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I. Introduction

1.1. Research Background

1.1.1. Triboelectric nanogenerator

With the depletion of finite energy resources, such as coal and natural gas, and an
increase in environmental issues, the market for eco-friendly electronic products is
continuously growing. Therefore, energy-harvesting technology, which can harvest energy

generated from natural energy sources, is in the spotlight.

Energy-harvesting technology produces electrical output from various mechanical energies,
such as piezoelectric, electromagnetic, and triboelectric effects. Among them, the
triboelectric nanogenerator (TENG), which is based on the combined effects of electrostatic
induction and contact triboelectric charging, is a power source that can efficiently harvest

energy by friction between two materials with different electron affinities [1,2].

Negative (-) (+) Positive

Figure 1.1. Triboelectric Series

Triboelectric charging refers to a phenomenon in which two different materials are

charged positively and negatively, respectively, when they are separated by contact with

_1_
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each other by an external force. As shown in Figure 1.1, when different materials with
relative positions in the triboelectric series come into contact with each other, a potential

difference occurs and electric charges flow between the electrodes.

Contact-separation mode Linear-sliding mode

...................................................................................................................................

..................................................................................................................................

E R T T S T T I-I--l-+++-|-/ .,..,,.',,,__‘_I /
{3
Single-electrode mode Freestanding triboelectric-layer mode

Figure 1.2. Four fundamental modes of TENG: (a) vertical contact- separation mode;

(b) lateral sliding mode; (c) single-electrode mode; (d) freestanding triboelectric-layer mode

According to the contact of the friction material and the position of the electrode, the
TENG is divided into four basic operating modes. As shown in Fig. 1.2(a), the TENG
operating in the vertical contact separation mode is usually composed of two different
friction materials, and generates an electrical output through the contact and separation of
the friction materials. In this mode, TENG is attached to the sole of most shoes to
generate electricity through the movement of people in daily life, walking or running, and
it can be easily manufactured at low cost with a simple structure. However, if the external
force applied to the TENG is irregular, it may affect the electrical output. The operation of
the lateral sliding mode is similar to that of the vertical contact separation mode as shown

in Fig. 1.2(b), but generates an electrical output based on the translational motion in the

_2_
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state where two different friction materials are not separated. This mode can improve the
output performance due to the higher contact area than the vertical contact mode. As
shown in Fig. 1.3(c), the single-electrode mode is the simplest mode requiring only one
electrode, and the friction material can move freely without being constrained by
movement. The single-electrode mode is suitable for portable and self-powered systems due
to the disadvantage of lower output performance compared to other modes. Unlike other
modes, the free-standing mode, in which two electrodes and friction materials are
configured vertically/horizontally, does not need to maintain contact, so high electrical
output and efficiency can be obtained. Fig. 1.3(d) shows the operating principle of the

free-standing mode, which has the advantage that the friction material can move freely.

TENG can be used for various applications and has advantages including versatility in
material selection and conversion efficiency. However, complex processes and expensive
equipment are generally required to manufacture TENG. In addition, most of the existing
TENGs generate energy only in the intentional vertical-contact mode, and have poor
durability against twisting or bending deformation using metal materials. To compensate for
this, a flexible material-based TENG should be developed that can be folded several times

without deterioration in durability even under an external force.
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1.1.2. Paper based triboelectric nanogenerator

Paper has distinct advantages, such as biocompatibility, flexibility, low cost, and easy
disposal; therefore, it was used as a substrate for TENG [3,4]. Because paper is insulating,
a conductive layer coating is required on the surface of the paper when it is used as the
substrate for TENG. For this purpose, the paper surface was coated using metals such as
Au or Ag, ink, and an airbrush [5-10]. In addition, acrylic, graphite, and PET were used
as triboelectric materials for paper-based TENG [11-15].

