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I. Introduction

1.1. Research background 

Biosignals are indicators of physical health that allow the management of 

various diseases, such as muscle pain, insomnia, and heart disease [1-3]. The 

electrocardiogram (ECG) is the most important signal for confirming the state 

of the heart [4,5].

In an ECG, the heartbeat is represented by electrical signals. The heart 

rate of a healthy person is usually between 60 and 100 beats per minute [6]. 

When a person is exercising, tense, or excited, the heart beats faster. There 

are typically no problems in such cases; however, when the heart beats 

irregularly for no reason, this symptom is called arrhythmia. According to 

NHANES 2015 2018 data, the prevalence of cardiovascular disease (comprising –

coronary heart disease, heart failure, stroke, and hypertension) in adults 20 ≥

years of age is 49.2% overall (126.9 million in 2018) and increases with age 

for both males and females. The prevalence of cardiovascular disease 

excluding hypertension is 9.3% overall (26.1 million in 2018) [7]. The rapid 

increase in the number of heart disease patients due to changes in eating 

habits and reduced exercise has contributed to the most serious death rate for 

modern people. The most representative type of heart disease is arrhythmia. 

Early detection of arrhythmia is crucial, because arrhythmia causes symptoms 

such as dizziness, fainting, chest pain, and difficulty breathing, and can lead to 

heart attacks [8].

Methods of diagnosing arrhythmia include periodically visiting a hospital or 

using a Holter monitor. However, both of these are inconvenient for patients 

and can be expensive. In addition, ECG signals measured by widely used smart 

watches are acquired over a short period of <1 min; therefore, it is impossible 

to identify cardiovascular diseases, including arrhythmia, using such devices.

Methods for detecting arrhythmia include detection of early contraction of 

the ventricles using the RR interval [9], analysis using the discrete Fourier 
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transform [10,11], and analysis based on the Hilbert transform [12,13]. These 

arrhythmia diagnosis methods must be performed by a specialist, and for the 

early detection of heart disease, a large quantity of ECG data must be checked 

for irregular events. In addition, there are many factors to be considered for 

accurate diagnosis, such as the patient’s movements and signal interference 

problems that occur when ECG signals are measured during normal activities 

[14]. Furthermore, the “silver generation” and residents of mountainous areas 

or islands cannot visit the hospital often, owing to a lack of transportation, 

physical aging, or disease.

To overcome these difficulties, we propose an arrhythmia detection 

algorithm combining MobileNetV2-BiLSTM and a matching pursuit algorithm 

that can accurately diagnose arrhythmia using ECG data. To increase the 

accuracy of the algorithm, the ECG signal in the time domain was converted to 

the frequency domain using a scalogram.

Because the proposed algorithm augmented ECG data using matching 

pursuit, it was possible to accurately detect arrhythmia through ECG signals 

measured within a short timeframe by learning a large quantity of data. The 

proposed algorithm used the ECG database provided by MIT-BIH [15,16]. An 

experiment was conducted for increasing the classification accuracy using a 

small quantity of data. The number of data used in the algorithm is 654, with 

approximately 164 data per class. For training algorithms, this scale of data is 

insufficient. To solve this problem, the matching pursuit algorithm is used, 

which can decompose data or duplicate data. The matching pursuit algorithm 

can eliminate noise because it can approximate the signal. By combining 

MobileNetV2-BiLSTM and matching pursuit and applying the proposed 

algorithm to ECG signals, we confirmed the possibility of developing an 

efficient health management algorithm applicable to mobile devices.
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1.2. Key technology

MobileNetV2 is an image classification model that was proposed in 2018 

[17]. It is a lightweight network that preserves performance to the greatest 

extent possible, and compared with previously proposed networks, the size of 

the classifier model is significantly reduced by applying the average pooling 

technique in the process of converting the feature group into the classifier 

group. The feature stage has a structure in which convolutional modules are 

repeatedly stacked. MobileNetV2 has a conv. + batch normalization (BN) + 

rectified linear unit (ReLU) structure, and the computational burden and model 

size are reduced by using a depth-wise convolutional layer as an intermediate 

layer. In the process of converting spatial information into a fully connected 

(FC) layer, the weight of the FC layer is limited to the number of channels by 

applying average pooling rather than the existing tensor shape conversion 

[18].

In a previous study, computed tomography and X-ray data related to 

COVID-19 were classified using six different models, including MobileNetV2 

[19]. The model performance was evaluated according to the accuracy, 

precision, recall, and F1 score. Among the models tested, MobileNetV2 and 

VGG19 exhibited the best performance.

There are many reports of heart disease diagnosis using machine learning. 

A review was conducted to identify the trends of machine learning-based and 

data driven techniques for heart disease diagnosis with imbalanced data [20]. 

A meta analysis was per formed using 451 reports acquired from reputed 

journals between 2012 and 15 November 2021.

Machine learning, which can accurately classify data, uses a high 

performance central processing unit (CPU); thus, it has excellent computational 

processing power and uses multiple high performance graphics. Because 

machine-learning algorithms are developed with a focus on performance, the 

operating environment of the algorithm is not considered. However, patients 

with heart disease must check their health regularly and can not carry a high 
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performance desktop. To solve this problem, a machine learning method that 

can be implemented on a mobile device is required. MobileNetV2 is a 

convolutional neural network (CNN)-based algorithm designed for applications 

wherein the computational resources are limited or the battery performance is 

important.

