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Abstract (초 록) 

3D CNN에서 수정된 매개변수 레이어를 이용한 알츠하이머병의 

영상 모달리티 분류 

 

비젠 카기 

지도교수: 권구락 

조선대학교 정보통신공학과 

 

합성곱신경망(CNN)은 MRI 이미지와 피상적으로 작용하여 환자의 의학적 상태와 관

련될 수 있는 영상 특징을 학습한다. 이에 따라, 더 높은 정확도와 과적합 문제를 해

결하기 위해 알츠하이머의 영향을 받는 MRI의 분류에 CNN을 사용하려고 시도했다. 

CNN은 MRI 분류를 위해 특별히 설계된 몇 가지 새로운 매개변수 레이어와 함께 사용

한다. 초기에 'divNet'이라는 아키텍처는 증가되는 필터 크기와 깊이에 따라 넓은 범

위로 발산되는 수신 영역을 제안한다는 아이디어로 개발되었다. 이는 차례로 기능이 

감소된 낮은 수준에서 높은 수준의 특징 추출 프로세스를 진행하며 중복된 특징을 낮

춘다. 이 아키텍처는 정확한 최종 결과를 위해 일부 다른 기본 아키텍처 및 가변 하

이퍼 파라미터와 비교한다. 또한, 데이터 크기 효과 및 데이터 유형(즉, MRI 또는 

PET)도 이 아키텍처를 사용하여 분석한다. CNN 분류에서 베이스라인 아키텍처는 레이

어 간 연구수행에서 압도적인 결과를 얻었다. 이에 CNN의 초기 레이어는 낮은 수준의 

특징 추출에 관여한다는 사실을 알 수 있다. 이러한 프로세스는 정규화 기술에 크게 
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의존한다. 따라서 정규화 프로세스를 연구하고 학습이 용이한 고유한 정규화 계층을 

제안한다. 이를 위해 기존의 일괄된 정규화 계층을 대체하기 위해 CNN을 위한 새로운 

GAP(Gaussian Activated Parametric) 계층을 제안한다. 제안된 방법의 목표는 심층 

CNN의 초기 및 중간 특징 레이어를 정규화하고 활성화하여 맞춤형 학습이 가능한 매

개변수 레이어를 사용하여 특징을 구별할 수 있도록 한다. 이후 계층은 대상 도메인

의 분류를 위해 조정한다. 기존의 GAP레이어는 MRI의 특징 벡터 정규화를 위해 설계

되었다. 그러나 CIFAR-10, Caltech-256, 5-animals dataset 와 같은 자연적인 영상 

데이터 셋에서 테스트했을 때에 몇 가지 경우 유사하거나 약 개선된 결과가 관찰되었

다. 정규화 기술에서 얻은 몇 가지 이해를 바탕으로, 매개변수 계층을 활성화 함수로 

사용하고 기준 모델의 ReLU 활성화를 대체하는 것으로 목표를 변경했다. 이를 위해 

SGT 활성화라고 하는 스케일 감마 보정과 쌍곡선 탄젠트 함수의 조합을 기반으로 하

는 새로운 활성화 함수를 제안한다. 제안된 SGT 활성화 함수는 ReLU, Leaky-ReLU 및 

tanh와 같은 다른 활성화 함수와 비교하여 분석한다. 또한 기울기의 소실/폭주 문제

에 대처하는 역할로 분석된다. 이전 연구와 유사하게 모든 결과는 히스토그램 분석, 

가중치/편향 상관 분석 및 T-SNE 객관화로 내용을 보완한다.  

  이와 같은 방법으로 CNN 아키텍처 설계에서 단일 레이어 자체 설계를 진행한다. 

이를 위해 레이어의 미세 작업을 이해하고 더 나은 결과를 위해 조정한다. 수행된 작

업은 독립형 MRI 분류이지만 3D CNN을 사용하여 기본 분류 작업 내에서 미세 조작을 

자세히 연구를 진행한 것이 좋은 결과를 얻었다. pooling layer, flattening layer, 

convolutional layer와 같이 아직 연구할 수 있는 레이어가 많기 때문에 더 많은 레

이어를 사용자 정의 및 향상된 방식으로 풀 수 있다.    
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A Convolutional neural network (CNN) works superficially with magnetic resonance image 

(MRI) to learn its image-attributes, which may be correlated with the medical condition of the 

patient. This thesis work is an attempt to utilize CNN for the classification of Alzheimer’s affected 

MRI to achieve higher accuracy and lesser overfitting issue. For which CNN was employed along 

with some novel parametric layers that were designed specifically for MRI categorization. Initially, 

a baseline architecture called ‘divNet’ was developed with the main idea of presenting diverging 

reception area by increasing the filter size and stride along with depth. This helped from a low level 

to a high-level feature extraction process with reduced feature redundancy. This architecture was 

compared with some other basic architectures and variable hyperparameters for the final accuracy 

result. Meanwhile, the effects of data size and datatype (i.e., MRI or PET) were also analyzed using 

this architecture. With the overwhelming results from this baseline architecture in CNN 

classification, the layer-to-layer study was performed. Later, it was noticed that the early layers in 

CNN were responsible for low-level feature extraction. These processes were heavily dependent on 

the normalization technique. Hence the research was shifted to study the normalization process and 
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propose a unique normalization layer with ease of training. For this, a novel Gaussian activated 

parametric (GAP) layer specifically for CNN to replace the traditional batch normalization layer 

was proposed. The goal of the proposed method was to normalize and activate the initial and 

intermediate feature layers of a deep CNN so that a customized learnable parametric layer can 

make the feature more distinguish. Later the layers were smoothly tuned for the target-domain 

classification. Originally the GAP layer was designed for MRI features vector normalization. 

However, when tested in natural image datasets like CIFAR-10, Caltech-256, and 5-animals dataset, 

similar or slightly improved results was observed in a few cases. With some insights from the 

normalization technique, the new concern was to use a parametric layer as an activation function 

and replace the traditional ReLU like activation layers from the baseline model. For this, a novel 

activation function was proposed based on the combination of scaled gamma correction and 

hyperbolic tangent function, named Scaled Gamma Tanh (SGT) activation. The behavior of the 

proposed SGT activation function was analyzed against other popular activation functions like 

ReLU, Leaky-ReLU, and tanh. Additionally, their role to confront vanishing/exploding gradient 

problems was analyzed. Similar to the previous studies, all of the findings were supported by 

histogram analysis, weights/bias correlation analysis, and T-SNE projection.  

In this way, the research commenced from designing a CNN architecture till designing a single 

layer itself, so that micro-operation in layers can be understood and tweaked for better results. 

Though the performed task is a standalone MRI classification, with 3D CNN, it was beneficial to 

minutely study the micro-operation within the fundamental classification task. Since still there are 

many more layers to be studied like the pooling layer, flattening layer, and convolutional layer 

itself, many layers can be customized and unraveled in better ways. Considering deep neural 

network, a black box to uncover, this thesis might provide some insight and enthusiasm for those 

interested to study CNN working mechanism step by step.  
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Abbreviation 

AD  Alzheimer’s Disease 

AE  Auto Encoder 

CNN  Convolutional Neural Networks  

MCI  Mild Cognitive Impairment  

NC  Normal Controls 

CN  Controlled Normal 

SVM  Support Vector Machine 

ADNI  Alzheimer’s Disease Neuroimaging Initiative  

BN  Batch Normalization 

GAP  Gaussian Activated Parametric 

SGT  Scaled Gamma Tanh 

FCL  Fully Connected Layer 

DNN  Deep Neural Network 

CAD  Computer-Aided Diagnosis  

t-SNE  t-Distributed Stochastic Neighbor Embedding 

SGD  Stochastic Gradient Descent  

ADAM  Adaptive Moment Estimation  

MRI  Magnetic Resonance Imaging 

PET  Positron Emission Tomography  
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CHAPTER 1 

Introduction 

 

 

 

 

 

 

 

 

 

“Emotions are enmeshed in the neural networks of reason.” 

                                                          -Antonio Damasio 
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1.1 Introduction 

  Depending upon the method of acquisition of images, different types of imaging modalities can 

be used to visualize the physical and physiological condition of the human body. And the ones used 

for the brain are often referred to as neuroimaging modalities. The most popular ones being MRI, 

computed tomography (CT scan), and PET. MRI is broadly classified as functional MRI (fMRI), 

for metabolic function activity visualization, and structural MRI (sMRI), for anatomical structure 

visualization. Additionally, in sMRI, the most common one is T1 where only FAT tissues are 

bright whereas in T2 both FAT and water are isotropically bright. CT Scan and X-Ray being an 

ionizing radiation-based methods, are not often preferred for the brain. In the case of 

neurodegenerative disease like Alzheimer’s there is a reduction in the volume of grey matter and 

shrinkage in the Hippocampus area visualized in MRI [1] whereas some other measurement 

techniques like quantitative susceptibility mapping (QSM) measure the change in iron, myelin, and 

calcium in vivo in brain-related dementia diseases. Similarly, brain FDG-PET and amyloid PET 

records the pattern of glucose metabolism and amyloid deposition respectively. Therefore, based on 

the imaging modalities, different metrics are used to assess patients with Alzheimer’s disease (AD). 

This helps to measure the differences between normal and pathogenic cases and filter out the 

unusual changes, which may eventually be the topic of interest for medical study too.  

AD is a pathological condition of dementia characterized by memory impairment and cognitive 

dysfunction of the brain. The microscopic cause for AD takes place in the brain nerve cell 

connection area called the synapsis, where the neurotransmitters are released [2]. The synapsis 

helps with the information flow caused by tiny bursts of chemicals that are released by one neuron 

and detected by a receiving neuron. During AD, there is an accumulation of ß-amyloid proteins, 

suspected to cause neurons death, and tau proteins, also known as tau tangles, block the supply of 

nutrients and other essential molecules inside the neurons and the synaptic region. With this 
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outcome, there is a physical change in the common AD-related variation of anatomical brain 

structures such as the enlargement of ventricles, shrinkage of the hippocampus shape, change in the 

cortical thickness, and other cerebral areas containing white matter and gray matter brain tissue as 

well as cerebrospinal fluid. These changes and atrophies are rationally visualized through brain 

imaging by the clinicians using various imaging modalities like MRI or PET or CT scans. Then 

comes the use of image processing and machine learning (ML) techniques.  

ML algorithms in image processing, assist to find a discriminative pattern of image features by 

collecting the same groups of images into one. It means that the patterns that are eventually 

discovered for AD patients will behave the same for other AD patients’ recognition although it is 

differentiated with the CN and MCI-affected MRI. Once the MRI is translated into an image from 

the magnetic field gradients, it represents the pixel value for the participant’s brain image. 

Ultimately, AD classification will be based on the features that are extracted from these brain 

image pixels. The main features required to accurately capture the major AD-related variations of 

the anatomical brain structure include the size of the ventricles, hippocampus shape, cortical 

thickness, and brain volume [3]. Although such alterations may resemble other brain-related 

diseases like Parkinson’s disease (PD) and encephalitis [4]. In that case, more clinical and 

physiological tests should be performed on a clinical level.  

Classification, as a part of ML, is the process of categorizing an image, or an image attribute, or 

any input vectors into some output target variable/label used as ground truth during training. That 

means a model can only categorize an input to the corresponding labels used in training. Hence 

CNN as a classifier simply categorizes the input vector into a target label, unlike the classical 

regression problem, the output has a fixed discrete value. This idea is simple but crucial for the data 

analysis process, in fact, other ML tasks like segmentation, object detection, ROI detection, etc. are 

just complex forms of classification. Convolutional neural network (CNN) is an advanced ML idea, 



4 

 

which has been the dark horse in the field of deep learning (DL) since the success of LeNet-5, an 

emerging CNN in the late ’90s for handwriting recognition [5][6]. The massive success behind the 

use of CNN is because of its capacity to accommodate a larger number of trainable model 

parameters which contributes to the accurate extraction of features for pattern recognition as in 

image classification (AlexNet [7], GoogleNet [8], ResNet [9]), Object recognition (R-CNN 

[10][11]), scene segmentation (SegNet [12][13]) and other tedious human perception-based tasks. 

The commonly used CNN has convolution filters as the key feature detector from primary level 

features like edge, color, corner, and line detection to higher-level features like texture, pattern, 

shape, and detection for its class identification [14][15][16]. Hence the weights of convolution 

filters are the key parameter to train and determine how a particular filter works. Besides the 

convolution filters, many other learnable layers also participate in weight update during training via 

backpropagation, so that they all work conjointly to produce final down-sampled features with their 

class-label properties. Traditionally in a CNN, only the convolution kernels and multilayer 

perceptron (MLP) layers used to have the learnable parameters, however, now other layers besides 

them also use learnable coefficients during training, updated via backpropagation based on the 

first-order partial derivative of the participating polynomial function.  

In general, the performance of CNN can be defined as a function of N, A, and H, where 

N=number of parameters, A=architecture i.e., connection design between the layers, H is 

hyperparameters with training conditions and X is the optimizing or decision function in each layer, 

hence CNN performance (P) = f (N, A, H, X). In this thesis, I will explore this idea with MRI 

classification task using two imaging modalities i.e., MRI and PET. The used methods and 

methodology for the proposed architectures and layers are well explained in upcoming chapters 

distinctly with related theory and mathematical expressions. 

1.2 Thesis motivation 
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This thesis is mainly based on the motivation of CNN itself, which is bio-inspired by the neural 

structure and cognitive role of the human brain. Hence in an abstract way, it is the human brain 

itself motivating the use of CNN and its understanding. However, the implementation into an 

application is a challenging task. The existing CNN models in medical image classification utilize 

the models and decision function based on those models which are primarily trained on natural 

image datasets like ImageNet [18], CIFAR-10 [19], and Caltech-256 [20]. Thus, we were 

motivated to do independent work, and scratch train CNN models through MRIs to support AD 

diagnosis. The presented work mainly includes chronographically done research from basic 

understanding and implementation to modification of the participating layers. 

The foremost work of designing CNN architecture i.e., ‘divNet’, was motivated with the interest 

of using increasing filter and stride size against the normal practice of equal size filter like in LeNet 

or converging filter size as in AlexNet. Hence, the concept was ‘accommodating more features, for 

the deeper layers with wider filter windows’ to reduce the depth.  

The second work i.e., Gaussian activated parametric (GAP) normalization was inspired by the 

work of Alex Krizhevsky [14] and Kaiming et al. [9]. In the work of A. Krizhevsky, it is reported 

that the trained convolutional parameters in early layers were mostly the edge detectors and color 

filters, which were translationally invariants and spatially distributed. And Kaiming et al. reported 

the filters of the first convolutional layers were mostly Gabor-like filters such as edge or texture 

detectors, and the results after full training showed that both positive and negative responses of the 

filters are revered. Hence, the Gaussian filter kernel as a normalization kernel was implemented to 

generate a mask for average smoothing, which was parametrically designed to work as a 

normalization function. 

Later, in the design of the SGT activation function, we were motivated by the advantage of 

using gamma correction in image preprocessing and data augmentation. Hence, we implemented it 
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as a learnable parameter-based function during activation for contrast enhancement and non-

monotonic intensity mapping. Later it was combined with hyperbolic tangent function for 

thresholding and non-linear operation.  

Therefore, in a broader sense with so many deep learning architectures and algorithms being 

successfully implemented in medical image identification tasks including segmentation of the brain 

[21], volumetric measurement of a brain tumor [22], cancer diagnosis [23], quantification of tissue 

materials [1], brain lesion detection [24][25], etc. I was also motivated to do similar task and with 

the original idea for AD identification. Though many Deep neural networks (DNN) including CNN, 

Convolutional autoencoder (CAE), and generative adversarial network (GAN) are already proposed 

for AD identification [26][27][28][29], I was motivated to design a simple and better 3D CNN 

architecture (most popular ones existing are 2D CNN) which was later customized layer-wise to 

enhance the feature extraction process in MRI. 

1.3 Research objective 

In current literature, we mainly find the use of sophisticated DL models like AlexNet, ResNet, 

GoogleNet, and VGG being tweaked to use in medical imaging analysis, though these models were 

originally trained and tested in natural image sets like ImageNet. In addition to the complexity of 

these models, these are not universally accepted for all medical imaging applications, so the goal 

was to design an independent model and make it widely acceptable for a similar range of medical 

imaging tasks. Hence, the primary objective of the research was to develop an independent robust 

standalone CNN classification model, specifically for MRI classification to support rapid AD 

diagnosis.  

Another objective was to design novel layers that can be universally used for all kinds of 

perceptions i.e., input vector, however with more priority for MRI images. Moreover, in a broader 

sense, I wanted to study the correlation of CNN parameters with the classification categories and 
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interpret the result for human understanding. This was one other avenue to explore which was 

partly implemented in the subsequent works. And lastly, besides finding a solution for the research 

problem, our other main objective is to perform ethical research directed at simplifying neural 

network applications rather than making them unnecessarily complex. Last but not the least, I also 

want to motivate early researchers working in similar fields accordingly.  

 

 
 

Figure 1.1: (a) The famous AlexNet architecture (2010) as reported in [7]. (b) VGG-16 architecture 

(2014) [17] is very similar to that of AlexNet, which outperformed AlexNet by a critical margin and 

became the baseline model for much deeper architecture. 

1.4 Thesis contribution 

This thesis explains its contribution to designing a baseline architecture for classification, 

proposed normalization layer, proposed activation layer, and the reason to propose those layers for 

MRI classification. It is highlighted below: 

i. A diverging architecture-based 3D CNN referred to as ‘divNet’ was proposed for the 

supportive classification of both MRI and PET. Moreover, its sibling (i.e., slightly modified in 

window area) architectures have been thoroughly analyzed and investigated with experimental 
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results.  

ii. A novel Gaussian filter-based normalization layer referred as GAP layer was also proposed 

to integrate with deep neural networks. Also, instead of performing minibatch averaged scaling, 

same channel mean scaling was proposed for normalization within the layer. Additionally, a 

comparative analysis is performed for the proposed GAP in alternative to the Batch Normalization 

(BN) layer to study the feature extraction, histogram analysis, internal covariance problem via 

correlation test, and overfitting issue.  

iii. An interesting activation function based on the combination of scaled gamma correction and 

hyperbolic tangent function, which is called Scaled Gamma Tanh (SGT) activation is proposed to 

replace traditional ReLU activation. The characteristics of the SGT activation function against 

other popular activation functions like ReLU, Leaky-ReLU, and tanh along with their role to 

confront vanishing/exploding gradient problems were analyzed thoroughly in a 3D CNN for the 

MRI classification task. More importantly to support our proposed idea I have presented a detailed 

analysis via histogram of inputs and outputs in activation layers along with weights/bias plot and 

TSNE-projection of fully connected layer (FCL) for the trained CNN models. 

iv. Besides, I also wanted to coarsely interpret the proposed CNN models according to the 

distribution of its class weights i.e., AD, MCI, and CN, which were subsequently done in the 

analysis section.  

1.5 Scopes and limitations 

The performed study has a limited scope as the studied imaging modalities are only MRI and 

PET, PETs were later eliminated due to their poor result, concluded from the work in ‘divNet.’ 

Consequently, MRI was only used in the latter remaining works. Also, instead of using 

subcategorizing MCI into sMCI and pMCI, both subcategories were combined into a single MCI 

class, so only three main classes were used. In the case of the database, I selected only ADNI 1 
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project, baseline visits, whereas multiple visits are available in ADNI 2, ADNI GO, and ADNI 3 

projects with plenty of MRIs under four categories. This narrow selection of MRIs was done to 

bring identical training conditions and avoid biased results for all three works. The selected MRIs 

were also class-wised balanced after the initial selection. Details on MRI and PET materials used 

for experiments are available in Chapter 2.  

Another limitation is the use of CNN itself as many more superior deep learning networks like 

GAN, long-short term memory (LSTM), Fast r-CNN, etc. are readily available. The reason for 

using CNN is, though these superior models might bring higher accuracy, at the same time it is 

difficult to interpret them, even the popular CNN models like VGG-19, GoogleNet, and ResNet are 

very deep and immensely difficult to interpret. Hence simple models were proposed to interpret the 

model easily and simplify the process. Besides, any neural network either shallow or deep are 

prone to overfitting due to an excessive number of learnable parameters, hence I cannot be very 

confident that if tested on other MRIs (i.e., with different acquisition method), similar results will 

be reproduced by our models, hence lack of generality and universality is still a challenge faced by 

every deep learning researchers.  

1.6 Thesis organization  

This thesis accumulates the cumulative and representative research works done during my Ph.D. 

duration. The first chapter presents the general introduction of the research work where the research 

goal, objective, motivation, and contributions are highlighted. This chapter is made simple and 

non-technical so that general readers with lesser knowledge interested in this field can understand 

the research work and its intuition. Then the latter chapters become a bit technical where the 

proposed ideas are discussed in more technical details. Chapter 2 highlights the basic theoretical 

background and motivation behind the research. It discusses the theoretical aspect related to the 

design of CNN architecture, the need for transition from 2D to 3D CNN, the role of 
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hyperparameters, dataset size, data selection and other related theory. Once we have the 

background on the basic CNN architecture, we move into the detail of the layers involved. In later 

part of Chapter 2, it discusses the theoretical aspects of two layers highly responsible for CNN 

performance i.e., normalization layer and activation layer. The proposed methods are slightly 

introduced and the motivation for the need of parametric layers are discussed in the end parts. Next, 

Chapter 3 presents the mathematical model and detail design for CNN architecture in section 3.1. 

Similarly, the proposed layers for normalization and activation layers viz, GAP normalization and 

SGT activation are discussed in section 3.2 and 3.3 respectively. Later in Chapter 4, the 

experimental results are shown. First with the proposed divNet architectures in section 4.1 and 4.2 

and later using proposed GAP and SGT normalization in section 4.4 and 4.5. Additionally, the 

results are properly analyzed and discussed in sub sections 4.3, 4.2 and 4.6. Finally, a general 

conclusion for all of the proposed methods and performed research is highlighted in Chapter 5. 

Besides, the general concluding remarks, the future works that can be done is also highlighted in 

subsection 5.1. All of the references are presented in Reference section and some additional data in 

Appendix section. This is illustrated in figure 1.2, where readers can easily understand the content 

of the thesis with a single glance. Please note that this is a chronologically done work, and each 

work is connected to each other.  

