the direct impact on disease).

If there is a family history of Alzheimer’s disease (i.e. dominant autosomal

form of AD), the onset of early Alzheimer’s symptoms (i.e. MCI) indicates the

dementia. Early onset AD affects a large number of people. Individuals’ MCI

development and progression to Alzheimer’s dementia differ. The study does

reveal, however, that having one or two ε4 genotypes in the apolipoprotein E

(APOE) genome is substantially associated with an elevated risk of late-onset

dementia. The existence of the ε2 gene, on the other hand, reduce the risk factor

in an individual [39].
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2.2 Magnetic Resonance Imaging (MRI)

MRI is a medical imaging system that offers an image of the anatomy as well as

physically processes the body in both healthy and sick stages. It creates pictures

of body organs using powerful magnetic fields and radio waves. sMRI is indeed

a non-invasive scanning technique that generates three-dimensional anatomical

scans without exposing the patient to harmful radiation. It is used to spot diseases,

diagnose them, and track their progress [40].

2.2.1 Technology

MRIs provide powerful magnets in most units, which provide a strong magnetic

field signal that forces the proton in the body to coordinate with fields. The proton

begins to stimulate when a radio frequency pulse passes through the patient’s

body, and it spins out of equilibrium, straining against the magnetic field’s pull.

Furthermore, once the radio frequency pulse is turned off, the sMRI sensors may

measure the energy released by the realign protons within the magnetic field.

A time taken for protons to create a magnetic field is totally determined by the

chemical molecules in their vicinity. On the basis of these patterns of magnetic

characteristics, physicians can discern the difference between distinct types of

tissues [40]. sMRI scans, on the other hand, require a patient to be positioned

inside a huge magnet and to remain stationary throughout the imaging process

in order for the image to be clear. To increase the speed with which protons

readjust to the magnetic field, contrast agents chemical (containing the element

Gadolinium) may be given intravenously to a subject before or during the sMRI

process. The brighter the scans are, the faster the protons adjust.
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2.2.2 Imaging

The resulting photos exhibit many shades of gray color that reflect varying

thicknesses because these areas have less water, there are fewer number of

hydrogen protons that emit feedback signal to the radioactive detectors. T1

weighing will provide pictures of thick bone, air, and other substances with

less hydrogen protons, which will be dark, and fat will be lighter, and so on.

Depending on signal strength, the voxel pixel number can be one of 255 shades

of gray, with 0 indicating black and 255 indicating white. Figure 2.3 depicts brain

slices.

(a) NC (Coronal Slices)

(b) MCI (Axial Slices)

(c) AD (Sagital Slices)

Figure 2.3: MRI scans depicted various stages of Alzheimer’s disease.
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2.3 Database Organization

This section describes the organization that aims to improve understanding of

Alzheimer and shares information for researchers all over the world; without their

assistance, this thesis would not have been possible.

2.3.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI)

The ADNI is a long-term research project whose goal is to ”create clinical,

imaging, and genetic indicators for the identification of AD.” The six-year

”ADNI-1” trial began in 2004 with 400 MCI patients, 200 early AD patients,

and 200 old control patients. However, from 2009 to 2011, this study was

expanded by ”ADNI-GO,” which included 200 more participants who were

identified as having early MCI and were tested for biomarkers in the early phase

of the disease. ADNI organization marks a big step towards a development of

improved diagnostic procedures that could assist to delay the progression of AD

and, eventually, prevent it. The ADNI website has more detailed information

(http://adni.loni.usc.edu/).

2.4 Machine Learning

An interdisciplinary topic that relies on studies from several disciplines such

as artificial intelligence, statistics, philosophy, and neuroscience. It can also be

defined as the science of teaching computers to learn and perform tasks in the

same way that humans do, and then recovering their learning process in an

autonomous manner by providing them with real-world data and observations.

A ML algorithm’s learning system is describe in Figure 2.4.

Furthermore, ML paradigms are classified into three types: supervised,
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Figure 2.4: Working process of Machine Learning.

unsupervised, and reinforcement learning. Supervised learning is concerned

with tagged sample data, in which inputs are linked to desired outputs. In the

psychological concept of concept learning, this might be seen as a parallel.

Unsupervised learning, on the other hand, uses unlabeled data with no errors

in order to determine a potential solution. Reinforcement learning, on the other

hand, is concerned with an aim to attain a specific goal by completing an action

in an active environment to get a reward, without being explicitly alerted if the

learner is on the verge of reaching its goal [41].

There are several ML simulations in both supervised and unsupervised

learning, which together set various prior assumptions about the expected input-

output mappings or data sharing. Because the problem with which the models

are dealing is inadequately and the training data is inadequate for the models

to find the correct response on their own, they make these various assumptions

out of necessity. For example, the mapping may not happen, or there may not

be enough data to reassemble it, or there may be inevitable noise, resulting in

a suitable model that is worthless in the real world. Inductive bias refers to the

set of expectations that learning techniques create in order to facilitate learning.

A learning procedure’s inductive bias (also known as learning bias) is the set of

assumptions that the learner use to guess the outputs of unknown inputs. As a

result, inductive bias is crucial since it governs how well the learner generalizes
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beyond the given training set. The learning process, such as least mean squares or

mean squared error, tries to reduce some quantity of error (or loss function). They

accomplish this by selecting the best weight for the set of training samples, i.e.

and, which also assists in reducing the loss between observed training instances

(and other prior constraints) and estimated values [42].

This work concentrate on supervised learning approaches like Support

Vector Machine (SVM) classifier, Naive Bayes, Random Forest (RF), K-Nearest

Neighbors (KNN) and Softmax classifier etc. along-with unsupervised learning

methods for preprocessing including PCA and RFE.

2.4.1 Deep Learning

Deep learning(DL) allows computational models with several processing units

to learn and understand information at various levels of abstraction, mimicking

how humans access and perceive multimodal data and indirectly capturing

sophisticated data patterns. DL models are indeed a subcategory of representation

learning techniques because they can autonomously identify the optimal

representation from original data without the requirement for feature selection

beforehand. This is attained by the use of a rigid hierarchy with increasing

complexity, along with sequentially making nonlinear alterations to the raw data.

Higher-level attributes are less susceptible to input data misinterpretation than

low-level features, resulting in higher levels of abstraction [18].

DL neural network models, also known as neural nets, try to imitate the

human brain by combining input data, weights, and bias. These components work

together to identify, categorize, and characterize items in data.

DL models are composed of many layers of connected nodes, each of which
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improves and alters categorization. The advancement of calculations over the

network is referred to as forward propagation. Both input and output layers

of a deep network are the visible layers. Before producing final predictions or

categorizations in the output layer, the deep learning model processes the data in

the input layer.

Backpropagation is another approach that uses techniques such as gradient

descent to generate generalization error and then alters the function’s weights

and biases by traversing the layers backwards to train the model. Forward and

backpropagation act in tandem to enable a neural network to foresee and correct

for mistakes. The algorithm improves and gets more accurate with time.

The preceding illustrates the most fundamental type of deep learning model.

DL approaches, on contrary, are exceedingly sophisticated, with several types of

neural networks employed to handle specific difficulties or data. As an example:

• Convolutional neural networks (CNNs): Can discern features or patterns

in an image, allowing tasks like as item identification and authentication

to be done. For the first time, a CNN outperformed a human in an object

identification challenge in 2015.