BiLSTM is a circulating neural network that can process data that change 

over time, such as video [21,22]. The original circulating neural network had 

the problem of data loss after repeated backpropagation, but BiLSTM mitigates 

the problem of data loss using a forget gate. The core of the BiLSTM neural 

network comprises the sequence input layer and the long short-term memory 

(LSTM) layer. The sequence input layer inputs sequence or time series data 

into the neural network. The LSTM layer learns the data according to the 

sequence time flow.

The matching pursuit algorithm was developed to linearly decompose 

signals in order to understand their characteristics. When the original signal is 

decomposed, the characteristics of the original signal are identified by 

considering the time and frequency domains simultaneously, e.g., the wavelet 

and Fourier transforms, in the order of energy [23].

The wavelet transform is a multi resolution system capable of processing 

signals in various frequency bands by converting the input sampling frequency 

into another set of sampling frequencies. By applying this transform to an ECG 

signal, noise removal and waveform segmentation can be performed 

simultaneously, providing a high resolution for each feature element in the 

signal. The wavelet transform can be used to analyze the converted signal in 

the desired frequency band by multiplying the input signal by the wavelet 

function and scale function, and dividing the frequency band into high and low 

frequency segments [24 26].–

The MIT-BIH database, which is widely used in arrhythmia related studies, 

contains ECG data categorized into 17 classes. This dataset consists of ECG 

signals with durations of 10 s from 45 participants. The MIT-BIH database is 

commonly used by researchers to develop heart related algorithms [27 29]. –
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Table 1 presents details regarding the databases used in this study.

Data Index Data Class Number of Data

1-283 Normal sinus rhythm (NSR) 283

284-418 Atrial fibrillation (AFIB) 135

419-551 Premature ventricular 
contraction (PVC) 133

552-654 Left bundle branch block beat 
(LBBB) 103

Table 1.1. Datasets used in this study.

Figure 1.1 shows the ECG signals included in the database. “NSR” 

corresponds to a normal ECG signal. AFIB is one of the heart diseases that 

can be detected using ECG signals. PVC and LBBB correspond to premature 

ventricular contractions and left bundle branch block beats, respectively, and 

also represent abnormal heartbeats.

Figure 1.1 MIT-BIH database contained several ECG signals. The recordings 
were digitized at 360 samples per second per channel with a resolution of 
11 bits: (a) NSR; (b) AFIB; (c) PVC; (d) LBBB. Two or more cardiologists 
independently annotated each record.
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1.3. Previous study

Tuncer et al. [2] classified arrhythmia signals using the 1D-HLP technique. 

Using the 1D-HLP, 512 dimensional features are extracted from each of the 

five levels of the low-pass filter. These features are subjected to 1 Nearest 

Neighbor (1-NN) classifier for classification with four distance metrics. The 

authors obtained a classification accuracy of 95.0% when classifying 17 

arrhythmia classes using the MIT-BIH arrhythmia ECG Database.

Ribeiro, H.D.M, et al. [30] proposed an algorithm that could classify the 

ECG signal of both healthy and sick people. The proposed lightweight solution 

uses quantized one-dimensional deep convolutional neural networks, and is 

ideal for real time continuous monitoring of cardiac rhythm. It is capable of 

providing one output prediction per second. It is accurate (sensitivity of 98.5% 

and specificity of 99.8%) and can be implemented on a smartphone, which is 

energy efficient and fast, requiring 7.65 ms per prediction

Naz et al. [31] proposed a new deep learning approach for the detection 

of ventricular arrhythmias (VA). Initially, the ECG signals were transformed 

into images, and this t had not been done before. Subsequently, these images 

were normalized and utilized to train the AlexNet, VGG-16, and Inception-v3 

deep learning models. The results were evaluated on the MIT-BIH Database, 

and an accuracy of 97.6% was achieved.

Cai et al. [32] developed a deep learning-based approach for multi label 

classification of ECG, named Multi-ECGNet, which can effectively identify 

patients with multiple heart diseases simultaneously. The experimental results 

show that these methods can achieve a high score of 0.863 (micro-F1-score) 

in classifying 55 types of arrhythmias.

Park et al. [33] proposed an ECG signal multi classification model using 

deep learning. The authors used a squeeze-and-excitation residual network 

(SE-ResNet), a residual network (ResNet) with a squeeze-and-excitation block. 

The authors compared SE-ResNet with ResNet as a baseline model for various 
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depths of the layer (18/34/50/101/152). The SE-ResNet classifier with 152 

layers achieved an F1 score of 97.05% for seven class classifications. The 

model surpassed the baseline model, ResNet, by +1.40% for seven class 

classification.

Lee et al. [34] proposed a novel method for generating a gray level 

co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM) from 

one-dimensional signals. The authors extracted the morphological features for 

automatic ECG signal classification. The extracted features were combined with 

six machine learning algorithms to classify cardiac arrhythmias. Of the six 

machine learning algorithms, combining XGBoost with the proposed features 

yielded an accuracy of 90.46%, an AUC of 0.982, a sensitivity of 0.892, a 

precision of 0.900, and an F1 score of 0.895, and presented better results 

than wavelet features with XGBoost.