 
Figure 1.2: Block-diagram illustrating the thesis work.  
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CHAPTER 2 

Theory and Background 
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2.1 CNN for MRI classification 

In reference to the Alzheimer’s Association Report (AAR) [30], the molecular and neurological 

causes for AD takes place in the brain nerve cell connection area called the synapsis, where the 

neurotransmitters are released. The synapsis helps with the information flow caused by tiny bursts 

of chemicals that are released by one neuron and are detected by a receiving neuron. During severe 

dementia, ß-amyloid proteins and tau proteins, also known as tau tangles, are accumulated around 

the synaptic region. This ß-amyloid is suspected to cause neuron death by interfering with neuron-

to-neuron communication at the synapsis. In addition, the tau tangles block the supply of nutrients 

and other essential molecules inside the neurons. Brains with advanced AD have a dramatic 

shrinkage due to cell loss, inflammation, and widespread debris from dead and dying neurons. This 

causes memory loss problems (e.g., dementia) with the inclination of age. This is the molecular and 

physiological level analysis for AD. However, there is a corporal change in the common AD-

related variation of anatomical brain structures such as the enlargement of ventricles, shrinkage of 

the hippocampus shape, change in the cortical thickness, and other cerebral areas containing white 

matter and gray matter brain tissue as well as cerebrospinal fluid. These changes and atrophies are 

rationally visualized through the brain imaging by the clinician while using a variety of medical 

imaging modalities like positron emission tomography (PET), magnetic resonance imaging (MRI), 

and computed tomography (CT) scanning. Here comes the true usage of image processing and 

machine learning. Image processing improves the quality of the image for better visualization of 

the brain whereas machine learning assists clinicians to perform other logical operations like 

segmentation, classification, and quantification, which can be time-consuming and sometimes 

baffling. The logical operation once modeled with proper supervision can later follow the designed 

algorithm to reach a prediction, the more the prediction is true, the better the model is, and the 

higher will be the chance of reliability. Mild cognitive impairment (MCI) is a transitional stage 
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between normal aging and the preclinical phase of dementia. MCI is a potential early stage of AD, 

and it can either progress into AD (pMCI) or remain in the same stage throughout life, which is 

called stable MCI (sMCI). Here, both types of MCIs are combined into a single MCI group to ease 

the classification process. A healthy MRI is called normal aging/cognitively normal (CN). Since 

AD contains a genome that affects the disease, no known stimulant causing it is identified. 

However, the influencing factors for AD include genetics, low education or professional 

involvement, lack of-mental exercise, family chronicles, and external or internal brain injuries [31]. 

Image processing aims to find a discriminative pattern of image features by collecting the same 

groups of the MRI into one. Once the MRI is translated into an image from the magnetic resonance 

frequency, it represents the pixel value for each structure and these pixels will be assigned to a 

class. Ultimately, AD classification will be based on the features that are extracted from these brain 

image pixels. The main features required to accurately capture the major AD-related variations of 

the anatomical brain structure includes the size of the ventricles, hippocampus shape, cortical 

thickness, and brain volume [32]. Although such alterations may resemble other brain-related 

diseases like Parkinson’s disease (PD) and encephalitis [33]. In that case, more clinical and 

physiological tests should be performed on a genetic level. Consequently, the idea of identifying 

pathogenic scans from a healthy one seems easier than identifying a particular disease from a pool 

of pathogenic scans. Thus, imaging technique alone may not be the only valid proof to diagnose a 

person with AD. However, based on the brain phenotype reflected in the imaging, the 

discriminative features from the trained network can help identify AD prone images. 

This study answers few questions related to the use of deep learning for medical imaging. It 

starts with the background story of CNN and recent literature reviews of its implication in medical 

image classification. Subsequently, I have surveyed with shallow to deep layers using different 

feature sampling region and finally came up with a diverging architecture being supportive in the 
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case of both MRI and PET. The proposed architecture referred as ‘divNet’, and its sibling 

architectures have been thoroughly investigated and the results are presented, discussed, and 

analyzed in subsequent sections. 

 

2.2 The Background story   

2.2.1 3D CNN 

Inspired by the neural network architecture of the mammalian cerebrum, an artificial neural 

network (ANN) tries to mimic the information flow and the decision-making pattern of the brain. 

As demonstrated by Hubel and Wesel [34], they recorded the activity of a single brain cell in cats. 

It was stated that some cortical cells respond to contours of a specific orientation. Aside, patterns of 

light stimuli are most effective in influencing units at one level, and they may no longer be the 

most effective for the next. Although millions of neurons and synapses receive the stimuli, only 

certain neurons are trained to respond to those specific features or aspects of an image [35]. Similar 

to the brain when we receive any stimuli, the neuron spike is generated for only a specific area, 

ANN will only have a few activated nodes for each shape, which may be a horizontal, vertical, or 

diagonal line. The node activated for each line is different and unique. This means that the node 

activated for a horizontal line in one image is activated for the horizontal line in another image and 

so on; this is the basic principle of an ANN. The layer-wise connection between the nodes may 

indicate the heavy connection between the neurons. 

CNN is an advanced type of ANN, which has convolutional filter elements (weights) unlike 

single-node multiplication in ANN. Besides, CNN has extra feature investigators in the form of 

pooling and activation functions. Thanks to the newly developing algorithms that train the CNNs 

more effectively, which has ultimately surpassed human-level accuracy for natural image 

classification [35-36]. With a wide variety of CNN based topology, the prominent ones include 
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residual (Resnet50, ResNet101 [55]), recurrent (RCNN [53]), inception (GoogLeNet [50]), 

encoder-decoder (U-net [39]), and so on. One can notice that the common element in all of the 

topologies is the encoder unit i.e., convolution-normalization-activation-pooling, which acts as the 

fundamental unit for feature generation. Therefore, I am building blocks of a combination of these 

encoding layers.  

The existing ideas in the 3D CNN are mainly ‘the best patch’ or ‘multiple patches trained for 

the CNN ensemble’ based architectures [37]. In ‘the best patch’ approach, a single region of the 

brain is selected based on the recommended region of interest (ROI) or it is manually assisted from 

the anatomic region of atrophy, like the hippocampus and amygdala whereas in ‘multiple patches 

trained for the CNN ensemble’ multiple CNNs from multiple ROIs are trained separately for each 

region, later performing feature concatenation at the last FCL before classification. One of the 

reasons behind using only limited/selected/informative pixels to feed in 3D CNN may be due to 

GPU memory constraints and also to increase the information with quality. Non-discriminative 

parts although play a role in feature construction at a low level may not necessarily support the 

cohort classification, hence information becomes redundant using a whole-brain model. As well, 

selecting an ROI patch, or simply the best region makes the system semi-automatic; hence, the 

truest sense of automatic feature extraction is not applied in these cases. This research aims to make 

the classification simpler and candid rather than a multifaceted process. That’s why I wanted to 

build an automatic and discriminative CNN that can work for MRI, PET, and any other ‘pixelary’ 

(pixel-based) object/entity irrespective of its input size. 

Yechon et al. [32] works were mainly focused on the hippocampi region, where they proposed a 

multimodal 3D CNN that uses hippocampi region ROI from MRI and hippocampi and/or cortices 

ROI from PET, without segmentation as a prerequisite task. They separately trained the CNN 

referenced with VGG architecture, for MRI and PET modalities-based ROI and later concatenated 
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from final FCL before final classification. In other similar attempt done for multimodality-based 

3D CNN, Liu et al. [38] also proposed a simpler CNN model like Yechon et al. but then instead of 

concatenating the final FCL, the concatenation was done in the convolution layer, from each CNN 

(trained using PET and MRI patch) for sequential convolution until flattening features at FCL. 

They experimented with T1-MRI and FDG-PET based cascaded CNN, which utilizes a 3D CNN to 

extract features, and adopted another 2D CNN to combine multi-modality features for task-specific 

classification. In 2016, Hosseini-Asl et al. [43] proposed a deeply supervised and adaptable 3D 

CNN (DSA-3D-CNN), trained on structural MRI (sMRI) images, which gives the prediction for 

the AD vs. MCI vs. CN task. Similarly, Payan et al. [64] also used sparse auto-encoder (SAE) 

patch-based 3D CNN to classify MRI scans using dataset partitioning unlike Oh et al. [65], where 

they performed 5-fold cross-validations (CV) using convolutional auto-encoder (CAE) based 

volumetric or 3D CNN for AD vs. NC and supervised transfer learning for sMCI vs. pMCI 

classification. 

2.2.2 Why move from 2D to 3D? 

This study aims to explore one more dimension for CNN i.e., the depth. And the key question 

that needs to explore is: can we only depend on the 2D CNN results? 

As mentioned, the 2D CNN can easily be misled [67] in the sense that a target domain trained 

CNN can only give a probability score for each trained class. Besides, a few pixel changes can 

make the prediction a disaster [67]. Some researchers have suggested possible improvement in 

performance over 2D images if 3D whole-brain structure is used to train CNN [39], due to its 

deeper architecture. But deeper architecture means more parameters (weights in layers) to train, and 

at the same time requires bigger and better training material. CNN either 2D or 3D follows a 

generic feature extraction pattern [40][41], here generic features might suggest CNN features, also 

called ‘off the shelf CNN features’ [42] which is basically the image features extracted from the 
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multiple convolutional layers as the weights (as a decimal number) of the trained network, applying 

various activation functions. Typically, the final feature weights from the FCL are graphed out to 

decide the performance of CNN. This means a well-separated, class-based segmented graph 

generally depicts a well-trained classifier [43].  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 2.1:  MRI and PET scans of: (a) AD prone MRI; (b) Healthy MRI; (c) MCI affected MRI; 

(d) AD prone PET; (e) Healthy PET; (f) MCI affected PET.  

 

While classifying images with 2D CNN, the major problem is to select the appropriate slice or 

slices as training inputs. Several literatures suggest the ‘best scan’ [44] [45] or ‘best multiple scans’ 

[46] [43] for efficient performance, which rather mystifies the slice selection process. This is 

problematic and quite impracticable every time. Some important information might be missed if we 

focus only on limited scans or orientation. Consequently, the safest way to ensure is to use whole 

brain volume, which comes in a three-dimensional pixel value for x, y, and z dimension in planar 

geometry. In our previous work [47] we demonstrated that 2D CNN when trained from fewer MRI 

images results in poor classification performance, moreover the selection of slice or slices is still 

ambiguous. Besides, the transfer learning idea seems an inappropriate choice as the popularly 

available models like AlexNet [48], ResNet [49], GoogLeNet [50], ZNet [51] are all 2D based 

architecture. Furthermore, we need to make the architecture deeper and bulkier to accommodate 

thousands of images per class due to the dimension constraints of 2D-CNN. Hence to make the 

MRI classification universal and less tedious 3D CNN is used, to readily fit the 3rd dimension of 
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whole MRI. Likewise, the use of 3D input requires fewer pre-processing steps like slice-extraction 

slice-correction and slice-selection. This reduces the manual processing steps and makes the 

procedure more automatic and robust, which is the goal of this study. Regarding image 

preprocessing only image resize, and normalization were performed before being fed into the CNN 

to work with the irrelevance of the imaging protocols and scanners selections. Aside, the obtained 

nifty files are already pre-processed from Alzheimer’s disease Neuroimaging Initiative (ADNI), 

(we are not provided with the raw image from scanner, but a semi-corrected processed MRI). This 

can eventually be useful for the generalization of the trained model. 
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Figure 2.2: (a) Workflow of the experiment (b) Pictorial representation of proposed 3D CNN architecture for the MRI/PET classification 

based on the diverging area of the reception, which is referred to as ‘divNet’. High resolution image for better visual presented in 

Appendix I.

 

       (b) 
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2.2.3 Finding the correct architecture and hyper-parameters 

Although CNN can be easily misled, it is quite smart as well. Because irrespective of the depth 

(deep or shallow layer), the training material (good or bad), or the training size (small or big), CNN 

finally learns something when it is trained. This ‘something’ may not typically relate to the human 

interpretable logical features however they will categorically learn some identifying features so it 

can be classified. Most of the time this features are basic shapes, edges, corners, and patterns on the 

objects. Therefore, we don’t need to worry about selecting architecture every time. Nevertheless, 

when it comes to finding the best architecture, with ease of training, and good performance, the trio 

gives an ultimate challenge to every deep learning researchers. Performance results, training time, 

validation period, the confidence of prediction, generalizability, and other factors are the key to 

determine the state-of-the-art winner. The results of our experiment are highlighted in tables 4.1,4.2 

and 4.3. 

2.2.4 How deep should we go? 

Recent studies have recommended that a CNN can extract convenient features directly from a 

raw image, unlike a manually supervised learning algorithm and has a robust potential to locate key 

points and features in object detection tasks for natural images [52] [53]. This property of the CNN 

has been explored in a region-based convolutional neural network (R-CNN) for region-based 

detection in 2D images. Recent works in image classification using a CNN suggests that 

segmentation results itself do not contain information needed for the classification, hence not being 

a pre-requisite for the task. Consequently, the CNN can learn useful features without labeling the 

voxels itself [32]. These entire experimentations support the generic feature extraction property of 

CNN. But how deep should we go is still a major question. Our choice of going deeper is to extract 

more meaningful features to perform a relevant operation of classification or segmentation from the 
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trainee dataset. In general, we will have more feature vectors with more layers, and subsequently a 

large pool of features to extract. This will help in terms of ‘judging’ the best out of the good 

features. Nevertheless ‘we should go deeper’ [54] doesn’t necessarily mean for the deep learning 

models every time. The work of He et al. [55] in ResNet shows that a deeper network with 1,202 

layers in comparison to 50, 101, and 152 convolutional layers has no significant improvement with 

an aggressive depth. With the additional cost of extra training, more depth for a network may make 

it more prone to overfitting by learning “too well” and this may not generalize the model at the cost 

of running expensive GPUs which makes it more challenging to build models, being able to 

understand all details [56]. 

2.2.5 Data as fuel for CNN, but how large should our data be? 

The breakthrough of AlexNet in the ImageNet dataset classification suggests that better the data, 

better would be the result. To support this theory artificial dataset are also created with different 

augmentation techniques. And well, the result seems to be supported using extensive synthetic MRI 

for improved performance in segmentation and classification tasks [57] [58]. In case of ImageNet, 

we have 1000 classes with around 8000 images in each class, which means more classes with more 

distinctive images. Similar is the case with other datasets like CIFAR101, Caltech, etc. where data 

acts like oil to AI [59]. Having said that, what may be the case with the medical image? 

Considering labels as the most precious assets for the data scientist, how voluminous should the 

training materials be? In the case of medical images, the task is more challenging, with an image-

based feature; we can rarely detect the atrophy pattern. Particularly if we look at AD vs. MCI or 

MCI vs. NC, MRI or PET [Figure 2.1]. Hence to solve this I am experimenting with various sizes 

of the datasets, one big and the other small for MRI and PET tests. The results are highlighted in 

Table 4.4. Detailed demographics for each dataset type tabulated in the Appendix I. 
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2.2.6 Visualizing features: What has the CNN extracted and learned? 

A sequential CNN involves reduction of features from the input to the final classification layer. 

The same is with a 3D MR image, as input obtained in NIfTI (Neuroimaging Informatics 

Technology Initiative) format. Once input is read using niftiread function inbuilt in MATLAB, it 

can be resized from its original size 256×256×256 or 256×256×170 to 64×64×64. After multiple 

down-sampling via the max-pooling for each convolutional layer, it is reduced to 1,728 for the first 

FCL. To reduce overfitting, dropout is used and other conceding FCL to make the final output as 

input for the SoftMax layer. This idea of using multiple FCLs to map the target domain using pre-

trained networks is often called target domain fine-tuning, which is the basis for transfer learning. 

The activated features in the initial convolutional layer can detect pixel changes based on attributes 

like line, edge, and color [60] in a small window filter. These edge-based features pass through the 

intermediate layers of the CNN, and they are combined in many filters, whose weights (initially 

kept at random weights or initialized using Xavier, He, Gaussian) is updated using backpropagation 

following a specific optimization path like ADAM or stochastic gradient descent (SDG). These 

intermediate layers detect the activated parts of the image whereas the final layer learns 

discriminative features in the shape and pattern amongst the target domains. Once training reaches 

convergence, which means no more weight changes occur and the training accuracy reaches its 

maximum, the training stops. The network is now trained and it’s a generic feature extractor, which 

is like a traditional algorithm that generates features. The generated features are the discriminative 

features that are used to distinguish the classes. This study uses multiple 3D filters that give 4D 

output in each layer i.e., one 3D feature map per filter (please see Figure 2.2). Convolving the 

image with these filters produce a feature map that detects the presence of those features in the 

image. This nature of a CNN is the essence of its auto feature extraction, and it helps in the 

automatic computer-aided design (CAD) system.  



23 

 

It is difficult to predict the features that a CNN can learn without training it; thus, making it a 

tedious task to analyze the features. Since a single network may contain millions of parameters and 

we cannot mathematically predict the final converged value in each filter without training them. 

Hence, every time I train the CNN, the learned features need to be investigated. Once trained, the 

CNN is loaded with the filter weights, which are used to make the predictions with the test images. 

It is convolved in each layer to obtain different results for the different MRIs. The trained network 

is used to obtain the features as described in Pseudo-code 1, 2, and 3.  

 

2.3 Normalization layer in CNN 

DNNs have been the dark horse in the field of DL after the success of LeNet-5, an emerging 

Convolutional neural network (CNN), in 1989 for handwriting recognition [72][73]. The massive 

success of DNN is due to its capacity to accommodate a larger number of trainable model 

parameters which contributes to the accurate extraction of feature for image-classification as in 

ImageNet using AlexNet [74], GoogleNet [75], ResNet [76], object recognition (R-CNN [77],[78]), 

scene segmentation (SegNet [79],[80]) and other tedious tasks for human perception. The 

commonly used DNN in image classification or pattern recognition is CNN, with convolution filter 

as the key feature detector from primary level features like color, edges, corners, line, etc. to 

higher-level features like texture, pattern, shape, etc. for its class identification [81][82][83][102]. 

Hence, CNN is basically an image attribute extractor. In CNN, the weights of convolution filters 

are the key parameter to train, and it determines how a particular filter works. Besides the 

convolution filters, many other learnable layers also participate in weight update during training via 

backpropagation, so that they all work conjointly to produce final down-sampled features with 

class-label properties. The training algorithm for optimization and the initialization techniques are 

the key components to escort the cross-entropy loss to minima, so that the training can be halted, 
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i.e., the weights is no more changed and technically the model/network is said to achieve 

convergence. Achieving optimal convergence is our primary goal however, only reaching the 

lowest minima does not guarantee a high success rate in test (unseen) sample classification. i.e., the 

‘test error’ can be high with a low ‘training error’. This familiar problem in ML is called overfitting 

or generalization error, which is the most serious issue in any DNN architecture. Many 

regularization techniques along with dropout, early stopping, random sampling, etc. are introduced 

to reduce this generalization error. However, being the state-of-the-art algorithm in several 

benchmark datasets, numerous ML algorithms are still not fully understood and working as a black 

box in many tasks, it can be realized by the fact that many standard DNN fails to generalize 

[84][107][108]. 

Any NN under scratch training gets affected by the randomness in the parameters, which brings 

some short of disparities in the input node distribution of layer during training time and makes it 

extremely challenging to train networks with saturating nonlinearities which is measured as 

covariant shift [85]. This phenomenon considered specifically as an internal covariant shift is sort 

of trouble for convergence and generality as well. To solve this problem, BN was introduced to 

minimize the effect of covariant shift. It also speeded up the training process and deal with a higher 

learning rate without exploding gradient. BN uses layer-wise whitening technique image i.e., mean 

zero and unit variance for normalization and decorrelation, with only two extra parameters per 

activation one for scaling and the other for shifting. It also reduces the training time and preserves 

the interpretation capacity of the network [86]. However, since the convolution weights are updated 

so quickly, the weights tend to move towards convergence faster while the validation accuracy still 

lags far behind. BN was intended for speedy training reducing internal covariant shift also, the 

claimed regularization technique was said to eliminate the use of dropout. Because of this BN also 

claims to reduce the generalization error as dropout does the same. However, at the same time, a 
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prominent overfitting problem was observed with the use of BN in the base architecture. Along 

with BN, many other lately used activation functions for classification purposes are designed with 

learnable parameters for optimal model fitting and little overfitting risk [87]. Similar works done 

lately to design normalization layers without using minibatch mean in DNN includes filter response 

normalization (FRN) [109], group normalization (GN) [110], and layer normalization (LN) [111]. 

All these methods do not operate in batch dimension to avoid minibatch dependency for calculating 

scaling factor and only use activation map channel statistics. However, none of them uses any 

filtering function like Gaussian filter or image filters for sharpening effect in the layer as our 

proposed method. Therefore, the major interest was in designing a normalization layer along with 

activation parameters to address these issues of overfitting and covariant shift. For experiments, 4 

layers of an encoder-based network are used as a base architecture with a normalization layer in 

each encoder. Likewise, AlexNet with local response normalization [74] which is similar in 

architecture to our base model is also used for scratch training all dataset to compare the 

classification result. The proposed method is explained mathematically via matrix equivalency with 

the CNN normalization layer. I have used three parameters per activation in the proposed layer, one 

for scaling the original feature, the other for scaling the masked feature, and the last one as offset or 

bias to shift the output. Our contribution in this section is: 

i. A novel Gaussian filter-based normalization layer was proposed to integrate with deep neural 

networks, which we call GAP layer. Moreover, as a replacement for of performing minibatch 

averaged scaling, same-channel mean scaling is proposed for normalization within the layer.  

ii. Comparative analysis was performed for the proposed GAP layer in alternate to BN in the 

base architecture to study the histogram analysis, feature extraction, internal covariance problem 

via correlation test, and overfitting, along with the comparison of the final classification results. 

2.3.1 Background and motivation for GAP normalization   
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The convolutional filter weights in the initial layers of CNN tend to mimic some image filters 

once the network is fully trained. In Krizhevsky et al. [74] the trained convolutional 

weights/parameters were primarily the edge detectors and color filters. The edge filters could detect 

the vertical, horizontal and diagonal edges, as well these filters were translationally invariants in 

nature and so worked spatially for all the input images. Kaimming et al. [87] reported the filters of 

the first convolutional layers were mostly Gabor-like filters such as edge or texture detectors, and 

the end result after full training showed that both positive and negative responses of the filters are 

revered. With these previous results pertaining to the basic image filters and negative responses 

being equally important during training, it motivated in in designing a layer for early feature 

detection to imitate image filters. For this instead of manually initializing the filters, the goal was to 

find filters to smooth the overall result like edge, color, blob, etc. and not only the single features at 

a time. The result of other experiments showed the use of edge detection filters like Sobel, Prewitt, 

Robert, etc. [88][89][90][91] works unidirectionally without bringing feature variance and the 

classification result was also poor. For this, Gaussian filter was selected, which can be used as an 

average smoothing function along with the normalized input. However, using Gaussian smoothing 

with batch normalization seems inappropriate therefore, to normalize the features, channel mean 

normalization was utilized. In this normalization, the mini-batch properties in not entertained, 

instead the mean features from all the filter weights from all channels) are normalized for each 

batch dimension as described later in detail in section IV. As a result, the obtained mean feature 

vectors work only for its channel images without combining the mini-batch properties. In doing so, 

the addition of noise is reduced, and consequently single image property is only summed up. 