• Recurrent neural networks (RNN): Employs a sequential or time-series

data. Natural language and speech recognition applications typically use

RNN. .

DL encompasses a wide range of learning approaches, including Deep Belief

Nets (DBNs), Deep Auto Encoders (DAE), and Deep Neural Networks (DNNs).

In recent years, DL techniques have outperformed traditional approaches,

particularly in the area of computer vision. As of October 2014, researchers were
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able to achieve good accuracy on numerous standardized classification image

datasets utilizing DNN based on GPU architecture and some type of dropout

regularization technique. On key standardized benchmark datasets, such as, DNN

has produced outstanding results (MNIST, CIFAR-10, 100, STL-10, ImageNet,

etc.). DL researchers have recently created methodologies to help in the practical

implementation of DL techniques including sparse initialization, pretraining,

fine-tuning, and regularization methods like dropout [43], [44].

2.4.1.1 Convolutional Neural Network (CNN)

CNN is among the most extensively applied architecture, with applications

spanning from image recognition to mobile vision, object identification, and

surveillance. It takes inspiration from biological organisms optic nerves and

analyses data using a huge number of neuron connections to attain great

precision. These networks necessitate a large amount of computing and data

storage, posing a challenge in terms of both computational performance and

energy economy. The CNN follows a specialized computing pattern that is

inefficiently performed by conventional computation processors. Several CNN

accelerators based on various hardware platforms have been in recent years in

this area [45]–[47].

A CNN is typically made up of two parts: feature extraction and classification.

Edges, lines, and corners are examples of input features that are unaffected by

position and distortions. The feature extractor takes the input and extracts the

features, mapping them to a low-dimensional vector output feature map. The

collected characteristics are fed to the classifier through a sequence of such

computational levels, as well as optional sub-sampling layers. The classifier is a

19



fully connected framework that determines input’s class. The animation exhibits

the workflow of CNN processing an image as input and categorizing objects

based on values.

Figure 2.5: Convolutional Neural Network structure [48].

CNN’s layers are classified into three types:

• Convolutional layer

• Pooling layer

• Fully Connected layer

A CNN model’s first layer is the convolutional layer. While pooling layers

can be introduced after the convolution layer, the last layer is the fully-connected

layer. The CNN becomes more complicated with each layer, detecting more areas

of the image. Earlier layers concentrate on basic elements such as colors and

boundaries. As the CNN layers analyze the visual input, it learns to distinguish

larger portions or attributes of the item, ultimately recognizing the object. [49].
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Convolutional Layer: The convolutional layer is by far the most significant

component of a CNN as it is where the most of the computing occurs. It takes

data input, a filters, and a feature map, among many other things. Assume the

input is a color picture composed of a 3D matrix of pixels. This means that the

input will have three components: height, width, and depth, that correspond to

the RGB color space of an image. A feature detector, also referred as a kernels

or a filter, will search the image’s representations for the existence of the feature.

This method is titled as convolution.

The feature estimator is a two-dimensional weighted matrix that duplicates a

part of the image. The filter size is typically a 3x3 array, that also determines the

size of the receptive field. After applying the filter to a section of the image, the

dot product between the input data and the filter is determined. This dot product

is sent to the array. The filter then advances one step, and the process is repeated

until the kernel has completely swept across the image. A feature map, activation

map, or convolved feature is the end result of a sequence of dot products created

by the input and the filter.

Pooling Layer: Downsampling is another term for layer pooling. That is a

dimension reduction method for reducing the number of features in the data. The

pooling approach, similar to convolution operation, applies a filter to the whole

input except using weights. Instead, the kernels employs a clustering method to

generate the output matrix from the receptive field values. Pooling is classified

into two types:

• Max pooling: As it moves over the input, the filter chooses the pixels with

the greatest value to send to the output array. This method is used more

often than ordinary pooling.
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• Average pooling: As the filter sweeps over the input, the average value

within the receptive field is computed and transferred to the output array.

While a pooling layer eliminates a lot of information, it still offers several

advantages to the CNN. They contribute to the reduction of complexities, the

improvement of efficiency, and the avoidance of overfitting.

Fully Connected Layer: The term ”fully-connected layer” is self-

explanatory. As explained previously, the image pixels of the input image are

not directly connected to the output layer in partially linked layers. Each node

in the output layer is directly linked to a module in the preceding layer in the

fully-connected layer.

This layer performs categorization tasks based on the features gathered by the

preceding layers and associated filters. Whereas convolutional and pooling layers

utilize relu functions to categorize inputs, FC layers use a softmax function to

provide a probability range from 0 to 1.

2.5 Related Work

Several techniques for neuroimaging classification have been developed in

recent years to enhance classification performance, taking into consideration the

advantages of ML and DL models. Some of the recent studies regarding ML

and deep convolutional neural networks for neuroimaging analysis are examined

below:
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2.5.1 Machine Learning based Alzheimer’s Disease Classification

Many ML-based techniques for multi-class and binary class classification for

the early detection of AD have been utilized in recent times. For example, in

their study, Kim et al. [50] developed a automated classification method based on

cortical thickness. Whereas, Long et al. [51] examined localized morphological

abnormalities in the brain and observed that distortion in the amygdala and

hippocampus aided in the diagnosis of progressive MCI. However, their study

stated that diffusive structural changes in the whole-brain gray matter were

responsible for diagnosing mild or moderate AD. Following that, a linear support

vector machine was used to classify these individuals (SVM). Guo et al. [52],

on the other hand, proposed a method for saving data during feature extraction.

The proposed approach uses a multi-kernel SVM to classify brain area and

subgraph features from functional magnetic resonance imaging. This method

retains both meaningful features information and brain region vulnerability

to alteration. In contrast to Guo et al. [52], Khedher et al. [53] proposed a

technique for identifying AD that employed independent component analysis

to retrieve information from the WM, GM, and CSF regions, followed by an

SVM classifier. Furthermore, Tong et al. [54] constructed a multiple instance

learning-based approach for alzheimer classification by isolating the regions of

MRI voxel patches and mapped them to graphs. An SVM classifier was then

used to distinguish the gap amongst patients with ad and NC (Normal Control)

individuals.

In later years, Zhang et al. [55] used multiple-kernel SVM to develop a

multimodal classification system based on diagnostic markers such as sMRI,

PET, and cerebrospinal fluid (CSF) to differentiate AD (or MCI) and normal
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control (NC) participants. Their proposed model has a good accuracy for AD

classification and an encouraging accuracy for MCI classification for binary

classification (AD versus NC and MCI vs NC) results. Salvatore et al. [56]

employed MR images as a marker for early classification of Alzheimers in

comparison to other groups in 2015. For feature extraction, they employed

the PCA function, and for classification, they used the SVM classifier. They

discovered that the hippocampus, entorhinal cortex, basal ganglia, gyrus rectus,

precuneus, and cerebellum are key regions involved in AD pathophysiology.

The classifier achieved classification accuracy of 76% for AD vs. CN, 72% for

MCIc vs. CN, and 66% for MCIc vs. MCInc using the nested 20-fold cross

validation technique. In addition, Baron et al. [57] introduced a voxel-based

feature extraction technique and used empirical voxel features for diagnosis

in their study. In another study, Gupta et al. [58] employed machine learning

algorithms (SVM, k-nearest neighbor (KNN), and Random Forest to distinguish

atrophic conditions (AD, NC/healthy control (HC), asymptotic Alzheimer’s

disease (aAD), and mild Alzheimer’s disease (mAD)) (RF).