Existing technology for arrhythmia diagnosis makes it difficult for patients 

to detect diseases in their daily lives. This is due to structural problems with 

the arrhythmia diagnosis technology. When deep learning is used to detect 

arrhythmia it involves a very large amount of computation, because it is 

developed with a focus on performance. This deep learning computer uses 

high performance GPUs and memory. However, it has spatial limitations 

because it is not portable. Although arrhythmia diagnosis technology is being 

developed, it is not practically helpful for patients with arrhythmia. To solve 

these problems, patients need solutions to be available on mobile devices that 

are now widely available to many people.
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II. MobileNetV2-BiLSTM algorithms

2.1. Preprocessing 

Figure 2.1 shows the workflow of the proposed algorithm. The proposed 

arrhythmia detection method involves preprocessing to minimize noise and 

resize the ECG signals. To increase the accuracy of the algorithm, the training 

data were sufficiently selected through the matching pursuit algorithm. The 

wavelet transform was used for feature point extraction. Arrhythmia was 

detected using a MobileNetV2-BiLSTM neural network.

Figure 2.1. Workflow of the proposed algorithm. This 

algorithm randomly replicates ECG signals and classifies 

them into four classes using MobileNetV2 and BiLSTM. 

The data were duplicated using a matching pursuit 

algorithm. Time domain data were converted to 

frequency domain using wavelet transforms. 
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Noise in ECG signals is caused by various factors, such as the 

environment, whether the electrodes are in good contact with the patient, 

movement of the measurement cable, movement of the baseline due to 

breathing, and movement of the patient. These factors affect the shape and 

size of the waveform, reducing the accuracy of arrhythmia detection. To 

minimize noise, a Butterworth notch filter and a moving average filter were 

designed. Figure 2.2 shows the signal processing results.

Figure 2.2. Digital filter was designed in MATLAB and applied to the 

ECG. Butterworth high-pass and low-pass filters were designed (5–

250 Hz), and a band-stop filter was used to reduce the noise at 60 

Hz.



- 10 -

2.2. Data augmentation 

A matching pursuit algorithm was used to augment the training data. This 

algorithm can generate additional signals that are similar to the original signal.

The original signal must be decomposed to generate a similar signal. First, 

the basic signals g_0 and a_0 that most closely reflect the original signal are 

calculated, as follows:

    (1)

where R(t) represents the remainder of the original signal after it is 

decomposed using the base signal  , and  is a coefficient that optimally 

represents the given signal in terms of the minimal mean square error given 

any base signal  . The approximated signal that best represents a given 

original signal has the smallest error value when approximating the original 

signal. Therefore, to determine this basic signal function and the coefficient 

value, we define Equation (2), which gives the difference between the original 

signal and its approximation. 

          (2)

Finding the coefficient a_0 that minimizes Equation (2), this becomes an 

optimal value from the viewpoint of the least square error. The minimized E(

|) is given as

        
 (3)

To minimize Equation (2), the default signal with the maximum value of 

  
 and the default signal with the largest inner product absolute value 

are set to the signal  to decompose the input signal. For minimizing Equation 

(2), the expansion coefficient a_0 is expressed as follows:

     (4)

Equations (2) (4) are used to determine the basic signal with the largest –

absolute value of the original signal and the inner product. This procedure 

represents the input signal using a basic signal that is most similar to the 
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original signal. After a given input signal is decomposed, the original signal is 

redefined using the approximate error signal f(t), as indicated by Equation (5). 

This procedure is repeated until the original signal is completely decomposed. 

Thus, the matching pursuit algorithm decomposes the original signal into 

appropriate basic signals.

←    (5)

Figure 2.3 shows the results of generating a signal similar to the original 

signal by changing the coefficient.

Figure 2.3. ECG signals generated by the matching pursuit 

algorithm. The matching pursuit algorithm generates a 

correlation matrix obtained through the inner product and 

selects values in the order such that the correlation size is 

the largest. The matching pursuit algorithm uses this value 

to output similar signals.
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2.3. Wavelet Transform 

Equation (6) represents the wavelet function (a, d)(x) using the scale ψ

coefficient a and the transition element d.

 

 
 ∞

∞


 

 (6)

The discrete signal x(n) of the ECG can be converted into a discrete 

wavelet by discretizing the scaling element (a) and the transition element (d) 

in Equation (6). At the level j = 1, it can be expressed by combining a high −

frequency signal   and a low frequency signal  . The ECG 

signal is expressed as   +  and generally satisfies 

Equations (7) and (8).

   
  

   
 (7)

   
  

   
 (8)

In this case,  indicates that the number of samples is divided by two as 

the level j decreases. Equation (7) represents a signal with a high frequency 

component, which is related to the transition elements of the signal. Equation 

8 shows the low frequency component of the signal, which is related to the 

scale of the signal. The high and low frequency components of the input signal 

are divided according to the level j.

 (detail) is the finite impulse response (FIR) high-band filter coefficient 

associated with the wavelet coefficient, and  (approximation) is the FIR 

low-band filter coefficient associated with the scale function coefficient. The 

signal whose length is reduced by half through each filter is repeatedly 

converted to the next scale level. The wavelet coefficient indicates the 

similarity to the wavelet generating function. This represents the frequency 

signal. Figure 5 shows the results of applying the wavelet transform to the 

ECG signal.
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Figure 2.4. Scalogram was used to investigate the frequency 

characteristics of the ECG signals. A higher voltage of the signal 

corresponded to a clearer scalogram result. (a) ECG signal; (b) 

scalogram of the ECG signal.
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2.4. Proposed ECG Signal Classification method 

An algorithm combining MobileNetV2 and BiLSTM was developed for 

classifying arrhythmia data. MobileNetV2 classified the arrhythmia data, and 

BiLSTM maintained the sequence data to improve the performance of the 

arrhythmia classification model. A diagram of the MobileNetV2-BiLSTM 

algorithm for classifying arrhythmia data is shown in Figure 2.5.