In an experiment [92] to realize the effect of randomness in NN, the Gaussian function was 

applied to add noise to the input and bring non-uniformity in the signal by combining random 

pixels to the source image. This demolishes the relationship of training pixels with its label. Further 
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to make the experiment more random, the image pixels were re-shuffled and re-sampled from a 

Gaussian distribution. However, the NN was not severely affected by this and was able to 

accommodate the test samples accurately. Thanks to the stochastic gradient descent algorithm [93] 

employed during the training. In the proposed methodology, Gaussian function were not used as a 

noise generator, but as the mask generator for the un-sharpening process. Instead of performing 

Gaussian smoothing on the whole image, the Gaussian kernels were used to generate matching 

mean and variance to the original image kernel. Kernel size is determined by the size of the 

preceding convolution filter kernel, to prevent mixing of filter properties during the smoothing 

process. 

2.3.2 Gaussian filter and un-sharpening process 

Gaussian filter [94] is a spatially weighted image filter, which functions as a point-spread 

function for any image-pixel distribution. It operates as a non-uniform low pass filter with a higher 

weight to the central pixel generating a normal distribution of pixels. Its rotationally symmetric 

nature provides directional unbiasedness for image morphological operation. This property also 

enhances to marginally preserve edges and brightness, while yielding smoothing results for image 

attributes. T. Lindeberg [95] derived the optimal discretized Gaussian kernel and proved Gabor 

functions can look very much like Gaussian derivatives. In order to operate in the CNN feature 

matrix, a discrete approximation of its kernel is required which is done as in equation (2.1) where 

𝑖, 𝑗, and 𝑘represents the matrix row, column, and depth and σ2 is the input variance which is equal 

to 1 for standard Gaussian output. The output for 3×3×3 and 5×5×5 matrix is shown in plot Figure 

2.3. 

 ℎ 𝑖, 𝑗, 𝑘, 𝜎 =
1

 √2𝜋𝜎 3
𝑒

−(𝑖2+𝑗2+𝑘2)

2𝜎2  ,            (2.1) 

the term 
1

√2𝜋
 is a normalization constant that comes from the truth that the integral over the 



28 

 

exponential function is not unity. It is demonstrated that the convolution is a linear operation [94] 

so to bring non-linearity in the DNN, we need to add some non-linear functions like Leaky-ReLU 

for rectification. A 3D kernel is applied in designing GAP layers for both 2D and 3D CNN, in 2D 

the filter operates with the average of all convolution-based images, whereas in 3D the mean value 

is operated in the whole volume itself. Yet, in both scenario, the learning coefficient parameters are 

updated independently acknowledging the mean effect from its channel filters for the final output.  

The un-sharpening process requires three steps i) blurring of image i.e., correlation operation of 

input image volume with the Gaussian kernels ii) subtraction of original input image volume with 

its blurred version to generate masking kernel iii) adding the masked version to the original input. 

Figure 3 demonstrates the operation involved inside the layer in more detail. 

  

Figure 2.3: Visualization of Gaussian 3D kernel in the linear plot (a) 3*3*3 kernel with 27 weights 

matrix (b) 5*5*5 kernel with 125 weights matrix. Please note the higher central value for each 

corresponding peaks. 

2.4 Activation functions in CNN  

An activation function is used in DNN primarily for two purposes, first to add non-linearity in 

the whole model to learn complex patterns, second to normalize or threshold the output of each 

layer to decrease the computational burden. Here, for a CNN, if only linear activation f(x)= wx+b 

is used, then assembling multiple functions of f(x) generates only a single degree output (noting 

that the convolution layer itself is also a linear operation layer). Aside, the final values can 
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monotonically explode to a maximal or minimal level causing difficulty in training to reach 

convergence. Thus, the learned polynomial expression should be in order larger than 1 to learn 

complex patterns due to multi-dimension features [114][115] i.e., the decision boundary needs to 

be non-linear. For this, the activation functions need to be chosen properly in deep networks as it 

has significant effects on the training dynamics and required task performance [114][116][117]. 

Traditional neural networks employing Multilayer Perceptron (MLP) used sigmoid function or 

hyperbolic tangent (tanh) as a non-linear operator in its node [118-121]. Latter with emerging 

complication in DNN, several other activation functions based on the non-linear operation were 

proposed. However, most of them were overly complex and intended for a very deep network for 

their high-level abstract representation in natural image datasets like ImageNet [122-124]. It made 

the network more complex to understand its working mechanism and feature extraction process 

[125]. Thus, still for may applications simpler non-linear rectifiers like ReLU [126] and its variants 

Leaky-ReLU [127] are the most popular ones. Besides, other new functions like Parametric ReLU 

(P-ReLU) [128], GELU [129], ELU [130], SELU [125] are being occasionally used in DNN 

[118][131][132][133]. ReLU described as f(x)=max (0, x) completely blocks the negative input for 

positive gradient flow whereas its other variants allow a computed flow of negative input for small 

negative gradients loss. Although the vanishing gradient problem was solved with positive 

gradients loss in ReLU, it gave rise to another similar problem called ‘dying ReLU,’ which is 

confronted if higher negative input keeps on prevailing at the cost of sparsity. Later these problems 

were marginally solved using Leaky-ReLU and P-ReLU [126][128] with non-zero activation for 

negative inputs as f(x)=αx, where α is a constant or a learnable parameter. Nevertheless, in the case 

of medical image classification like MRI and PET, ReLU and Leaky-ReLU are still the 

predominant ones due to their simplicity and training images being in greyscale format. Recent 

works in MRI classification utilizing DNN involves designing robust and better architecture, 
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ensemble models along with clinical features, and experiments to apply new optimization 

algorithms [134-138]. While very few works have are done in designing novel activation functions 

specifically to MRI, as most researchers use the existing activation methods [139-141]. Hosseini-

Asl et al. [134] used Sigmoid and ReLU function to design deeply supervised and adaptable 3D 

CNN (DSA-3D-CNN) trained on structural MRI (sMRI) images, for the prediction of AD vs. MCI 

vs. controlled normal (CN) task. Payan et al. [135] proposed sparse auto-encoder (SAE) patch-

based 3D CNN using sigmoid activation function to classify MRI scans. Similarly, Oh et al. [65] 

performed 5-fold cross-validations (CV) using convolutional auto-encoder (CAE) based volumetric 

CNN with ReLU as the activation function for AD vs. NC classification along with supervised 

transfer learning for sMCI vs. pMCI classification. Gupta et al. [63] used CNN with sigmoid 

activation function to classify MRI into 3 classes with transferred features learned from natural 

images using autoencoder. E.Goceri[138] proposed Sobolev gradient-based optimization for 3D-

CNN, results for MRI classification accuracy were reported higher with Leaky-ReLU in 

comparison to sigmoid and ReLU. Recently Huang et al. [139] implemented a combination of 

GELU and ReLU in their DNN model for brain tumor image classification and achieved a 95.49% 

success rate.  

Generally, Gamma correction (f(x)=xγ) [143] is about contrast enhancement and non-

monotonically intensity mapping to new values, depending on the exponent γ for the input x. In 

deep learning scenario, Gamma correction is mostly used to produce augmented images (with 

defined γ values like γ=0.5,1.5,2, etc.) for increasing training material [144-146]. This idea seems 

helpful to increase the training result by producing multiple versions of gamma-corrected images 

using different values of γ in f(x)=xγ. However, it should also be noted that some image’s quality 

might deteriorate due to the unmatched version of gamma. With the higher value of γ, we can wash 

out the image whereas with the lower value of γ we might lose the important pixel information. 
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Hence ‘γ’ should be a ‘versatile’ constant or technically a learnable parameter as per channels 

rather than a ‘fixed’ constant. Hence our idea is to select appropriate gamma value for each image, 

or more specifically for all the images (or their features) obtained from all the channels output after 

BN. Hence our method is not to increase the number of augmented images rather find appropriate 

values of gamma for each filter output and bring non-linearity in the model at the same time 

without increasing the number of training samples which basically works as an activation function 

(please see Figure 2.4). 

(a) 
 

(b) 
 

(c) 
 

(d) 

Figure 2.4: Comparison of activation using different functions for a sample MRI observed in 2nd 

activation layer (22nd of 64 channels) corresponding to 63×63×63 image as a montage here. It can 

be observed that the output from the gamma layer using SGT has well preserved the feature 

attribute present in the first three and last few slices in comparison to ReLU (c) and Leaky-ReLU (d) 

where (a) is the input feature matrix.  

 

In this work, a novel activation function is introduced with the stepwise combination of gamma 

correction technique and hyperbolic tangent function. Although zero centered symmetric functions 

like Sigmoid, tanh is advantageous for activation function for un-skewed gradients however, those 

functions proved to be not very worthy due to the vanishing gradient problem. Figure 2.5 shows the 

proposed activation function plot for different case of input x and its first derivative. Here blue 

curve represents the SGT activation function whereas the red curve represents its first-order 

derivative. Please see Appendix III for all the related equations also see figure 2_app for all the 

related equations. As each activation layer is preceded with BN layer, the idea is to distribute 

histogram with saturation at low and high intensities of input data, which was originally mean 
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centered at zero with unit variance. In other words, the intensity profile is dispersed from the 

central region to the edges. This brings higher variance in weight distribution with significant 

discrimination in features to support the classification (please see histogram distribution figure 

4.16). 

 

         

 

 

 

Figure 2.5: (a) Activation function plot for input x and f(x) along with other popular activation 

functions near x=0. (b) Activation (proposed-SGT) and first-order derivative (d(proposed-SGT)) 

plot with both exponents equal to 1 using a combination of gamma correction (‘only-gamma’) and 

hyperbolic tangent (‘tanh’) to illustrate the need for thresholding and squashing function. (c) Actual 

activation plot for the trained network in 18th filter (out of 64) in layer 4.  

(a) 
(b) 

(c) (d) 
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3.1 Parameter initialization for divNet Architecture 

Let’s assume that the MRI/PET has a 64×64×64 matrix represented by I (i.e., 𝐼 =

[𝐼𝑥𝑖𝑦𝑖𝑧𝑖
]
𝑖=1 to 64

 ). In total, this will result in 262,144 gray-scale values, which is the numerical 

representation for the 3D image. Since the input is a 3D MRI, we can call each of these values a 

voxel, not a pixel, with values for x, y, and z coordinates.  

Each voxel mathematically assigns three coordinates, for easy representation the single vector 

notation 𝑣 where, 𝑣 = [𝐼𝑥𝑖𝑦𝑖𝑧𝑖
] is used to make the computation simple. Let us consider the first 

convolution in the first layer as in equation (3.1). Here, 𝑏1
1 and 𝑤𝑁,1

1  represent the initial bias and 

the weight of the first convolution kernel in the Nth filter, computed from the initialization 

algorithm. Note  represents element-wise multiplication. The window of the convolution 

operation then keeps on moving according to the stride size. To reduce this mathematical 

expression, it can be written with shorter terms as in equation (3.2). For each node of the 3D 

convolution filter: 

[𝑥1
1, 𝑥2

1, 𝑥3
1, . . , 𝑥64

1 ] = [𝑏1
1, 𝑏2

1, 𝑏3
1, . . , 𝑏64

1] + [𝑣1, 𝑣2, 𝑣3, . . , 𝑣9] ⊗ [(𝑤1,1
1 , 𝑤1,2

1 , 𝑤1,3
1 . . . . . 𝑤1,9

1 )] ,   (3.1) 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 +  𝑐𝑜𝑛𝑣.3 (𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1) 
𝑁𝑙−1
𝑖=1 ,      (3.2) 

where, 𝑐𝑜𝑛𝑣.3 is a regular 3-D convolution without zero paddings on the boundaries. Following 

equation (3.2), 𝑥𝑘
𝑙 is the input, 𝑏𝑘

𝑙  is the bias of the kth neuron at layer l, and 𝑠𝑖
𝑙−1 is the output of 

the ith neuron at layer l–1. 𝑤𝑖𝑘
𝑙−1is the kernel (weight) from the ith neuron at layer l–1 to the kth 

neuron at layer l. 𝑐𝑜𝑛𝑣.3represents an element-wise multiplication of the [3×3×3] kernel size. For 

the very first convolutional layer, the input 𝑠𝑖
𝑙−1is the 3×3×3 matrix of the image pixel value 

(maybe normalized) that is scanned by a window of the same size. 

When represented in a matrix/array or a discrete form, the N-dimensional convolution for the 

discrete, N-dimensional variables A and B can be defined with equation (3.3): 
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𝐶 𝑗1, 𝑗2, … . . 𝑗𝑁 =  … . 𝐴 𝑘1, 𝑘2, … . , 𝑘𝑁 𝐵 𝑗1 − 𝑘1, 𝑗2 − 𝑘2, … . . , 𝑗𝑁 − 𝑘𝑁 𝑘𝑁𝑘1
= 𝑐𝑜𝑛𝑣.𝑁  𝐴, 𝐵 ,

          (3.3) 

Each 𝑘𝑖runs over all of the values that can lead to legal subscripts for A and B. Thus, the 3D 

convolution runs as follows. The layer convolves the input by moving the filters along the input 

vertically and horizontally. Afterward, it computes the dot product of the weights and the input, and 

then it adds a bias term. As the filter moves along the input, it uses the same set of weights and the 

same bias for the convolution; thus, forming a feature map. 

In the SGD algorithm, the filter weights during the optimization are iteratively updated as 

shown in equation (3.4) and equation (3.5), where 𝑊𝑙
𝑡denotes the weights in the 𝑙𝑡ℎ convolutional 

layer for the tth iteration and 𝐸 denotes the cost function (updated using backpropagation for 

minimizing the cost function) over a mini-batch of size N. 

𝑊𝑙
 𝑡+1 

= 𝑊𝑙
𝑡 + 𝑉𝑙

 𝑡+1 
 ,       (3.4) 

where 𝑉𝑙
 𝑡+1 

 is calculated as in equation (3.5)  

𝑉𝑙
 𝑡+1 

= 𝑚.𝑉𝑙
𝑡 − 𝛾𝑡 . 𝛼𝑙

𝑑𝐸

𝑑𝑊𝑙
 .          (3.5) 
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Pseudo-code 1 Pseudo-code 2 Pseudo-code 3 

% Activated feature extraction of 

convolution layer from a single 

MRI ‘I’ % 

 

For the trained network ‘N’ at layer 

‘l’ we have, 

 

Filter feature (Fl) = weights of the 

filters at layer ‘l’ with a size 

k× k× k× f, where k× k× k is the size 

of the filter and f the number of 

filters at layer ‘l’ 

Initial activated feature (A1) =conv 

(Fl, I). 

Here, conv performs the basic 3D 

convolution as described in section 

III. 

This A1 goes through batch 

normalization and max-pooling to 

downsample its size and pass 

through the activation layer. 

Similarly, 

Activated feature (Al) =conv (Fl, Al-1 

) of size k× k× k× f   

[ Almax] = maximum value of Al 

Activated feature for Visualization=  

Almax of size k× k× k is resized to 

64×64×64 and each slice viewed 

separately in the 2D domain. 

When visualized, the clearer the 

visual, the better the features that 

are learned. 

The difference between the images 

in each MRI type represents the 

difference in the pattern of the 

MRI, and the complexity of the 

discrimination increases with the 

increasing layer number. This is 

used when comparing the output 

for the four different architectures 

as presented in Figure 4.2. 

% Activated feature visualization of 

the FCL from the whole test set using 

the T-SNE projection % 

 

For the trained network ‘N’ at layer 

‘l’ similar operation to Pseudocode 1 

is performed for the FCL so that, 

 

FCL features (FCLl) = weights of 

FCL with size T× S, where T is the 

number of test subjects, S=O×I, and 

O, and I represent the output and 

input, respectively, of the FCL at the 

lth layer. 

 

Now, 

FCLl-tsne=T-SNE (FCLl), where T-

SNE perform T-distributed 

Stochastic Neighbor Embedding to 

find the 2-dimensional feature matrix 

of size T×2, while performing feature 

reduction from the N dimension. 

 

FCLl-tsne is plotted in the x-y plane 

against its target class-color to 

visualize the discriminative pattern. 

The better the separation of the same-

colored set, the better the 

classification. The inclusion of a few 

odd color data in a cluster leads to 

errors in the test set. 

 

This is used when comparing the 

output for the four different 

architectures as presented in Figure 

4.4. 

% Final layer FCL weights of the 

trained networks for direct 

visualization % 

 

The previous two pseudocodes are 

used to examine the property of a 

single trained network; however, to 

compare the networks directly, the 

easiest way is to plot the final FCL 

weights. 

  

For a network ‘N’ with ‘l’ as the 

last FCL layer and the number of 

classification categories ‘n’ 

 FCLl = Weights of the  FCLl of 

size O×n, where O is the output 

size of the penultimate FCL, which 

is 100 in our case, ‘n’ is the output 

size of the final FCL at layer l, 

which is equivalent to the number 

of classes (here n=3). 

 

 FCLl is an O×n matrix, which is 

simply plotted in the X-Y plane as 

a linear graph. By having more 

distance between the three lines, it 

becomes a better classifier. 

 

This is used when comparing the 

output for the four different 

architectures as presented in 

Figure 4.6. 

        

Here, 𝛼𝑙 in equation (3.5), is the learning rate for the 𝑙𝑡ℎ  layer, 𝑚 is the momentum due to 

the previous weight update in the current iteration, and 𝛾 is the scheduling rate that decreases the 

learning rate for the completion of each epoch. If 𝛼𝑙=0, then this depends on the value of l. All of 
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the layers from 1: l is not updated in terms of their weight; hence, the weights are transferred in the 

final version of the trained model. 

3.1.1 Parameter training 

𝑇𝑜𝑡𝑎𝑙𝑒𝑟𝑟𝑜𝑟 𝐸 = 𝐸 𝑦1
𝐿 , . . . 𝑦𝑁

𝐿  =   𝑦𝑖
𝐿 − 𝑡𝑖 

2𝑁𝐿
𝑖=1  ,     (3.6) 

this error in equation (3.6) is a mean squared error, which is obtained by adding the MSE value of 

the deviation from each of the samples (i.e., training data (𝑡𝑖) from the predicted value (𝑦𝑖
𝐿)). Here, 

the upper subscript L denotes the output for the final layer. Based on the obtained error (𝐸), 

backpropagation (BP) is performed to update the weights for each parameter as in equation (3.7) 

[32]: 

𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙 =

𝜕𝐸

𝜕𝑥𝑘
𝑙+1

𝜕𝑥𝑘
𝑙+1

𝜕𝑤𝑖𝑘
𝑙 =

𝜕𝐸

𝜕𝑥𝑘
𝑙+1 𝑦𝑖

𝑙 ,       (3.7) 

Here, for the output of the 𝑥𝑘
𝑙+1 filter, ‘k’ is the number of filters in the 𝑙𝑡ℎ layer, and the 

weights of the previous layer ‘𝑙 + 1’ give the output 𝑦𝑖
𝑙  of the 𝑙𝑡ℎ layer during the BP. Similarly, 

the bias is also updated as equation (3.8):  

𝜕𝐸

𝜕𝑏𝑘
𝑙 =

𝜕𝐸

𝜕𝑥𝑘
𝑙

𝜕𝑥𝑘
𝑙

𝜕𝑏𝑘
𝑙 =

𝜕𝐸

𝜕𝑥𝑘
𝑙  ,        (3.8) 

Here the term 
𝜕𝑥𝑘

𝑙

𝜕𝑏𝑘
𝑙 = 1 as 𝑥𝑘

𝑙  is unaffected by 𝑏𝑘
𝑙 . And for the final error, it is written for the 

whole length of 1 to 𝑙 + 1 layers; hence, it can be summed up as follow for N number of filters in 

the 𝑙 + 1 layer to obtain y in the 𝑙𝑡ℎ layer as in equation (3.9):  

𝜕𝐸

𝜕𝑦𝑘
𝑙 =  

𝜕𝐸

𝜕𝑥𝑖
𝑙+1

𝜕𝑥𝑖
𝑙+1

𝜕𝑦𝑘
𝑙

𝑁𝑙+1
𝑖=1  .       (3.9) 

During training, we need to backpropagate the gradient of the error 𝜕𝐸  through this 

transformation and compute the gradients with respect to the parameters as the BP transforms.  

All experiments were conducted using MATLAB R2019a academic software on Windows 10 
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OS. Network models were trained on NVIDIA GeForce RTX 2070 GPU with 24 GB of memory 

and tested in Intel® Core™ i5-9600K CPU @ 3.70 GHz with 32 GB of memory. The trained mat 

file will be provided to researchers upon request to the authors. 

3.2 Proposed GAP normalization layer 

3.2.1 Architecture and training 

Let’s consider the initial output from the first convolution layer as in base architecture (see 

Table 4.1), which acts as input for the proposed first GAP i.e., g1 layer. This input can be 

represented as a 4D array for 2D CNN (5D array for 3D CNN) of its size as 𝑋 = [227, 227, 32, 64] 

= [image_row, image_col, channel_size, minibatch_size]. Here the input 𝑋 contains 2D images of 

size 227×227 each from 32 filter outputs, i.e., 227×227×32 with 32 different activated images for 

the same image, and the last dimension i.e., 4th dimension signifies the minibatch number for 

training. Each minibatch signifies different images for multiple classes so in total 64 different input 

images, with 105.53M pixels/weights as batch input for forward propagation in the first GAP layer. 

