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[. Introduction

1.1. Research background

Biosignals are indicators of physical health that allow the management of
various diseases, such as muscle pain, insomnia, and heart disease [1-3]. The
electrocardiogram (ECG) is the most important signal for confirming the state
of the heart [4,5].

In an ECG, the heartbeat is represented by electrical signals. The heart
rate of a healthy person is usually between 60 and 100 beats per minute [6].
When a person is exercising, tense, or excited, the heart beats faster. There
are typically no problems in such cases; however, when the heart beats
irregularly for no reason, this symptom 1is called arrhythmia. According to
NHANES 2015-2018 data, the prevalence of cardiovascular disease (comprising
coronary heart disease, heart failure, stroke, and hypertension) in adults =20
years of age is 49.2% overall (126.9 million in 2018) and increases with age
for both males and females. The prevalence of cardiovascular disease
excluding hypertension is 9.3% overall (26.1 million in 2018) [7]. The rapid
increase in the number of heart disease patients due to changes in eating
habits and reduced exercise has contributed to the most serious death rate for
modern people. The most representative type of heart disease is arrhythmia.
Early detection of arrhythmia is crucial, because arrhythmia causes symptoms
such as dizziness, fainting, chest pain, and difficulty breathing, and can lead to
heart attacks [8].

Methods of diagnosing arrhythmia include periodically visiting a hospital or
using a Holter monitor. However, both of these are inconvenient for patients
and can be expensive. In addition, ECG signals measured by widely used smart
watches are acquired over a short period of <1 min; therefore, it is impossible
to identify cardiovascular diseases, including arrhythmia, using such devices.

Methods for detecting arrhythmia include detection of early contraction of

the ventricles using the RR interval [9], analysis using the discrete Fourier

_’I_
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transform [10,11], and analysis based on the Hilbert transform [12,13]. These
arrhythmia diagnosis methods must be performed by a specialist, and for the
early detection of heart disease, a large quantity of ECG data must be checked
for irregular events. In addition, there are many factors to be considered for
accurate diagnosis, such as the patient’'s movements and signal interference
problems that occur when ECG signals are measured during normal activities
[14]. Furthermore, the “silver generation” and residents of mountainous areas
or islands cannot visit the hospital often, owing to a lack of transportation,
physical aging, or disease.

To overcome these difficulties, we propose an arrhythmia detection
algorithm combining MobileNetV2-BiILSTM and a matching pursuit algorithm
that can accurately diagnose arrhythmia using ECG data. To increase the
accuracy of the algorithm, the ECG signal in the time domain was converted to
the frequency domain using a scalogram.

Because the proposed algorithm augmented ECG data using matching
pursuit, it was possible to accurately detect arrhythmia through ECG signals
measured within a short timeframe by learning a large quantity of data. The
proposed algorithm used the ECG database provided by MIT-BIH [15,16]. An
experiment was conducted for increasing the classification accuracy using a
small quantity of data. The number of data used in the algorithm is 654, with
approximately 164 data per class. For training algorithms, this scale of data is
insufficient. To solve this problem, the matching pursuit algorithm is used,
which can decompose data or duplicate data. The matching pursuit algorithm
can eliminate noise because it can approximate the signal. By combining
MobileNetV2-BiLSTM and matching pursuit and applying the proposed
algorithm to ECG signals, we confirmed the possibility of developing an

efficient health management algorithm applicable to mobile devices.
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1.2. Key technology

MobileNetV2 is an image classification model that was proposed in 2018
[17]. It is a lightweight network that preserves performance to the greatest
extent possible, and compared with previously proposed networks, the size of
the classifier model is significantly reduced by applying the average pooling
technique in the process of converting the feature group into the classifier
group. The feature stage has a structure in which convolutional modules are
repeatedly stacked. MobileNetV2 has a conv. + batch normalization (BN) +
rectified linear unit (ReLU) structure, and the computational burden and model
size are reduced by using a depth-wise convolutional layer as an intermediate
layer. In the process of converting spatial information into a fully connected
(FC) layer, the weight of the FC layer is limited to the number of channels by
applying average pooling rather than the existing tensor shape conversion
[18].

In a previous study, computed tomography and X-ray data related to
COVID-19 were classified using six different models, including MobileNetV?2
[19]. The model performance was evaluated according to the accuracy,
precision, recall, and F1 score. Among the models tested, MobileNetVZ2 and
VGG19 exhibited the best performance.

There are many reports of heart disease diagnosis using machine learning.
A review was conducted to identify the trends of machine learning—based and
data driven techniques for heart disease diagnosis with imbalanced data [20].
A meta analysis was per formed using 451 reports acquired from reputed
journals between 2012 and 15 November 2021.

Machine learning, which can accurately classify data, uses a high
performance central processing unit (CPU); thus, it has excellent computational
processing power and uses multiple high performance graphics. Because
machine—learning algorithms are developed with a focus on performance, the
operating environment of the algorithm is not considered. However, patients

with heart disease must check their health regularly and can not carry a high
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performance desktop. To solve this problem, a machine learning method that
can be implemented on a mobile device is required. MobileNetV2 is a
convolutional neural network (CNN)-based algorithm designed for applications
wherein the computational resources are limited or the battery performance is
important.

BILSTM is a circulating neural network that can process data that change
over time, such as video [21,22]. The original circulating neural network had
the problem of data loss after repeated backpropagation, but BiLSTM mitigates
the problem of data loss using a forget gate. The core of the BILSTM neural
network comprises the sequence input layer and the long short-term memory
(LSTM) layer. The sequence input layer inputs sequence or time series data
into the neural network. The LSTM layer learns the data according to the
sequence time flow.

The matching pursuit algorithm was developed to linearly decompose
signals in order to understand their characteristics. When the original signal is
decomposed, the characteristics of the original signal are identified by
considering the time and frequency domains simultaneously, e.g., the wavelet
and Fourier transforms, in the order of energy [23].