2.5.2 CNN approaches for Alzheimer’s Disease diagnosis

DL has highlights the potential in medical imaging diagnostics [59]–[61], where

it was originally used for segmentation methods or extraction of features,

followed by conventional machine learning techniques like SVM and boosting.

Silva et al. [62], for instance, proposed a cnn architecture for extraction of

features from MRI scans, proceeded by SVM, KNN, and Random Forest

techniques for AD diagnosis. Correspondingly, Liu et al. [63] proposed a novel

fully convolutional learning technique for Alzheimer’s and Parkinson’s disease
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classification that combined supervised and unsupervised methods learning.

DL has lately succeeded in the field of computer vision for extracting visual

information, and their potential for AD diagnosis has been investigated [64]. For

instance, Wang et al. [65] applied brain removal methods to select hippocampus-

containing sections before feeding them to a deep convolutional neural network

for assessment. To anticipate the AD and NC classes, a patch-based ensemble

model was created [66]. In addition, 2-D and 3-D deep learning models for

the diagnosis of AD were constructed in [67]. Unlike others, Basaia et al. [68]

processed the data by warping, resizing, and rotating the MRI pictures at multiple

viewpoints before feeding it into a deep neural network for disease classification.

In a recent study, Korolev et al. [69] presented two 3D cnn models inspired

from VGGNet and ResNet, indicating how manual extraction of features is not

necessary for MRI images classification. Their 3D models for medical image

classification, such as 3D-VGG and 3D-ResNet, are widely used in research. To

categorize ADNI data, Ehsan Hosseini-Asl et al. [6] and [70] used 3D CNN. A

3D deep neural network was used to extract features from MRIs and identify

biomarkers for many kinds of AD. Similarly, Abrol et al. [71] created 3D CNNs

using the ResNet architecture and tested them on a range of classification tasks.

Using ADNI data, they created a training dataset for cross-validation and a

smaller test set. Despite the encouraging results, popular assessment frameworks

were performed, leaving the possibility that the algorithm was overfitted on the

training examples. [72] provides a deep learning-based algorithm for AD versus

NC assessment, in which a discrete volumetric estimations model with CNN

models is used to extract deep properties of the left and right hippocampus

discrete volume (RHM and LHM). Recently, [2] proposed a diagnostic model

for AD using a densely connected 3D CNN and an attention-driven technique
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to integrate high-level features with spatial data collected from MRI. Lately,

the depthwise separable convolution was proposed by J Liu et al. [73], which

replaces the depthwise separable convolution for the standard convolution. They

used AlexNet and GoogLeNet transfer learning methods to train their concept,

which significantly reduced the processing cost and parameters.

In this section, previously published journal papers employing ML and DL

methodologies to study AD have been preseneted. In the next section, proposed

model using the methods and ideas mentioned above will be explain in detail.
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3 Proposed Method

3.1 Overview

The procedure of the experiments covered in Chapter 1 is presented in this

chapter. First phase of thesis is based on machine learning (ML) methodologies,

where ML offer an effective classification strategy for distinguishing Alzheimer’s

disease (AD) from other diagnostic categories. This section is divided into two

sections. One component of the section is dedicated for the suggested ML

framework. Whereas, the rest of the section discuss about the deep neural-based

model.

3.2 Machine Learning method for Alzheimer’s Disease

Classification

3.2.1 sMRI Dataset

There are almost 6000 people in the ADNI dataset, ranging in age from 18 to 96.

Preprocessed images of all 313 patients in this study that met the ADNI protocol

were chosen from this group. The statistics of the subjects used in this thesis are

described in Table 3.1.

For an unbiased examination, the data was split in (70/30 ratio). 70% of the

data was allocated to training, while 30% was allocated to testing. Moreover,

Gradient inhomogeneity correction, non-uniformity correction, and bias field

processing were already applied to all sMRI images [47], [74]. Furthermore,

each scan was coupled with a phantom-based scaling procedure, and later

masks were constructed using the MR Core approach, which already includes
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Table 3.1: Statistics representation of all subjects.

Class Subjects Age
Gender

M/ F
AD 78 76.5 ± 5.7 42/36
HC 78 79.6 ± 5.4 35/43

LMCI 79 72.5 ± 6.7 41/38
EMCI 78 74.5 ± 6.9 40/38
AD: Alzheimer’s disease; LMCI: Late Mild Cognitive

Impairment; EMCI: Early Mild Cognitive Impairment;

CN: Normal control.

pre-processing processes in ”Intracranial Space”. These datasets additionally

provide corresponding metadata information for each brain image, including

demographics such as gender, beginning subject weight, age, and diagnostic

group. The ADNI 1 group provided the data for this experiment.

3.2.2 Selected Features

For the extraction of features, FreeSurfer software was used to have two

volumetric features.

• Cortical Features

• Subcortical Features

3.2.2.1 Volumetric volumes

The term ”volumetric feature” refers to the ability to calculate the volume

of certain brain locations by accumulating the voxels inside the traced region
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of interest (ROI). In this work, in total 873 extracted features from cortex and

subcortical volume of each subject’s brain were utilized that are extracted using

the Freesurfer toolbox [75].

3.2.2.2 Cortical dimentia

The cortex is the part of the brain with which most people can identify, at

least visually. The outer layer’s unique twists and turns play a significant role in

information processing and the procedures like language and memory. Cortical

dementia [76], [77] is usually linked to gray matter in the brain. When the outer

layers of the brain are weakened, as in Dimentia, Binswanger’s disease, and

Creutzfeldt-Jakob disease, challenges with remembering, selecting appropriate

words, and understanding what others are saying develop (aphasia).

3.2.2.3 Subcortical dimentia

As the name indicates, these dementias are hypothesized to affect parts of

the brain underneath the cortex are predominantly affiliated with white matter.

Huntington’s disease, and Parkinson’s dementia are all examples of subcortical

dementia. Personality changes and a slowing of mental functions are more

common in subcortical dementias. In the early stages of many dementias,

language and memory abilities generally appear to be intact. The cerebral cortex

degenerates widely in most types of dementia, resulting in tangles, which are the

markers of AD. Other types of dementia involve targeted injury to areas beneath

the cortex, giving birth to the term ”subcortical dementia” [77].
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3.2.3 Extraction of Features

The features of this experiment were cortical thickness and subcortical volume

segmentation at each vertex of the cortical, subcortical surface. As illustrated

in Figure 3.1, the Freesurfer 6.0 software [75] suite is employed, which is a

fully automated volumetric segmentation and cortical reconstruction pipeline.

Subcortical volumetric and cortical thickness measurements have been used

routinely for classification. Where, cortical thickness is a direct indicator

of atrophy, making it a potentially powerful candidate for AD diagnosis.

The original MRI data were first submitted to a variety of pre-processing

processes before being processed. Such as Motion correction, T1-weighted image

averaging, registration of the volume in the Talairach space, and skull stripping

with a deformable template model. Moreover, EM registration (linear volumetric

registration), neck removal, CA labeling, intensity normalization, and white

matter segmentation are also included.

In this study, freesurfer software was utilized to generate the cortical thickness

and subcortical volume of a brain attributes automatically as show in the Figure

3.1.