Paper is foldable; thus, it can be manufactured in various shapes. Further, the more
folded it is, the larger is the area to which the external force is applied; thus, the
frictional surface area increases. However, folding was impossible because of the hard
physical properties of the materials constituting most of the existing paper-based TENGs, or
the method was to form electrodes and electrification layers on each frictional layer after
folding the paper [16-23]. This structure was weak in durability to repeated external forces,
and thus, the TENG could be easily damaged, and energy generation was temporary. To
compensate for this, a paper-based TENG should be developed that can be folded several

times without deterioration in durability even under an external force.
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Figure 1.3. Typical preparation methods of Paper-based TENG [3]
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1.1.3. Textile based triboelectric nanogenerator

A textile-based triboelectric nanogenerator (T-TENG) is a promising energy harvester for
realizing wearable devices and self-powered smart clothing [24,25]. Textiles have distinct
advantages, such as a wide selection of materials, flexibility, stretch, durability,
permeability, lightness, and biocompatibility; therefore, they have been used as triboelectric
materials for TENGs [26]. Textiles can efficiently harvest energy by friction with materials
with different electron affinities and generate high power as the relative difference in
electron affinity increases. T-TENGs can harvest large amounts of energy by moving the
human body in daily life, such as shaking arms, walking, and bending arms and knees
[27]. A T-TENG was coated with polyvinylidene fluoride (PVDF), PTFE, and
polydimethylsiloxane (PDMS) for the increase in the frictional surface area [28-30]. In
addition, the power generation performance of the T-TENG was improved by transforming
the surface of the friction material into a line, cubic, or pyramid pattern structure by
physical/chemical transformation. As the surface charge density increased according to the
nanoscale patterned application, the electrical output of the TENG also increased. To
improve the output of a textile-based TENG, metals with hard physical properties, such as

Au, Ag, and Cu, have been used as relative triboelectric materials [31].

However, most existing T-TENGs generate energy only in the intentional vertical contact
mode and have poor durability against twisting or bending deformations when using metal
materials [32-33]. In addition, disadvantages exist in the complicated manufacturing process
and limited size of the manufactured TENG. Therefore, a T-TENG that can efficiently
harvest energy in various modes, including the vertical contact mode, and whose durability
does not deteriorate even with repeated shape deformation and the external force of the

TENG, should be developed.
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Figure 1.4. Typical preparation methods of Textile-based TENG [26]
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1.1.4. Outline of this dissertation

As environmental issues arise, the market of eco-friendly electronic products is steadily
growing, and many research on energy harvesting technology that can supply power
efficiently are being conducted. In particular, as the demand for low-carbon and
eco-friendly energy is increasing and the use of wearable devices is soaring, the
triboelectric nanogenerator (TENG), which can economically harvest energy, is in the
spotlight. TENG is attracting more attention than other generators due to its distinct
characteristics such as simple structure and simple fabrication, variety of material choices,

and high power generation efficiency.

TENG has a variety of cost-effective, flexible, lightweight, and environmentally friendly
properties that can be used in a wide range of applications. However, most of them require
complicated processes and expensive equipment, and their biodegradability and recyclability
are limited. In addition, energy was generated only in the intentional vertical-contact mode,
and the durability against repeated deformation was weak by using a metallic material for
connecting the external electrode. To overcome this, materials can be easily obtained in
daily life and flexible material-based TENGs that can be manufactured simply, are being

studied.

In this study, TENG of sandwich structure using paper and textile among flexible
materials was fabricated for eco-friendly and wearable energy harvesting. It can be utilized
as a power source for wearable and self-powered portable devices. The proposed TENG
uses Si-rubber/EcoFlex as a friction material to supplement elasticity and flexibility, and to
secure durability against repeated external forces and deformations. In addition, by
patterning the micro-structure of the crepe paper surface on the EcoFlex surface to increase
the surface charge density, the power generation performance of TENG was improved. It
can be transformed into various shapes and can be applied as a wearable device. This
study is expected to be utilized as a promising power source for self-powered

wearables/portable devices, and it can be applied as an educational tool to learn the

_7_
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principle of triboelectric generation.