Figure 2.5. Diagram of the proposed algorithm. The input data consisted of 

four classes, and a MATLAB-based digital filter was used for 

preprocessing. The matching pursuit algorithm was used for data 

augmentation. MobileNetV2-BiLSTM was applied in the data classification 

process.

The data ratio was the highest with 283 NSR data and the lowest with 

103 LBBB data. The balance data may cause overfitting problems, because the 

number of data is insufficient. To solve this problem, data were added using 

the matching pursuit algorithm in this study.

The matching pursuit algorithm was developed to decompose signals in 

order to understand their characteristics. During the decomposition of the 
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signal to be analyzed, the time and frequency domains are simultaneously 

considered by applying the wavelet transform or Fourier transform.

When a signal is added, the matching pursuit algorithm first determines 

the length of the signal to be added. Subsequently, a signal that most closely 

reflects the original signal is generated. At this time, the minimum square 

error (MSE) is used. A smaller MSE corresponds to a higher degree of 

similarity to the original signal. In the above formula, g_0 represents a basic 

signal, and a_0 represents a signal with a minimized MSE. R(t) represents the 

signal remaining after the original signal is decomposed using g_0. A matching 

pursuit function can be applied to the original signal to generate several 

signals with small MSE values. MobileNetV2 extracts random features from the 

input data. Figure 2.6 shows the MobileNetV2-BiLSTM structure.

Figure 2.6. MobileNetV2-BiLSTM structure for classifying data. 

ECG data are input to BiLSTM through a convolution operation 

and classified in the FC layer. MobileNet V2 and BiLSTM were 

combined by Matlab-based Network designer.
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The input size was 227 × 227 × 3. The data size was changed to 114 × 

114 × 32 by applying a stride of 2 × 2 in the first convolutional layer. BN 

and ReLU functions were applied, and subsequently, depth-wise convolution (3 

× 3 × 1), BN, the ReLU function, and convolution were applied to reduce the 

amount of computation.

MobileNetV2 contains 16 blocks, and all the blocks were implemented in 

the same manner, as shown in Figure 2.7.

Figure 2.7. Block included in MobileNetV2. The block 

performs the resize process and convolution of the input 

data. Normalization is performed in blocks so that 

algorithms can process data. MobileNetv2 has 16 

interconnected blocks.

Because sequence data processing is difficult with general neural networks, 

a special recurrent neural network was used for BiLSTM. Each LSTM layer 

has three gates that transmit or control data and can learn by considering the 

gradient decay problem. LSTM obtains the information of all the cells over 

time. However, data cannot be learned after the cell in which the current 

learning is in progress. BiLSTM is an improved version of LSTM, in which 

forward propagation and backpropagation are used to learn information implied 
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in the past and future, respectively. Consequently, this model can handle time 

series data more efficiently. Figure 2.8 shows the structure of the BiLSTM 

model.

Figure 2.8. Architecture of BiLSTM. A bidirectional LSTM 

(BiLSTM) layer learns bidirectional long-term dependencies 

between time steps of time series or sequence data. These 

dependencies can be useful when you want the network to 

learn from the complete time series at each time step.

 

The first LSTM layer was used to calculate the sequence information at 

the current time. The second layer was used to read the same sequence in 

the reverse direction and add reverse sequence information to extract 

meaningful features of the input data. The output value between the LSTM 

layers was transmitted to not only the adjacent unit but also the input of the 

next LSTM layer. The weight of the LSTM could be updated by the forward 

and backward propagation of the neuron. After the characteristics of each 

input signal were extracted, a BiLSTM classification model was configured. 

Dropout was added to the BiLSTM layer to prevent overfitting of the model. 

The learning results were used as inputs to an FC layer. The ECG signal was 

classified in the FC layer, and a softmax layer was used to output the result. 
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Figure 2.6. (a) Output voltage and current with different resistors as external 

loads. (b) Dependence of the output power on external load resistances.



- 19 -

2.5. Performance Evaluation

The sensitivity, specificity, precision, and F1 score were calculated to 

evaluate the performance of the presented model. Sensitivity refers to the 

percentage of data that are actually positive and are classified as positive. The 

sensitivity of the proposed model was calculated as 0.92 using Equation (9).

 




 (9)

Specificity refers to the ratio of negative data classified as negative. The 

specificity of the proposed model was calculated as 0.91 using Equation (10).

 




(10)

Precision refers to the ratio of data whose predicted value and actual 

value match as positive among subjects whose prediction is positive. It 

indicates how well positive data are classified. The precision of the proposed 

model was calculated as 0.92 using Equation (11).

Pr 


(11)

The F1 score is the most representative method for evaluating the 

performance of deep learning classification models. The proposed model 

exhibited high F1 scores, as the precision and sensitivity were not biased 

toward either side.

  Pr 
Pr

(12)
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III. Federated learning algorithms

3.1. Federated learning based Arrhythmia detection

Federated learning is a deep learning technology that uses multiple local 

models and one global model. Each local model learns data and then transmits 

the parameters of the local model to the global model. The global model can 

obtain optimal results by aggregating parameters to update the model and 

sharing this model with the local model. Federated learning can reduce 

communication problems due to low traffic volume because only parameters 

are transmitted. This can also complement the data leakage problem. 

Therefore, it is suitable for the field of health diagnosis using a mobile device.