Figure 3.1: a) Cortical ROIs, b) Subcortical volume extracted features [78].
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3.2.4 Selection of Features

Following the feature extraction stage, the obtained information was normalized

to zero mean and unit variance using a standard scalar function. The purpose of

normalization is to remove data inconsistencies that make analysis more difficult.

The standardized sequence of components x(i, j) is given by:

Xn =
x(i, j)−mean(X j)

std(X j)
(3.1)

3.2.4.1 Principal Component Analysis (PCA)

It’s a type of learning procedure in which a higher-dimensional sample or

feature has been taken, such as photos in matrix form, and then use some

approaches to convert it to a lower-dimensional space. Any dimensional feature

can be reduced to a 2D or 1D plane using this method. Furthermore, this

technique was utilize to minimize features of the subcortical and cortical volumes

that were retrieved using the Freesurfer toolbox. In this experiment, Principal

component analysis (PCA) employed as dimensionality reduction technique [79].

Basically, PCA builds a sequence of starting features and used that k < d to

transform the information from d-dimension field to a k-dimension region. The

attained variables k are referred as the principal components (PCs). Except for

the variation that is already accounted for in all subsequent components, each PC

is directed to the maximum variance. The first component, in comparison to the

following components, covers the larger deviations. The following formula can

be used to compute PCs:
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PCi = a1X1 +a2X2 + .....+a jX j, (3.2)

Where in equation (3.2), PCi represent the ith principal component, X j shows

the original feature j, and a j is the numerical coefficient for X j. PCA is the

most extensively utilized feature selection approach. Whereas, it just reduces the

dimension of the features. Using a feature selection method, on the other hand,

the model only runs on the basis of selected features and does not change. We

first use PCA to minimize the dimension of a feature, then use the RFE feature

selection approach to select the key features.

3.2.4.2 Recursive Feature Elimination (RFE)

RFE is a wrapper type feature selection strategy. This approach builds models

from a subset of input characteristics and chooses the best ones based on

performance parameter. The finest example of feature selection in a wrapper is

RFE. The RFE algorithm is specified as follows in Algorithm 3.1.

3.2.5 Classification

To examine the classification accuracy based on subcortical and cortical

characteristics, five different commonly used classifier algorithms were testified.

A comparative studies of the used classifiers are described in table 3.2.

3.2.5.1 Random Forest (RF)

Random forest is a supervised learning method for classification and

regression in ML. It’s a classifier that takes the average of the outcomes of
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Algorithm 3.1 Recursive feature elimination
1: Train a model with all of the predictors in the training sample

2: Model Performance should be calculated

3: Call BuildTree to calculate variable relevance or ranking

4: for Each subset size Si, i = 1, ...S do

5: Keep just the most significant Si properties

6: Train the model on the training set using Si predictors

7: Determine the model’s performance

8: Recalculate the predictor ranks

9: end for

BuildTree(N):

10: if only one class is represented by N instances then

11: return

12: else

13: Select x% of the potential dividing features in N at random.

14: To split on, choose the feature F with the biggest information gain

15: Create f nodes of N,N1, ...,N f , where F might have f different values

16: for i = 1 to F do

17: Set the contents of Ni to Di, where Di is all instances in N

18: Fi

19: Call BuildTree(Ni)

20: end for

21: end if

22: Determine the performance profile over Si

23: Decide on the optimal amount of predictors

24: Select the model that corresponds to the best Si

end
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multiple decision trees applied to different subsets of a dataset in order to increase

the dataset’s projected accuracy.

It is also called as a meta-estimator since it employs the aggregate to increase

the model’s prediction and minimize over-fitting by fitting a large number of

decision trees to a wide range of data. Even though the sub-sample length remains

the same as the original size of data, the samples are formed through substitution.

It forms a ”forest” from a cluster of decision trees acquired by the ”bagging”

method. The bagging technique is based on the premise that merging many

learning models boosts the end outcome. Rather than reliance on a single tree

structure, the RF collects forecasts from each tree and predicts the final outcome

based on the majority of votes.

3.2.5.2 Support Vector Machine (SVM)

Widely used supervised learning classifier for data classification and

prediction. However, it is commonly used in machine learning to overcome

classification difficulties.

The SVM approach’s purpose is to find the optimal line or decision boundary

for classifying n-dimensional space into classes so that following data points may

be conveniently placed in the correct category. In that case hyperplane is the best

border option.

SVM techniques categorize information and train models with extremely

restricted degrees of polarity, yielding a three-dimensional classifier that extends

beyond the X/Y predictive axes. As demonstrated in Figure 3.2, SVM is used to

discover extreme points/vectors that help in hyperplane design.
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Figure 3.2: Support Vector Machinem

3.2.5.3 K-Nearest Neighbors

K nearest neighbors (KNN is indeed a simple approach which retains

both existing samples and classifies new based on similarities (e.g., distance

functions).

KNN has been utilized as a non-parametric approach in statistical estimates

and pattern recognition since the early 1970s. It’s a lazy learning technique

since it doesn’t strive to develop a generic internal model; instead, it only keeps

instances of the training data. The categorization is determined by a majority vote

of the each point’s k nearest neighbours.

A case is assigned to the class with the most representation among its

neighbors, as defined by a distance function, by a majority of votes cast by its

neighbors. If K = 1, the case is simply assigned to the class of its nearest neighbor.

3.2.5.4 Naive Bayes

The Naive Bayes (NB) family of probabilistic algorithms determines how
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likely each data point is to fall into one or more of a set of categories (or not).

It is a supervised learning method to deal with classification issues based on the

Bayes theorem. It’s a probabilistic classifier, meaning it makes predictions based

on the likelihood of an object.

3.2.5.5 Softmax Classifier

Softmax classifier is a simplified representation of logistic regression models

that can be used to solve problems involving multiple mutually inimitable classes.

Softmax regression is a sort of logistic regression that converts a data input into

a vector of features that represent a probabilities and accumulates to 1. Softmax

classifier has known applications in discriminative models like Cross-Entropy

and Noise Contrastive Estimation.

3.2.6 Methodology

The technique may be described as follows:

1 Collect the pre-processed dataset consist of AD, eMCI, lMCI and NC

groups.

2 Extract subcortical and cortical features using FreeSurfer toolbox.

3 Features normalization.

4 Dimension reduction.

5 Feature selection method performed.

6 Classification of AD in four groups using ML classifiers.
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Table 3.2: A Comparative Study of Machine Learning based Classification techniques

ALGORITHM FEATURES LIMITATIONS

Random Forest

- Handle both categorical and continuous variables. - A small change in the data can cause the algorithm to

change significantly.

- Noise has a lower impact on Random Forest. - Compared to other algorithms, algorithm computations

can be much more complex.

- Outliers are usually tolerated by Random Forest and

handled automatically.

- The technique may become too sluggish and useless for

real-time predictions if there are a huge number of trees.

SVM

- In high-dimensional spaces, it is effective. - More speed and size are required in training and testing.

- Appropriate method when the sample size is less than

the number of dimensions.

- In many cases, classification necessitates high

complexity and extensive memory requirements.

- Even if the information is not linearly separable in the

base feature map, it performs well.

- Nonlinear problems are not suitable.

K-Nearest neighbor

- Classes are not required to be linearly separable. - Finding the closest Neighbors in a big training data set

might take a long time.

- The learning process has no cost. - It is responsive to unnecessary or disruptive attributes.

- Ideal for multimodal classes. - The number of dimensions impacts algorithm

performance.