In the first chapter, we will discuss the foldable paper based TENG that allow free
deformation. However, folding was impossible because of the hard physical properties of
the materials constituting most of the existing paper-based TENGs, or the durability was
weak by forming electrodes and electrification layers on each frictional layer after folding
the paper. The FP-TENG proposed in this study was fabricated a sandwich structure that
improves durability and allows free deformation by combining flexible aluminum tape,
polytetrafluoroethylene (PTFE), and Si-rubber with paper. The FP-TENG generates up to
572 mW/m® of power via contact-separation of the triboelectric electrified body at the top
and bottom. The more the FP-TENG is folded, the triboelectric cross-sectional area
increases, and thus, the electrical output increases. In addition, it shows excellent durability
without signal degradation under 5,000 cycles of repeated pushing motions. Finally, the
electrical characteristics and durability of the origami were analyzed, and the possibility of
driving electronic devices for practical applications was confirmed. This study can be
utilized as a sustainable and promising eco-friendly energy source for small electronic
devices, and is expected to be applied as an educational tool to learn the power generation

principle of triboelectric devices.

In the second chapter, We discuss a sandwich-structured textile-based TENG (STENG)
with stretchability and full flexibility for wearable energy harvesting. To address the
problems of the existing T-TENG, one side of the stretchable textile was coated with
micropatterned Ecoflex, and the power generation performance was improved by patterning
the Ecoflex surface based on the microstructure of the crepe paper surface. On the other
side, an acetate cloth tape was attached to the stretchable textile as a serpentine structure;
this serpentine structure enabled up to 50% expansion and contraction in the lateral
direction. Through friction between the micropatterned Ecoflex and acetate, an STENG
could harvest mechanical energy in the contact-separate, stretching, and rubbing modes. The
STENG generated power of up to 361.4 V and 582 pA in the contact-separate mode,
which is the result of 250% improvement in the output performance compared to that of a

flat Ecoflex-based STENG without nanopatterns. In addition, we successfully demonstrated

_8_
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the operation of 135 LEDs using the STENG output without an external power source and
presented excellent durability and potential applications. These findings could provide a
textile-based power source with practical applications in future e-textiles and self-powered

electronics.
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II. Flexible sandwich-structured foldable

nanogenerator

2.1. Experimental details

2.1.1. Fabrication of the foldable paper based TENG

a — Paper

— Aluminum
L . i

' _Coated
© Si-rubber

triboelectric

.‘.T*‘
EX3
3]

Figure 2.1. (a) Schematic of FP-TENG fabrication process. The inset shows FESEM images

of the coated Si-rubber surface PTFE at a scale bar of 300 pm. (b) Photograph of

FP-TENG with a surface area of 10 ~ 10 cm® (c) The thickness of FP-TENG

As shown in Figure 2.1(a), the FP-TENG is a sandwich-type structure constructed using

top and bottom papers as substrates. The insulating coating of the paper was used by

attaching a flexible aluminum tape. The aluminum (charge affinity of +10-30 nC/J) tape of

the upper paper was regarded as an insulating material and a positive triboelectric material.

A copper wire was used as the electrode of the positive triboelectric layer. Si-rubber and

_10_
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PTFE (charge affinity of -72 nC/] and -190 nC/J, respectively) of the lower paper were
considered as negative triboelectric materials. To coat the Si-rubber, an aluminum tape was
attached to the paper and coated with the Si-rubber solution. The electrode of the negative
triboelectric layer was the aluminum tape attached to the paper. When the Si-rubber
hardens to a certain thickness, PTFE is attached to a striped pattern with uniform spacing.
Because Si-rubber and PTFE have a high negative charge affinity according to the
triboelectric series, they can generate a large amount of triboelectric charge in the material,
thereby improving the power generation performance of the TENG. Figures 2.1(b) and (c)
show the FP-TENG fabricated with dimensions of 10 x 10 cm® and constant thickness in
the range of 20 + 5 mm, respectively. Because the FP-TENG comprises flexible materials

including paper, it can be deformed and folded freely.