The wavelet transform is a multi resolution system capable of processing
signals in various frequency bands by converting the input sampling frequency
into another set of sampling frequencies. By applying this transform to an ECG
signal, noise removal and waveform segmentation can be performed
simultaneously, providing a high resolution for each feature element in the
signal. The wavelet transform can be used to analyze the converted signal in
the desired frequency band by multiplying the input signal by the wavelet
function and scale function, and dividing the frequency band into high and low
frequency segments [24-26].

The MIT-BIH database, which is widely used in arrhythmia related studies,
contains ECG data categorized into 17 classes. This dataset consists of ECG
signals with durations of 10 s from 45 participants. The MIT-BIH database is

commonly used by researchers to develop heart related algorithms [27-29].

_4_
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Table 1 presents details regarding the databases used in this study.

Data Index Data Class Number of Data
1-283 Normal sinus rhythm (NSR) 283
284-418 Atrial fibrillation (AFIB) 135
419-551 Premature ventricular 133

contraction (PVC)

Left bundle branch block beat

552-654 (LBBB)

103

Table 1.1. Datasets used in this study.

Figure 1.1 shows the ECG signals included in the database. “NSR”
corresponds to a normal ECG signal. AFIB is one of the heart diseases that
can be detected using ECG signals. PVC and LBBB correspond to premature
ventricular contractions and left bundle branch block beats, respectively, and

also represent abnormal heartbeats.

1200 NS i
(@)1o00f, 8
800 }
0 500 1000 1500 2000 2500 3000
Data number
1200 AFIB i
(b) 1000 |
800 |
0 500 1000 1500 2000 2500 3000
) Data number
1200 PVC |
(€) 1000
800 1
0 500 1000 1500 2000 2500 3000
Data number
1200 LBBB ;
(d)1000 ‘
800 I
0 500 1000 1500 2000 2500 3000

Data number

Figure 1.1 MIT-BIH database contained several ECG signals. The recordings
were digitized at 360 samples per second per channel with a resolution of
11 bits: (a) NSR: (b) AFIB: (¢) PVC: (d) LBBB. Two or more cardiologists
independently annotated each record.

_5_
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1.3. Previous study

Tuncer et al. [2] classified arrhythmia signals using the 1D-HLP technique.
Using the 1D-HLP, 512 dimensional features are extracted from each of the
five levels of the low-pass filter. These features are subjected to 1 Nearest
Neighbor (1-NN) classifier for classification with four distance metrics. The
authors obtained a classification accuracy of 95.0% when classifying 17
arrhythmia classes using the MIT-BIH arrhythmia ECG Database.

Ribeiro, H.D.M, et al. [30] proposed an algorithm that could classify the
ECG signal of both healthy and sick people. The proposed lightweight solution
uses quantized one—dimensional deep convolutional neural networks, and is
ideal for real time continuous monitoring of cardiac rhythm. It is capable of
providing one output prediction per second. It is accurate (sensitivity of 98.5%
and specificity of 99.8%) and can be implemented on a smartphone, which is
energy efficient and fast, requiring 7.65 ms per prediction

Naz et al. [31] proposed a new deep learning approach for the detection
of ventricular arrhythmias (VA). Initially, the ECG signals were transformed
into images, and this t had not been done before. Subsequently, these images
were normalized and utilized to train the AlexNet, VGG-16, and Inception-v3
deep learning models. The results were evaluated on the MIT-BIH Database,
and an accuracy of 97.6% was achieved.

Cai et al. [32] developed a deep learning—based approach for multi label
classification of ECG, named Multi—-ECGNet, which can effectively identify
patients with multiple heart diseases simultaneously. The experimental results
show that these methods can achieve a high score of 0.863 (micro-Fl-score)
in classifying 55 types of arrhythmias.

Park et al. [33] proposed an ECG signal multi classification model using
deep learning. The authors used a squeeze—and-excitation residual network
(SE-ResNet), a residual network (ResNet) with a squeeze—and-excitation block.

The authors compared SE-ResNet with ResNet as a baseline model for various

_6_
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depths of the layer (18/34/50/101/152). The SE-ResNet classifier with 152
layers achieved an F1 score of 97.05% for seven class classifications. The
model surpassed the baseline model, ResNet, by +1.40% for seven class
classification.

Lee et al. [34] proposed a novel method for generating a gray level
co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM) from
one-dimensional signals. The authors extracted the morphological features for
automatic ECG signal classification. The extracted features were combined with
six machine learning algorithms to classify cardiac arrhythmias. Of the six
machine learning algorithms, combining XGBoost with the proposed features
yielded an accuracy of 90.46%, an AUC of 0.982, a sensitivity of 0.892, a
precision of 0.900, and an F1 score of 0.895, and presented better results
than wavelet features with XGBoost.

Existing technology for arrhythmia diagnosis makes it difficult for patients
to detect diseases in their daily lives. This is due to structural problems with
the arrhythmia diagnosis technology. When deep learning is used to detect
arrhythmia it involves a very large amount of computation, because it 1is
developed with a focus on performance. This deep learning computer uses
high performance GPUs and memory. However, it has spatial limitations
because it is not portable. Although arrhythmia diagnosis technology is being
developed, it is not practically helpful for patients with arrhythmia. To solve
these problems, patients need solutions to be available on mobile devices that

are now widely available to many people.
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II. MobileNetV2-BiLSTM algorithms

2.1. Preprocessing

Figure 2.1 shows the workflow of the proposed algorithm. The proposed
arrhythmia detection method involves preprocessing to minimize noise and
resize the ECG signals. To increase the accuracy of the algorithm, the training
data were sufficiently selected through the matching pursuit algorithm. The
wavelet transform was used for feature point extraction. Arrhythmia was

detected using a MobileNetV2-BiLSTM neural network.