Naive Bayes

- Implementation is simple. - The algorithm’s precision decreases as the amount of

data decreases.

- Exceptionally high computational efficiency and

classification rate.

- A large number of data are needed to acquire good

results.

- For the majority of classification and prediction

problems, it predicts accurate results.

- Based on the assumption that all predictors (or features)

are independent.

Softmax Classifier

- Makes no assumptions about class distributions in

feature space.

- Not good for complex model, as it cannot handle a large

number of categorical variables.

- Model coefficients can be perceived as indicators of

information gain.

- Prone to overfitting.

- A natural probabilistic perspective on class predictions. - This technique does not work if the independent

variables are not associated with the target variable.
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3.2.6.1 Architecture

3.2.6.2 Implementation Details

The datasets (ADNI) as whole is massive, and the huge in dimension.

Therefore, other adjustments were necessary to make the learning feasible. The

extracted feature values in the ML process usually are in high dimensional space,

for that a large computational power is required to train a high dimensional

data. So far, the gained output performance is not impressive due to the

long time required to converge the data. In this perspective dimensionality

reduction techniques in conjunction to transform high-dimensional feature values

into low-dimensional feature values and select the best ones based on their

performance can be useful to obtain the desired output. To accomplish that,

PCA as a dimensional reduction method and RFE as a best feature selector in

this experiment were acquired. All categorization problems were executed on

Python 3.8.5 installed on Ubuntu 20.04 LTS. There were four categories of data

in this thesis (AD, eMCI, lMCIs, and CN) and two types of characteristics (sMRI

imaging modalities) (from where cortical and subcortical volumes were extracted

from each subjects). Thus, the proposed method was tested on five different

types of classification problems, all of which are binary class problems. Initially,

around 873 features from each sMRI scan were extracted using Freesurfer v.6.0

automated toolkit. Later, those attributes were passed through the dimensionality

reduction and feature selection method simultaneously to lower the dimension

and to choose the most relevant attributes from all 873 features which were

submitted to the classifier model. The block diagram for ML approaches is

shown in Figure 3.3. As classifiers in this experiment, random forest, a support
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vector machine (SVM), naive bayes, KNN, and softmax were testified. To get

impartial performance assessments, the participants were randomly assigned to

two groups, one is for training and another for evaluation, with a 70:30 split. In the

training set, the cross-validation approach was utilized to discover the optimum

hyperparameter values for the objective. The optimal hyperparameter values for

the training set were identified using a 5-fold cross-validation (5f-CV) approach.

For the aforementioned technique, the appropriate parameter value was utilized

to build the 5 classifier using the training data, and the classifier’s performance

was thus assessed by utilizing the remaining 30% of data in the test samples. In

this approach, the study was able to obtain unbiased performance estimates for

each categorization problem and looked at four different options like accuracy,

sensitivity, specificity, and Youden Index performance measure values for each

group.

3.3 Deep Learning based Alzheimer’s Disease Classification

3.3.1 Dataset

T1-weighted MRI data from ADN1/ GO of 163 AD patients, 163 MCI patients,

and 163 normal controls (NC) were utilized in this investigation throughout a

24-month period. Table 3.3 shows the demographics of each category.

T1-weighted MR images were acquired sagittally in this experiment adopting

a volumetric 3D MPRAGE with an image resolution of 1.25 × 1.25mm2 in-

plane and 1.2mm thick sagittal slices. The bulk of these scans were acquired

with 1.5 T scanners. Furthermore, the structural MRI images used in the study

had already been assessed for quality and had underwent gradwarp, B1 non-

uniformity correction, and N3 processing steps.
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Figure 3.3: Machine learning based Proposed Method Architecture.

3.3.2 Image Patch Generation

Since MRI images are volumetric. As a result, a 3D Convolutional Neural (3D

CNN) Network [80] is the DL model. In comparison 3D CNN models are more

computationally expensive and time-consuming to train than 2D CNN models

due to their high-dimensional nature. Another difficulty is that most of today’s

medical databases are rather tiny. Due to a shortage of data, it is difficult to train

a deep network that can generalize to high degrees of complexity.

As a consequence, 489 3D MRI images with 192× 192× 160 dimensions

were employed in the experiment, which could not be input directly into a 2D

CNN model. The 3D MRI images were initially scaled down to 96×96×96. The
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Table 3.3: Representation of ADNI subject’s demographics.

Group No.of Subjects Age Group Gender
M/F

AD 163 78.04 ± 6.40 82/81
CN 163 78.02 ± 5.33 78/85

MCI 163 77.14 ± 7.02 99/64
AD: Alzheimer’s disease; CN: Normal control;

MCI: Mild Cognitive Impairment.

images were then split into axial, coronal, and sagittal slices. Then, at the start

and finish, certain slices were discarded because they lacked relevant information.

The slices were similarly standardized, with a mean of zero and a standard

deviation of one. The 2-D CNN model was then trained using patch slices chosen

at random from the axial, coronal, and sagittal planes.

3.3.3 Deep Learning Architectures

Concept of CNN employed in this work was inspired by the human visual cortex.

The human eye’s receptive field receives information, identical to the convolution

procedure, which compresses the input picture and generates the subset of

features by working with the input’s receptive field. Convolution employs several

layers, including ReLU activation properties, max-pooling layers, and fully

connected layers.

These procedures are applied to each input in order to generate a final

result in the form of a binary or multiclass labels. A collection of neurons,

shared hyperparameters, local connection, and shift invariance are utilized to link

the convolution operation to enhance the network performance. We developed
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an end-to-end convolution design for multi-label AD biomarker detection that

employs the entire imaging volume as an input. In addition, we evaluate the

proposed approach with the prominent CNN designs used for classification tasks,

such as VGG-Net and ResNet. These models have been used effectively in a

variety of applications to categorize, identify, label, and detect positions [81].

3.3.3.1 The VGG-Net Model

The VGG network is the name given to the pre-trained CNN model

introduced by Simonyan and Zisserman [82] at Oxford University in early 2014.

The Image Net ILSVRC dataset, which comprised images from 1000 distinct

classes, was used to train VGG (Visual Geometry Group). For training, 1.3

million photos were used, and 50,000 were used for validation. VGG-19, a

VGG architectural variant with 19 deeply connected layers, has consistently

beaten other cutting-edge models. The model is composed of totally connected

and strongly linked convolutional layers, which allows for improved feature

extraction including the use of max-pooling (rather than averagepooling) for

down-sampling prior to classification with the SoftMax activation function. The

VGG-19 model is used as a baseline method in this study, with the ADNI dataset

assisting in the classification of various stages of Alzheimer. Figure 3.4 depicts

the construction of VGG-19.

3.3.3.2 ResNet Model

At ILSVRC-2015, Residual Network [83] took first place in the classification,

object tracking, and identification tasks. The researchers were curious if boosting
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Figure 3.4: Basic Architecture of VGG-Net [78].

learning simply required stacking additional network layers on top of one another.

They found the degradation problem, in which earlier models’ performance, such

as VGG, worsened rather than improved after a specific number of layers. To

address this issue, they introduced the residual function, which serves as the

foundation of a residual network (ResNet). ResNet was simply adopted from the

non-bottleneck 50-layer design, where links with broadening dimension appear

to be either (A) identity links, i.e., zero padding, or (B) projection links, i.e.,

convolutions with 1 × 1 (kernel) size, and has been used as the basic model

to characterize AD using the ADNI dataset. ResNet-50’s fundamental design is

illustrated in Figure 3.5.