_11_
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2.2. Results and discussion

2.2.1. Working mechanism

Figure 2.2 shows the working mechanism of FP-TENG when it is operated in the
vertical contact-separation mode. Initially, no charge is present between the electrode and
contact surface. When an external force is applied to FP-TENG, the aluminum at the top
and PTFE/Si-rubber at the bottom come into contact and are charged positively and
negatively, respectively (Fig. 2.2 (i)). When the force is released, the two triboelectric
materials separate and return to their original shapes, and the opposite charges in each
material are rapidly separated by voids that form a dipole moment. Electrons flow from the
bottom to the top electrode until a potential difference occurs between the top and bottom
electrodes, and the charges accumulate (Fig. 2.2 (ii)). When they are completely separated
and reach an equilibrium state, there is no movement of electrons between the two
substances (Fig. 2.2 (iii)). When an external force is applied again, the dipole moment and
potential difference decrease, causing electrons to flow from the top to the bottom electrode
in the reverse direction (Fig. 2.2 (iv)). In other words, the contact-separation process
between aluminum and PTFE/Si-rubber generates an instantaneous alternating current

through an external load.

L ]

|

L ]

[] Paper Aluminum Copper wire
PTFE Si-rubber
Pressed i Releasing
D P ‘
| I + : + : + -+ + -+ +
AR T, 708, . 30 b _________ ef
+ + + +
|» ] [ ?\
Pressin,
\ iv} ¢ iii) Released «
i }

,
\

Figure 2.2. Working mechanism of FP-TENG in the vertical contact-separation mode
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2.2.2. Output performance and stability

T
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Figure 2.3. (a) Schematic of the unfolded and double-folded FP-TENG. Comparison of
output voltage and current for: (b and c) unfolded and (d and e) double-folded FP-TENG,
(f and g) output voltages and currents for different PTFE patterns, (h) Measured voltage

and current, and (i) power density across various loading resistors

As shown in Figure 2.3, the electrical performance of the FP-TENG (area: 10 x 10
cm’) was evaluated. The output voltage was measured using an oscilloscope (MSO9104A)
with an internal impedance of 1 MCQ, and the output current was measured using a
precision source/measurement device (B2911A). Because the FP-TENG comprises a flexible
material, it can be folded, as shown in Figure 2.3(a). The more it is folded, the wider the
cross-sectional area to which the force is applied. As shown in Figs. 2.3(b) and (c), when

a force of approximately 1 kgf was applied to the unfolded FP-TENG, a voltage of 386 V

_13_
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and a current of 60 pA were measured. As shown in Figs. 2.3(d) and e, in the same
experimental environment, the double-folded FP-TENG had a voltage of 456 V and a
current of 75.8 pA. As shown in table 2.1, the output voltage and current values of our
proposed FP-TENG are higher than those of previously reported paper-based TENG. As the
frictional surface area increased when the paper was folded, the double-folded FP-TENG
exhibited more than 1.5 times the output performance. Because PTFE and Si-rubber are
negative triboelectric materials, the output was compared according to the number of PTFE

patterns to obtain the optimal output performance.

Table 2.1. Compared with the existing triboelectric nanogenerator using paper

Materials Typical performance
Ref Paper as a substrate
Electrode Triboelectric Isc Voc
Conducti
8] Paper based TENG Oninic e PTEE tape 72uA | 218V
Milk-based paper Conductive
9 Cardboard, PTFE 43.6 292.5V
] TENG ink ardboat HA
Crepe cellulose paper/ Crepe cellulose
11 C 45 103.2V
[11] NCM based TENG OPPer paper, NCM HA
imple/l t
[13] Simple/low: cos Copper Graphite, PET 75.6uA | 69.8V
TENG wire
[15] Teflon/vitamin B1 Copper Vitamin Bl powder, 46 3uA 340V
powder based TENG foil teflon tape
P TE
[21] aper based TENG (o FEP 264nA | 732V
(Kirigami pattern)
Pencili TENG Graphite, tefl
(34] enciling a Copper raphite, teflon 3.750A 85V
on paper tape
This Foldable paper Copper, Aluminum,
. 456V
work based TENG Aluminum PTFE/Si-rubber 75-8uA