Similarly, for the 2nd layer, the output size after pooling is reduced to 113×113 so the output from 

the 2nd convolution layer is 113×113×64×64 (64 filters in 2nd convolution), so a total of 52.3M 

weight inputs for the 2nd GAP layer. To make it clearer, input 𝑋 or 1st GAP input can be 

represented as the following block-matrix in equation (4.2), where 𝑋𝑏
𝑛 represents the activated 

image of 𝑛𝑡ℎ filter in 𝑏𝑡ℎ mini-batch of training:  

𝑋 = [
𝑋1

1 ⋯ 𝑋1
32

⋮ ⋱ ⋮
𝑋64

1 ⋯ 𝑋64
32

] ,        (4.2) 

Here, the mean value is computed based on its 3rd dimension i.e., the number of filter (or 

channel, for 3D CNN it is calculated on the 4th dimension) hence can be represented as a matrix: 
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𝑋𝑚 = [
𝑋1

1 ⋯ 𝑋1
32

⋮ ⋱ ⋮
𝑋64

1 ⋯ 𝑋64
32

] = [
𝑋1

′

⋮
𝑋64

′
] ,          (4.3) 

Here, the column matrix on the right side comprises the mean value of each batch from different 

training MRI samples. The dimension now for = [227 227 1 64] which gives the averaged value of 

‘same images’ activated ‘differently’ with convolutional filters. It is an empirical mean value of all 

channels so contains 64 different images for each batch updated during training, and is not used 

post-training, hence an empirical mean. Similarly, standard deviation is also calculated for 𝑋𝑠 = 

[227 227 1 64]. Now we re-center and re-scale 𝑋 using 𝑋𝑚 and 𝑋𝑠 as, 𝑋𝑓 =  𝑋 − 𝑋𝑚  /𝑋𝑠 

which produces the averaged mean-centered and 1/𝑋𝑠 scaled output, 𝑋𝑓. Please note all the 

arithmetic operation in the matrix is an element-wise identical dimension operation. Hence the size 

of  𝑋𝑓 = [227 227 32 64]. Here in equation (4.3), 𝑋1
′ is the mean from the activated output of the 

first training images 𝑋1
1, 𝑋1

2, ……𝑋1
32 and so on. Hence, the variance is nominally very less, i.e., in 

general, 𝑣𝑎𝑟 𝑋𝑏
′  ≈ 𝑣𝑎𝑟 𝑋𝑏

𝑛 . In BN, once the training is finished each BN layer has ‘n’ number 

of trained mean and variance per activation stored in the trained network, which is later used to 

normalize the input during prediction. However, in our method, the layer does not store the trained 

mean and S.D instead, during prediction, the weight of convolutional kernels is passed below so the 

empirical mean for each image is calculated from each channel output, hence no need for 

pretrained mean and S.D.  

Channel normalization [112] in a CNN standardizes each channel independently for every 

training example, and scales and shifts the resulting input with a (learnable) scalar. It can be 

compared to instance normalization [113] and BN for a single training sample. In our case 𝑋𝑓 is 

the normalized-unsharpened version of its original minibatch input, which is the shifted and scaled 

version of the input 𝑋. α, β works as a separate standardizing factor for the input and the 

unsharpened version respectively. However, the pretrained value of α, β, and γ scales each channel 
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separately. 𝑋𝑓is now spatially correlated with a Gaussian kernel, i.e., filtering is done with the 

kernel of a size equivalent to the size of the previous convolution filter (here 3×3×3) for the first 

GAP layer as in equation (4.4), where ℎ𝑤𝑤𝑤  represents the Gaussian filter weights for the 3D 

kernel, calculated as equation (4.1) for 𝑖, 𝑗 and 𝑘 as w = 1 to 3 or 5. For the second GAP 

normalization i.e., g2 layer in g1g2b3b4 architecture, the used Gaussian kernel is obtained via 

convolution of the discrete Gaussian kernel with each other to get a second order filter response of 

the second normalization layer, distinct than the first normalization layer. Please note that 3D 

kernels are used in all GAP layers to adapt the normalization of feature in the activation map (the 

3rd /channel dimension) and the filtering kernel moves throughout the whole 𝑋𝑓 vector. In equation 

(4.4), the symbol ′𝜊′ represents the correlation operation which is similar to spatial filtering 

operation in image processing. Mathematically correlation process is similar as convolution in the 

time domain, except that the signal is not reversed before the multiplication process. The idea here 

is to filter all images in a replicated manner so that all 32×64 images are included. However, the 

blurring or smoothing effect works differently for each image from 𝑋1
1, 𝑋1

2, ……𝑋1
32on the first 

batch and so on. The obtained Gaussian images can be represented in a matrix as in equation (4.4), 

where each 𝑋𝑔𝑏
𝑛 represents an image after the Gaussian filter. The applied Gaussian kernel is the 

same size as the preceding convolution kernel to perform linear correlation. Hence, the concept of 

combining normalization and activation as a single procedure seemed not practicable, so we require 

an extra non-linear (activation) function to support the classification. 

𝑋𝑔 = [
ℎ11𝑤 ⋯ ℎ1𝑤𝑤

⋮ ⋱ ⋮
ℎ𝑤𝑤1 ⋯ ℎ𝑤𝑤𝑤

] 𝜊 [
𝑋𝑓1

1 ⋯ 𝑋𝑓1
32

⋮ ⋱ ⋮
𝑋𝑓64

1 ⋯ 𝑋𝑓64
32

] = [
𝑋𝑔1

1 ⋯ 𝑋𝑔1
32

⋮ ⋱ ⋮
𝑋𝑔64

1 ⋯ 𝑋𝑔64
32

]   ,   (4.4) 

And the mask is obtained as 𝑋𝑚𝑎𝑠𝑘 = 𝑋 − 𝑋𝑔 that subtracts the normalized Gaussian signal 

from its original version, for each channel output without inheriting the batch properties. Hence 

finally we forward the output from the layer as: 
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 𝑍 = 𝛼𝑋 + 𝛽𝑋𝑚𝑎𝑠𝑘 + 𝛾 ,           (4.5) 

Here α, β and γ are learnable parameters each of size [1 1 N], which have unique values for ‘N’ 

filters and help to optimize the output value of Z. 𝛼, 𝛽 and 𝛾 are initially selected between 0 and 

1 and acts as scaling co-efficient to control the gradient outputs during backpropagation of weight 

update. And the second parametric term in equation (4.5) i.e., 𝛽 is initially less than 1, however 

with weights update during backpropagation, the value tends to be 𝛽 > 1 in which case acts as a 

high boosting filter, emphasizing the contribution of unsharp masking, and when 𝛽 < 1 the 

sharpening mask is more emphasized (please see figure 3.2). The other learnable parameters 𝛼 

and 𝛾 are also updated during backpropagation, α works as scaling coefficient for making output 

equivalent as  𝛽. 𝑋𝑚𝑎𝑠𝑘  and 𝛾 works as bias with no effect in the layer gradient loss. Figure 3.1 

shows the result of experiments. In all the graphs training accuracy reaches convergence (100%) 

faster with 100% BN whereas the validation curve does not follow the training curve for a longer 

time, which means the weight update process ends sooner and cannot generalize better. In the case 

with 50% BN and 75% BN, the training curve achieves convergence lately and so does the 

validation. This helps the network to update weight slowly (at the same learning rate) and hence 

might reduce the overfitting (although we have a clear case of overfitting due to a large gap in 

training and validation accuracy in all cases, better architectures might change the result, however 

in this case the ‘divNet’ base architecture is used to test the proposed idea). Here, the CNN with 

GAP layers tends to reach 100% accuracy slowly so that validation accuracy is addressed for a 

longer time whereas with BN layers the training accuracy shoots up quickly causing a higher gap 

(coincidently we have named GAP for the proposed layer) between the training and validation 

layer during the early stages of training. Hence the overfitting problem is still not entirely tackled in 

batch normalization. 

 



42 

 

   

                        (a)                                               (b) 

   

                 (c)                                              (d) 

Figure 3.1: Training and validation accuracy curve using different normalization schemes for same 

training environment for (a) 5-animals dataset (b) Caltech-102 (c) CIFAR-10 (d) 3D 

MRI_BASELINE.  
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Figure 3.2: Schematic representation of proposed layer, along with input and output histogram for 

comparison. The input signal is represented as a ramp signal to demonstrate the edge detection 

process. However, in our experiment input X to the layer is the activated image matrix from the 

preceding convolution layer. The input passes through the normalization unit to produces a scaled 

and shifted version of X having a narrow range of feature values. Later, the Gaussian smoothing 

function transforms the feature vector Xn in a weighted-average fashion to produce a sharpened 

version of images i.e., Xg. The difference of X and Xg produces a masking vector Xmask, which is 

again added with the original X to produce Z. The learnable parameters α, β, and γ scales X, Xmask 
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and offset respectively.  

SGD is the training algorithm to update the learnable parameters viz. weights, bias, offset, 

coefficients) values computed using a mini-batch. Instead of using the whole training set error at 

once as in standard ones [93], [96] here the loss is calculated on a mini-batch set by updating the 

network's parameters toward a negative gradient of loss at each iteration as in equation (4.6)  

  𝑤𝑙
𝑡+1 = 𝑤𝑙

𝑡 − 𝛾𝑡 . 𝛼𝑙
𝑑𝐿

𝑑𝑤𝑙
𝑡 + 𝑟 𝑤𝑙

𝑡 − 𝑤𝑙
𝑡−1 ,      (4.6) 

Here, weights or bias or offset 𝑤𝑙
𝑡+1

 update in layer ‘𝑙’ at each iteration ′𝑡 + 1′, uses the weights 

of the previous iteration 𝑤𝑙
𝑡
. 𝛼𝑙 is the learning rate hyperparameter for the parameters of layer 𝑙, 

kept at value>0, and initially 0.001 in our experiments. Since the SDG is used with the momentum 

it lowers the oscillation of the parameter weight update and finds the path of steepest descent 

towards the optimal value. For this, the hyper-parameter 𝑟 known as the rate of momentum is set 

for 0.95. Additionally, the negative term represents the gradient of the loss function in the layer 

updated as in back-propagation after every epoch. 

The backpropagation calculates the derivative of loss with respect to (w.r.t) all trainable 

parameters in CNN. The layer gradient loss w.r.t to input 𝑋  i.e., 
𝑑𝑙

𝑑𝑋
 and other parameters α, β, 

and γ are updated as follow: 

 From equation (4.5) we get, 

 
𝑑𝑙

𝑑𝑋
=  𝛼.

𝑑𝑙

𝑑𝑧
+  𝛽. 𝑘.

𝑑𝑙

𝑑𝑧
 ,             (4.7) 

where 𝑘 = 𝑋𝑚𝑎𝑠𝑘/𝑋, from experiment, it was found that ‘𝑘’ value, when used, produces a small 

gradient value causing vanishing gradient problem, hence was selected to be 1. Hence for the GAP 

layer with 32 activations and 64 minibatch sizes we define gradient loss as follow: 

   
𝑑𝑙

𝑑𝛼
=   𝑋𝑛

𝑏 .
𝑑𝑙

𝑑𝑧

32
𝑛=1

64
𝑏=1  ,       (4.8) 
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𝑑𝑙

𝑑𝛽
=   𝑋𝑚𝑎𝑠𝑘𝑛

𝑏 .
𝑑𝑙

𝑑𝑧

32
𝑛=1

64
𝑏=1  ,        (4.9) 

𝑑𝑙

𝑑𝛾
=    

𝑑𝑙

𝑑𝑧

32
𝑛=1

64
𝑏=1  .                     (4.10) 

Training in minibatch has a substantial impact in achieving convergence time, i.e., higher 

minibatch size makes the training quicker by reducing the number of iterations per epoch, on the 

other hand it also impacts the training accuracy. Hence, in the proposed method also, training of  

network is done in mini-batches i.e., the entropy loss is computed based on mini-batch input. 

Though, the normalization process is not the batch normalization when the used normalization 

layer is GAP. In normalization generally, the whitening process is desired where the input is 

linearly transformed to zero mean and unit variance, which is also considered to eliminate the ill 

effects of the internal covariate shift. While activation process is similar to a filtering process where 

the activation function determines the weight output. Similarly in the proposed method, the 

Gaussian filter works as an activation function along with a learned parameter to create a 

normalized mask.  This mask works as the additional extracted feature  𝛽. 𝑋𝑚𝑎𝑠𝑘  with the 

original input so that the original signal is slightly boosted with its filter mean responses. Hence, 

later when linearly added to the original input adds the value according to the mask. If the masked 

value is only used, we would lose the entire input image property. Hence mask is included to the 

original input to bring a calculated variance, without losing the linear property of its input. 

Few hyperparameters like learn rate drop factor, initial learn rate, learn-drop rate per epoch, etc. 

affect the training time and learning proportion however in the longer term, results are not 

significantly different. The lately achieved convergence slightly affects the testing result only. 

Fully connected layers act as a single-layered feed-forward network with all parameters connected 

from input to output. Because of this nature, FCL is often blamed for triggering overfitting in the 

DNN, hence potentials regularization techniques like dropout are used in between them [97][101].  
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3.3 Proposed SGT activation and training process  

The proposed SGT activation is performed in two steps: 

Step 1: f(x)= y = axα for x<0 and bxβ for x>0       (5.1) 

Here the first step is getting the gamma corrected version of input x as in equation (5.1). x is an 

input defined by a 4D matrix/Tensor as 𝑋𝑙 with each pixel/feature value 𝑋𝑛
𝑏 for ‘bth’ batch and ‘nth’ 

filter in layer 'l'. a and b are constant scaling factors that were set manually. For n filters, we have n 

values of learnable parameters (i.e., α or β) which implies that for all the different (or same)-class 

images belonging to the same mini-batch, the value of exponent (α and β) remains the same, 

whereas the value of exponents is different for the same-class images in different channels, hence 

are activated differently in each channel as shown in matrix representation in equation (5.2), ^ 

signifies operation performed in column-column element wise exponential operation.  

𝑌𝑙 = 𝑎. [
𝑋1

1 ⋯ 𝑋1
𝑏

⋮ ⋱ ⋮
𝑋𝑛

1 ⋯ 𝑋𝑛
𝑏
] ^ [

α1

⋮
α𝑛

] = 𝑎. [
𝑋1

1α1 ⋯ 𝑋1
𝑏α1

⋮ ⋱ ⋮

𝑋𝑛
1α𝑛 ⋯ 𝑋𝑛

𝑏α𝑛

] = [
𝑌1

1 ⋯ 𝑌1
𝑏

⋮ ⋱ ⋮
𝑌𝑛

1 ⋯ 𝑌𝑛
𝑏
]     for 𝑋𝑛

𝑏 < 0   

     = 𝑏. [
𝑋1

1 ⋯ 𝑋1
𝑏

⋮ ⋱ ⋮
𝑋𝑛

1 ⋯ 𝑋𝑛
𝑏
] ^ [

β1

⋮
β𝑛

] = 𝑏. [
𝑋1

1β1 ⋯ 𝑋1
𝑏β1

⋮ ⋱ ⋮

𝑋𝑛
1β𝑛 ⋯ 𝑋𝑛

𝑏β𝑛

] = [
𝑌1

1 ⋯ 𝑌1
𝑏

⋮ ⋱ ⋮
𝑌𝑛

1 ⋯ 𝑌𝑛
𝑏
]     for 𝑋𝑛

𝑏 > 0      (5.2) 

where 𝑋𝑙 = [
𝑋1

1 ⋯ 𝑋1
𝑏

⋮ ⋱ ⋮
𝑋𝑛

1 ⋯ 𝑋𝑛
𝑏
]  is the input to the layer l. 

Here a and b are scaling constants selected manually to be 0.1 and 1.1 respectively. It is done to 

behave slightly as a monotonic function when the exponents are equal to 1 and resemble the Leaky-

ReLU function in the first step (please see figure 4.2(a)). Later in the second step, when passed 

through the hyperbolic tangent (both exponents as 1) function, the output for the positive part will 

resemble tanh, and for the negative part will partly resemble the Leaky-ReLU function (please see 

figure 4.2(b)). However, on changing the exponent value and sign, different activation plots can be 
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generated as shown in figures 4.2(c) and 4.2(d). Here it should be noted that only using step 1 for 

activation might explode the activated value in the positive region and can lead to vanishing 

gradient in the negative region (please see ‘only-gamma’ plot in figure 4.2(b)) which causes 

computational difficulty in convergence during training. Consequently, a thresholding function 

with non-linear and symmetric property in positive and negative axis is required, for which the tanh 

function was selected. The learnable parameters α and β values work as a positive gamma corrector, 

hence the weight updates of value α and β are calculated from the partial derivative of equation (5.1) 

during backward propagation as in equations (5.3) and (5.4): 

𝑑𝑙

𝑑𝛼
=   0.1 × 𝑟𝑒𝑎𝑙 𝑙𝑜𝑔10𝑋𝑏

𝑛 . 𝑟𝑒𝑎𝑙(𝑋𝑏
𝑛𝛼

).
𝑑𝑙

𝑑𝑧
    𝑛𝑏 , 𝑓𝑜𝑟 𝑋𝑛

𝑏 < 0    (5.3) 

𝑑𝑙

𝑑𝛽
=   1.1 × 𝑟𝑒𝑎𝑙 𝑙𝑜𝑔10𝑋𝑏

𝑛 . 𝑟𝑒𝑎𝑙(𝑋𝑏
𝑛𝛽

).
𝑑𝑙

𝑑𝑧
  𝑛𝑏  , 𝑓𝑜𝑟 𝑋𝑛

𝑏 > 0    (5.4) 

Please note when 𝑋𝑏
𝑛 = 𝑋  is negative and α is a rational decimal number, the resulting 

𝑋𝛼 becomes a complex number, in that case, only use the real part of the complex number will be 

used. The same is the case with 𝑙𝑜𝑔10𝑋 and 𝑋𝛽. Likewise, the absolute values of α or β are used in 

equations (4.2), (4.3) and (4.4) for getting positive exponents. 

Step 2: z=tanh(y) or in matrix form as: 

𝑍𝑙 = 𝑟𝑒𝑎𝑙 [
𝑡𝑎𝑛ℎ 𝑌1

1 ⋯ 𝑡𝑎𝑛ℎ 𝑌1
𝑏 

⋮ ⋱ ⋮
𝑡𝑎𝑛ℎ 𝑌𝑛

1 ⋯ 𝑡𝑎𝑛ℎ 𝑌𝑛
𝑏 

] = [
𝑍1

1 ⋯ 𝑍1
𝑏

⋮ ⋱ ⋮
𝑍𝑛

1 ⋯ 𝑍𝑛
𝑏
]      (5.5) 

Here, since all the operations are an element-wise matrix operation, the matrix calculated using (5.2) 

is passed to matrix calculation as in (5.5), then the output matrix 𝑍𝑙 of layer l is passed into the 

pooling layer. For the layer loss 
𝑑𝑙

𝑑𝑋
 , first the derivative of 𝑌𝑙  with respect to (w.r.t) 𝑋𝑙  is 

calculated using equation (5.6), so that the output 𝑌′ dimension matches exactly the dimension of 

the layer input i.e., 𝑋𝑙.  

𝑋𝑙      =
𝑑𝑌𝑙

𝑑𝑋𝑙
= 1.1 × 𝛽. 𝑟𝑒𝑎𝑙(𝑋𝛽−1)  , for 𝑋 ≥ 0       (5.6)  
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Then, the overall gradient loss 
𝑑𝑙

𝑑𝑋
  is calculated through the output of this layer as the derivative of 

𝑍𝑙 w.r.t 𝑌′, which is backpropagated to the former layers using equation (5.7). 

𝑑𝑙

𝑑𝑋
=

𝑑𝑍𝑙

𝑑𝑌′ .
𝑑𝑙

𝑑𝑍
=

𝑑𝑡𝑎𝑛ℎ 𝑌′ 

𝑑𝑌′ .
𝑑𝑙

𝑑𝑍
= 𝑠𝑒𝑐ℎ2 𝑌′ .

𝑑𝑙

𝑑𝑍
   .     (5.7)   

Here, 
𝑑𝑙

𝑑𝑍
 is the loss back-propagated from the deeper layers. Since z = tanh(y) is used as a 

squashing function, the final output value of the layer is non-uniformly scaled before passing out to 

the next layer resulting in z being a non-symmetric function centered at zero. This is shown in 

figures 4.2(c) and 4.2(d), where d(proposed-SGT) shows the plot for the final output of the first-

order derivative of the proposed function. For condition with exponents α and β both being 1, the 

activation layer behaves like tanh in the positive part and Leaky-ReLU in the negative part, 

whereas for the case of derivative, the first-order derivative is a constant so behaves exactly like 

Leaky-ReLU with output constant 0.3592 and 0.99006 for positive and negative part respectively. 

Such behavior was observed in few filters with β(positive)>α(negative) as in the 18th filter which 

seems to be constant output as in two different filters non-lineared at 0. However, since both α and 

β are channel-wise learnable parameters, the value is not the same for all the channels (please see 

figure 4.17). The final value of α and β were examined to be between -0.2 and 1.3, and rarely were 

the identical values. Regarding our experiment, in most of the filters, the values of both α and β 

were a positive rational number with decimals, and β being greater than α in the majority case. 

More discussion on this is done in the discussion section. In the case with β(positive)>α(positive), 

follows the graph as in 31st filter (please see graph figure 4.2(d)) where the gradients value for 

positive x gradually keeps on decreasing with the value of x, however, the rate of decrease is lower 

than the tanh derivate. This prevents gradients values from becoming infinitely small, whereas in 

the negative derivative part the value is roughly constant for all cases. Therefore, the network 

becomes less prone to the vanishing gradient or exploding gradient. It is to note that when the input 
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X, α, β becomes 0, it causes an indeterminate form as Sech (0) = ∞ also log (0) = ∞ in this case, 

we simply replace the value of the parameters as 0.001 to continue training. Few α, β values were 

recorded undefined still after the convergence (please see Figure 4.18), however, they can be 

ignored. 

For training the network and optimizing the parameters Adam [147] optimization technique was 

used. It is a first-order gradient-based optimization algorithm to update parameters until it reaches 

convergence. The learnable parameter (𝑤𝑡 ) (weights/bias/defined terms like α and β) during 

𝑡𝑡ℎ iteration is updated using Adam optimization as follow: 

𝑤𝑡+1 = 𝑤𝑡 −
𝑎𝑚𝑡

√𝑣𝑡+ɛ
  ,        (5.8) 

where a is the learning rate constant-value kept at 0.001 in our case, ɛ is a very small regularization 

constant value (10-8) used as offset to keep a non-zero denominator. An element-wise moving 

average of parameters gradients (𝑚𝑡) and its squared value (𝑣𝑡) keeps on being updated as in 

equations (5.9) and (5.10), where 𝑏1 and 𝑏2 are decay rates for 𝑚𝑡 and 𝑣𝑡  kept at 0.9 and 0.990 

respectively.   

𝑚𝑡 = 𝑏1𝑚𝑡−1 +  1 − 𝑏1 𝛻𝐸 𝑤𝑡  ,       (5.9) 

𝑣𝑡 = 𝑏2𝑣𝑡−1 +  1 − 𝑏2 [𝛻𝐸 𝑤𝑡 ]
2  ,            (5.10) 

Here, 𝛻𝐸 𝑤𝑡  represents the first-order derivative of loss (𝐸) for the parameter 𝑤𝑡, which is the 

cross-entropy loss i.e. 