3.3.3.3 Proposed Model

Convolution layer are the fundamental building blocks of any cnn architecture

that use advanced nonlinear function to achieve the best results. To identify AD,

the suggested approach leverages a DL model to automatically collect knowledge

from whole brain MRI scans. The suggested pipeline is presented in Figure 3.6

and consists of three basic steps: brain size scaling, 3D volume slicing, and CNN

analysis. We envisioned a simple yet effective cnn model that is influenced by
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Figure 3.5: The fundamental representation of residual network [84].

the architecture design of ResNet and ConvMixer [85]. Where the proposed

model performs conventional convolution, depth-wise convolution, and point-

wise convolution concurrently, preceded by a skip conv layer to learn multi-level

attributes from MRI data.

Figure 3.6: The layout of the proposed model.

A. Standard Convolution: The standard folding procedure is depicted in

Figure 3.7. A conventional convolutional layer receives a DF ×DF ×M feature
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map I as input and provides a DG×DG×N feature output O, where DF signifies

the spatially width and height of the square input matrix, M defines the number

of input feature map channels, and N defines the number of output feature

channels. The feature is taken from the typical convolutional layer’s k ×Dk sized

convolution kernel. Dk is the convolution kernel’s spatial breadth and height. The

conventional convolution calculation procedure from feature map I to feature

map O is described by:

Gk,l,n = Σi, j,mKi, j,m,n.Ik+i−1,l+ j−1,m, (3.3)

In Equation (3.3) , I stands for input feature maps, G stands for output feature

maps, and k stands for convolution kernels. I and j determine the position of

the convolutional kernel elements. The positions of the element in the input and

output feature maps are determined by k and l, respectively, whereby m is the

channel of the input feature map and n is the channel of the output feature map.

The following are the standard convolution parameters:

F = M×N ×Dk
2. (3.4)

The cost of computing standard convolution is shown by:

G = M×N ×DF
2 ×Dk

2, (3.5)

Where in equation (3.4) and (3.5) F represents number of model parameters,

G represents the computation complexity, M represents the input feature

channels, N represents the output feature channels, DF represents the spatial

width and height squared of the object map’s input features, and Dk represents

the convolution kernel’s spatial width and height.

45



Figure 3.7: Demonstration of the standard convolution architecture [86].

B. Depth-wise and Point-wise Convolution Operation: Convolution in

depth is a sort of convolution that processes each channels of the input image

independently. It is used to retrieve spatial information in each dimension. A

common convolution approach for the output feature map is point-by-point

convolution. The Figure 3.8 depicts a depthwise and point-wise structure, where

D f× D f ×M represent the size of the input picture, D f represents the height

and width of the input image, M represents the number of channels in the map,

and Dg× Dg × M reflects the output feature map’s size created by convolution.

The height and width of the output picture are represented by Dg, which is

equivalent to the number of channels in the input data. It is utilized as the

following convolution’s input. For point-by-point convolution, the dimension of

the convolution kernels is 1× 1, and the number of channels on each convolution

filter must be equal to the number of channels in the input feature map. When the

convolution kernels numbers are N, the resulting feature map is Dg× Dg× N.

The depthwise convolution output feature map is expressed as:

Ḡk,l,m = Σi, jKi, j,m.Ik+i−1,l+ j−1,m, (3.6)

In equation (3.6), I indicates the input feature patterns, Ḡ signifies the output

image features, and K represents the kernels I and j define the convolution
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kernel’s element location. The variables k and l define the location of the given

input feature and the extracted feature map, respectively, while m denotes the

input feature map channels.

The cost function (G2) and the convolution parameters (F2) in depth are

calculated as follows:

F2 = M× D2
k (3.7)

and

G2 = M×D2
i × D2

k (3.8)

The parameter is simply proportionate to the amount of feature mapping

channel and convolution kernels provided. The computation complexity depends

on number of given input mapping providers, convolutional kernel, and quadratic

input feature mapping function. The output feature mapping N does not need to

be considered when determining the convolution depth parameter and computing

cost. When compared to relations (3.4) and (3.5), equations (3.7) and (3.8) clearly

demonstrate the simplicity of depthwise convolution. However, unlike a standard

convolutional layer, depth-wise convolution just filters the input channels rather

than combining them to produce new features. As a result, an extra layer of 1× 1

convolution is required to create new features [87]. The new feature pattern is

created by combining the depth-wise and 1× 1 pointwise convolutions. As a

result, the parameters (F3) and cost function (G3) may be determined as illustrated

in equations (3.9) and (3.10):

F3 = M×D2
k +M×N (3.9)
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and

G3 = M×D2
i ×D2

k +M×N ×D2
i (3.10)

Figure 3.8: Demonstration of the depthwise convolution [86] architecture .

C. Proposed Model Implementation Details: This study analyzed 3D

structural image data of 489 patients to generate a 2D model (163 AD, 163 MCI,

and 163 CN). The original scans were rescaled to a level of 96× 96× 96. 40 brain

fields were produced from each area of the brain (axial, coronal, and sagittal) for

training and validation, in total obtaining 58680 characteristic areas, of which

19560 corresponded to the AD group, 19560 to the CN, and 19560 to the MCI

group.

The network, as depicted in Figure 3.6, was composed of three distinct types

of layers. The input layer took N gray level picture (Xn ,n ∈ [1,N]) patches,

sized them to 96 × 96, standardized them to the range [0, 1], and sent them

into the system. The second kind was a convolution layer, which was utilized
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in this study as the proposed body design. The presented CNN model was built

by combining four basic convolution layers and three convolution blocks, each

one comprises of a skip connection-based depth-wise convolution coupled by

point-wise (i.e., kernel size 1× 1) convolution. The GELU activation function,

Batch Normalization, and dropout layer follow each convolution in the block.

A residual convolution is also used in this model, which was influenced by

the skip connection type. The convolution filters were set at 5× 5 in size and

256 in number. This was preserved all across the model to guarantee that same

weights are distributed across different groupings of pixels in a picture. The fully

connected layer, the third type of layer, was composed of a set of input and

output neurons that formed the learnt linear combination of all neuron from the

preceding layer after flowing through a non-linearity. Inputs and outputs of the

fully linked layer were no longer spatially ordered, but rather represented a 1D

vector.

During the studies, each subject was arbitrarily split into three main sections:

training (60%), validation (10%), and test (30%). The presented technique

was programmed in Python 3.8.10 and evaluated in the Ubuntu 20.04-x64

framework on a machine equipped with an NVIDIA RTX3090 GPU. Initially,

the network weights were randomly set, and the Adaptive Moment Estimation

(Adam) optimizer was employed with an initial rate of 0.001 and a decay rate

of 0.9. The batch size was adjusted to 32 to avoid overfitting, and a dropout

layer was included to avoid overfitting. We applied the proposed method in

multiclass classification to distinguish among the patients with AD, MCI, and

CN categories.
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4 Results

4.1 Performance Metrics

The anticipated results in the diagnostic tasks are labeled as True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative (FN), as shown in

Table. 4.1. A positive sample that was correctly expected to be positive is known

as TP. A TN sample is the one that was expected to be negative with certainty.

The sign FP denotes a negative sample that was mistakenly identified as a positive

sample. The symbol FN denotes a positive sample that was misidentified as a

negative sample.