" MIT-BIH Database “\‘ s Pre-processing .
Resize Digital filter

' MobileNet (‘las‘;ifcation

| Peee- -
| ! ﬂme«Hm e |

Figure 2.1. Workflow of the proposed algorithm. This
algorithm randomly replicates ECG signals and classifies
them into four classes using MobileNetV2 and BiLSTM.
The data were duplicated using a matching pursuit
algorithm. Time domain data were converted to

frequency domain using wavelet transforms.
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Noise in ECG signals is caused by various factors, such as the
environment, whether the electrodes are in good contact with the patient,
movement of the measurement cable, movement of the baseline due to
breathing, and movement of the patient. These factors affect the shape and
size of the waveform, reducing the accuracy of arrhythmia detection. To
minimize noise, a Butterworth notch filter and a moving average filter were

designed. Figure 2.2 shows the signal processing results.

200 - - '
—— Raw signal
—— Filtered signal
=
E100f | r | |
EF ! l W“ .n-ff wadl dhs
© 0 | e,
g i‘H.T' parn |1“ ‘ | *‘\.11?1'! [!. Hl\-'{ .1[
|
g 0 P mﬁ%m, r’ﬁﬂwﬁw M g wfﬁ‘ oy A H.*M"‘t“
| | | | !
-100 - ' ' '
0 1 2 3 4 5
Time (s)

Figure 2.2. Digital filter was designed in MATLAB and applied to the
ECG. Butterworth high-pass and low-pass filters were designed (5-
250 Hz), and a band-stop filter was used to reduce the noise at 60

Hz.
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2.2. Data augmentation

A matching pursuit algorithm was used to augment the training data. This
algorithm can generate additional signals that are similar to the original signal.

The original signal must be decomposed to generate a similar signal. First,
the basic signals g_0 and a_0 that most closely reflect the original signal are
calculated, as follows:

F(t) = ayg9, )+ R(t) (D

where R(t) represents the remainder of the original signal after it is
decomposed using the base signal g,, and q, is a coefficient that optimally
represents the given signal in terms of the minimal mean square error given
any base signal g,. The approximated signal that best represents a given
original signal has the smallest error value when approximating the original
signal. Therefore, to determine this basic signal function and the coefficient
value, we define Equation (2), which gives the difference between the original
signal and its approximation.

Elaglgy) =< f— aglge f — aglgy > (2)

Finding the coefficient a_0 that minimizes Equation (2), this becomes an
optimal value from the viewpoint of the least square error. The minimized E(g,
| go) is given as

Blaglgy) =< ff>=</fr9,>" 3)

To minimize Equation (2), the default signal with the maximum value of
< f,go > and the default signal with the largest inner product absolute value
are set to the signal g, to decompose the input signal. For minimizing Equation
(2), the expansion coefficient a_0 is expressed as follows:

ag =< f:90 > (4)

Equations (2)-(4) are used to determine the basic signal with the largest

absolute value of the original signal and the inner product. This procedure

represents the input signal using a basic signal that is most similar to the

_‘]0_
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original signal. After a given input signal is decomposed, the original signal is
redefined using the approximate error signal f(t), as indicated by Equation (5).
This procedure is repeated until the original signal is completely decomposed.
Thus, the matching pursuit algorithm decomposes the original signal into
appropriate basic signals.
F)e—(f(t) = aggy(t)) (5)
Figure 2.3 shows the results of generating a signal similar to the original

signal by changing the coefficient.

Original Signal 1 ) Signal 2
2 2.2
1.8
=
2 1.6 >
a3
g 00 1.8
5
2 1.8
Eaw
1.8
1.6 18 1.6
0 1000 2000 3000 O 1000 2000 3000 O 1000 2000 3000
Data number Data number Data numbar
Signal 3 Signal 4 Signal 5
2
2
2.2
1.8
=
1.6
< 2
= 1.8 2.2
= 2
5 1.8
18
7
1.6 i °
- 0 1000 2000 3000 o] 1000 2000 3000 0 1000 2000 3000
Data number Data number Data number

Figure 2.3. ECG signals generated by the matching pursuit
algorithm. The matching pursuit algorithm generates a
correlation matrix obtained through the inner product and
selects values in the order such that the correlation size is
the largest. The matching pursuit algorithm uses this value

to output similar signals.
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2.3. Wavelet Transform

Equation (6) represents the wavelet function w(a, d)(x) using the scale

coefficient a and the transition element d.

(a,d)(z = f — )dt (6)

The discrete signal x(n) of the ECG can be converted into a discrete

wavelet by discretizing the scaling element (a) and the transition element (d)
in Equation (6). At the level j = —1, it can be expressed by combining a high
frequency signal D,;[z(n)] and a low frequency signal Ay[z(n)]. The ECG
signal is expressed as [z(n)]=Dy[z(n)l+ Dylz(n)] and generally satisfies

Equations (7) and (8).

D,z ZDQJ ), (n—2'k) (7)
Dylz()] = D] Ay, (k) (n—27k)  (8)
k=1

In this case, 2/ indicates that the number of samples is divided by two as
the level j decreases. Equation (7) represents a signal with a high frequency
component, which is related to the transition elements of the signal. Equation
8 shows the low frequency component of the signal, which is related to the
scale of the signal. The high and low frequency components of the input signal
are divided according to the level j.

D, (detail) is the finite impulse response (FIR) high-band filter coefficient
associated with the wavelet coefficient, and A, (approximation) is the FIR
low-band filter coefficient associated with the scale function coefficient. The
signal whose length is reduced by half through each filter is repeatedly
converted to the next scale level. The wavelet coefficient indicates the
similarity to the wavelet generating function. This represents the frequency

signal. Figure 5 shows the results of applying the wavelet transform to the
ECG signal.
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Figure 2.4. Scalogram was used to investigate the frequency
characteristics of the ECG signals. A higher voltage of the signal
corresponded to a clearer scalogram result. (a) ECG signal; (b)

scalogram of the ECG signal.
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2.4. Proposed ECG Signal Classification method

An algorithm combining MobileNetV2 and BILSTM was developed for
classifying arrhythmia data. MobileNetVZ2 classified the arrhythmia data, and
BiLSTM maintained the sequence data to improve the performance of the
arrhythmia classification model. A diagram of the MobileNetV2-BiLSTM

algorithm for classifying arrhythmia data is shown in Figure 2.5.