Figure 3.1. Structure of Federated learning

3.1.1. MobileNet 

This algorithm was implemented in Matlab's Deep Network Designer. 

MobileNetV2 has a convolutional layer, batch normalization, ReLU layer, and 

average pooling layer. After that, the data was processed in 16 blocks. 

BiLSTM uses forget gate to alleviate data loss problems. The fully connected 

layer that performs the correlation of the identified data with the original data 

through training. And the Softmax layer that determines the probabilities of 



- 21 -

various classes of diseases. There is also a Softmax layer at the end of the 

algorithm that categorizes four types of data. 

Figure 3.2. Structure of MobileNet

3.1.2. Artificial Neural Network V1

Artificial Neural Network(ANN)V1 is a CNN-based algorithm trained by 

classifying multiple images. It has been pre-trained on more than one million 

data. Transfer learning is a deep learning that focuses on storing knowledge 

gained while solving one problem and applying it to a different but related 

problem. Learning data with transfer learning allows learning neural networks 

more efficiently than training them from early versions.

Layer 1 2 3 4 5 6 7 8

Kernel 11x11x3 5x5x48 3x3x256 3x3x192 3x3x192 6x6x256
FC layer

ReLU

FC layer

Softmax
Stride 4 1 1 1 1 *

Padding * 2 1 1 1 *

Table 3.1 Layer of ANN V1

 The input size of the first layer is 227x227x3, which is the same as 

other Local models. ANN V1 introduced by Matlab, changed FC layer, Softmax 

layer, and classification layer to normalize with other local models. Figure 3.N 

shows the ANN V1 structure.
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Figure 3.3. Structure of ANN V1

3.1.3. Artificial Neural Network V2

ANN V2, is pre-trained using image data. It consists of a convolutional 

neural network and has set the convolutional filter size to 3x3. By fixing the 

filter size to a size of 3x3, fewer parameters are generated, which improves 

the efficiency of learning. The input size is set to 227x227x3 like other Local 

models.

Layer 1 2 3 4 5 6 7 8

Kernel 3x3x3 3x3x64 3x3x64 3x3x128 3x3x256 3x3x256 3x3x256 3x3x256

Max 
pooling 1 2 * 2 * * 2 *

Stride 1 1 1 1 1 1 1 1

Layer 9 10 11 12 13 14 15 16

Kernel 3x3x256 3x3x256 3x3x256 3x3x256 3x3x256 Flatten

FC layer

Dropout

FC layer

Dropout

FC layer

Softmax

Max 
pooling * 2 * * 2

Stride 1 1 1 1 1

Table 3.2 Layer of ANN V2
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3.2. Parameter aggregation

Secure Aggregation is a computational protocol that goes through 

encryption so that the server cannot distinguish between updates from each 

participant. The server can only know the sum of the total values after 

receiving a certain number of updates from the devices. Secure Aggregation 

can be seen as a protocol that enhances privacy for security purposes, and 

information can be protected against attacks targeting central servers. When 

there is a server S and each device u, the device u sends and receives the 

k-dimensional vectors    to and from the server. In this case, 

     mod.

Each device sends a      mod value to the server. The 

server can deliver updates to the server without exposing the data of each 

device by adding all the received values. The value added by the server is 

 
  

mod.
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IV. Result and discussion

4.1. Result and discussion 

Using the proposed model, i.e., the MobileNetV2-BiLSTM algorithm, 2000 

ECG signals were classified. The data for each class were augmented to 500 

using the matching pursuit algorithm. Figure 4.1 presents the classification 

results. As shown, the LBBB data were best classified among the four classes. 

This is because the LBBB data had the most prominent features, such as 

baseline fluctuations and changes in the QRS complex, among the ECG signals. 

The AFIB data exhibited an accuracy of 92.8%, and were also classified 

relatively well compared with the other data, because the signal interval was 

not constant and the signal amplitude was small. The NSR data had the lowest 

classification accuracy because they had no noticeable features compared with 

the other data.

Figure 4.1. Result of classification using proposed algorithms



- 25 -

Figure 4.1. Results of arrhythmia detection using an ensemble network. 

Red color indicates cases of misclassification. Green indicates exact 

classification. Gray indicates the classification result. The values at the end of 

each row and column indicate accuracy and error rate.

The sensitivity of the proposed model was calculated as 0.92 using 

Equation (9). The specificity of the proposed model was calculated as 0.91 

using Equation (10). The precision of the proposed model was calculated as 

0.92 using Equation (11). The F1 score of the proposed model was calculated 

as 0.92 (on average) using Equation (12). Table 2 presents the performance of 

the proposed algorithm.

The receiver operating characteristic (ROC) curve is an important indicator for 

measuring the performance of classifiers [35]. It indicates how the true positive 

rate (TPR) changes when the false positive rate (FPR) changes. Here, the TPR 

represents the sensitivity. By setting the FPR as the X-axis and the TPR as the 

Y-axis, the changes in the TPR with respect to the FPR were examined. The true 

negative rate (TNR) is an indicator corresponding to the sensitivity.

The presented algorithm was trained by considering the following parameters. 

This set value was determined by conducting several experiments using MobileNet 

v2-BiLSTM and comparing the results.

Data 
Index

Class Sensitivit
y

Specificity Precision F1 Score

1 NSR 0.81 0.71 0.87 0.84
2 AFIB 0.94 0.98 0.93 0.94
3 PVC 0.92 0.97 0.91 0.92
4 LBBB 1 0.99 0.96 0.98

Average - 0.92 0.91 0.92 0.92

Table 4.1. Algorithm performance evaluation results.
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The batch size refers to the size of a group when the dataset used for 

training is divided into several groups. The training dataset is divided because it 

takes a long time to train if the entire dataset is entered into a neural network. 