𝑙𝑜𝑠𝑠  𝐸 =  −
1

𝑁
  𝑡𝑛𝑖𝑙𝑛  𝑦𝑛𝑖 

𝐾
𝑖=1

𝑁
𝑛=1  ,            (5.11) 

where for N is the total numbers of training samples with K mutually exclusive labels and  𝑡𝑛𝑖 is 

targeted output, and 𝑦𝑛𝑖  is the predicted value with its natural log ((𝑙𝑛) calculated for 𝑛th sample 

belonging to 𝑖th class. 
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CHAPTER 4 

Experimental Results 

  



50 

 

4.1 DivNet architecture experiments 

4.1.1 Test on different CNNs 

To define an optimal number of layers for the input of 64×64×64 3D scan, an initial layer of 

encoder i.e., Convolution-Batch normalization-ReLU-max-pooling was used. Later, the encoder 

blocks were further applied on the L2, L3, L4, L5, and L6 layer consecutively as shown in Table 

4.1. In L6, the final feature size from the sixth convolution was [2 2 2] for each of the 64 filters. 

This means that the filter kernels have only two pixels in length for each filter; hence, expanding 

this to the L7 layer would be an impractical idea and will eventually reduce the features. Hence, 

seven convolutions-based architecture was not experimented. Table 4.1 shows the result of 

classification on these layer-wise CNN, whereas Table 4.2 presents the result of classification using 

four different architectures based on the reception area i.e., window size of the convolution kernel. 

Similarly, the training and validation graph was also studied to observe, how the architectures 

affect the training and also help to better understand the convergence process of each CNN, Figure 

4.1. Correspondingly, to understand the extracted features, from each convolution layer, a single 

MRI from each target domain was passed and the feature was observed as in Figure 2.4. On minute 

observation we could find the difference in the lines, edges, intensities, and other patterns based on 

the class domain. Moreover, FCL layers were visualized using t-SNE projection as in Figure 4.3 for 

each architecture to support our finding. Here, the features were visualized for the whole test set, 

thus this will help us to judge which architecture has segregated the feature in a better way. Finally, 

the results from different hyper-parameter settings and datasets are tabulated in Table 4.3 and Table 

4.4 respectively. 

4.1.2 Why diverging architecture?  

The size of convolution filter determines the scanning window during the convolution and this 
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window can be analogised as the reception area. The filter size increases by two strides in each 

consecutive layer so that the feature extracted will be sequentially extracted at a low level, an 

intermediate level, and a high level with a greater area of reception for the successive layers. The 

low-level features are extracted from the 3×3×3 filter window and it is max-pooled by the 2×2×2 

windows with a stride of one from the first convolution layer (i.e., conv_1 to max-1) [Figure 2.2 

(b)]. We can call this a diverging network because that the size of the filter kernel keeps on 

increasing with an increase in the step size or the stride. However, the number of filters in each 

layer is identical (i.e., 64) to maintain the channel size for the input of 64×64×64. Once the layer 

deepens, we can gather the features by increasing the window size for each layer. Consequently, 

the max-pool stride is also increased to lessen the redundancy in the feature. Conversely, the area 

of the reception keeps on diminishing with an initial filter size of 9×9×9 in the converging network, 

whereas in the equivalent architecture a uniform kernel size of 3×3×3 is used in each convolutional 

layer. The details of the architecture and the results of the experiment after training and testing are 

highlighted in Table 4.2, which includes the parameters in the second column. 

4.1.3 PET or MRI or both? 

To find the effect of the size of the training material, the L4 diverging network was trained with 

a variety of datasets and the results are shown in Table 4.4. The used MR images and PET images 

were all obtained from patients of ADNI BL visits obtained under the ADNI 1 project [71]. We 

used 3D scans of T1 weighted structural MR images of whole-brain; normalized and processed 

using ADNI pipeline also few scaled (listed in Appendix), whereas PET scans were also obtained 

from ADNI BL; processed for smoothing, co-registration, and few standardized (listed in 

Appendix). Our experiment showed that MRI is a better imaging modality than PET for 3D CNN 

classification. When the network is trained with the smallest dataset including MRI1 (see Table 4.4, 

5th column for the type), the network gets under-fitted; hence, the testing accuracy was low at 
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74.5%, which is slightly lower than the validation accuracy. However, the training achieved 

convergence as the accuracy reaches 100%. The same network when trained with the 

BASELINE_MRI data (type MRI2, see Table 4.4) under the same environment achieved the 

highest testing accuracy of 94.5%. The reason behind the increased accuracy may be due to the 

higher scans per patient ratio (SPR), which decreases the variability for each scan and loses its 

generality in the network. The PET scan performed the worst in the L4 divNet with increased 

training time. The BASELINE_PET_SMALL dataset, PET1, has a testing accuracy of only 66.34%, 

whereas the bulkiest PET dataset (i.e., BASELINE_PET_ALL, PET2) testing accuracy reached 

only 50.21%, along with difficulties in achieving convergence with 100 epochs and GPU training 

time almost three times of PET1 though it is ten times bigger in size than PET1. Finally, the 

MRI2+PET1 datasets were merged and trained in a single network however, it could only reach a 

90% training accuracy after convergence and reached the testing accuracy of up to 82%. As a result, 

it seems like MRI is a better choice for CNN, and PET only has a complementary role for the AD 

prediction. It is worth mentioning that the PET image is visually not so discriminative by the target 

class in comparison to the MRI image (see Figure 2.1), which may have resulted in the MRI’s 

better performance. 

4.2 Experimental result for divNet architecture 

The results of all experiments are presented in the tables and figures below.  

4.2.1 Test on different layered CNN 

Table 4.1 presents the results from the diverging architecture-based configuration with different 

layers counts, starting with two convolution encoding layers to six. The parameter column lists the 

filter size, number of filters, max-pool filter size, stride, and FCL input and output number as 

indexed in each row. Training accuracy reached almost 100% for each configuration, whereas the 
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validation and testing accuracy start dropping after the L4 layer. This could be the optimal case as 

plotted in training and validation loss against the epoch numbers as shown in Figure 4.1(a) to 4.1(f). 

Table 4.1: Training and testing results for the diverging architectures with changing number of 

layers as specified in the parameters column. Here, C [W*W*W N, S] represents a convolutional 

layer with N filters sized W each dimension, moving by stride S and N biases. TC [W*W*W N, S] 

represents a transposed convolutional layer with N number of filter sized W each dimension, 

moving by stride S and N biases. BN [N] represents the batch normalization with an offset of N and 

N scale values as learnable parameters. R represents the ReLU activation. M [W*W*W S] 

represents the max pooling with W kernels with a stride S, FC[O*I] represents the fully connected 

layer with input I and the output O. CT, D, S, and C represent the Concatenation, Dropout, SoftMax, 

and the Classification layer, respectively. The training pattern is shown in Figure 2.3. 

 

Diverging 

Architecture 

Length 

Parameters 

Traini

ng 

Accur

acy 

GPU 

traini

ng 

Time 

(min) 

Validati

on 

Accura

cy (%) 

Testing 

Accura

cy 

(%) 

2 layer conv 

(L2) 

C[5*5*5 64,1] BN[64] R M[2*2*2 2]   

C[9*9*9*64 64,1] BN[64] R M[2*2*2 4]  

FC[1728*32768] D FC[864*1728] D FC[100*864] 

D FC[3*100] S C 

99 778 93.4 94.26 

3 layer conv 

(L3) 

C[5*5*5 64,1] BN[64] R M[2*2*2 2]   

C[7*7*7*64 64,1] BN[64] R M[2*2*2 3]  

C[9*9*9*64 64,1] BN[64] R M[2*2*2 4]  

FC[1728*1728] D FC[864*1728] D FC[100*864] 

D FC[3*100] S C 

100 664 91.88 94.66 

4 layer conv 

(L4) 

C[3*3*3 64,1] BN[64] R M[2*2*2 1]   

C[5*5*5*64 64,1] BN[64] R M[2*2*2 2]   

C[7*7*7 *64 64,1] BN[64] R M[2*2*2 3]  

C[9*9*9*64 64,1] BN[64] R M[2*2*2 4] 

FC[1728*1728] D FC[864*1728] D FC[100*864] 

D FC[3*100]S C 

100 842 95.43 95.59 

5 layer conv 

(L5) 

C[3*3*3 64,1] BN[64] R M[2*2*2 1]   

C[5*5*5*64 64,1] BN[64] R M[2*2*2 2]   

C[5*5*5*64 64,1] BN[64] R M[2*2*2 2]   

C[7*7*7*64 64,1] BN[64] R M[2*2*2 3]  

C[9*9*9*64 64,1] BN[64] R M[2*2*2 4]  

FC[1728*64] D FC[864*1728] D FC[100*864] D 

FC[3*100] S C 

100 786 93.4 92.91 

6 layer conv 

(L6) 

C[3*3*3 64,1] BN[64] R M[2*2*2 1]   

C[5*5*5 64,1] BN[64] R M[2*2*2 2]   

C[5*5*5 64,1] BN[64] R M[2*2*2 2]   

C[7*7*7 64,1] BN[64] R M[2*2*2 3]  

C[7*7*7 64,1] BN[64] R M[2*2*2 3]  

C[9*9*9 64,1] BN[64] R M[2*2*2 4] 

FC[1728*64] D FC[864*1728] D FC[100*864] D 

FC[3*100] S C 

100 780 95.43 92.57 
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Figure 4.1(a): The training and validation loss 

(Y-axis) graph showed under each iteration 

(X-axis) of 100 epochs for the L1 convolution 

as presented in Table 4.1. 

Remarks: The VL is much less than TL, which 

indicates a possible overfitting case 

 

Figure 4.1(b): The training and validation 

loss (Y-axis) graph showed under each 

iteration (X-axis) of 100 epochs for the L2 

convolution as presented in Table 4.1. 

Remarks: The VL is less than TL, which 

indicates a possible overfitting case. 

 

Figure 4.1(c): The training and validation loss 

(Y-axis) graph showed under each iteration 

(X-axis) of 100 epochs for the L3 convolution 

as presented in Table 4.1. 

Remarks: The VL is higher than TL, which 

indicates a possible under- fitting case. 

 

Figure 4.1(d): The training and validation 

loss (Y-axis) graph showed under each 

iteration (X-axis) of 100 epochs for the L4 

convolution as presented in Table 4.1. 

Remarks: The VL is slightly higher than TL, 

which indicates a possible optimal case. 
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Figure 4.1(e): The training and validation loss 

(Y-axis) graph showed under each iteration 

(X-axis) of 100 epochs for the L5 convolution 

as presented in Table 4.1. 

Remarks: The VL is much higher than TL, 

which indicates a possible under-fitting case. 

 

Figure 4.1(f): The training and validation loss 

graph (Y-axis) showed under each iteration 

(X-axis) of 100 epochs for the L6 convolution 

as presented in Table 4.1. 

Remarks: The VL and TL both have higher 

values, which indicate a possible under-fitting 

case. 

4.2.2 Test on different architectures 

As discussed in section 2.4, the results using different architectures based on the reception area 

of convolving filter size i.e., the results from 4 architectures viz; U-net, converging, diverging, and 

equivalent is shown in Table 4.2. 
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Table 4.2: Test results using various types of architectures. The parameters are indexed as in Table 4.1. 

Here the ground matrix for testing all architectures model is [
63 0 0
0 91 0
0 0 142

]. 

Different 

Architecture 
Parameters 

Training 

Accuracy 

GPU 

Training  

Time 

(min) 

Validation 

Accuracy 

(%) 

Testing Accuracy 

in the 

BASELINE_MRI 

(%) 

Predicted 

Confusion 

Matrix 

(CM) for 

Testing 

E
n

co
d

er-d
eco

d
er b

ased
 

 

(U
-n

et) [6
8

] 

C[3*3*3 32,1] BN[32] R  

C[3*3*3*32 64,1] BN[64]  

M[2*2*2 2] 

C[3*3*3*64 64,1] BN[64] 

R C[3*3*3*64 128,1]  

M[2*2*2 2] 

C[3*3*3*128 128,1] 

BN[128] R  C[3*3*3*128 

256,1]  R  

C[3*3*3*256 256,1] R  

C[3*3*3*256 256,1]  R 

TC[2*2*2*512 512,2] 

CT C[3*3*3*768 256,1] R  

C[3*3*3*256 256,1]  R 

TC[2*2*2*256 256,,2]  

CT C[3*3*3*384 128,1] R  

C[3*3*3*128 128,1]  R 

TC[2*2*2*128 128,2] 

CT C[3*3*3*192 64,1] R  

C[3*3*3*64 64,1]  R 

TC[2*2*2*64 64 ,2]  

FC[100*786432] R D 

FC[512*1000] R D R FC 

[3*512]S C 

100 

3988 

(20 

Epochs) 

48.73 41.81 

9 32 22 

15 47 29 

36 56 50 

 

C
o

n
v

erg
in

g
 

 

C[9*9*9 64,1] BN[64] R 

M[2*2*2 1]   

C[7*7*7*64 64,1] BN[64] 

R M[2*2*2 2]   

C[5*5*5 *64 64,1] BN[64] 

R M[2*2*2 3]  

C[3*3*3*64 64,1] BN[64] 

R M[2*2*2 4] 

FC[1728*1728] D 

FC[864*1728] D 

FC[100*864] D 

FC[3*100]S C 

100 1429 94.92 94.59 

60 1 2 

0 88 3 

5 5 132 
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L
4

 D
iv

erg
in

g
 (d

iv
N

et) 

C[3*3*3 64,1] BN[64] R 

M[2*2*2 1]   

C[5*5*5*64 64,1] BN[64] 

R M[2*2*2 2]   

C[7*7*7 *64 64,1] BN[64] 

R M[2*2*2 3]  

C[9*9*9*64 64,1] BN[64] 

R M[2*2*2 4] 

FC[1728*1728] D 

FC[864*1728] D 

FC[100*864] D 

FC[3*100]S C 

100 842 95.43 94.59 

58 3 2 

0 86 5 

1 5 136 

E
q

u
iv

alen
t 

C[5*5*5 64,1] BN[64] R 

M[2*2*2 1]   

C[5*5*5*64 64,1] BN[64] 

R M[2*2*2 2]   

C[5*5*5 *64 64,1] BN[64] 

R M[2*2*2 3]  

C[5*5*5*64 64,1] BN[64] 

R M[2*2*2 4] 

FC[1728*1728] D 

FC[864*1728] D 

FC[100*864] D 

FC[3*100]S C 

100 790 95.94 93.92 

55 1 7 

0 85 6 

4 0 138 

 

4.2.3 Test for different hyper-parameter settings 

Hyper-parameters play crucial role to reach an optimal case for the top performance of the 

network so we experimented with several initialization techniques, activation functions, and 

optimization algorithms to find the best case as shown in Table 4.3. 

Table 4.3: Classification performance results for the BASELINE_MRI data; under a different hyper 

parameter setting that is investigated in the L4 diverging architecture as listed in Table 4.4. 

Selected 

Architecture 

Hyper parameter 

Description 

Selected 

technique 

GPU 

Training 

Time (min) 

Training 

accuracy % 

(50%) 

Validation 

accuracy % 

(20%) 

Testing 

accuracy % 

(30%) 

L4 

Diverging 

Initialization 

technique 

(Adam optimized, 

ReLU activated) 

Xavier 

Glorot 
842 100 95.43 94.59 

He 850 100 92.39 92.91 

Optimization  

(Glorot initialized, 

ReLU activated) 

Adam  842 100 95.43 94.59 

SDG 844 100 93.908 92.91 

Activation (Adam, 

Glorot) 

ReLU 842 100 95.43 94.59 

Tanh 850 100 94.42 92.23 
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Leaky-

ReLU 
905 100 93.51 95.61 

 

4.2.4 Figures for each architecture’s convolutional transformation 

Convolutional transformation is visualized using Pseudo-code 1; here we present Figure 2.4 for 

each class domain analysis, visualized using a single patient MRI scan. The number of features 

keeps on reducing from the former convolutional layer to the latter one. The result from the L4 

diverging architecture network is presented in slice-view, scaled to 64×64 for better visualization. 

 

 1st convolution layer  

(64    64    64    64) 

3rd convolution layer 

(31    31    31    64) 

4th convolution layer 

(10    10    10    64) 
 
 
 
 
 

AD 

 

   

 
 
 
 
 
 

CN 
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MCI 

   

Figure 4.2: Convolution layer visualization of maximally activated feature using single MRI scan, 

original size resized to [64 64 64], using pseudocode 1, employed network is L4 diverging. Each 

convolution layer for a typical MRI of AD, CN and MCI category. 

4.2.5 Test on different datasets 

Although the selection of network architecture is finalized still the dataset size should be 

determined as it can heavily influence the network performance. So, we were concerned to know 

how the number of training material affects the testing accuracy. Hence, we completed few more 

experiments shown in Table 4.4. Demographic details and file type are justified in the Appendix. 

Table 4.4: Results of the classification for the different dataset sizes using L4 diverging. This was 

tested on a variety of dataset sizes in MRI and/or PET imaging that ranges from small to large size 

datasets. The MRI1, MRI2 and PET1, PET2 type are detailed in the appendix. 

Dataset 

type 

AD 

MRI/

PET 

coun

t 

CN 

MRI/

PET 

count 

MCI 

MRI/P

ET 

count 

Includ

ed 

MRI/ 

PET 

Type 

Trainin

g 

accurac

y (50%) 

Traini

ng 

time 

(min) 

Valid

ation 

accura

cy 

(20%) 

Testing 

accurac

y 

(30%) 

Confusi

on 

Matrix 

(CM) 

Ground 

Truth 

(GT) 

BASELIN

E_MRI_S

MALL 

54 75 58 MRI1 100% 59 
76.32

% 
74.55% 

12 0 4 

4 15 3 

0 3 14 

16 0 0 

0 22 0 

0 0 17 

BASELIN

E_MRI 
209 305 474 MRI2 100% 842 

95.43

% 
94.59% 

58 3 2 

0 86 5 

1 5 136 

63 0 0 

0 91 0 

0 0 142 

BASELIN

E_PET_S

MALL 

102 109 125 PET1 100% 99 
66.67

% 
66.34% 

22 6 3 

6 20 7 

5 7 25 

31 0 0 

0 33 0 

0 0 37 

BASELIN

E_PET_AL

L 

1165 1057 974 PET2 70-75% 3026 
49.50

% 
50.21% 

134 205 

10 

3 312 2 

17 240 

35 

349 0 0 

0 317 0 

0 0 292 
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4.2.6 Figures for each architecture’s FCL t-SNE transformation 

FC layers weights are visualized using T-SNE transformation as stated in Pseudo-code 2, the 

result of experiments from each architecture type is shown in Figure 4.3, where we have presented 

the class-wise representation of figures for the last three FCL used. 

A
rch

itectu
re 

T
y

p
e 

FC1 FC2 FC3 

C
o

n
v

erg
in

g
 

(a) (b) (c) 

D
iv

erg
in

g
 

(d) (e) (f) 

E
q

u
iv

alen
t 

(g) (h) (i) 

BASELIN

E_MRI+B

ASELINE_

PET_SMA

LL 

311 414 599 
MRI2

+PET1 
85-90% 1164 

78.79

% 
82.12% 

55 1 37 

0 94 30 

0 3 177 

93 0 0 

0 124 0 

0 0 180 
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E
n

co
d

er-D
eco

d
er (U

-n
et) 

(j) (k) (l) 

Figure 4.3: FCL feature visualization using t-SNE 2D feature projection for the different 

architectures during testing. The colored dots represent single MRI scan features from the test set in 

the first three FCL, namely FC1, FC2, and FC3.  

 

4.3 3D CNN state-of-the-art comparison 

Hosseini et al. [43] utilized a deeply supervised adaptable 3D CNN (DSA-3D-CNN) based on 

the autoencoder network for AD classification that explains feature maps for the various layers. 

The stated accuracy is 97.06% for the binary classification of the AD/NC MRI. The accuracy is 

from a 10-fold CV, which means that only one MRI in a batch of ten is used in testing, whereas the 

other nine are employed for training and validation. Hence, only 10% of the total image (i.e., 21 

subjects) is used for testing [66]. Oh et al. [65] also performed 5-fold CV with a moderately sized 

dataset with an accuracy of around 84.5%. Evgin Foceri [62] and Gupta et al. [63] reported 

accuracies of 98.06% and 94.74% respectively, where they make use of data splitting and tested in 

20% and 10% of the dataset respectively. Although the accuracy is higher, the SPR ratio is still 

high, which may produce a generalization error. Payan et al. [64] had an optimal performance for 

larger data size, with an accuracy of around 89.47% for three classes of AD/MCI and HC. However, 

here the testing ratio is only 10%, which may suggest the case of possible overfitting. They have 

trained 3D CNN using 5x5x5 patch-based thus not a whole MRI itself. Conversely, we tested using 

the whole MRI and PETs in different data sizes, splitting the data in 5:2:3 ratios for training, 

validation, and testing. Hence, the 30% untouched data when tested can give us a reliable result. 

In Table 4.5, the term SPR is introduced, which indicates the use of multiple scans from a single 
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patient, however not necessarily at the same time. As a result, multiple MRIs and PETs were 

acquired from a single patient for SPR greater than ‘1’; however, the image acquisition and 

preprocessing steps were different for each of the scans. A lower SPR value can bring variability in 

the dataset; therefore, the value of ‘1’ indicates a single scan from a patient. This may eventually 

bring generality in the trained model; however, this can result in a low performance due to the 

constraint of the limited training material as in our case with the MRI scans, where the accuracy 

dropped to 74.55% φ from our best outcome of 94.5% (see Table 4.5) . Later to check with the 

PET, we first trained it with a smaller database with scans from each unique patient (i.e., SPR=1); 

however, the results were poor. It was then tested with a larger PET database and a higher SPR. 

This also resulted in a low performance that led us to conclude that PET is not a good choice for 

image-based 3D-CNN classification. On further tests with PET+MRI as presented in the last row of 

table V, we found a moderate result that is merely due to higher true positives from the MRI scans 

than from the PET. Thorough experiments were performed with a different number of subjects to 

find the effect of data-size in both MRIs and PETs; hence we did not use the same number of 

patients.  

Table 4.5: Comparison with other algorithms with 3D CNN based architecture. 