Time domam }—'{ Wavelet transform

Frequency domain

Figure 2.5. Diagram of the proposed algorithm. The input data consisted of
four classes, and a MATLAB-based digital filter was wused for
preprocessing. The matching pursuit algorithm was used for data
augmentation. MobileNetV2-BiLSTM was applied in the data classification

process.

The data ratio was the highest with 283 NSR data and the lowest with
103 LBBB data. The balance data may cause overfitting problems, because the
number of data is insufficient. To solve this problem, data were added using
the matching pursuit algorithm in this study.

The matching pursuit algorithm was developed to decompose signals in

order to understand their characteristics. During the decomposition of the
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signal to be analyzed, the time and frequency domains are simultaneously
considered by applying the wavelet transform or Fourier transform.

When a signal is added, the matching pursuit algorithm first determines
the length of the signal to be added. Subsequently, a signal that most closely
reflects the original signal is generated. At this time, the minimum square
error (MSE) is used. A smaller MSE corresponds to a higher degree of
similarity to the original signal. In the above formula, g_0 represents a basic
signal, and a_0 represents a signal with a minimized MSE. R(t) represents the
signal remaining after the original signal is decomposed using g_0. A matching
pursuit function can be applied to the original signal to generate several
signals with small MSE values. MobileNetV2 extracts random features from the

input data. Figure 2.6 shows the MobileNetV2-BiLSTM structure.

[ Input ] [ Average_pooling ]_;—~ (11 [ ]
] 1
[ Conv ] [ Qut_RelU ]
| 1
l BN_Conv | | Conv_BN | _
¥ 1 c
[ Conv_RelU ] [ Conv ] = )
* 1 =||S||€] |5
[ Conv_depthwise ] [ Block_16 ] g > E > %’h > E"
* i IR
[ Conv_dep;chwise_BN ] [ Blocfk_15 ] 5 S
D
[ Conv_depthwise_RelU ] -
t
[ Conv_project ] [ Block_2 ]
[
[ Conv_project_BN ]—»[ Block_1 U Uy

Figure 2.6. MobileNetV2-BiILSTM structure for classifying data.
ECG data are input to BiLSTM through a convolution operation
and classified in the FC layer. MobileNet V2 and BiLSTM were
combined by Matlab—-based Network designer.
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The input size was 227 X 227 X 3. The data size was changed to 114 X
114 X 32 by applying a stride of 2 X 2 in the first convolutional layer. BN
and ReL.U functions were applied, and subsequently, depth-wise convolution (3
X 3 X 1), BN, the ReLU function, and convolution were applied to reduce the
amount of computation.

MobileNetV2 contains 16 blocks, and all the blocks were implemented in

the same manner, as shown in Figure 2.7.

/ Block \

[ Conv ]

[ Batch Normalization ]
¥

[ Relu
¥

[ Depthwise
L ]

[ Depthwise_BN

(

¥
Depthwise_RelLU

¥
[ Conv ]

L ]
\[ Batch Normalization ]/

Figure 2.7. Block included in MobileNetV2. The block

performs the resize process and convolution of the input

— J J

data. Normalization 1is performed in blocks so that
algorithms can process data. MobileNetv2 has 16

interconnected blocks.

Because sequence data processing is difficult with general neural networks,
a special recurrent neural network was used for BILSTM. Each LSTM layer
has three gates that transmit or control data and can learn by considering the
gradient decay problem. LSTM obtains the information of all the cells over
time. However, data cannot be learned after the cell in which the current
learning i1s in progress. BiLSTM is an improved version of LSTM, in which

forward propagation and backpropagation are used to learn information implied
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in the past and future, respectively. Consequently, this model can handle time

series data more efficiently. Figure 2.8 shows the structure of the BIiLSTM

model.

Qutput layer [ ]

AR
SRECARTAITINC
aNaNa

Forward

I

Input layer | ] 1 |

Figure 2.8. Architecture of BiLSTM. A bidirectional LSTM
(BiLSTM) layer learns bidirectional long-term dependencies
between time steps of time series or sequence data. These
dependencies can be useful when you want the network to

learn from the complete time series at each time step.

The first LSTM layer was used to calculate the sequence information at
the current time. The second layer was used to read the same sequence in
the reverse direction and add reverse sequence information to extract
meaningful features of the input data. The output value between the LSTM
layers was transmitted to not only the adjacent unit but also the input of the
next LSTM layer. The weight of the LSTM could be updated by the forward
and backward propagation of the neuron. After the characteristics of each
input signal were extracted, a BiLSTM classification model was configured.
Dropout was added to the BIiLSTM layer to prevent overfitting of the model.
The learning results were used as inputs to an FC layer. The ECG signal was

classified in the FC layer, and a softmax layer was used to output the result.
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Figure 2.6. (a) Output voltage and current with different resistors as external

loads. (b) Dependence of the output power on external load resistances.
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2.5. Performance Evaluation

The sensitivity, specificity, precision, and F1 score were calculated to
evaluate the performance of the presented model. Sensitivity refers to the
percentage of data that are actually positive and are classified as positive. The
sensitivity of the proposed model was calculated as 0.92 using Equation (9).

TP TP
Sensitivity = P = TPIEN 9

Specificity refers to the ratio of negative data classified as negative. The
specificity of the proposed model was calculated as 0.91 using Equation (10).

IN_ 1IN
N~ IN+FP

Speci ficity = (10)

Precision refers to the ratio of data whose predicted value and actual
value match as positive among subjects whose prediction is positive. It
indicates how well positive data are classified. The precision of the proposed
model was calculated as 0.92 using Equation (11).