The batch size used in this study was 30. Data rotation is a procedure applied to 

improve the efficiency when an algorithm learns. Neural networks have different 

learning outcomes depending on the state of data. When the same image is 

inputted differently, the neural network recognizes different data. (1) The normal 

image is the same as input (2), but the image is rotated. The data rotation used in 

this study was set to five. ‘Data shift’ refers to the movement of data in the 

pixels. Similar to data rotation, the input data can be completely different if they 

move by pixel size, which can improve the learning efficiency. The data shift for 

this algorithm was set to 3. Overfitting problems may occur in deep learning 

algorithms. To prevent this, a verification process is required, and in this study 

the verification was conducted 50 times.

‘Time elapsed’ refers to the time taken by this algorithm to classify the data. 

This algorithm classified the data in 23 m 30 s. An epoch means that the 

MobileNet v2-Bilstm algorithm learns all datasets once. The number of epochs of 

this algorithm was set to 40. Iteration refers to learning 1/n sized data once the 

entire dataset is divided into n equal parts. In the arrhythmia detection study, it 

was set as 120. The learning rate is the amount an algorithm can learn at once, 

and in this study, the learning rate was set to 0.01. If the learning rate is too 

large or too small, overfitting occurs; therefore, it is common to set it to 0.001 to 

0.01.

Figure 4.2 shows the ROC curve for the MobileNetV2-BiLSTM algorithm. The 

higher the value on the left, the better the ROC curve. The ROC curve can be 

used to calculate the change in the TPR while changing the FPR from 0 to 1. 

Option Value Option Value
Batch size 30 Time elapsed 23 m 30 s

Data rotation 5 Epoch 40
Data shift 3 Iteration 120

Validation frequency 50 Learning rate 0.01

Table 4.2. Algorithm performance evaluation results.



- 27 -

When the threshold is specified as 1, the FPR is 0, and conversely, when the 

threshold is 0, the FPR becomes 1. The TPR based on the change in the FPR 

value becomes the ROC curve.

The pseudo code below is a code that represents the behavior of the 

algorithm. The dataset used MIT-BIH. All signals were normalized to 227×227×3, 

and Matlab-based digital filters were applied (5/250/60 Hz). Up to 250 pieces of 

each data were added using the matching pursuit. Since then, all data have been 

converted by applying Wavelet transform. As a result, the four classes contain 500 

Time-Frequency domain data. A total of 2000 ECG data were classified using 

proposed algorithms.

.

Input data: MIT-BIH Database 
Output data: NSR, AFIB, PVC, LBBBB
1. Create MIT-BIH Dataset
2.      for signal=0; signal<654; n++ //(Number of data=654)
3.           Resize data(227x227x3)
4.            Digital Filter   (5/250/60Hz) //Butterworth type
5.      end for
6.      for data=0; data<250; data++ //data==data in each class
7.            Apply matching pursuit
8.            Save data in database
9.      end for
10.     for data=250; data<500; data++ // All classes have 500 signals
11.            Apply wavelet transform
12.            Save data in database
13.     end for
14. Set up multi learning
15.        Parallel= Create a parallel pool with the same number of workers 
16. Define the network architecture
17.     Layer=Input, Conv., ReLU, Pooling, FC, Softmax etc.
18.     Training Options=Epoch, Mini batch size, Iteration etc.
19. Train model
20.      for data=1; data<2000; data++
21.            Classification of data using proposed algorithm
22.                  (1) The structure of the local model is updated with information  

                  from the global model
23.                  (2) All models calculate the average value of the parameter      

                  every n times
24.                  (3) The Average values apply to global models
25.                  (4) Updated global models are evaluated for accuracy
26.                  (5) This process is repeated until accuracy is improved
27.      end for
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Figure 4.2. Arrhythmia detection results. A larger AUC 

corresponds to better performance. AUC denotes the area 

under the graph, and the four graphs represent the AUC 

that is proportional to the accuracy of each class. 

The area under the ROC curve (AUC) for each class indicated the 

performance of the classifier, with a larger area corresponding to a better 

performance. The AUCs for all the data are presented in Table 3.

The PVC, LBBB, and AFIB data had AUCs close to 1, indicating that the 

Class AUC

NSR 0.982

AFIB 0.997

PVC 0.996

LBBB 0.999

Average 0.994

Table 4.3. AUCs of the algorithm. 
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signals were classified accurately. The NSR data had an AUC value of 0.982, 

which was smaller than those of the other classes, but still indicates a high 

performance classifier (defined as having an AUC value of 0.8). Therefore, ≥

the NSR data were also classified accurately. Figure 4.3 shows the results of 

K-fold cross validation.

Figure 4.3. Results of K-fold validation for evaluating the classification 

performance of the algorithm. When the K value is equal to N, this algorithm 

performs the verification N times and calculates the average value for all the 

results. A K value of 10 yielded the best results. If the K value exceeds 10, 

the accuracy gradually decreases. 

The most important goal of deep learning algorithms is “how accurately 

data can be classified.” In general, deep learning algorithms are used to 

predict unknown data with limited data held by the system. The accuracy 

increases with an increasing number of data. There is no problem if the data 

are sufficient, but when the system learns with limited data, it is important to 

use the data it holds as efficiently as possible. Cross validation reveals how 

efficiently the system can use data. Therefore, this method was used to verify 

the performance of the proposed algorithm.