Figures 2.3(f) and (g) show the output voltage and current values of the FP-TENG
fabricated by varying the number of PTFE stripe patterns, respectively. The output voltage
and current for two, four, six, and seven patterns of PTFE were measured, and we see that

the output increased as the number of patterns increased. Therefore, FP-TENG was
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fabricated with 7 patterns of PTFE. To measure the power density of FP-TENG, load
resistance values of 10-10' Q were connected to the electrode, and the output was
measured for each case. As shown in Figure 2.3(h), when the load resistance increased, the
output voltage increased initially and then became saturated. On the contrary, the output
voltage is reduced by Ohm's law. The output power density was calculated by the formula
P = I’R. The maximum output power density can be obtained when the load resistance is
equal to the internal impedance of FP-TENG. As shown in Fig. 2.3(i), a maximum power

density of 572 mW/m® was observed at a load resistance of 10° Q.
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Figure. 2.4. (a) Photograph of the test setup using a pushing tester. (b and c¢) Durability

and stability tests under 5000 cycles of contact-separation motions

Because paper can be relatively easily wrinkled or torn, it is important to secure

durability and stability when used as a frictional material or substrate for TENG. As shown
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in Fig. 2.4(a), the output voltage and current values from repetitive contact-separation
motions in the FP-TENG were measured using a pushing tester. As shown in Figure
2.4(b), by applying a force of approximately 0.1 kgf for 5000 cycles, the output voltage
showed an error range of up to 1.6 V. In addition, as shown in Figure 2.4(c), the output
current showed a low error range of up to 0.7 pA in the same experimental environment.
Thus, the FP-TENG exhibited excellent mechanical durability and stability since it had a

constant signal output without significant degradation of the electrical output.
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2.2.3. Practical applications

a | / Wrist-watch

FP-TENG r] Velcro

!\

e @

Turn off the light

FP-TENG

Turn off the light

Figure. 2.5. (a) Demonstration of continuously driving a wristwatch using FP-TENG and
schematic of a full-wave rectifier circuit, (b) Output voltage of FP-TENG folding under
pushing motion, (c) LEDs powered by FP-TENG folding under folded and unfolded
motions, and (d) Lighting of 96 LEDs by hand tapping and visible in a dark environment
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As shown in Figure 2.5, the applications of FP-TENG were demonstrated by operating a
wristwatch and turning on LEDs. As shown in Figure 2.5(a), the FP-TENG was
manufactured as a watch band and connected to an electronic watch panel such that it
could be worn on the wrist. The FP-TENG watchband could continuously drive the watch
when an external force was applied. It supplied power to the electronic watch face by
hand tapping. The watch was operated by connecting a 2.2 pF capacitor and bridge circuit.
The alternating current output by hand tapping was rectified into direct current (DC) by the
bridge circuit. In addition, as shown in Figure 2.5(b), the origami was made into a pear
shape owing to the foldable characteristics of FP-TENG, and voltage was generated by an
external force. Furthermore, the origami was made as shown in Figure 2.5(c) and LEDs
were connected in series to turn on the LED light by folding and unfolding motions.
Finally, as shown in Figure. 2.5(d), the FP-TENG operated up to 96 LEDs under an
external force. Thus, we observe that the FP-TENG generates sufficient power from
external forces to drive electronic clocks and LEDs, and its flexible characteristics make
origami possible. Therefore, it can be used as a promising power source for eco-friendly
wearables and portable devices and can be applied as an educational tool to learn the

power generation principle of triboelectric devices [35].
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III. Fully Stretchable Sandwich Structured Textile-based

Triboelectric Nanogenerator

3.1. Experimental details

3.1.1. Fabrication of the sandwich-structured textile based TENG

(a)

Acetate cloth

Micropatternd EcoFlex

Figure 3.1. (a) Schematic of a sandwich-structured textile-based TENG (STENG). (b) Field
emission scanning electron microscopy (FESEM) images of the acetate cloth and (c) textile
at a scale bar of 500 um. (d) FESEM image of the micropatterned Ecoflex at a scale bar

of 1 mm

As shown in Figure 3.1, the STENG had a sandwich-type structure made of two
stretchable textiles, and all flexible materials were used. One side of the stretchable textile

was coated with a micropatterned Ecoflex and used as the negative triboelectric material.
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Textile
— Crepe paper

& \ _ —— EcoFlex

Removed paper
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N \\ Micropatterned

N _ -

N~ N EcoFlex

Figure 3.2. Schematic of the STENG fabrication process. STENG, with a surface area of 5

x 10 cm?