L TP
Precision = TP+ PP 1D

The F1 score is the most representative method for evaluating the
performance of deep learning classification models. The proposed model
exhibited high F1 scores, as the precision and sensitivity were not biased

toward either side.

Precision™ Sensitivity (12)

Fl = 2% — o
seore Precision+ Sensitivity
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[II. Federated learning algorithms

3.1. Federated learning based Arrhythmia detection

Federated learning is a deep learning technology that uses multiple local
models and one global model. Each local model learns data and then transmits
the parameters of the local model to the global model. The global model can
obtain optimal results by aggregating parameters to update the model and
sharing this model with the local model. Federated learning can reduce
communication problems due to low traffic volume because only parameters
are transmitted. This can also complement the data leakage problem.

Therefore, it 1s suitable for the field of health diagnosis using a mobile device.

T,
Input / ~ \
/ Local model DB | User 1
_—_—
Preprocessing ‘ Global model }—‘ Local model DB | User 1

2

Data Local model User 1

transformation \ — J

Figure 3.1. Structure of Federated learning

3.1.1. MobileNet

This algorithm was implemented in Matlab's Deep Network Designer.
MobileNetVZ has a convolutional layer, batch normalization, RelLLU layer, and
average pooling layer. After that, the data was processed in 16 blocks.
BiILSTM uses forget gate to alleviate data loss problems. The fully connected
layer that performs the correlation of the identified data with the original data

through training. And the Softmax layer that determines the probabilities of
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various classes of diseases. There is also a Softmax layer at the end of the

algorithm that categorizes four types of data.
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Figure 3.2. Structure of MobileNet

3.1.2. Artificial Neural Network V1

Artificial Neural Network(ANN)V1

1s a CNN-based algorithm trained by

classifying multiple images. It has been pre-trained on more than one million

data. Transfer learning is a deep learning that focuses on storing knowledge

gained while solving one problem and applying it to a different but related

problem. Learning data with transfer learning allows learning neural networks

more efficiently than training them from early versions.

Layer 1 2 3 4 5 6 7 8
Kernel T1x11x3 5x5x48 3x3x256 3x3x192 3x3x192 6X6x256
FC layer | FC layer
Stride 4 1 1 1 1 *
RelLU Softmax
Padding * 2 1 1 1 *

Table 3.1 Layer of ANN V1

The input size of the first layer is 227x227x3, which is the same as
other Local models. ANN V1 introduced by Matlab, changed FC layer, Softmax

layer, and classification layer to normalize with other local models. Figure 3.N

shows the ANN V1 structure.
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Figure 3.3. Structure of ANN V1

3.1.3. Artificial Neural Network V2

ANN V2, is pre-trained using image data. It consists of a convolutional
neural network and has set the convolutional filter size to 3x3. By fixing the
filter size to a size of 3x3, fewer parameters are generated, which improves

the efficiency of learning. The input size is set to 227x227x3 like other Local

models.
Layer 1 2 3 4 5 6 7 8
Kernel 3x3x3 3x3x64 3x3x64 3x3x128 3x3x256 3x3x256 3x3x256 3x3x256
Max
pooling 1 2 i 2 i i 2 i
Stride 1 1 1 1 1 1 1 1
Layer 9 10 11 12 13 14 15 16
Kernel 3x3x256 3x3x256 | 3x3x256 | 3x3x256 3x3x256 Flatten
FC layer | FC layer
é\g?i);] * 2 * * 2 FC layer
P 9 Dropout | Softmax
Stride 1 1 1 1 1 Dropout
Table 3.2 Layer of ANN V2
- 22 -
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3.2. Parameter aggregation

Secure Aggregation 1s a computational protocol that goes through
encryption so that the server cannot distinguish between updates from each
participant. The server can only know the sum of the total values after
receiving a certain number of updates from the devices. Secure Aggregation
can be seen as a protocol that enhances privacy for security purposes, and
information can be protected against attacks targeting central servers. When
there is a server S and each device u, the device u sends and receives the

k-dimensional vectors S, ,,5,, to and from the server. In this case,

Pu,v = Su,u - Sv,u (modR)
Each device sends a Y,,=9,,—9,,(modR) value to the server. The

server can deliver updates to the server without exposing the data of each

device by adding all the received values. The value added by the server is

= Y, (modR).

wuEul,,
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IV. Result and discussion

4.1. Result and discussion

Using the proposed model, i.e., the MobileNetV2-BiLSTM algorithm, 2000
ECG signals were classified. The data for each class were augmented to 500
using the matching pursuit algorithm. Figure 4.1 presents the classification
results. As shown, the LBBB data were best classified among the four classes.
This is because the LBBB data had the most prominent features, such as
baseline fluctuations and changes in the QRS complex, among the ECG signals.
The AFIB data exhibited an accuracy of 92.8%, and were also classified
relatively well compared with the other data, because the signal interval was
not constant and the signal amplitude was small. The NSR data had the lowest
classification accuracy because they had no noticeable features compared with

the other data.

All Confusion Matrix

NSR

AFIB

PVC

True value

LBBB

Q- 2 @] 2
S N A 2
~ & < N2

Predicted value

Figure 4.1. Result of classification using proposed algorithms
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Figure 4.1. Results of arrhythmia detection using an ensemble network.
Red color indicates cases of misclassification. Green indicates exact
classification. Gray indicates the classification result. The values at the end of
each row and column indicate accuracy and error rate.

The sensitivity of the proposed model was calculated as 0.92 using
Equation (9). The specificity of the proposed model was calculated as 0.91
using Equation (10). The precision of the proposed model was calculated as
0.92 using Equation (11). The F1 score of the proposed model was calculated
as 0.92 (on average) using Equation (12). Table 2 presents the performance of

the proposed algorithm.