Authors Method 3D scans # of patients SPR 
Testing 

Accuracy % 

Evgin Goceri 

[62] 

Sobolev Gradient 

based optimized 

CNN 

Type: MRI 

CN: 568 AD: 

570 

CN: 130, AD: 

185 
4.36:3.08 

98.06 

(AD/CN) 

Gupta et al. [63] 

Sparse Auto 

encoder (SAE) 

based CNN 

Type: MRI 

CN:1278 AD: 

755 MCI: 

2282 

CN: 232, AD: 

200, MCI: 

411 

5.50:3.75:5.

55 

94.74 

(AD/MCI/N

C) 

Payan and 

Montana [64] 

Sparse Auto 

encoder (SAE) 

patch-based 3D 

CNN 

Type: MRI 

CN:755 

AD:755 

MCI:755 

CN:755, 

AD:755 

MCI:755 

1:1:1 

89.47 

(AD/MCI/H

C) 
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Hosseini Asl et 

al. [43] 
Dsa-3d-CNN 

Type: MRI 

- 

CN:70, AD: 

70 
- 

97.60 (AD 

vs. CN)  

Oh et al. [65] 

Inception auto 

encoder-based 3D 

CNN 

Type: MRI 

- 

NC:230 

AD:198 

sMCI: 101 

- 

84.5% (AD 

vs. NC) 

74.07% 

(AD vs. 

sMCI) 

Proposed divNet 

Diverging CNN  

Type: MRI 

CN:305 

AD:209 

MCI:474 

CN:60 AD:65 

MCI:87 

5.08:3.21:5.

44 

94.59% 

(AD/CN/M

CI)  

Type: MRI 

CN:75 AD:54 

MCI:58 

CN:31 AD:28 

MCI:48 

2.41:1.92:1.

20 

74.55% 

 

(AD/CN/M

CI) φ 

 

Type: PET 

CN: 109 AD: 

102 MCI: 125 

CN: 109 AD: 

102 MCI: 125 

 

1:1:1 

66.6% 

(AD/CN/M

CI) 

Type: PET 

CN: 1057 

AD: 1165 

MCI: 974 

CN: 109 AD: 

136 MCI: 337 

 

9.69:8.56:2.

89 

50.21%  

(AD/CN/M

CI)  

 

Type: 

PET+MRI 

 

CN: 414 AD: 

311 MCI: 599

  

- 

82.12% 

(AD/CN/M

CI) 

4.3.1 Performance-analysis and discussion 

To study the proposed model performances listed in Table 4.5, we visualized the convolutional 

layer as well as the FCL with the help of Pseudo-code 1, 2, and 3. The convolution layers findings 

have been discussed earlier; here we will examine the FCL output. Figure 4.3 depicts the 

distribution of the features for the test image set, which consists of 296 scans that are separated 

layer-wise during classification from the first convolution to the last FCL. The classification 

performance of the converging and diverging architecture is the best out of the four selected 

architectures (Table 4.2). Even so on the basis of FCL patient-level visualization, as demonstrated 

in Figure 4.3, we see that the features for each class start to separate well in the diverging 

architecture than the converging one. From the first FCL FC1 to the third FCL FC3, the data 

visualization using t-SNE shows a better separation in the second case (i.e., diverging, see Figure 

4.3). In figure 4.3 the feature starts to show a class-domain property from an FCL, and it is 

visualized by the start of the formation of the same-colored cluster. Based on the visual inspection, 
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we determined that the diverging architecture-based features are better clustered and separated than 

the others, Figure (d)-(f). Meanwhile, there is poor separation in the case of the U-net-based 

architecture as shown in Figure (j)-(l). Here, the training environment and the training material 

used for training were all the same; the generated models are detailed in Table 4.2. The X-axis and 

Y-axis represent the values of the 1st dimension and 2nd dimension obtained from t-SNE 2D 

projection respectively. Figure 4.4 demonstrates the proposed divNet t-SNE feature visualization 

from the 1st convolution to the 4th convolution (i.e., from Figure (a) to Figure (d)). The features 

from similar groups start to segregate, and it can be distinctly visualized from the 1st FCL (i.e., 

FC1, Figure (e)). It continues until the last FCL (i.e., FC4), where only a few colored dots are 

found in the wrong cluster (Figure (h) near the green CN group and a few in the blue MCI group). 

This overlapped region may be due to the possible false positives or false negative predictions that 

are subjected to errors in the test set prediction. The X-axis and Y-axis represent the values of the 

1st dimension and 2nd dimension obtained from the t-SNE 2D projection respectively. Similarly, 

based on the final FCL graph plotted as separate color curves for each cohort domain against the 

real weights of the final 100 parameters from the trained network without any projection (see 

Figure 4.6), shows a better demarcation between each colored graph than the 512 parameters from 

the U-net architecture. Afterward, we moved back to the training curve of these three networks to 

finalize the best performance as shown in Figure 4.5. It was observed that the validation loss is 

significantly higher than the training loss in the converging and equivalent architecture. The 

training plot of the converging architecture has a validation loss that is much higher than the 

training loss. This may cause a poor performance, which is similar in the case with an equivalent 

architecture. However, the validation loss is quite reduced in the diverging architecture; thus, 

making it the optimal choice. Here, the training material and the training environment are identical 

in all three cases.This indicates that the network can still be optimized, which was achieved with a 
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diverging architecture and proper hyper-parameter selection. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 

Figure 4.4: Feature visualization using t-SNE 2D projection for the L4 divNet for 296 test images 

from the BASELINE_MRI data. Each colored dot represents the feature of a single MRI of the 

indexed class.  

Converging 

 

Diverging 

 

Equivalent 
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Figure 4.5: Training graph plotted against the training loss and validation loss in the Y-axis and the 

corresponding iteration number in the X-axis. By having more iteration numbers, the longer the 

epochs are.  

4.3.2 Generalization and overfitting problem 

If we study the recent architectures [43] [62] [63] [64] and their performance results, we 

discover that the reported precision and accuracy rate are very high, more than 90%. In MR-guided 

image acquisition, various technical specifications like acquisition instrument, contrast intensity, 

plane orientation, spatial positioning, correction method, registration template, and wrapping 

protocol can bring inconsistency in the MRI of the suspected class [70]. Hence, a neural network 

trained on one ‘variety’ of an MRI, may find it ambiguous to detect an MRI of the same target class, 

if this is acquired differently. This produces generalization error in the network. The generalization 

error is one of the primary challenges in medical imaging diagnosis. In this case, we have tested our 

network/model with other data from the ADNI, which we denoted as MRI_adapted. This is because 

it was partly adapted from [69] which differs in participants under the ADNI project. The 

MRI_adapted dataset was used only for testing of the generalization, which consists of 135 AD, 

162 CN, and 134 MCI 3D scans; the testing results are presented in Figure 4.7. The other way to 

scrutinize could be with the visualization of the features. By extracting the better features, CNN 

will learn better. Similarly, overfitting is a contemporary part that comes with the generalization 

error. A non-generalized model learns ‘too well’ so that it only memorizes the training pattern that 

causes overfitting. Once we solve the overfitting problem, generality is also achieved. 
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(a) Converging 

 
(b) Diverging 

   

(c) Equivalent (d) U-net 

Figure 4.6: Final FCL weights values plotted in Y-axis directly for three target domains separately 

for each tested architecture using Pseudocode 3. X-axis extends from 0-100 for first 3 graphs (a), (b) 

and (c) whereas it extends from 0-512 in figure (d). The first three graphs have 100 parameters 

before producing the final three outputs for the SoftMax classifier whereas U-net has 512 

parameters. 

 

4.3.3 Conclusion for divNet  

CNN like ANN, is a semi-supervised learning algorithm that doesn’t require prior heavy feature 

engineering, because of  its self-auto generic feature extraction property. Few researchers have 

been successful to develop optimization algorithm as [62], however, important contribution is the 

design of the better architectural unit itself [63] [64] [65]. Besides, the prevailing techniques are 

mainly 2D image-based methodology, therefore the 3D architecture-based concept is itself an 

initiative approach. This concluding section summarizes the key points that may be helpful for 
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other researchers working with medical imaging in the same field with 3D CNN. 

• The deep learning process heavily depends on the choice of training materials. Closely related 

images (training) can enhance the training performance; however, it can simultaneously ‘spoil’ 

the model due to overfitting. ‘Good data’ rather than ‘big data’ is required to generate a good 

network.  

• Although our trained CNN is not deep enough to prototype a human brain structure, unlike 

reconstruction and segmentation models, it is however good enough to classify the MRIs, 

based on the segregated features learned in the convolutional layers, which is the actual aim of 

our study.   

• MRI can be a better choice than PET for image-based CNN models. This may be due to its 

diverse pixel value of the MRI. 

• Selection of hyper-parameters like initial-learn rate, learn-rate drop factor, the activation 

function, and the initialization algorithm can affect the training process, although it has little 

effect on its performance once the convergence is achieved. 

• The architecture and depth heavily affect the performance of the model thus, it is very 

important to have a generalized cum optimized model. Regarding the selection of features, we 

are convinced that the diverging window or reception area in each layer will be more beneficial 

than the contemporarily used converging or equivalent reception area. 

• ‘Overfitting’ and ‘generalization’ problems are the biggest challenges for deep learning models. 

• Since we have proposed an optimized DL-based CNN for classification of AD, MCI, and NC 

using MRI/PET, it will assist the medical clinicians as an initial rapid test to identify the 

patient’s condition using brain image scans only. Besides, MCI being an early stage of 

dementia means MCI identification will also help in the early prognosis of AD.  

Based on our findings we hope this can be helpful in many ways to researchers working in the 
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same field of MRI/PET classification. Our study here is limited in the ADNI dataset and may not 

act as universal CAD for AD detection yet more avenues are to be explored. The constantly 

developing deep learning methods can prove to make this process more optimal, robust, rapid, and 

automatic, with a minimum level of human supervision.  

 
Figure 4.7: The generality test with an entirely different dataset that was not involved in training 

and was acquired from another ADNI project [69]. 

 

4.4 Experimental results using GAP 

4.4.1 Classification performance and discussion 

Numerous classification experiments were performed applying the base architecture with 

different normalization layers in the first 2 encoder part. Since the ultimate goal was to compare the 

classification result, benchmark 2D datasets were used for this purpose. The used datasets are 

CIFAR-10 [81], Caltech-102 [98], 5-animals, and MRI images from OASIS [99] for 2D 

classification purposes. Among these, 5-animals and MRI images are prepared privately and are 

made available in a public repository, whereas others are already publicly available. The 5-animals 

dataset consists of around 700 images per class of five animals viz, tiger, lion, dog, cat, and fox. 
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OASIS MRI consists of a total of 5220 images of four classes categorized based on the clinical 

dementia rating (CDR) level of participants. Details of participants are described in our previous 

work on 2D CNN [47] [100]. To test 3D CNN performance, 3D-MRI volumes obtained from the 

ADNI database (http://adni.loni.usc.edu/) were used. To compare the result on bulky and small 

training samples 2 types of datasets were prepared for 3D CNN, MRI_BASELINE the bulkier one 

with 988 MRI samples and MRI_SMALL smaller one with 187 MRI samples. These MRIs belong 

to one of the 3 classes viz AD, MCI, and NC.  

Table 4.6: The base architecture is used for testing the proposed method against BN for 

classification. Please note that 2D and 3D architecture are different with different activation sizes. 

Note: here ‘g1g2b3b4’ architecture indicates 1st normalization GAP (g1), 2nd GAP (g2), and 3rd, 4th 

both BN as b3 and b4 respectively. Similarly, b1b2b3b4 means all BN and so on. The selection of 

hyperparameters and activation functions is based on our previous work [83] 

S. N Layers Name 

Descriptio

n -2D Base 

Architectur

e 

2D 

Activation 

size 

2D 

Learnable 

parameters 

Description -

3D Base 

Architecture 

3D 

Activation 

size 

3D 

Learnable 

parameters 

1 Input Image 

227×227×

3 images 

with 'zero 

center' 

normalizati

on 

227×227×3  

64×64×64 

images with 

'zero center' 

normalization 

64×64×64   

E
n

co
d

er-1
 

Convolution 

 

32 3×3 

convolutio

ns with 

stride [1 1] 

and 

padding 

'same' 

227×227×32 

Weights- 

3×3×32 

Bias- 

1×1×32 

64 3×3×3×1 

convolutions 

with stride [1 

1 1] and 

padding 'same' 

64×64×64

×64 

Weights- 

3×3×3×64 

Bias- 

1×1×1×64 

Batch 

Normalizatio

n(b1) or 

 GAP 

Normalizatio

n (g1) 

Normalizat

ion or 

activated 

Normalizat

ion 

227×227×32 

Alpha- 

1×1×32 

Beta- 

1×1×32 

Gamma- 

1×1×32  

OR  

Offset- 

1×1×32 

Scale- 

1×1×32 

Normalization 

or activated 

Normalization 

64×64×64

×64 

Alpha- 

1×1×1×64 

Beta- 

1×1×1×64 

Gamma- 

1×1×1×64  

OR  

Offset- 

1×1×1×64 

Scale- 

1×1×1×64 

Leaky-ReLU 
 

Leaky-
227×227×32  

Leaky-ReLU 

with scale 

64×64×64

×64 
  

http://adni.loni.usc.edu/
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ReLU with 

scale 0.01 

0.01 

Max Pooling 

 

2×2 max 

pooling 

with stride 

[2 2] and 

padding [0 

0 0 0] 

113×113×32  

2×2×2 max 

pooling with 

stride [1 1 1] 

and padding 

[0 0 0; 0 0 0] 

63×63×63

×64 
  

E
n

co
d

er-2
 

Convolution 

64 5×5 

convolutio

ns with 

stride [1 1] 

and 

padding 

'same' 

113×113×64 

Weights- 

5×5×32×6

4 

Bias- 

1×1×64 

64 5×5×5×64 

convolutions 

with stride [1 

1 1] and 

padding 'same' 

63×63×63

×64 

Weights- 

5×5×5×64

×64 

Bias- 

1×1×1×64 

 

Batch 

Normalizatio

n (b2) or 

 GAP 

Normalizatio

n (g2) 

Normalizat

ion or 

activated 

Normalizat

ion 

113×113×64 

Alpha- 

1×1×64 

Beta- 

1×1×64 

Gamma- 

1×1×64 

OR 

Offset- 

1×1×64 

Scale- 

1×1×64 

Normalization 

or activated 

Normalization 

63×63×63

×64 

Alpha- 

1×1×1×64 

Beta- 

1×1×1×64 

Gamma- 

1×1×1×64  

OR  

Offset- 

1×1×1×64 

Scale- 

1×1×1×64 

Leaky-ReLU 

 

Leaky-

ReLU with 

scale 0.01 

113×113×64  

Leaky-ReLU 

with scale 

0.01 

63×63×63

×64 
  

Max Pooling 

 

2×2 max 

pooling 

with stride 

[2 2] and 

padding [0 

0 0 0] 

56×56×64  

2×2×2 max 

pooling with 

stride [2 2 2] 

and padding 

[0 0 0; 0 0 0] 

31×31×31

×64 
  

E
n

co
d

er-3
 

Convolution 

64 7×7 

convolutio

ns with 

stride [1 1] 

and 

padding 

'same' 

56×56×64 

Weights- 

7×7×64×6

4 

Bias- 

1×1×64 

64 7×7×7×64 

convolutions 

with stride [1 

1 1] and 

padding 'same' 

31×31×31

×64 

Weights- 

7×7×7×64

×64 

Bias- 

1×1×1×64 

Batch 

Normalizatio

n (b3) 

Batch 

normalizati

on 

56×56×64 

Offset- 

1×1×64 

Scale- 

1×1×64 

Batch 

normalization 

with 64 

channels 

31×31×31

×64 

Offset- 

1×1×1×64 

Scale- 

1×1×1×64 

Leaky-ReLU 

 

Leaky-

ReLU with 

scale 0.01 

56×56×64  

Leaky-ReLU 

with scale 

0.01 

31×31×31

×64 
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Max Pooling 

 

2×2 max 

pooling 

with stride 

[2 2] and 

padding [0 

0 0 0] 

28×28×64  

2×2×2 max 

pooling with 

stride [3 3 3] 

and padding 

[0 0 0; 0 0 0] 

10×10×10

×64 
  

E
n

co
d

er-4
 

Convolution 

128 9×9 

convolutio

ns with 

stride [1 1] 

and 

padding 

'same' 

28×28×128 

Weights- 

9×9×64×6

4 

Bias- 

1×1×64 

 

64 9×9×9×64 

convolutions 

with stride [1 

1 1] and 

padding 'same' 

10×10×10

×64 

Weights- 

9×9×9×64

×64 

Bias- 

1×1×1×64 

Batch 

Normalizatio

n (b4) 

Batch 

normalizati

on 

28×28×128 

Offset- 

1×1×64 

Scale- 

1×1×64 

Batch 

normalization 

with 64 

channels 

10×10×10

×64 

Offset- 

1×1×1×64 

Scale- 

1×1×1×64 

Leaky-ReLU 

 

Leaky-

ReLU with 

scale 0.01 

28×28×128  

Leaky-ReLU 

with scale 

0.01 

10×10×10

×64 
  

Max Pooling 

2×2 max 

pooling 

with stride 

[2 2] and 

padding [0 

0 0 0] 

14×14×128  

 

2×2×2 max 

pooling with 

stride [4 4 4] 

and padding 

[0 0 0; 0 0 0] 

3×3×3×64   

18 
Fully 

Connected 

1152 fully 

connected 

layer 

1×1×1152 

Weights- 

1152×2508

8 

Bias- 

1152×1 

1728 fully 

connected 

layer 

1×1×1×17

28 

Weights- 

1728×172

8 

Bias- 

1728×1 

19 Dropout 
50% 

dropout 
1×1×1152  50% dropout 

1×1×1×17

28 
  

20 
Fully 

Connected 

576 fully 

connected 

layer 

1×1×576 

Weights- 

576×1152 

Bias- 

576×1 

864 fully 

connected 

layer 

1×1×1×86

4 

Weights- 

1728×864 

Bias- 

864×1 

21 Dropout 

 

50% 

dropout 

1×1×576  50% dropout 
1×1×1×86

4 
  

22 
Fully 

Connected 

 

N fully 

connected 

layer 

where ‘N’ 

is the 

number of 

trained 

class 

1×1×N 

Weights- 

N×576 

Bias- N×1 

3 fully 

connected 

layer 

1×1×3 

Weights- 

3×864 

Bias- 3×1 

23 SoftMax SoftMax 1×1×N  SoftMax 1×1×3   

24 
Classification 

Output 

Cross-

entropy 
    

Cross-entropy 

with 'AD' and 

2 other classes 

1×1×3   
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Table 4.7 shows the detailed condition for the experiment and the obtained results. Overall, it 

shows the use of the proposed layer for normalization gives results almost similar to that of batch 

normalization, and in few cases, the result is slightly better with higher training time. The result of 

the experiment is better in classification with double GAP layer as normalization layer in a bulkier 

dataset like MRI_BASELINE with overall test accuracy 93.58% against 91.89% using 100% batch 

normalization. Similarly, CIFAR-10 test accuracy improved from 75.11% to 75.21 % by replacing 

the GAP normalization layers with the BN layer in the first and second encoder.  While the result 

is better with the replacement of the first BN layer with GAP in a smaller dataset like the 5-animals 

dataset (2D CNN accuracy: 62.92% vs. 58.48%), which supports the use of the proposed method 

for normalization and activation.  

Table 4.7: Detailed experiment results using different normalization techniques in the same base 

architecture as shown in table 4.6. In the case of same dataset, the training, validation, and testing 

materials were identical, so the result could not be biased in any case. Accuracy represents the % of 

correctly classified samples during prediction, whereas average test recall and precision are 

calculated by taking the mean of class-wise recall and precision. 95% CI error represents the error 

with a 95% confidence score, the one with a score above 95% is only calculated for a min-error 

value and one with a score below 95% is only calculated for max-error value. 

Dataset 
Archite

cture 

e

p

o

c

h 

# of 

Trai

ning 

Imag

e 

# of 

Valid

ation 

Imag

e 

# of 

Test

ing 

Ima

ge 

Trai

ning 

Tim

e 

(mi

n) 

Trai

ning 

Acc

urac

y 

Valid

ation 

Accu

racy 

Testi

ng 

Accu

racy 

Aver

age 

Test 

recal

l 

Aver

age 

Test 

preci

sion 

95% 

CI 

error 

(min) 

95% 

CI 

error 

(max) 

Caltech-

102 

g1b2b3

b4 

1

0

0 

5481 1824 
182

9 

133 100 69.6 66.59 0.57 0.50 31.24 35.57 

g1g2b3

b4 
345 100 68.27 66.54 0.55 0.51 31.3 35.62 

b1b2b3

b4 
91 100 69.1 66.54 0.56 0.51 31.33 35.62 

Weightl

ess 

AlexNe

t (WA) 

84 100 60.36 59.69 0.43 0.42 38.16 42.65 

5-

animals 

g1b2b3

b4  
1

0

0 

1888 628 630 

42 100 60.19 62.92 0.64 0.63 33.32 40.85 

g1g2b3

b4 
120 100 59.1 58.16 0.60 0.58 37.99 45.69 
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b1b2b3

b4 
30 100 57.1 58.48 0.59 0.59 37.68 45.37 

WA 24 90 48.09 42.47 0.41 0.42 53.67 61.38 

CIFAR-

10 

g1b2b3

b4  

1

0

0 

4000

0 

2000

0 

100

00 

851 100 74.55 74.68 0.74 0.74 24.54 26.24 

g1g2b3

b4 

230

0 
100 75.3 75.21 0.75 0.75 23.94 25.64 

b1b2b3

b4 
390 100 74.68 75.11 0.76 0.75 24.02 25.72 

WA 360 100 75.14 74.76 0.75 0.75 24.39 26.09 

OASIS 

MRI 

CDR 

(2D 

MRI) 

g1b2b2

b4 

5

0 
2610 1044 

156

6 

76 100 99.42 99.74 0.99 0.99 0.01 0.51 

g1g2b3

b4 
180 100 99.67 99.62 0.99 0.99 0.08 0.69 

b1b2b3

b4 
41 100 99.71 99.81 0.99 0.99 0.01 0.51 

WA 13 100 98.66 99.75 0.98 0.98 0.2 0.95 

ADNI 

MRI_S

MALL 

(3D 

CNN) 

g1b2b3

b4 
1

0

0 

94 38 55 

196 100 71.05 80.1 0.82 0.78 9.43 30.57 

g1g2b3

b4 
551 100 73.36 81.82 0.82 0.80 7.99 27.38 

b1b2b3

b4 
81 100 73.68 83.64 0.83 0.82 6.59 26.14 

ADNI 

MRI_B

ASELI

NE (3D 

CNN) 

g1b2b3

b4 
1

0

0 

495 197 296 

670 100 94.92 92.23 0.94 0.90 4.72 10.82 

g1g2b3

b4 

178

0 
100 94.42 93.58 0.93 0.92 3.63 9.21 

b1b2b3

b4 
244 100 94.92 91.89 0.91 0.91 5.11 11.22 

 

4.4.2 Feature visualization and analysis 

 

(a)                                 (b) 
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(b)                               (d) 

Figure 4.8: (a) First convolution layer visualization (b) First BN layer following a. 

visualization (c) First convolution layer visualization (d) First GAP layer following c.  

visualization. Check the difference in the output of batch and GAP w.r.t its respective 

convolution layer, the color is heavily changed in batch normalization due to insert of its 

batch properties, but Gaussian output remains the same, without any sharp change in filter 

color, instead, the color is slightly mixed up with similar color, hence a smoothing process is 

done here.  