The power generation performance was improved by patterning the Ecoflex surface based
on the microstructure of the crepe paper surface (Figure 3.2). To increase the surface
charge density during contact charging, a nanoscale microstructure was patterned on the
Ecoflex surface. The micropatterned Ecoflex was cured to a constant thickness of 60 + 5
mm. A copper wire was used as the electrode of the triboelectric layer. On the other side,
an acetate cloth tape was attached to the stretchable textile as a serpentine structure and
was used as the positive triboelectric material. The serpentine structure enabled up to 50%
expansion and contraction in the lateral direction. The top of the acetate cloth was sewn
with yarn to generate an air gap, which can generate energy even in the stretching mode.
That is, through friction between the micropatterned Ecoflex and acetate, the STENG
harvested mechanical energy in contact-separate, stretching, and rubbing modes. In addition,
because all the materials used were flexible, the structure was free from deformation. The
total area of the STENG was 5 x 10 cm’ and thickness was 135 + Smm. Because the
STENG used only flexible and stretchable materials, electrical outputs could be generated in

various modes.
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3.2. Results and discussion

3.2.1. Output performance
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Figure 3.3. Comparison of the electrical output power performance of the three types of
STENG; (a) contact-separation (361.4 V), (b) stretchable (166.1 V), and (c) rubbing (119.5

V) mode comparison of three-mode STENG; (d-f) the electrical output power performance
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As shown in Figure 3.3, the electrical performance of the STENG (area, 5 x 10 cm?)
was evaluated. A digital oscilloscope with an internal impedance of 1 MQ was used to
measure output power. An output of 361.4 V in the vertical contact mode, 166.1 V in the
stretching mode, and 119.5 V in the rubbing mode were observed (Figures 3.3a-c) for the
STENG. As shown in Figs. 3.3d-f, in the same experimental environment, an output of

214.7 V in the vertical contact mode, 94.4 V in the stretching mode, and 85.7 V in the
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rubbing mode were observed for the flat Ecoflex-based STENG without nanopatterns.
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Figure 3.4. Comparison of the electrical current performance of the three types of STENG;
(a) contact-separation (58.2 pA), (b) stretchable (23 pA), and (c¢) rubbing (17 pA) mode
comparison of three-mode STENG; (d-f) the electrical output power performance of the

three types of non-patterned STENG

The output current of STENG was measured using a precision source/measurement
device. An output current of 58.2 pA in the vertical contact mode, 23 pA in the stretching
mode, and 17 pA in the rubbing mode were measured (Figure 3.4a-c) for the STENG. As
shown in Figs. 3.4d-f, in the same experimental environment, an output of 25 pA in the
vertical contact mode, 8 pA in the stretching mode, and 4.2 pA in the rubbing mode were

observed for the flat Ecoflex-based STENG without nanopatterns.

This was the result of a 250% improvement in the output performance compared to that
of the flat Ecoflex-based STENG without nanopatterns. Because the STENG used flexible
materials, including textiles, output power could be obtained in the vertical contact,
stretching, and rubbing modes. In addition, as shown in Table 1, the proposed STENG

exhibited a better output performance than the previously reported textile-based TENG.
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Table 3.1. Compared with the existing triboelectric nanogenerator using textile
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3.2.2. Stability
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Figure. 3.5. Mechanical durability test for the FS-TENG under 5000 cycles with the first

and last 0.5s waveforms enlarged. (a) Output voltage and (b) Current

As shown in Figure 3.5, the output voltage and current values from repetitive
contact-separation motions in the STENG were measured using a pushing tester. As shown in
Figure 3.5a, by applying a force of approximately 0.1 kgf for 5000 cycles, the output voltage
showed an error range of up to 0.6 V. In addition, as shown in Figure 3.5b, the output
current showed a low error range of up to 0.4 pA in the same experimental environment.
Thus, the STENG exhibited an excellent mechanical durability and stability because it had a

constant signal output without significant degradation of the electrical output.
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3.2.3. Practical application

Figure 3.6. Commercial 135 light-emitting diodes (LEDs) directly lighted and visible in a
dark environment by hand tapping.