IData Class Sensitivit Specificity Precision F1 Score
ndex y

1 NSR 0.81 0.71 0.87 0.84

2 AFIB 0.94 0.98 0.93 0.94

3 PVC 0.92 0.97 0.91 0.92

4 LBBB 1 0.99 0.96 0.98
Average - 0.92 0.91 0.92 0.92

Table 4.1. Algorithm performance evaluation results.

The receiver operating characteristic (ROC) curve is an important indicator for
measuring the performance of classifiers [35]. It indicates how the true positive
rate (TPR) changes when the false positive rate (FPR) changes. Here, the TPR
represents the sensitivity. By setting the FPR as the X-axis and the TPR as the
Y-axis, the changes in the TPR with respect to the FPR were examined. The true
negative rate (TNR) is an indicator corresponding to the sensitivity.

The presented algorithm was trained by considering the following parameters.
This set value was determined by conducting several experiments using MobileNet

v2-BIiLSTM and comparing the results.
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Option Value Option Value

Batch size 30 Time elapsed 23 m 30 s
Data rotation 5 Epoch 40
Data shift 3 lteration 120
Validation frequency 50 Learning rate 0.01

Table 4.2. Algorithm performance evaluation results.

The batch size refers to the size of a group when the dataset used for

training is divided into several groups. The training dataset is divided because it
takes a long time to train if the entire dataset is entered into a neural network.
The batch size used in this study was 30. Data rotation is a procedure applied to
improve the efficiency when an algorithm learns. Neural networks have different
learning outcomes depending on the state of data. When the same image is
inputted differently, the neural network recognizes different data. (1) The normal
image is the same as input (2), but the image is rotated. The data rotation used in
this study was set to five. ‘Data shift’ refers to the movement of data in the
pixels. Similar to data rotation, the input data can be completely different if they
move by pixel size, which can improve the learning efficiency. The data shift for
this algorithm was set to 3. Overfitting problems may occur in deep learning
algorithms. To prevent this, a verification process is required, and in this study
the verification was conducted 50 times.

‘Time elapsed’ refers to the time taken by this algorithm to classify the data.
This algorithm classified the data in 23 m 30 s. An epoch means that the
MobileNet v2-Bilstm algorithm learns all datasets once. The number of epochs of
this algorithm was set to 40. Iteration refers to learning 1/n sized data once the
entire dataset is divided into n equal parts. In the arrhythmia detection study, it
was set as 120. The learning rate is the amount an algorithm can learn at once,
and in this study, the learning rate was set to 0.01. If the learning rate is too
large or too small, overfitting occurs; therefore, it is common to set it to 0.001 to
0.01.

Figure 4.2 shows the ROC curve for the MobileNetV2-BiLSTM algorithm. The
higher the value on the left, the better the ROC curve. The ROC curve can be
used to calculate the change in the TPR while changing the FPR from O to 1.
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When the threshold is specified as 1, the FPR is 0, and conversely, when the
threshold is O, the FPR becomes 1. The TPR based on the change in the FPR
value becomes the ROC curve.

The pseudo code below is a code that represents the behavior of the
algorithm. The dataset used MIT-BIH. All signals were normalized to 227X227X3,
and Matlab-based digital filters were applied (5/250/60 Hz). Up to 250 pieces of
each data were added using the matching pursuit. Since then, all data have been
converted by applying Wavelet transform. As a result, the four classes contain 500
Time-Frequency domain data. A total of 2000 ECG data were classified using

proposed algorithms.

Input data: MIT-BIH Database
Output data: NSR, AFIB, PVC, LBBBB
1. Create MIT-BIH Dataset
2 for signal=0; signal<654; n++ //(Number of data=654)
3 Resize data(227x227x3)
4. Digital Filter (5/250/60Hz) //Butterworth type
5. end for
6 for data=0; data<250; data++ //data==data in each class
7 Apply matching pursuit
8 Save data in database
9. end for
10. for data=250; data<500; data++ // All classes have 500 signals
11. Apply wavelet transform
12. Save data in database
13. end for
14. Set up multi learning
15. Parallel= Create a parallel pool with the same number of workers
16. Define the network architecture
17. Layer=Input, Conv., ReLU, Pooling, FC, Softmax etc.
18. Training Options=Epoch, Mini batch size, Iteration etc.
19. Train model
20. for data=1; data<2000; data+ +
21. Classification of data using proposed algorithm
22. (1) The structure of the local model is updated with information
from the global model
23. (2) All models calculate the average value of the parameter
every n times
24. (3) The Average values apply to global models
25. (4) Updated global models are evaluated for accuracy
26. (5) This process is repeated until accuracy is improved
27. end for
- 27 -
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Figure 4.2. Arrhythmia detection results. A larger AUC
corresponds to better performance. AUC denotes the area
under the graph, and the four graphs represent the AUC

that 1s proportional to the accuracy of each class.

The area under the ROC curve (AUC) for each class indicated the
performance of the classifier, with a larger area corresponding to a better

performance. The AUCs for all the data are presented in Table 3.

Class AUC
NSR 0.982
AFIB 0.997
PVC 0.996
LBBB 0.999
Average 0.994

Table 4.3. AUCs of the algorithm.

The PVC, LBBB, and AFIB data had AUCs close to 1, indicating that the
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signals were classified accurately. The NSR data had an AUC value of 0.982,
which was smaller than those of the other classes, but still indicates a high
performance classifier (defined as having an AUC value of =0.8). Therefore,
the NSR data were also classified accurately. Figure 4.3 shows the results of

K-fold cross wvalidation.

o4 _ _ K-fold cross validation K value Accu racy(%)
92 2 81.2
3 82.3
90
4 79.9
=% 5 80.8
S 86 6 84
2l 7 85.2
8 88.6
82
9 924
80 10 933
78 11 92.1
2 4 6 8 10 12
Kvalue 12 88.5

Figure 4.3. Results of K-fold validation for evaluating the classification
performance of the algorithm. When the K wvalue is equal to N, this algorithm
performs the verification N times and calculates the average value for all the
results. A K value of 10 yielded the best results. If the K value exceeds 10,
the accuracy gradually decreases.