Table 4.1: Confusion Matrix

True Class
Predicted Class
G2 G3

G1 TP FN
G1 FP TN

Performance metrics such as accuracy, specificity, sensitivity, and the Youden

Index employed to assess the efficacy of machine learning methods. On the other

hand, to analyze deep learning-based diagnostic model following commonly

used indicators were used: accuracy, sensitivity, specificity,precision, and receiver

operating characteristic curve (ROC curve), F1 score,.

Accuracy (4.1) denotes the proportion of correctly identified samples among

test samples.

Accuracy =
T P+T N

T P+T N +FP+FN
(4.1)
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As shown in the equation (4.2), specificity reflects the portion of samples

correctly diagnosed, and sensitivity in equation (4.3) represents a model’s ability

to recognize AD patients in all positive samples.

Speci f icity =
T N

T N +FP
(4.2)

Sensitivity(Recall) =
T P

T P+FN
(4.3)

Equation (4.4), shows Youden Index (YI), indicates the effectiveness of

biomarker.

Y I = SEN +SPEC−1 (4.4)

Furthermore, in the equation (4.5), precision is defined as the proportion

of accurately predicted positive occurrences out of all anticipated positive

observations.

Precision =
T P

T P+FP
(4.5)

The F1 score is determined by averaging Precision and Recall. As illustrated

in the equation (4.6):

F1− score = 2(
Precision×Sensitivity
Precision+Sensitivity

) (4.6)

Finally, a ROC curve (receiver operating characteristic curve) is a plot that

illustrates a classification model’s performance of over all classification criteria.

This graph depicts two parameters:

The first parameter is the True Positive Rate (TPR), sometimes known as a

recall (4.7).
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T PR =
T P

T P+FN
(4.7)

The second parameter is the False Positive Rate (FPR), which is specified in

the equation (4.8).

FPR =
FP

FP+T N
(4.8)

4.2 Machine Learning Results

In the scenario of machine learning-based sMRI image processing, classification

performance was evaluated using subcortical and cortical characteristics, and the

findings are shown in Table 4.3 and Table 4.4. Moreover, classification reports

are shown in Figure 4.1,4.2 and 4.3 which helps to compare the performance

visually.

Table 4.2: AD vs eMCI classification results

Algorithms ACC SEN SPEC YI

Softmax Classifier 94.47 97.39 91.79 89.18

SVM 97.87 100 95.65 95.65

Naive Bayes 93.62 92.0 95.45 87.45

Random Forest 91.91 100 86.08 86.08

KNN 91.49 88.46 95.24 83.7

52



Table 4.3: AD vs lMCI classification results

Algorithms ACC SEN SPEC YI

Softmax Classifier 91.66 89.07 93.83 82.9

SVM 95.83 100.0 93.33 93.33

Naive Bayes 85.42 94.44 80.0 74.44

Random Forest 92.49 98.22 87.62 85.87

KNN 89.58 86.36 92.31 78.67

Table 4.4: AD vs HC classification results

Algorithms ACC SEN SPEC YI

Softmax Classifier 92.20 100 87.86 87.86

SVM 97.83 95.0 100.0 95.0

Naive Bayes 92.17 96.46 89.79 86.25

Random Forest 93.33 94.74 92.31 87.05

KNN 89.13 95.24 84.0 79.0
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Figure 4.1: Performance comparison for AD vs eMCI between classifiers.

Figure 4.2: Performance comparison for AD vs lMCI between classifiers.
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Figure 4.3: Performance comparison for AD vs HC between classifiers.

4.2.1 Results Summary

Table 4.2 illustrates the categorization findings for AD vs eMCI. Generally, all of

the strategies outlined performed better. However, SVM performed substantially

superior in terms of AD diagnosis, with an accuracy of 97.87% in this binary

classification. In terms of the distinction between AD and lMCI. Table 4.3

displays the performance evaluation for AD vs lMCI, which demonstrates that

SVM efficiency is 95.83%, which is higher than other classification algorithms.

Similarly, in the AD vs HC classification, as shown in Table 4.4, SVM surpasses

the other machine learning models with an effectiveness of 97.83%.

4.3 Deep Learning Results

The ADNI data is utilized to evaluate the presented method’s performance. With

a maximum accuracy of 96.41%, the suggested technique performed well in a

multi-class classification challenge (CN vs MCI vs AD). The table 4.5 compares

the proposed work to other model that can be trained on the same information. In

55



terms of accuracy, the comparison demonstrates that, even though having a fewer

parameters, the suggested model beats the benchmark models.

Table 4.5: Comparison of multiclass classification model performances

Methods # Parameters (Millions) #FLOPs (Billions) ACC SEN SPE Precision F1-score

ResNet50 23.587 0.65 95.27 95.31 97.63 95.39 95.32

VGG19 38.940 3.59 92.77 93.15 96.49 92.77 92.75

Proposed Model 3.514 1.42 96.12 94.99 97.73 95.50 95.23

FLOPs: Floating points operations; Maximum value of each column is denoted by bold figures;

ACC: Accuracy; SEN: Sensitivity; SPEC: Specificity.

ResNet and VGG Net were used as comparative models. ResNet obtained

an accuracy of about 95.34% using commonly applied performance measures

such as sensitivity (SEN), specificity (SPE), precision, F1 score, and accuracy

(ACC), which is 2.08% higher than the VGG (93.26%) due to feature propagation

improvements and skip connection, but lower than the suggested technique. The

proposed model has the greatest accuracy of 96.41%, that is 1.07% better than

ResNet and 3.15% higher than the VGG network.

Other performance measures showed that this work surpassed the baseline

models. It achieved 97.73% specificity and 95.50%t accuracy, which are both

greater than baseline models. ResNet outperformed, with sensitivity and F1

scores of 95.31 percent and 95.32%, respectively. The relevant ROC for the
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ADNI dataset is shown in 4.4, and so is the related confusion matrix in 4.5.

The efficiency and degradation curves for the training and validation databases

are shown in 4.6 and 4.7, respectively. In this work, I proved the efficiency of

our CNN model for binary and multiclass classifications. Binary classification

training is done in three scenarios between AD, MCI and CN.

Figure 4.4: Class 2 (AD), Class 1 (MCI), and Class 0 (CN) Receiver operating

characteristics (ROC) curve

Figure 4.5: Testing Data Confusion matrix
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Figure 4.6: Training and validation accuracy curve

Figure 4.7: Loss curve for training and validation data
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5 Discussion

There are remedies for Alzheimer’s disease symptoms, and various research

are being undertaken to help in the disease’s rapid recognition. Several

classification algorithms depending on T1-weighted images have been presented

in this respect to distinguish among AD, MCI, and Healthy Control (HC)

subjects.

Patients with AD were most typically classified using structural and

functional parameters. Liu et al. [88], for example, provided ROI-based

approaches for extracting brain characteristics, which were subsequently

categorised using ML approaches such as the multiple kernel boosting

(MKBoost) approach. It obtained 94.65% accuracy for AD versus CN, 89.63%

accuracy for AD vs MCI, and 85.79% accuracy for MCI vs CN classification

using a single structural MRI modality data. Sun et al. [89] achieved similar

findings. In their paper, they introduced a novel SVM-based learning approach

for extracting spatial-anatomical information, as well as a group lasso penalty to

impose structural sparsity. Their proposed approach had an accuracy of 95.1%

for AD versus CN classification, 70.8% for MCI vs CN classification, and 65.7%

for AD vs MCI classification. S. Kadoury [90] also suggested a technique for

semantically annotated PET image feature group classification. Their strategy

produced 91.2% efficiency for AD versus HC categorization. Khajehnejad et al.