As shown in Figure 3.6, the applications of the STENG were demonstrated by operating
a wristwatch and turning on LEDs. These findings could provide a textile-based power

source with practical applications in future e-textiles and self-powered electronics.
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IV. Conclusion

In this study, a triboelectric nanogenerator with a new structure using paper and
textile among flexible materials was developed. The developed TENG can be applied
to wearables and portable small electronic devices by harvesting energy through various
transformations. Only highly flexible materials were used to improve the durability of

the TENG.

First, we fabricated a sandwich-structured foldable paper-based triboelectric
nanogenerator (FP-TENG) that used paper as the substrate, PTFE/Si-rubber as the
negative triboelectric layer, and aluminum as the positive triboelectric layer. The
FP-TENG generated up to 572 mW/m’ of power, and owing to its flexibility, the
frictional surface area increased when it was folded, resulting in an increase in the
output by a factor of 1.5. It has proven its excellent durability without degrading the
output during 5000 cycles of pushing motion. To evaluate the performance of
FP-TENG, a wristwatch and 96 LEDs were operated using the generated power, and
the electrical output performance using origami was shown. The new structure and
practical application potential of environmentally friendly TENG were demonstrated

using paper, a natural material.

Second, We fabricated an STENG with stretchability and full flexibility for wearable
energy harvesting. Through friction between the micropatterned Ecoflex and acetate,
STENG harvested mechanical energy in contact-separate, stretching, and rubbing modes.
An output of 361.4 V and 58.2 pA in the contact-separate mode, 166.1 V and 23 pA
in the stretching mode, and 119.5 V and 17 pA in the rubbing mode were observed.
This is the result of a 250% improvement in the output performance compared to the
that of the flat Ecoflex-based STENG without nanopatterns (214.7 V, 25 pA). The
STENG exhibited an excellent durability without degrading the output during 5000
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cycles of pushing motion. In the vertical contact, stretching, and rubbing modes, up to
135 LEDs were operated with the STENG output alone. These findings could provide
a textile-based power source with practical applications in future e-textiles and

self-powered electronics.
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Abstract

A study of Flexible Material-based Triboelectric Nanogenerators

for Self-powered Systems

Da Eun Kim
Advisor. : Prof. Youn Tae Kim, Ph.D.

Department of IT Fusion Technology,

Graduate School of Chosun University

Recently, as the use of wearable devices and the demand for eco-friendly energy have
increased, many studies have been conducted on triboelectric nanogenerators (TENGSs),
which can economically harvest energy. In this paper, we proposed a flexible
material-based nanogenerator that can be easily fabricated using readily available
materials and can be applied in various fields. In particular, a method for improving
durability that can efficiently generate energy in spite of repeated external force and
twisting or bending deformation was presented. To this end, in this paper, TENG
based on paper and textile among flexible materials was fabricated and the effects of
each parameter were analyzed by measuring the physical and electrical properties. The
fabricated device generates power of up to 572 mW/m® by the contact-separation
process of the triboelectric electrified body at the top and bottom, and as it folds, the
friction cross-sectional area becomes wider, increasing the electrical output. In addition,
it exhibits excellent durability without degrading output even in the repetitive pushing
motion of 5000 cycles. In addition, we successfully demonstrated the operation of the
electronic clock panel and the light emitting diode only with the output of the
manufactured device without an external power source. Therefore, the developed

nanogenerator is expected to be used as a sustainable and promising eco-friendly
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energy source for small electronic devices, and is expected to provide a textile-based
power source that can be practically applied in e-textile and self-powered electronics in

the future.
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