The most important goal of deep learning algorithms is “how accurately
data can be classified.” In general, deep learning algorithms are used to
predict unknown data with limited data held by the system. The accuracy
increases with an increasing number of data. There is no problem if the data
are sufficient, but when the system learns with limited data, it is important to
use the data it holds as efficiently as possible. Cross validation reveals how
efficiently the system can use data. Therefore, this method was used to verify
the performance of the proposed algorithm.

The performance of the MobileNetV2-BiLSTM algorithm was analyzed
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using K-fold cross validation. The dataset was divided into 12 groups, and one
of the groups was extracted and used as the test set. The remaining 11
groups were used as training sets. The test was repeated 12 times.

The accuracy increased with the K value. The accuracy of the algorithm
was maximized when the K value was 10, and it decreased as K increased
further. The minimum accuracy was 79.7%, the maximum accuracy was 93.3%,
and the average accuracy was 86.21%.

ECG signals contain noise. For example, noise caused by factors such as
patient movement, impedance between the skin and electrodes, and movement
of cables reduces the accuracy of the algorithm and should be minimized. In
this study, a MATLAB-based Butterworth filter was designed. The filter band
was set as 5 Hz for high-pass and 250 Hz for low-pass, and the band-stop
filter was designed for 60 Hz.

Figure 4.4 shows the experimental evaluation results for the performance
of the MATLAB-based filter. The raw signal with noise is shown in blue, and
the result of applying the filter is shown in red. Comparing the two signals

revealed that the noise of the baseline was reduced.
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Sa25r i
E
T ol |
g
215
1k 1
(1] 0.5 1 1.5 2 25 3 as 4 4.5 =
Data Mumber %108
aF . . . . . .
=25 ’ 4
E ‘
D o[ i
. J |
sy - . - . ]
Sist ‘ F1 I("“~| I(‘ﬂ‘ | r\\'kf -
NN NONN
Ly P IV Y Iy Y LY
) 0.5 1 1.5 2 25 2 3.5 4 4.5 5
Data Number x10%

Figure 4.4. Noise removal using a MATLAB-based digital filter. The raw and
filtered signals are shown in blue and red, respectively. The cutoff frequencies
were set as 5, 250, and 60 Hz for low-pass, high-pass, and band-stop,

respectively.
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The digital filter was designed with general settings. Sometimes, the input data
require a different filter band. For example, if another ECG study is performed
using a different ECG database, the settings of the Butterworth filter used in this
study must be changed. Alternatively, a filter other than the Butterworth filter may
need to be used. Figure 4.5 presents ECG signals to which the Fourier transform
was applied. The two ECG signals represent the results of the fast Fourier
transform. They exhibit different frequency characteristics. Considering these
frequency characteristics, the proposed algorithm should design an appropriate
filter regardless of which ECG signal is input. The plan currently under
consideration involves calculating the signal-to-noise ratio (SNR) of the signal and

redesigning the filter when the SNR is too low.

ECG signal _ _ ECG signal

Magnitude
Magnitude

0 100 200 00 400 500 0 50 100 150 200 250
Frequency(Hz) Frequency(Hz)

Figure 4.5. Fourier transform was applied to two ECG signals with
different frequency characteristics. After applying digital filters to
eliminate noise, Fourier transforms confirmed that the designed filter

removed the signal in the appropriate frequency band.

The ECG signals used in this study were obtained from the MIT-BIH database.
Digital filters were designed and applied to increase the classification accuracy.

Subsequently, the learning data were sufficiently secured using the matching
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pursuit algorithm. Data classification was performed using the
MobileNetV2-BiLSTM algorithm.

The dataset used consisted of four classes, and the number of data was
unbalanced. To solve this problem, the matching pursuit algorithm was used to
analyze signals, adding 500 pieces of data from all classes. In this study, the
proposed data augmentation method was used only to detect heart disease.
However, if research on data aggregation progresses, we will be able to solve
problems arising from unbalanced datasets. In addition, because the proposed
method can arbitrarily add data measured in a short period of time, e.g., ECG
signals, sufficient learning data can be secured, which can increase the algorithm
accuracy.

The advantage of this algorithm is that arrhythmia diagnosis using a mobile
device is possible. Deep learning, which has recently been used in various ways,
has problems, such as the use of high performance CPUs and the consumption of
large amounts of memory and power, because it focuses on performance.
However, MobileNet is an algorithm designed for use in situations where the
computational performance is limited; thus, it can solve the aforementioned
problems.

The accuracy of the proposed model was 91.7%. Considering that the accuracy
of the existing arrhythmia detection algorithm has reached approximately 99%, the
performance of the proposed algorithm was not excellent. In addition to the
accuracy, the sensitivity, specificity, and precision were poor compared with
previous studies. However, the objective of the proposed method is to allow heart
patients to check their health using mobile devices in their daily lives.

To overcome the disadvantages of this study, further research on the weight
reduction of the model, the learning method of deep learning, and noise reduction
is needed.

Khan, A. H et al detected heart disease using a single shot detection (SSD)
MobileNet v2-based neural network. Dataset consists of four classes and includes
one normal signal and three disease signals[18]. The input data was set lower
than 300 KB in consideration of the learning time. SSD is used to detect the
objects that can classify and local the objects in one step. This algorithm was

implemented with the Tensorflow APl and Google Colab. Batch size was set to 24
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and training was performed 200000 times. The ratio of training and test was set
to 8 to 2, and the learning rate was 0.0002. The accuracy of this algorithm was
98%.

Rincon, J. A et al. studied IoT-based monitoring systems for cardiovascular
patients[36]. This system diagnosed atrial fibrillation using two MobileNet neural
networks. The two MobileNet analyzed ECG signals in Time domain and Frequency
domain, respectively. This study obtained more accurate results by analyzing
signals in other ways. Dataset was divided into Traing 8, Validation 1, and Test 1.
Atrial fibrillation classes were accurately classified with a 90% probability.