 

(a)                            (b) 
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(c)                          (d) 

Figure 4.9: Class-wise feature learned by the trained networks of 10 classes {airplane, 

automobile, bird, cat, deer, dog, frog, horse, ship, truck} produced using Deep dream [32] on 

CIFAR-10 scratch trained network under identical condition (a) using b1b2b3b4 base 

architecture (b) using g1b2b3b4 base architecture c) using g1g2b3b4 base architecture (d) 

AlexNet architecture. Please zoom in for a more detailed look. Please see the appendix for 

code implementation. 

4.4.3 Correlation and generalization  

Correlation measures the similarity between two signals or distribution. The correlation 

coefficient of two random variables measures the linear dependency between the input feature 

matrix (X) and output (Z) with N scalar observations as the Pearson correlation coefficient 𝑟: 

  𝑟 𝑋, 𝑌 =
1

𝑁−1
 (

𝑋𝑖−𝜇𝑋

𝜎𝑋
) (

𝑌𝑖−𝜇𝑌

𝜎𝑌
) =

𝑐𝑜𝑛𝑣 𝑋,𝑌 

𝜎𝑋𝜎𝑌

𝑁
𝑖=1  ,          (3.11) 

The correlation coefficient also calculates the covariance ′𝑐𝑜𝑛𝑣′  between any two vector 

matrices. As BN is stated to reduce the internal covariant shift in its layer, we have measured the 

covariance between output and input using the Pearson correlation coefficient  𝑟  using equation 

(3.11). Here in our case, X is the 3D feature matrix generated from the preceding convolution layer 

and Z is the output from the normalization layer with same dimensions as X. And the value of ‘𝑟’ is 

a single value for all filters for a single image, hence correlating average characteristics of the 

activation layer. (Please note for the filter-wise response we have plotted the mean response plot as 
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in figure 4.11.1 (b) to 4.11.4(b)). Perfect correlation conveys an identical result between input and 

output without any variance in which case the layer becomes useless, however very low correlation 

is also perilous, as it brings very high variability and shift between layer input and output, which 

makes the layer suspicious to mishaps like vanishing gradients. Hence, it is still unclear if a high 

correlation is good or not, which in our case, we expected a higher correlation value than the BN 

result, which turned out to be true.  

 

Figure 4.10: Classification result on different datasets for comparison along with validation 

accuracy, test accuracy, min 95% CI error, max 95% CI error as in Table 4.7. The validation 

accuracy and testing accuracy were calculated on the same set with identical training and testing 

conditions, to avoid any biases. 

 

11.1 (a) 

 

11.1 (b) 
 

11.1(c) 
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11.2 (a) 

 
11.2 (b)  

 
11.2 (c) 

 
11.3 (a) 

 
11.3 (b) 

 
11.3 (c) 

 
11.4 (a) 

 
11.4 (b) 

 
11.4 (c) 

Figure 4.11: Layer-wise filter response visualization and histogram plot for a sample image 

from the 5-animals dataset during the testing phase. 11.1(a) Histogram of all filter input to layer 

b1 of b1b2b3b4. 11.1(b) Mean filter response of 32 filters in layer b1. 11.1(c) Histogram of all 

feature output from layer b1. 11.2(a) Histogram of all filter input to the layer g1 of g1g2b3b4. 

11.2(b) Mean filter response of 32 filters in layer g1. 11.2(c) Histogram of all feature output 

from layer g1. 11.3(a) Histogram of all filter input to layer b2 of b1b2b3b4. 11.3(b) Mean filter 

response of 64 filters in layer b2. 11.3 (c) Histogram of all feature output from layer b2. 11.4(a) 

Histogram of all filter input to the layer g2 of g1g2b3b4. 11.4(b) Mean filter response of 64 

filters in layer g2. 11.4(c) Histogram of all feature output from layer g2.  

 

  In Figure 4.11.1(c) and 4.11.3(c) the output of the batch normalization layer histogram shows 

the feature distribution is completely different from its input i.e., 4.11.1(a) and 11.3(a) 
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respectively, the frequency of weight value was more in the mean range in input whereas later 

in output, the weight around mean is reduced. This drastic change in distribution is also shown 

in the mean response plot, 4.11.1(b) and 4.11.3(b) with correlation coefficients 90.46 and 

84.73, respectively. However, the output pixel/weights distribution is not completely changed 

while using GAP normalization. The output histogram using GAP layers, 4.11.2(c) and 

4.11.4(c) follows the input pattern of 4.11.2(a) and 4.11.4(a) respectively. Also, the mean plot 

response shows a very high correction with its input filter mean, and the correlation value is 

94.6 and 91.3, respectively. Please see the appendix for code implementation. 

 

Figure 4.12: Correlation value plot between input and output in the normalization layer for all test 

images in the 5-animals dataset. Here in Layer 2, the BN (b1) layer produces a correlation value of 

around 90% for all test sets, whereas the GAP layer (g1) has a slightly higher correlation value than 

b1. Whereas in the second normalization layer i.e., Layer 6, the BN layer (b2) produces drastically 

low correlated output with its input, and in wide ranges for all test sets, i.e., ranging from 94% to as 

low as 22%, however, the output from g2 is not highly decorrelated with its input, hence in the 

range of around 90% correlation with its input. Input x is the output from the preceding 

convolution layer, and output Z is the output from the normalization layer. If the layer correlation 
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value comes out to be very low, it means the layer has decorrelated the feature. However perfect 

correlation is also useless. 

Overfitting is one of the major adversity in ML that brings disparities in test performance and 

training performance within a trained network. This can be verified when the error on the training 

set is very less, but when an unseen similar data is predicted via the network the error is large. It 

means the network has ‘memorized well’ but has ‘not learned well’. It is majorly the number of 

parameters that decide the fate of the network to overfitting. Keeping in mind that if the number of 

parameters in the network is much smaller than the total number of points in the training set, then 

there is little or no chance of overfitting, which simply means increasing the parameter of the 

training network increases the chance of overfitting. To check the generalization error, we 

computed the range of prediction error on ‘N’ test samples for a confidence score over 95% against 

the standard test error (STE) = 1 – accuracy. This test of error margin is also called the Wald test 

and represents the minimum and maximum error in the range of 95% confidence interval as shown 

in Table 4.7 and plotted in Figure 4.10 along with the accuracy graph. Besides, we plotted the T-

SNE projection for test images and found out the errored distribution as shown in figure 4.13. In 

figure 4.13 the first column shows the 1728 activated features from the 1st FCL layer i.e., fc1 is 

projected into 2 Principal components (PC) in x and y dimensions for all test sets. In mid column 

864 activated features from 2nd FCL i.e., fc2 layer are projected into 2 PCs in x and y dimension 

for all test sets. In the last column class-wise activated features from the 3rd FCL layer i.e., fc3 is 

projected into 2 Principal components in x and y dimension for all test sets. The distribution of 

colored dots is distinctly not separated in 1st FCL layers and later starts to separate in 2nd and 3rd 

FCL layers. The overlapped region with different colors is the region of error.   
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Figure 4.13: T-SNE projection of trained network for MRI_BASELINE 296 test subjects in 

different architecture 1st row: (a) 1st FCL features from b1b2b3b4 (b) 2nd FCL features from 

b1b2b3b4 trained network 4.13 (c) 3rd FCL features from b1b2b3b4 trained network. 2nd row: (a) 

1st FCL features from g1b2b3b4 trained network (b) 2nd FCL features from g1b2b3b4 trained 

network 9.2(c) 3rd FCL features from g1b2b3b4 trained network. 3rd row: (a) 1st FCL features from 

g1g2b3b4 trained network (b) 2nd FCL features from g1g2b3b4 trained network (c) 3rd FCL 

features from g1g2b3b4 trained network. 4th row: ROC curve for all 3 class in single graph shown 

for MRI_BASELINE test set classification using (a) b1b2b3b4 network classification (b) g1b2b3b4 

network classification (c) g1g2b3b4 network classification. 
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Figure 4.14: Comparison of feature detection heatmap using various visualization algorithms for 

natural images. The used techniques to generate heat maps on test images in successive order are 

LIME [104], Occlusion 105], and Grad-Cam[106]. Overall, AlexNet [74] has a narrow heat map 

area i.e., the region of influence for classification, and similarly, the heat map area of g1g2b3b4 and 

g1b2b3b4 is wider and more accurate than one using BN only i.e., b1b2b3b4. It signifies the better 

feature detection process done using GAP normalization. 

4.4.4 Conclusion for GAP normalization 

To conclude we have experimented with the proposed idea of the GAP layer as a normalization 

layer in 2D and 3D CNN. Multiple experiments show the use of GAP layers produces slightly 

better results in the case of the bulkier 3D dataset and lighter 2D dataset. We studied the 

phenomenon of overfitting via training and validation graph, normalization layer covariance via 

mean response plot and correlation plot, and feature representation via TSNE and histogram plots. 

To summarize we have listed the finding below: 

• With b1b2b3b4 architecture, the training accuracy shoots higher quickly, indicating an 

overfitting condition as the validation accuracy during the mid-training was still too low 

causing a higher gap between training and validation accuracy. Hence, with the GAP layer, we 

delayed the faster convergence of weights during training (please see Figure 3.1). 

• The weights of convolutional filters in early layers seem to change abruptly from convolution 
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to normalization process during BN, (please see Figure 4.8) this might suggest the feature 

property of the input image becomes highly uncorrelated with its input after normalization. 

Consequently, the correlation coefficient between input and output of BN is quite low. 

However, using GAP the filter weights are only slightly changed and the input-output 

correlation value is higher (Please see Figure 4.11 and 3.8), indicating less distortion of image 

property. 

• As minibatch statistics are used for scaling in BN, the output is scaled with the minibatch mean, 

i.e., the minibatch properties of images are mixed, causing a sharper squeeze in its feature 

value (Please see histogram plot in Figure 4.11). This might have brought higher variability in 

BN output, as discussed in point 2. On the other hand, in GAP normalization the scaling mean 

coefficient is calculated from the activated channels from the same image i.e., equivalent to 

minibatch=1, so the image property from the same image is only mixed up, without spoiling its 

feature attributes.  

• Scaling mean and variance are empirically calculated as in 3. for each input image, thus no 

need to pass the trained mean and variance value as in BN during the testing phase. 

Additionally, the BN’s error is higher for small batch size, due to imprecise batch statistics 

estimation. 

• The activation region for decision-making is wider and accurate in most cases using g1g2b3b4 

or g1b2b3b4 than the BN-based b1b2b3b4 and AlexNet (please see Figure 4.14).  

• In most of the experiment, the result is slightly better (Table 4.7) and can also be visualized via 

T-SNE projection (please see Figure 4.13) 

The proposed layer is itself not a replacement for batch normalization, since it is beneficial only 

if we use those layers in the first one or two convolution layers. Thus, it works as a good alternative 

for batch normalization in the early layers although not the ultimate layers. Moreover, another 
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serious drawback in our idea is the use of the filter function itself, as it consumes a lot of time to 

perform a 3D filtering operation. Because of this the proposed method requires 2 (1 GAP) to 5 (2 

GAPs) times more training time to generate a trained model. More the layers and training sample 

used; more will be the delay in training. To overcome this, if we can perform a weight-wise 

operation like convolution or BN in the layer itself without using an external filter function, it 

might reduce the operation time. This can be the future work. I hope this work will help the 

researcher working in the field of DNN to achieve better results in some specific application. 

 

4.5 Experimental result using SGT activation 

4.5.1 Classification performance and methods 

The performance evaluation of the proposed function was done with the classification of three 

cohorts of MRIs clinically categorized as AD, CN, and MCI obtained from the ADNI website 

[148]. The demographic detail of the used MRIs is shown in table 4.8. Multiple scans from the 

same patients with different gradient wrapping and scale correction techniques were used to add 

heterogeneity and increase the number of experiment samples [150]. The detailed architecture used 

in the analysis is shown in table 4.9. The total dataset was divided into three parts viz train, 

validation, and test set in the ratio of 5:2:3 so that 495 MRIs were used in training, 197 MRIs for 

validation, and 296 MRIs were separated for testing the trained models.  

Table 4.8: Participants' demographics and MRI counts. 

Dataset type 
AD 

participants 

CN 

participants 
MCI participants 

Male/Female 29/36 22/38 54/33 

Mean age 73.55/75.43 75.57/74.43 77.06/72.41 

Total number of Participant 65 60 87 

Number of MRI scans 209 305 474 
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Table 4.9: CNN baseline architecture used to train and classify the MRI 3D scans. Here, while 

analyzing the performances of different activation functions, layers containing SGT functions i.e., 

layer_gamma3d are replaced with other existing standard activation functions. Weights and bias 

values for convolution and FCL were initialized using the ‘Glorot’ initialization technique and for 

the proposed SGT layer, α and β values were randomly initialized between 0 to 1. The initial 

learning rate was set at 0.001 with learn drop factor of 0.95 after every 10 epochs and fully trained 

up to 80 epochs. 

Layer 

no. 
Layer Name Layer Description Output size 

No of learnable 

Parameter 

1 Image Input         
64×64×64×1 images with 'zero-center' 

normalization 
64×64×64×1 0 

2 Convolution 
64 3×3×3×1 convolutions with stride [1 1 

1] and padding 'same' 
64×64×64×64 

Weights=1728 

Bias= 64 

3 
Batch 

Normalization 
Batch normalization with 64 channels 64×64×64×64 

Offset = 64, Scale 

= 64 

4 

layer_gamma3d 

or ReLU/Leaky-

ReLU/Tanh 

Proposed SGT function with 2 learnable 

parameters for 64 channels 
64×64×64×64 α= 64, β = 64 or 0 

5 3-D Max Pooling 
2×2×2 max pooling with stride [1 1 1] 

and padding [0 0 0; 0 0 0] 
63×63×63×64 0 

6 Convolution 
64 5×5×5×64 convolutions with stride [1 

1 1] and padding 'same' 
63×63×63×64 

Weights=512K 

Bias= 64 

7 
Batch 

Normalization 
Batch normalization with 64 channels 63×63×63×64 

Offset = 64, Scale 

= 64 

8 

layer_gamma3d or 

ReLU/Leaky-

ReLU/Tanh 

Proposed SGT function with 2 learnable 

parameters for 64 channels 
63×63×63×64 α= 64, β = 64 or 0 

9 3-D Max Pooling 
2×2×2 max pooling with stride [2 2 2] 

and padding [0 0 0; 0 0 0] 
31×31×31×64 0 

10 Convolution 
64 7×7×7×64 convolutions with stride [1 

1 1] and padding 'same' 
31×31×31×64 

Weights=1.404M 

Bias= 64 

11 
Batch 

Normalization 
Batch normalization with 64 channels 31×31×31×64 

Offset = 64, Scale 

= 64 

12 

layer_gamma3d or 

ReLU/Leaky-

ReLU/Tanh 

Proposed SGT function with 2 learnable 

parameters for 64 channels 
31×31×31×64 α= 64, β = 64 or 0 

13 3-D Max Pooling 
2×2×2 max pooling with stride [3 3 3] 

and padding [0 0 0; 0 0 0] 
10×10×10×64 0 

14 Convolution 
64 9×9×9×64 convolutions with stride [1 

1 1] and padding 'same' 
10×10×10×64 

Weights=2.985M 

Bias= 64 

15 
Batch 

Normalization 
Batch normalization with 64 channels 10×10×10×64 

Offset = 64, Scale 

= 64 

16 

layer_gamma3d or 

ReLU/Leaky-

ReLU/Tanh 

Proposed SGT function with 2 learnable 

parameters for 64 channels 
10×10×10×64 α= 64, β = 64 or 0 

17 3-D Max Pooling 
2×2×2 max pooling with stride [4 4 4] 

and padding [0 0 0; 0 0 0] 
3×3×3×64 0 

18 Fully Connected 1728 fully connected layer 1×1×1×1728 
Weights=2.98M 

Bias= 1728 

19 Dropout 50% dropout 1×1×1×1728 0 

20 Fully Connected 3 fully connected layer 1×1×1×3 
Weights=5.18K 

Bias= 3 
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21 SoftMax SoftMax function 1×1×1×3 0 

22 
Classification 

Output 

Cross-entropy with 'AD', 'CN' and 'MCI' 

labels 
1×1×1×3 0 

 

Table 4.10: Results for multi-class MRI classification using CNN architecture as in Table 4.9. 

Type of 

Activation 

function 

Activation 

Function 

Name 

Final 

Validation 

Accuracy 

(%) 

Test 

Accuracy 

(%) 

Final 

Validatio

n Loss 

Cohen’

s kappa 

Score 

Precision 

(class-wise 

[AD CN 

MCI]) 

Predicted 

Confusion 

Matrix 

True 

Confusion 

Matrix 

Using 

Standard 

Activation  

functions 

Tanh 90.862 92.57 0.5338 0.897 

[0.8889 

0.9120 

0.9507] 

56 1 6 

0 83 8 

1 6 135 

63 0 0 

0 91 0 

0 0 142 

ReLU 87.817 91.22 1.0425 0.8603 

[0.9048 

0.9011 

0.9225] 

57 3 3 

1 82 8 

1 10 131 

Leaky-

ReLU 
90.355 93.92 0.8201 0.9029 

[0.9206 

0.9121 

0.9648] 

58 2 3 

1 83 7 

1 4 137 

Using all 

or 

partially 

SGT 

function 

gamma2 90.862 92.91 0.8777 0.887 

[0.9206 

0.8901 

0.9577] 

58 0 5 

5 81 5 

1 5 136 

gamma2_

alt 
91.370 92.91 0.7587 0.886 

[0.8730 

0.9231 

0.9577] 

55 0 8 

0 84 7 

1 5 136 

gamma4_

adam 
92.893 92.57 0.5683 0.8818 

[0.8730 

0.9451 

0.9366] 

55 6 2 

0 86 5 

1 8 133 

gamma4_s

gdm 
92.893 93.24 0.3086 0.892 

[0.9048 

0.9121 

0.9577] 

57 2 4 

1 83 7 

1 5 136 
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Figure 4.15: (a) Training accuracy plot for MRI classification using baseline CNN models with 

different activation functions. 

 
 

Figure 4.15: (b) Validation accuracy plot for MRI classification using baseline CNN models 

with different activation functions.  

From Table 4.10 it is observed that all the version of the network using SGT activation (i.e., 

gamma2, gamma2_alt, gamma4_adam, gamma4_sgdm) has higher validation accuracy, precision, 

and Cohen’s kappa score than the other activation schemes. These classification performance 

parameters measure the reliability and correctness of the work, e.g., accuracy measures the number 

of correct prediction against the true predictions whereas precision measures how close the 

measured valued are to the true values. Similarly, Cohen’s kappa score is like accuracy except that 

it is more robust and measures how much better the model is performing over the performance of a 

model that randomly predicts according to the frequency of each class, best suited for multiclass 

imbalanced dataset (please see Appendix III for all formulas). All calculated in terms of percentage, 

and higher the better. Here gamma2 means the first two activations are SGT and other ReLU, 

gamma2_alt means first and third is SGT and other ReLU, gamma4_adam uses all four activation 

layers as SGT with Adam optimizer while gamma4_sgdm also uses four SGT activation layers but 
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the optimizer is Stochastic Gradient Descent with Momentum (SGDM). The validation set is the 

test set used during training to calculate the accuracy of prediction at different epochs, hence it 

helps to know how well the network is learning. Figure 4.15: (b) shows the validation accuracy 

calculated at different epochs along with its training accuracy in 4.15(a). It can be clearly noticed 

that the SGT activated network (gamma4_sgdm, gamma4_adam) reaches higher validation 

accuracy than other activation schemes in the final stages of training. The final validation accuracy 

reported in table 4.10 is the accuracy on the validation set at the 80th epoch or the final epoch. 

Similarly, the test set is the set that is completely unseen for the trained model and the higher 

performance in the test set means the network is well generalized and has good performance for 

unseen data. To get an unbiased result, the experimental environment along with all the 

hyperparameters and participating MRIs were always kept identical for all networks irrespective of 

the choice of activation functions. During test set classification, Leaky-ReLU performed the best 

with around 0.5% higher test accuracy than that of gamm4_sgdm. Still, the test accuracy of all SGT 

activated networks was higher than the ReLU and tanh by 2% and 1% respectively, which indicates 

that the proposed SGT activation scheme outperforms the traditional ReLU activation by a clear 

margin. 

 

4.6 Discussion and analysis for SGT activation 

4.6.1 Histogram analysis and asymmetric distribution 

Weights of each layer’s input (𝑋𝑙) or output (𝑍𝑙) as in equations (5.2) or (5.5) is plotted against 

its frequency in the histograms. The normalized output values from BN are zero-mean with almost 

normal distribution, therefore it is not a good idea to throw away all the negative valued 

parameters/weights using activation functions like ReLU or sigmoid [129]. Though the flow of 

gradient is positive in ReLU, if a bunch of the weights is negative it causes dead ReLU with ‘zero’ 
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derivative for negative weights, hence not every time ReLU is a wise choice. In cases like MRI, 

mostly with black background (low pixel value), it is better to use alternative activation function 

like Leaky-ReLU, GELU, SELU that provides non-zero gradients for negative weights ensuring the 

flow of gradient loss.  