The performance of the MobileNetV2-BiLSTM algorithm was analyzed 

K value Accuracy(%)

2 81.2

3 82.3

4 79.9

5 80.8

6 84

7 85.2

8 88.6

9 92.4

10 93.3

11 92.1

12 88.5
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using K-fold cross validation. The dataset was divided into 12 groups, and one 

of the groups was extracted and used as the test set. The remaining 11 

groups were used as training sets. The test was repeated 12 times.

The accuracy increased with the K value. The accuracy of the algorithm 

was maximized when the K value was 10, and it decreased as K increased 

further. The minimum accuracy was 79.7%, the maximum accuracy was 93.3%, 

and the average accuracy was 86.21%.

ECG signals contain noise. For example, noise caused by factors such as 

patient movement, impedance between the skin and electrodes, and movement 

of cables reduces the accuracy of the algorithm and should be minimized. In 

this study, a MATLAB-based Butterworth filter was designed. The filter band 

was set as 5 Hz for high-pass and 250 Hz for low-pass, and the band-stop 

filter was designed for 60 Hz.

Figure 4.4 shows the experimental evaluation results for the performance 

of the MATLAB-based filter. The raw signal with noise is shown in blue, and 

the result of applying the filter is shown in red. Comparing the two signals 

revealed that the noise of the baseline was reduced.

Figure 4.4. Noise removal using a MATLAB-based digital filter. The raw and 

filtered signals are shown in blue and red, respectively. The cutoff frequencies 

were set as 5, 250, and 60 Hz for low-pass, high-pass, and band-stop, 

respectively.
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The digital filter was designed with general settings. Sometimes, the input data 

require a different filter band. For example, if another ECG study is performed 

using a different ECG database, the settings of the Butterworth filter used in this 

study must be changed. Alternatively, a filter other than the Butterworth filter may 

need to be used. Figure 4.5 presents ECG signals to which the Fourier transform 

was applied. The two ECG signals represent the results of the fast Fourier 

transform. They exhibit different frequency characteristics. Considering these 

frequency characteristics, the proposed algorithm should design an appropriate 

filter regardless of which ECG signal is input. The plan currently under 

consideration involves calculating the signal-to-noise ratio (SNR) of the signal and 

redesigning the filter when the SNR is too low.

Figure 4.5. Fourier transform was applied to two ECG signals with 

different frequency characteristics. After applying digital filters to 

eliminate noise, Fourier transforms confirmed that the designed filter 

removed the signal in the appropriate frequency band. 

The ECG signals used in this study were obtained from the MIT-BIH database. 

Digital filters were designed and applied to increase the classification accuracy. 

Subsequently, the learning data were sufficiently secured using the matching 
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pursuit algorithm. Data classification was performed using the 

MobileNetV2-BiLSTM algorithm.

The dataset used consisted of four classes, and the number of data was 

unbalanced. To solve this problem, the matching pursuit algorithm was used to 

analyze signals, adding 500 pieces of data from all classes. In this study, the 

proposed data augmentation method was used only to detect heart disease. 

However, if research on data aggregation progresses, we will be able to solve 

problems arising from unbalanced datasets. In addition, because the proposed 

method can arbitrarily add data measured in a short period of time, e.g., ECG 

signals, sufficient learning data can be secured, which can increase the algorithm 

accuracy.

The advantage of this algorithm is that arrhythmia diagnosis using a mobile 

device is possible. Deep learning, which has recently been used in various ways, 

has problems, such as the use of high performance CPUs and the consumption of 

large amounts of memory and power, because it focuses on performance. 

However, MobileNet is an algorithm designed for use in situations where the 

computational performance is limited; thus, it can solve the aforementioned 

problems.

The accuracy of the proposed model was 91.7%. Considering that the accuracy 

of the existing arrhythmia detection algorithm has reached approximately 99%, the 

performance of the proposed algorithm was not excellent. In addition to the 

accuracy, the sensitivity, specificity, and precision were poor compared with 

previous studies. However, the objective of the proposed method is to allow heart 

patients to check their health using mobile devices in their daily lives.

To overcome the disadvantages of this study, further research on the weight 

reduction of the model, the learning method of deep learning, and noise reduction 

is needed.

Khan, A. H et al detected heart disease using a single shot detection (SSD) 

MobileNet v2-based neural network. Dataset consists of four classes and includes 

one normal signal and three disease signals[18]. The input data was set lower 

than 300 KB in consideration of the learning time. SSD is used to detect the 

objects that can classify and local the objects in one step. This algorithm was 

implemented with the Tensorflow API and Google Colab. Batch size was set to 24 
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and training was performed 200000 times. The ratio of training and test was set 

to 8 to 2, and the learning rate was 0.0002. The accuracy of this algorithm was 

98%.

Rincon, J. A et al. studied IoT-based monitoring systems for cardiovascular 

patients[36]. This system diagnosed atrial fibrillation using two MobileNet neural 

networks. The two MobileNet analyzed ECG signals in Time domain and Frequency 

domain, respectively. This study obtained more accurate results by analyzing 

signals in other ways. Dataset was divided into Traing 8, Validation 1, and Test 1. 

Atrial fibrillation classes were accurately classified with a 90% probability.

The algorithm proposed in this study is aimed at detecting heart disease, as in 

previous studies using MobileNet. These studies have something in common that 

they used MobileNet. However, existing studies can output inaccurate results if 

learning data is not sufficiently secured.