The algorithm proposed in this study is aimed at detecting heart disease, as in
previous studies using MobileNet. These studies have something in common that
they used MobileNet. However, existing studies can output inaccurate results if
learning data is not sufficiently secured.

Ahsanuzaman, S. M. et al. studied arrhythmia prediction models and real-time
ECG surveillance systems[37]. To create an arrhythmia prediction model and an
Android-based real-time ECG surveillance system, Long Short-Term Memories
neural network, Recurrent Neural Network, TensorFlow and Keras library are
applied here. Those deep learning models and algorithms help to achieve overall
97.57% accuracy on arrhythmia prediction.

However, there is no research implemented in the mobile device by combining
the two algorithms into one algorithm. This means that it is necessary to prove
whether the MobileNet v2-BiLSTM algorithm can be implemented on the Mobile
device. The algorithm proposed in this paper classified ECG data using MobileNet
v2 and BILSTM, and the results showed that MobileNet v2-BiLSTM could detect
heart disease. In a further study, the authors will lighten the structure of BiLSTM
and conduct experiments on whether this algorithm can be implemented on mobile
devices.

The algorithm proposed in this study was designed for use in mobile devices.
The proposed algorithm can analyze ECG signals in everyday life and check for
heart disease. In addition, when the number of data is small, a sufficient amount of
data can be secured by adding data using a matching pursuit. However, MobileNet
V2-BiILSTM-based algorithms have not yet been implemented on mobile devices.
This is because the deep learning algorithm has a complex structure and includes
many parameters.

However, research is underway to implement and evaluate deep learning using

mobile devices. Liu, j, et al analyzed the performance of training a deep learning
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network on a mobile device. Deep learning used several things such as DenseNet,
ResNet, VGG, and LSTM, and considered hardware performance when analyzing
deep learning performance.

And Saadatnejad, S, et al conducted a study on the LSTM-RNN-based ECG
classification algorithm [38]. The proposed algorithm is lightweight, and therefore,
brings continuous monitoring with accurate LSTM-based ECG classification to
wearable devices.

Considering these studies, the algorithm proposed in this study can be
implemented on a mobile device. However, further research needs to be conducted
to reduce the structure of the MobileNet V2-BIiLSTM algorithm and to efficiently

update parameters.

0:2:408 03010 3612 04214 04816
1,760 1,760

1,740 1,740

1720 1720
1,700 1,700
1680 § 1,680
1,660 | 1,660
' |

1,640 “l Mwﬁl M' N‘ MWII M\N 1640
1,620 | 1620
1,600 1,600

1,580 1,580
SUAZE (MEE

W ECG

Figure 4.6. Bio—signal measurement module for arrhythmia detection

Figure 4.6 shows a bio-signal measurement module capable of measuring an
electrocardiogram. The module uses a lithium-ion battery and weighs 5.32 grams.

It also uses Bluetooth—based wireless communication.
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Figure 4.7. Bio-signal Monitoring application in mobile device

Figure 4.7 is an app representing a bio—signal measured from a user. Users

can check their health using this app. The App helps users access ECG databases

whenever they want, and ECG data is stored according to the date.
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IV. Conclusion

We proposed an artificial intelligence model for classifying arrhythmia using
MobileNetV2-BiLSTM and a matching pursuit algorithm. The ECG data
measured over a short period were augmented with sufficient quantities of
data using the matching pursuit algorithm, and the MobileNetV2-BiLSTM-based
arrhythmia diagnosis results exhibited an accuracy of 91.7%. The performance
of the model was evaluated using the ROC curve, and the average AUC was
0.994, indicating that the performance of the classifier was excellent. The
algorithm arbitrarily added ECG data to increase its accuracy. In this process,
the matching pursuit algorithm was used, and a large number of data could be
secured. The data augmentation method used in the present study can be
applied to imbalanced datasets. If the dataset is imbalanced, an overfitting
problem can occur, reducing the accuracy. If the matching pursuit algorithm
can solve the imbalance problem, the proposed algorithm can classify data
from various datasets in addition to the ECG datasets used in this study.
Owing to the widespread use of portable devices, various applications of
lightweight algorithms will be developed in the future. After further research,
the proposed MobileNetV2-BiLSTM model is expected to be useful in various
fields, such as healthcare and the Internet of Things, in addition to disease

monitoring.
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ABSTRACT

Development of Lightweight Ensemble Network
for Detecting Heart Disease Using ECG Signals

Siho Shin

Advisor: Prof. Ym Tae Kim, Ph.D
Department of IFusion Technology,
Graduate Schoof Chosun University

Heart disease should be treated quickly when symptoms appear.
Machine-learning methods for detecting heart disease require desktop
computers, an obstacle that can have fatal consequences for patients who must
check their health periodically. In this work, we propose Federated learning
and MobileNetV2-BiLSTM-based ensemble algorithms for arrhythmia diagnosis
that can operate easily and quickly in a mobile environment. The
electrocardiogram (ECG) signal measured over a short period of time was
augmented using the matching pursuit algorithm to achieve a high accuracy.
The arrhythmia data were classified through an ensemble classifier combining
MobileNetVZ2 and BILSTM. By classifying the data using this algorithm, an
accuracy of 91.7% was achieved. The performance of the algorithm was
evaluated using a confusion matrix and a receiver operating characteristic
curve. The sensitivity, specificity, precision, and F1 score were 0.92, 0.91,
0.92, and 0.92, respectively. Because the proposed algorithm does not require
long-term ECG signal measurement, it facilitates health management for busy

people. Moreover, parameters are exchanged when learning data, enhancing
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the security of the system. In addition, owing to the lightweight deep-learning
model, the proposed algorithm can be applied to mobile healthcare, object

detection, text recognition, and authentication.
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