Figure 4.16 shows the input and output histogram plots through the SGT layer in comparison to 

ReLU versions. Here, please note that the input to the activation layer is the output from the batch 

normalization and the output of the activation layer is the input to the pooling layer. In figure 4.16, 

the input histogram of all activation layers has an almost symmetrical distribution which means 

most of the image pixel lies in the grey region after BN. Our goal of gamma correction is to reduce 

this grey zone and make the distinction between white (bright) and black (dark) regions. If we look 

at figure 4.16(b), the mid-grey region is very few in the case of output from the proposed SGT 

layer, whereas the output with ReLU has very high zeros and leaky-ReLU output still seems 

centered at zero, hence the clear skewness is seen in positive part. While the SGT layers’ output 

data are decentralized in opposite edge regions unlike BN, and it seems like the combination of the 

output of tanh and Leaky-ReLU histogram. Additionally, this asymmetric feature distribution in the 

SGT layer supports the classification task due to the higher variance between the edge regions. 
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Figure 4.16: Histogram of the input features against output using various activation functions 

for a single MRI input plotted for different layers i.e., 4, 8, 12, and 16 (please see Table 4.9 

for layers).  Here, the histograms are combinedly produced using all the data values from 64 

filters/channels. Generally, the combined histogram of all channels is similar to the single 

histogram of each channel (please see Figure 4.16_app for comparing the histogram plot of 

19th filter out of 64 filters for same input MRI in Appendix section). 
 

4.6.2 Channel wise activation  

         

Figure 4.17: Conventional activation functions work in a constant way to all inputs whereas the 

proposed SGT function works differently for the different channels because of altering values of 

parameters 𝛼𝑛, 𝛽𝑛 within the layers channel in respect to equation (5.2). 

 

We were highly interested to see what value the SGT (layer_gamma3d in Table 4.9) parameters 

would learn at different activation layers. The stem plot for α and β values from all activation layers 

as in Figure 4.18 shows that for the first SGT activation layer (i.e., Layer 4) the values for α and β 

were mostly positive and only a few remained negative, also there were more β with value >1 than 

α. The range for the value of α and β lied between -0.4 to 1.4. Interestingly in the intermediate 

activation layers (i.e., Layer 8,12) and the final activation layer (i.e., Layer 16) none of the values 
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for β remained negative while the values for α in most channels remained negative. This might 

imply that for feature value x>0, required positive gamma correction, and for negative feature value 

x<0, required negative gamma correction in the intermediate layer. In a more general statement, the 

gamma activation made brighter pixels look brighter and darker pixels look darker, which resulted 

in a more distinct intensity profile. 

  

  
 

Figure 4.18: Pictorial representation of α and β values for a trained model at different layers for 

gamma4_adam network using Adam optimization. Here α and β are channel-wise learnable 

parameters in SGT layers, each corresponding to 64 channels 

4.6.3 Analyzing weights and bias in the final FCL 
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Figure 4.19: Final FCL 1728 weights plots of trained gamma4_adam network corresponding to 

each class label. Here FC_AD_row represents the final weights of the layer from the fully trained 

gamma4_adam network belonging to the AD class, similarly, FC_CN_row and FC_MCI_row 

represent for CN and MCI categories respectively. While the plots of act1_AD are the weights 

calculated for a typical AD categorized MRI, obtained using the trained model during the testing 

phase. So, are the weights calculated as act1_CN and act_MCI for a CN and MCI categorized MRI 

during testing respectively.  This plot is to show how closely the test sample (act1_xx) follows its 

parent class characteristics (FC_xx_row). Furthermore, to evaluate this characteristic a correlation 

table is calculated as in table 4.11, where it is very clear that the test sample weights (act1_xx) have 

the highest correlation with its parent class (FC_xx_row) where xx represents the same class for 

both sample and parent. The same class high correlation between FC_xx_row and act_xx shows 

that the network is learning class-wise property precisely. 

 

Table 4.11: Correlation matrix for weights as shown in Figure 4.19. The colored ones are the highest 

measured value for the sample-parent pair, higher being better. 

 FC_AD_row act1_AD FC_CN_row act1_CN FC_MCI_row act1_MCI 

FC_AD_row 1 0.215182 0.39671942 -0.14342 0.341976354 -0.19525 

act1_AD 0.215182223 1 0.04948163 0.786964 -0.187160957 0.630355 

FC_CN_row 0.396719425 0.049482 1 0.242651 0.309621325 -0.00694 

act1_CN -0.143417277 0.786964 0.24265146 1 -0.009627914 0.85748 

FC_MCI_row 0.341976354 -0.18716 0.30962132 -0.00963 1 0.275327 

act1_MCI -0.195245895 0.630355 -0.00693744 0.85748 0.275326654 1 

 

FCL represents an MLP Feedforward network with learnable weights and bias but mostly 

without activation function when used in CNN[10][11]. In FCL all inputs are mapped to output 
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unlike the convolutional layers which are used as a patch-based feature extractor, therefore weights 

and bias in FCL are highly responsible for predicting the result, and the weights themselves suggest 

which input has more effect (or gain) on output. Thus, the weight distribution pattern of FCL might 

indicate how a network behaves during the test phase. To interpret this, we plotted all trained 

weights of the final FCL (Input nodes=1728, output nodes= 3, connection= 5184) for all 3 classes 

as shown in figure 4.19. Later the correlation matrix is calculated as in Table 4.11, which shows a 

sample MRI’s features (or weights) calculated from the FC layer is closely correlated with its 

parent class. For instance, the test sample CN MRI’s FC weights i.e., act1_CN has correlation 

value [0.143417277 0.24265146 -0.009627914] with the trained network corresponding layer 

weights [FC_AD_row FC_CN_row FC_MCI_row]. As a result, the highest correlation value is 

0.24265146 for FC_CN_row implies, the MRI test sample has a higher affinity for ‘CN’ class 

weights during classification besides, it supports the logic behind why the network predicts the test 

sample label as ‘CN’.  

 

Figure 4.20: Bias value plot of final FCL layer from the baseline CNN model using different 

activation functions.  

 

After weights analysis, we were also interested to analyze the bias value. Hence, the idea is to 

check how much network is biased to each class via calculated bias in the final FCL layer. The 

obtained bias value is from the last FCL, which goes into SoftMax for probability calculation. We 
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know weights in the network directly influence the output value for input, whereas bias works as a 

regularization constant to make non-zero output when input/weights are zero and do not have a 

successive layer-wise influence on the output. Although it is difficult to exactly interpret the bias 

value theoretically, we assume the bias values close to each other cohort, can correlate how each 

other is numerically related. E.g., for Tanh trained CNN the obtained bias value is [AD CN MCI] = 

[-0.006021075 0.000316184 0.004943716], which means that AD (with negative value) is closely 

related to CN (small positive), being the difference of value between AD and CN greater than AD 

and MCI, which is against the general assumption that AD is closely related to MCI, both being a 

dementia condition. This might also indicate that the tanh network can easily differentiate between 

AD and MCI rather than AD and CN, which is not what it should be, the same is the case with 

Leaky-ReLU. Surprisingly this might be supportive for the classification task, as a higher 

difference in bias would make the network easier to calculate the class-wise probabilities scores. 

On the contrary, the proposed SGT networks (gamma4_adam and gamma4_sgdm) have a larger 

difference between AD and CN bias values, one being positive and the other being negative. While 

MCI is nearly 0 indicating a moderate status between AD and CN. The lower difference in MCI 

and CN bias values in the gamma4_adam network might suggest a higher difficulty in 

classification and generalization between CN and MCI, which supports the real scenario.  

Figure 4.21 represents the 3D t-SNE projection for visualization of reduced features from the 

final FCL. The features into the FCL are originally from multiple channels later reduced into a 

single channel, so are considered flattened features. However, each MRI’s flatten feature needs to 

be reduced to a 2D or 3D dimension for proper visualization. The distinctive clustered distribution 

in the projection means the network is learning class discriminant properties with good fitness.  



96 

 

  

         (a) ReLU activated CNN            (b) Leaky-ReLU activated CNN                   (c) SGT activated CNN 

Figure 4.21: 3D projection viewed at the same angle for the test set features reduced from 1728 

dimension to 3 using the t-SNE algorithm. Here each color dot represents an MRI scan, hence a 

total of 296 dots for 296 test MRI. The non-linear feature distribution shows the requirement of 

complex boundaries for classifications. Here the figure from left to right is obtained as the result of 

t-SNE distribution using ReLU, Leaky-ReLU, and SGT activation separately in the same baseline 

3D CNN model. Please see figure 21_app in the Appendix section for the 3D t-SNE projection of 

all individual layers in the gamm4_adam network.  

 

4.6.4 Conclusion 

DNN design and hyperparameter selection are task-specific with no single model or function 

that can work universally for all, however, after all the experiments and analysis we can conclude:  

• A novel channel-wise dynamic activation function is introduced with superior performance 

than standard ReLU and tanh function in 3D CNN for MRI classification.  

• We showed that the proposed activation function can diminish the negative gradient loss 

arising with the negative weights with less likelihood for vanishing or exploding gradient 

problem and also zero gradient problem unlike dead ReLU (please see derivative plots in 

Figure 4.2(c) and 4.2(d)) for shallower networks. 

• The analysis performed in histograms (Figure 4.16), showed negative weights are produced in 

a quite large measure during convolution and batch normalization operation hence, the idea of 

utilizing negative weights to relatively contribute to the gradient loss proved meaningful with 

the proposed activation function. 

• We tried to explore the pattern of weights and bias in the final FCL and how numerically they 
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might be related (Figure 4.19, 4.20, and Table 4.11) in regard to the classification task. This 

might be one of the few attempts in this field as weights can be optimized in numerous 

approaches and are difficult to analyze mathematically. 

Our idea is quite simple as well as interesting so we hope, our work could be helpful and 

meaningful for other researchers working in deep learning. In the future, more modifications are 

required for superior performance than all other activation functions and to work universally in all 

kinds of the image dataset. 
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CHAPTER 5 

Final Conclusion 
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5.1 Final conclusion and future works 

This chapter is for the conclusion of the thesis work. We will make a very brief concluding 

remark here. Our work in the field of deep learning is an attempt to make the MRI classification 

task easier and more customized. Though medical imaging modalities alone cannot give a decisive 

answer for disease diagnosis, it can certainly assist clinicians and radiologists to make the final 

decision. And maybe in the very near future, AI-based methods can be practically used with higher 

accuracy than human raters, thanks to the hard work of deep learning researchers. Interestingly it is 

important to note that, the architectures and algorithms we design or use from the available libraries 

keep on developing, so neither a single architecture can last forever nor work universally. However, 

the concept that comes along with those architectures and algorithms are passed to the newer 

generation so that, it will certainly build the base for better CAD designs. We sincerely hope our 

work can also be a small but meaningful contribution to the field of medical image analysis using 

deep learning.  

For future works, we consider the integration of the proposed layer into a single one with lesser 

parameters for a more simplified version. In doing this we need to properly design a single layer 

architecture for both the normalization and activation process, which in turn normalize the value 

and brings nonlinearity in the system with ‘activated’ features. Additionally, we can work on 

customizing layers in more complex DNN architectures like Transformers, GAN, LSTM, etc. in a 

similar way. For every architecture in DNN, weight update, optimization, and convergence are the 

most essential processes, therefore future algorithms should be designed to ease those processes. At 

the same time, our research should be directed toward making the algorithms simple rather than 

complex, because engineering is about making things simple not complex for any purposes. We 

hope we can do this in the future with more advancements in semiconductor devices. 
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5.2 Appendix 

Appendix I: With list of files for MRI and PET types in Table I along with demographic details 

in Table II. Additionally, a high-quality image for Figure 2.2 is presented.  

Appendix II: MATLAB implementation code is presented as C1, C2, C3. Confusion matrix of 

performance (as of Table 4.7) is also presented. The prepared dataset can be downloaded from 

https://drive.google.com/drive/folders/1G1fsK2VxaHkvtJJfvpiB3rMpiqCcdkB2?usp=sharing 

Appendix III: Related figures with equations and implementation code.  

  

https://drive.google.com/drive/folders/1G1fsK2VxaHkvtJJfvpiB3rMpiqCcdkB2?usp=sharing
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Appendix 

Appendix I 

Table I: Demographics details 

 

Table II: MRI and PET Types as discussed in Table 4.4 

MRI2 MPR-R; GradWarp; B1 Correction; N3; Scaled 

MPR; ; N3; Scaled MPR; GradWarp; B1 Correction; N3; Scaled_2 

MPR-R; ; N3 MPR-R; GradWarp; B1 Correction; N3; Scaled_2 

MPR; ; N3; Scaled_2 MPR-R; GradWarp; N3; Scaled 

MPR; ; N3 MRI1  

MPR-R; ; N3; Scaled_2 MPR; GradWarp; B1 Correction; N3 

MPR-R; ; N3; Scaled MPR; GradWarp; B1 Correction; N3; Scaled 

MPR; GradWarp; N3 MPR-R; GradWarp; B1 Correction; N3 

MPR; GradWarp; N3; Scaled 

MPR-R; GradWarp; B1 Correction; N3; Scaled 

MPR; GradWarp 

MPR; GradWarp; B1 Correction; N3; Scaled_2 

MPR; GradWarp; N3; Scaled_2 MPR-R; GradWarp; B1 Correction; N3; Scaled_2 

MPR-R; GradWarp; N3 PET2 

MPR-R; GradWarp Coreg, _Avg, _Standardized_Image_and_Voxel_Size  

MPR; GradWarp; B1 Correction; N3 Coreg, _Avg,_Std_Img_and_Vox_Siz,_Uniform_Resolution 

MPR; GradWarp; B1 Correction; N3; Scaled Co-registered, _Averaged 

MPR; GradWarp; B1 Correction Co-registered_Dynamic 

MPR-R; GradWarp; B1 Correction; N3 PET1 

MPR-R; GradWarp; B1 Correction Coreg, _Avg,_Standardized_Image_and_Voxel_Size  

 

 

MRI/PET TYPE Dataset type AD participants CN 

participants 

MCI 

participants 

MRI1 Male/Female 29/36 22/38 54/33 

Mean age 73.55/75.43 75.57/74.43 77.06/72.41 

BASELINE_MRI 65 60 87 

MRI2 BASELINE_MRI_SMALL 28 31 48 

PET1 BASELINE_PET_SMALL 102 109 337 

PET2 BASELINE_PET_ALL 136 109 337 
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Figure 2.2: Proposed 3D CNN architecture for the MRI/PET classification on the basis of the diverging area of the 

reception, which is referred to as ‘divNet’ 
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Appendix II 

C1: MATLAB code implementation for GAP layer used after convolutional layer as an 

alternative to Batch normalization layer. 

encoder_1 = [ 

     convolution2dLayer([3 

3],32,'Padding','same','WeightsInitializer','glorot'); 

     test_gauss(32,'g1',3); % batchNormalizationLayer for BN 

     leakyReLULayer('Name','ReLU_s1'); 

maxPooling2dLayer(poolSize,'Stride',2); 

] 

 

The defination for test_gauss is as below: 

classdef test_gauss < nnet.layer.Layer 

    properties(Learnable) 

        Alpha 

        Beta 

        Gamma 

    end 

    properties 

    hsize       

    end   

    methods 

        function layer = test_gaus(numChannels,name,hsize) 

            layer.Name = name; 

            layer.hsize=hsize; 

            layer.Description = "Scale factor" +numChannels + " 

channels";             

            layer.Alpha = rand([1 1 numChannels]); %3D rand([1 1 1 

numChannels]); 

            layer.Beta = rand([1 1 numChannels]);  

            layer.Gamma= rand([1 1 numChannels]); 

        end     

        function Z = predict(layer, X) 

            X_mean = double(mean(X,3));    % 

X(w1,w2,fiternumber,batchsize)  

            X_std = std(X,0,3); % For 3D 4th dimension is used for mean 

and std  

            X_F=(X-X_mean)./X_std; 

            h_size=layer.hsize; 

 

            h_f = [h]; % h_f = convn(h,h,'same')for 2nd gap layer 

            X_test=imfilter(X_F,h_f,'replicate');  

            Z=layer.Alpha.*X+layer.Beta.*(X-X_test)+ layer.Gamma;  

         end    
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        function [dLdX, dLdAlpha,dLdBeta,dLdGamma] = backward(layer, X, 

~, dLdZ, ~)        

         h_size=layer.hsize; 

         h = fspecial3('Gaussian',h_size); 

            X_mean = double(mean(X,3));    %X(w1,w2,fiternumber, 

batchsize) 

            X_std = std(X,0,3); 

            X_F=(X-X_mean)./X_std; 

            h_f = [h];   

            X_test=imfilter(X_F,h_f,'replicate'); 

        dLdX=(layer.Alpha.*dLdZ+layer.Beta.*dLdZ); 

        dLdAlpha = X.* dLdZ; 

        dLdAlpha = sum(dLdAlpha,[1 2]); % for 3D dLdBeta = 

sum(dLdBeta,[1 2 3]); 

        dLdAlpha = sum(dLdAlpha,4); % for 3D dLdAlpha = sum(dLdAlpha,5); 

        dLdBeta = (X-X_test).* dLdZ; 

        dLdBeta = sum(dLdBeta,[1 2]); 

        dLdBeta = sum(dLdBeta,4); 

        dLdGamma= dLdZ; 

        dLdGamma = sum(dLdGamma,[1 2]); 

        dLdGamma = sum(dLdGamma,4); 

        end      

    end 

end 

 

C2: Code snippet for feature visualization and mean response as in Figure 4.11 and Figure 4.12.  

To visualize the feature and get mean response of the proposed layer as in Figure 4.11.1 (b) to 

4.11.4(b), where X and Z represent the input and output to the predict function, respectively. 

... 

Load net,X,Z % Need to save net, X and Z layer as .mat file 

previously. 

feature=gather(X);  

x(:)=gather(mean(X,[1 2])); 

x=x’; 

z(:)=gather(mean(Z,[1 2])); 

z=z’; 

plot(x) 

hold on 

plot(z) 

hold off 

Dsize=size(X,4); %for 3D CNN size(X,5) 

for i=1:Dsize 

A=gather(X(:,:,:,i)); %for 3D CNN ‘i’ in 5th dimension i.e minibatch 

representing test samples  

B=gather(Z(:,:,:,i)); 

R (:,:,i)= corrcoef(A,B); 
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plot(R) 

end 

... 
 

C3: Code snippet implementation for generating feature map using Deep dream as shown in  

Figure 3.5. 

... 

load net; % Load Pretrained Network 

layer =22; % Last FC layer of the network 

trained_net.Layers(end).ClassNames(channels) 

% Generate detailed images that strongly activate these classes. 

I = deepDreamImage(trained_net,layer,channels, ... 

    'Verbose',false, ... 

    'NumIterations',50); 

figure 

montage(I) 

name = net.Layers(layer).Name; 

title(['Layer ',name,' Features']) 

  

 
Confusion Matrix for dataset (architecture) 

  

5-animals (b1b2b3b4) 5-animals (g1b2b3b4) 
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CIFAR-10 (b1b2b3b4) CIFAR-10 (g1g2b3b4) 

  

Caltech-102 (g1b2b3b4) OASIS_MRI_CDR (g1b2b3b4) 
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ADNI MRI_BASELINE (b1b2b3b4) ADNI MRI_BASELINE (g1g2b3b4) 

  

ADNI MRI_SMALL (b1b2b3b4) ADNI MRI_SMALL (g1g2b3b4) 
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Appendix III 

 

Figure 4.2(a)_app: Here the last sky blue graph represent the proposed-SGT function. 
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Figure 4.2(b)_app: Here the last purple curve represents the derivate of proposed-SGT function. 
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 (f) Input (g) Output SGT (h) Output ReLU (i) Output Leaky (j) Tanh output 

Figure 4.16_app: Histogram plot of 19th filter out of 64 filters for the input features against output 

using various activation functions for a single MRI input plotted for different layers i.e 4, 8, 12 and 

16 (see Table 2 for layers and Figure 4 for all channels histogram)  
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Figure 4.21_app: 3D t-SNE projection of all individual layers in gamm4 network. Here each red 

dots represents an AD subject MRI, blue dot represents MCI and green dot represents CN MRI. 

 

Matlab code implementation for layer_gamma3d layer as in Table 4.6 

classdef layer_gamma3d < nnet.layer.Layer   
    properties (Learnable) 
        Alpha 
        Beta 
    end 

           
    methods 
        function layer = layer_gamma3d(numchannel,name) 
            layer.Name = name; 
            layer.Description = " Proposed SGT layer with" +numchannel 

+ " channels"; 
            layer.Alpha = rand([1 1 1 numchannel]);  
            layer.Beta = rand([1 1 1 numchannel]); 
        end 

        
        function Z = predict(layer, X) 
              X(isnan(X)) = 0.1;  %for NaN case 
              layer.Alpha(isnan(layer.Alpha))= 0.1; 
              layer.Beta(isnan(layer.Beta))= 0.1; 
              layer.Beta=abs(layer.Beta); 
              layer.Alpha=abs(layer.Alpha); 
              X_F= 0.1.*(power(complex(X),complex(layer.Alpha,0))); 
              check_X = 1.1*(power(complex(X),complex(layer.Beta,0))); 
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              X_F(X>0) = check_X(X>0); 
              Z = tanh(real(X_F)); 
        end 

        
        function [dLdX,dLdAlpha,dLdBeta] = backward(layer, X, ~, dLdZ, 

~) 
        X(isnan(X))= 0.001;    %for NaN case 
        dLdZ(isnan(dLdZ))= 0.001;     
        layer.Alpha(isnan(layer.Alpha))= 0.001; 
        layer.Beta(isnan(layer.Beta))= 0.001; 
        layer.Beta=abs(layer.Beta); 
        layer.Alpha=abs(layer.Alpha); 
        X_loss = 0.1.*layer.Alpha.*real(power(complex(X),(layer.Alpha-

1))); 
        dLdX = power(sech(X_loss),2).*dLdZ; 
        X_loss2 = 1.1*layer.Beta.*real(power(complex(X),(layer.Beta-

1))); 
        check = power(sech(X_loss2),2).*dLdZ; 
        dLdX(X>0) = check(X>0); 
        dLdAlpha = 

0.1.*real((log10(complex(X))).*(real(power(complex(X),complex(layer.A

lpha,0))).*(X<0))).*dLdZ; 
        dLdAlpha = sum(dLdAlpha,[1 2 3]); 
        dLdAlpha = sum(dLdAlpha,5); 
        dLdBeta = 

1.1*real((log10(complex(X))).*(real(power(complex(X),complex(layer.Be

ta,0))).*(X>0))).*dLdZ; 
        dLdBeta = sum(dLdBeta,[1 2 3]); 
        dLdBeta = sum(dLdBeta,5); 
        end 
    end 
end 

 

Sensitivity = TP/ (TP + FN) = (Number of true positive assessment)/ (Number of all positive assessment) 

Specificity = TN/(TN + FP) = (Number of true negative assessment)/(Number of all negative assessment) 

Accuracy = (TN + TP)/(TN+TP+FN+FP) = (Number of correct assessments)/Number of all assessment) 

Cohen’s Kappa score (𝞳)   
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