Ahsanuzaman, S. M. et al. studied arrhythmia prediction models and real-time 

ECG surveillance systems[37]. To create an arrhythmia prediction model and an 

Android-based real-time ECG surveillance system, Long Short-Term Memories 

neural network, Recurrent Neural Network, TensorFlow and Keras library are 

applied here. Those deep learning models and algorithms help to achieve overall 

97.57% accuracy on arrhythmia prediction.

However, there is no research implemented in the mobile device by combining 

the two algorithms into one algorithm. This means that it is necessary to prove 

whether the MobileNet v2-BiLSTM algorithm can be implemented on the Mobile 

device. The algorithm proposed in this paper classified ECG data using MobileNet 

v2 and BiLSTM, and the results showed that MobileNet v2-BiLSTM could detect 

heart disease. In a further study, the authors will lighten the structure of BiLSTM 

and conduct experiments on whether this algorithm can be implemented on mobile 

devices.

The algorithm proposed in this study was designed for use in mobile devices. 

The proposed algorithm can analyze ECG signals in everyday life and check for 

heart disease. In addition, when the number of data is small, a sufficient amount of 

data can be secured by adding data using a matching pursuit. However, MobileNet 

V2-BiLSTM-based algorithms have not yet been implemented on mobile devices. 

This is because the deep learning algorithm has a complex structure and includes 

many parameters.

However, research is underway to implement and evaluate deep learning using 

mobile devices. Liu, j, et al analyzed the performance of training a deep learning 
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network on a mobile device. Deep learning used several things such as DenseNet, 

ResNet, VGG, and LSTM, and considered hardware performance when analyzing 

deep learning performance.

And Saadatnejad, S, et al conducted a study on the LSTM-RNN-based ECG 

classification algorithm [38]. The proposed algorithm is lightweight, and therefore, 

brings continuous monitoring with accurate LSTM-based ECG classification to 

wearable devices.

Considering these studies, the algorithm proposed in this study can be 

implemented on a mobile device. However, further research needs to be conducted 

to reduce the structure of the MobileNet V2-BiLSTM algorithm and to efficiently 

update parameters.

Figure 4.6 shows a bio-signal measurement module capable of measuring an 

electrocardiogram. The module uses a lithium-ion battery and weighs 5.32 grams. 

It also uses Bluetooth-based wireless communication.

Figure 4.6. Bio-signal measurement module for arrhythmia detection
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Figure 4.7. Bio-signal Monitoring application in mobile device

Figure 4.7 is an app representing a bio-signal measured from a user. Users 

can check their health using this app. The App helps users access ECG databases 

whenever they want, and ECG data is stored according to the date.
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IV. Conclusion

We proposed an artificial intelligence model for classifying arrhythmia using 

MobileNetV2-BiLSTM and a matching pursuit algorithm. The ECG data 

measured over a short period were augmented with sufficient quantities of 

data using the matching pursuit algorithm, and the MobileNetV2-BiLSTM-based 

arrhythmia diagnosis results exhibited an accuracy of 91.7%. The performance 

of the model was evaluated using the ROC curve, and the average AUC was 

0.994, indicating that the performance of the classifier was excellent. The 

algorithm arbitrarily added ECG data to increase its accuracy. In this process, 

the matching pursuit algorithm was used, and a large number of data could be 

secured. The data augmentation method used in the present study can be 

applied to imbalanced datasets. If the dataset is imbalanced, an overfitting 

problem can occur, reducing the accuracy. If the matching pursuit algorithm 

can solve the imbalance problem, the proposed algorithm can classify data 

from various datasets in addition to the ECG datasets used in this study. 

Owing to the widespread use of portable devices, various applications of 

lightweight algorithms will be developed in the future. After further research, 

the proposed MobileNetV2-BiLSTM model is expected to be useful in various 

fields, such as healthcare and the Internet of Things, in addition to disease 

monitoring. 
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ABSTRACT

Development of Lightweight Ensemble Network 

for Detecting Heart Disease Using ECG Signals

           Siho Shin

                                  Advisor: Prof. Youn Tae Kim, Ph.D

                                   Department of IT Fusion Technology,

                                   Graduate School of Chosun University

Heart disease should be treated quickly when symptoms appear. 

Machine-learning methods for detecting heart disease require desktop 

computers, an obstacle that can have fatal consequences for patients who must 

check their health periodically. In this work, we propose Federated learning 

and MobileNetV2-BiLSTM-based ensemble algorithms for arrhythmia diagnosis 

that can operate easily and quickly in a mobile environment. The 

electrocardiogram (ECG) signal measured over a short period of time was 

augmented using the matching pursuit algorithm to achieve a high accuracy. 

The arrhythmia data were classified through an ensemble classifier combining 

MobileNetV2 and BiLSTM. By classifying the data using this algorithm, an 

accuracy of 91.7% was achieved. The performance of the algorithm was 

evaluated using a confusion matrix and a receiver operating characteristic 

curve. The sensitivity, specificity, precision, and F1 score were 0.92, 0.91, 

0.92, and 0.92, respectively. Because the proposed algorithm does not require 

long-term ECG signal measurement, it facilitates health management for busy 

people. Moreover, parameters are exchanged when learning data, enhancing 
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the security of the system. In addition, owing to the lightweight deep-learning 

model, the proposed algorithm can be applied to mobile healthcare, object 

detection, text recognition, and authentication.
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