[91] use a manifold-based semi-supervised learning technique to diagnose AD.

Their approach was 93.86% accurate.

In contrast to previous work, the goal of this study is to increase the accuracy

of a model created by integrating the feature selection approach. This work

explore the effectiveness of multiple ML classifiers (SVM, Random Forest,
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Nave Bayes, K-nearest neighbor, and Softmax classification method) for the

identification of AD utilizing an efficient combined feature selection technique

in AD, eMCI, lMCI, and HC volumes.

However, in order to employ such ML techniques for disease identification,

pre-processing procedures, which are often time consuming and computationally

costly, must be applied. As a result, scientists have concentrated their efforts

on building computer-based systems which are designed to detect Alzheimer

at an early stage. CNN-based image recognition is now widely employed in

medical diseases diagnosis, according to [21]. But, creating an efficient CNN

model capable of providing decent outcomes is neither practical nor realistic.

As a result, in this study, we suggested a method for ”categorizing MRI images

employing CNN features that has higher accuracy and fewer parameters.

To enhance classification performance, previous models just increased the

depth and complexity of the network. Which frequently experienced vanishing

gradient problem. In this context, this study aimed to ameliorate the vanishing

gradient problem, encourage feature reuse, and considerably reduce the number

of parameters by presenting a modified convolution network. A CNN network

structure includes a regular convolutional layer as well as a depthwise-pointwise

convolutional layer that was integrated to extract additional characteristics that

are sensitive to brain activity or anatomical changes in a broad region. The

proposed design addresses the aforementioned concerns by employing the notion

of feature mixing, as defined in [92], [93]. Study primarily use depth-wise

convolution to mix spatial information, point-wise convolution to blend channel

areas, and the skip layer to mix global data attributes while lowering model

complexity.

Furthermore, the suggested model was compared to existing deep learning
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(DL) approaches. Hosseini et al. [6] suggested a 3D convolutional auto-encoder-

based approach in their paper. They employed a pre-trained algorithm to detect

anatomical form modifications in sMRI images. They next tested their algorithm

on a CAD Dementia MRI dataset without first removing the skull and obtained

89.1% accuracy in multi-class classification. Also, their model obtained 97.6%

for AD versus NC, 95% for AD vs MCI, and 90.8% for MCI vs NC on binary

class tasks. Basaia et al. [68] introduce a DL framework based on the structural

cross-sectional MRI scans for predicting AD diagnosis. Their suggested model

was 99.2% correct for AD against CN, 87.1% correct for MCI vs CN, and

75.4% correct for AD vs MCI. Using the OASIS data set, Liu.J et al. [94]

built a CNN-based framework that accomplished 78.02% validity for multiclass

classification, 84.65% accuracy for MCI versus CN, 72.96% accuracy for AD

versus MCI, and 75.2% accuracy for MCI versus CN classification. Later, in the

same study, using ADNI data they enhanced their work to lower the number of

parameters by utilizing a deep separable convolution model and reached 77.79%

accuracy by decreasing the CNN model parameters by 87.94%. Liu.M et al. [94]

created an architecture integrating 3D Densely connected deep cnn (3D Dense

Net) and multi-task CNN to learn attributes from the segmented hippocampus.

They got 88.9% accuracy for AD vs NC and 76.2% efficiency for MCI vs

NC. Furthermore, in their publication, Xu et al. [95] suggested a customized

Tresnet design for extracting information from gray matter MRI images. They

obtained 86.9% accuracy in discriminating AD versus CN and 63.2% efficiency

in classifying several classes. Finally, Aderghal et al. [96] developed a transfer

learning approach based on DL to automatically identify brain images, depending

on minimal ROI (few slices of the hippocampal region). Their analysis reveals

that AD against CN is 91.86%, AD vs MCI is 69.95%, and MCI vs CN is 68.52%.
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Table 5.1 examines numerous DL techniques in terms of parameters, while Table

5.2 highlights the comparison of various research.

Table 5.1: Number of Parameters compared between proposed and published methods.

References Architecture Parameters Reduction (%)

Hosseini et al., 2016 [6] 3D Convolutional Auto Encoder 76.22 95.39%

Liu. J et al., 2021 [73] Multi Layer Neural Network 29.80 88.22%

Liu. J et al., 2021 [73] Depth separable convolution 11.15 68.52%

Aderghal et al., 2020 [96] Le-Net 62.50 94.38%

Xu et al., 2021 [95] Tresnet L + SK module 52.0 93.25%

Base Line Model VGG19 38.94 90.98%

Base Line Model Resnet50 23.58 85.11%

This Study Proposed Method 3.51 -

*Number of Parameters are measured in millions

Moreover, from a methodological perspective, hardware throughput must be

recognized as a vital role. To do this, floating point operations (FLOPs) are

used as a sign of power use, also the number of parameters [97]. Generally,

a network having fewer parameters and FLOPs demanded less memory to

preserve the architecture, needed less hardware memory, and therefore it is

more favorable to the embedded system. Figure 5.1 displays an assessment of

the accuracy and computing costs between the benchmark and recommended

models. The proposed approach has the benefit of having a lower number of

FLOPs opposed to the VGG19 model, and also a lower number of parameters by
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90.98%. Despite having the same amount of FLOPs as ResNet50, the proposed

scheme has 85.11% less parameters. Experiments demonstrate that the proposed

methodology produces better outcomes with fewer number of parameters and a

lower computing cost.

VGG19 ResNet50 Proposed Model

FLOPs Parameters Accuracy

100 

75 

50 

25 

0 

Figure 5.1: Model comparison for FLOPs, parameters and accuracy
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6 Summary and Conclusion

This thesis comprises of machine learning (ML) frameworks to classify

AD and other diagnostic groups using ADNI dataset. For ML case, this thesis

proposed a combination of dimension reduction and feature selection methods.

The objective is to integrate feature selection approaches to adequately identify

AD from MCI (early or late AD), and a normal group acquired from the

ADNI dataset. This study used a mixer of subcortical and cortical attributes

retrieved using a computerized framework. To execute classification tasks, five

classifiers were utilized (Softmax, KNN, SVM, Nave Bayes, and Random

Forest). Following the recommended methodologies, the experimental results

demonstrated satisfactory accuracy in three scenarios (AD vs HC, AD vs eMCI,

and AD vs lMCI).

Moreover, in the instance of deep learning (DL), this work designed

a CNN for 3D whole brain scans, and the optimal accuracy was found

using an isotropically repeated convolution block network configuration.

The presented technique outperforms current state-of-the-art technologies.

Furthermore, the process works completely automated (no further knowledge or

human involvement is required) and incredibly fast. The proposed methodology

might be used to discover key trends in information, confirm previous expert

conclusions, aid in diagnostic situations, and even reveal patterns for chronic

conditions other than Alzheimer’s.

Future study might explore towards attaining equivalent or better outcomes

for pre-processed data for skull alignment and removal. Finally, it would be

intriguing to include patient information to supplement the data provided by

MRIs, influence decision-making, and link it to the patient’s medical history.
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