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ABSTRACT

Mechanical properties of bio—based plastic PA11l

and 1onomer blends

Jeong, Yoon-Gwan
Advisor : Prof. Kim, Joon—-Seop
Department of Advanced Materials Engineering,

Graduate School of Chosun University

In this study, the mechanical properties of PAl1l and poly(styrene—co-styrene—
sulfonic acid)(PSSA), poly(styrene-co-methacrylic acid)(PSMAA), poly(methyl
methacrylate-co-methacrylic acid)(PMMA-MAA) poly(ethyl acrylate-co—acrylic
acid)(PEA-AA) ionomer blends were investigated. In the first part of the work,
ionomers neutralized with Na+ were blended with PAI1l at 5, 10, 20, and 30
wt% contents, and the tensile strengths of the blends were measured with a
Universal Testing Machine (UTM). It was seen that the shapes of the
stress—strain curves of the PA1ll blends were different depending on the type
and content of the ionomers. In addition, for PA-EANa blends, strain hardening
was observed regardless of the ionomer content. On the other hand, the
Young’'s modulus of the PAI1l blends, except for PA-EANa, increased as the
lonomer content increased, and it was found that the data seemed to be fitted
with Guth equation. This meant that the PA-SSNa, PA-SMNa, and PA-MMNa
ionomers behaved like filler in the PAIll matrix. Moreover, the Nicolais—Narkis
equation was used to evaluate the interfacial interactions between PAl1l and the
ionomers. As a result, it was observed that PA-SMNa and PA-MMNa had
good interfacial interactions because the ionomers were well dispersed in the
matrix of PAIll. However, PA-SSNa and PA-EANa showed poor interfacial

interactions because the ionomer themselves were aggregated in the matrix of

- vii -
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PAl1l due to strong interactions between ion pairs of the ionomers. In the
second part of the work, the ionomers neutralized with Na', Li’, and Zn* were
blended with PA1ll at the same content as in the first study, and the tensile
strengths of the blends were measured. Again, it was found that PA-EAM’
underwent strain hardening even when the cation types of the ionomers were
changed. In addition, the Young’s modulus of the blends, except for PA-EAM’,
increased regardless of the type of cations of the ionomers. This suggested that
PA-SMM', PA-MMM', and PA-SSM" acted as filler in the matrix of PAll
even if the cation types of the ionomers were changed. Also, as in the first
study, the interfacial interactions between PA1ll and the ionomers were
calculated using the Nicolais—Narkis equation. It was found that the interfacial
interactions were different depending on the cation types of the ionomers. In
conclusion, the role of the ionomer (as filler or plasticizer) in the PAll and
ionomer blends depended on the ionomer type. On the other hand, the strengths
of the interfacial interactions between the two polymers in the blend depended
on the cation type of the ionomers. Finally, it was found that the PA-SMNa(30)
blend was a blend that could utilize the advantages of i1onomer while
maintaining the mechanical properties of PA1l (strain, stress, Young’'s modulus,

interfacial interaction) to some extent.

- viii -
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T AR Alole] EREE E oAbk o= dEAEE o] &3t
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Scheme 3 Types of ionic interactions leading to miscibility enhancement:
(a) hydrogen bond-assisted ion-ion, (b) identical ion pair-ion

pair, (c) ion—dipole and (d) ion—coordination
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tA % PALLELA -‘%ﬂlziv} ghebdel Aol M Eo] 40 W, SHo] 23 W F
bt ®askg

ol

skHA Di Lorenzo < PLA7Z}F ofd o2 ARE3NA ZEA<S polybutylene
succinate(PBS)¢} @l =3t SEM ©o|n[A & Fa PAll Ed=9] odHS 213
= A= &30l A ol A ASs & g AT E=Z UTMOo=E 1%
AEE F439Ed PALIPBS Edl=dA PBS daFo] 20 wt% olstd 74l
= =% PAILY SE-HIE S 7Y dASAR PBS ko] 40 wtd% ©]
B

A= F4g PAILEY HSHS 25 %, g oMo WPgES 10 %

o]9]o .= Mancic &+ PAllel HEO]E WX FH (titanate nanotubes)&
wt% H7bstady 3 2%7F &£5¢ PALIEY 19 T 78S doldidith &
3l Dynamic Mechanical Thermal Analysis(DMTA)2} UTMS o]-&3] A% €A
3 9ES Tatded 47 35 %, 26 % F7FeFtE® 3 Panaitescu 52 A
292~ YA fr(cellulose nanofiber, CN)E PAllel| 5 wt% =% H7bstdH
=8 PALLS Hls) FES 40 %, QA EE 35 % TR Raskdh’
d Bai &< PAllel| g4y =35 B (carbon nanotube, CNT)E 0.2 wt%i E3=
stol= PALLS] %7 ZAw7t 4% PAIINT 54 % Z7180E AL Gopy ik’

N\

S ]
|

r
|

s
(PSSA)E LiIOHZ F3tA17] PSSLi olo]le S EdEA 7YY wpx] A&7}
dojt AAH BHAoUY FEldo] &7t ARE Fd o|Fdts AOoE Hof o]
ArE E3l4S 7Hx L gt Bastdtr? 3 Deimede 5& PSSA ofo] &

H 7L ol PA11¥ sulfonated polysulfone(SPSF)E NaOH=Z HE F3HA] 7

)

Molnar®} Eisenberg= PA113} poly(styrene-co-styrenesulfonic acid)

SPSFNa ofo] @& Eal=algitil £54L SPSFNael &4t 79 Falwrt
Eobd 5 S F/h@Tkn MuSHArk? ol % PAIL BA=E o WA A7}

A Y0 sk PAILF} olo]oxn] HAE A= RES A3y B
AFo A= PSSA, poly(styrene-co-methacrylic acid)(PSMAA), poly(ethyl
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acrylate-co—acrylic acid)(PEA-AA), poly(methyl methacrylate-co-methacrylic
acid)(PMMA-MAA) &5 AE NaOHZ £33k ool w-m 9} PAIIE Ed =3}
of UTMO.2 AW EE SHsta FEFHY JES &3 S A 2HS dof

Bz g

Oll

2.2. 49

PSMAA F5dA+= 7 ZF7F3stel AA®  styrene(Kanto Chemical) ¥}
methacrylic acid(Junsei)S @& A2 3}l benzoyl peroxide(BPO)(Acros)E 7l A Al
2 ARE3Ske] 60 °ColA A gtz Froz FAYPEH FF ol ALE
H w=EA o] ¥k8-A v = styrene(r;) = 0.22 ¥} methacrylic acid(rz) = 0.64 ©] It}
B RS g AgEeS T A 249 Htd o] 01 oldvt HEE J=
g 4 % "YAH. ¥8-o] it g A4S tetrahydrofuran(THF)(Daejung) - =
7 5, HEuQl methanol(OCI)Oﬂ Hojreg] HAES Al ogA

Z

PSMAA &S AE 100 °C &0l A 24 A|F &<k %

‘:’Lo?‘f

A

v}

ok
]l -

al
&

THA= T SHFSF AAE ethyl acrylate(Junsei)@t acrylic
acid(Junsei) & @ &A= AH&s™ BPO% benzene(Daejung)E #H2F 74 A1 ¢k &
2 AREete] 60 °ColA A gdZd &9 S-S ol WHEATh GFA S v
A W& ethyl acrylate(rl) = 1.02 183 acrylic acid(ry) = 0.91 o]Ht}. w34
H] THE ABEe F=aA| A9 HTEAo] 0.1 ol HEE =y o

= > H
9ol oF 50 %ol AJrE® Whgo] i & fdS THFRE sXA# I, o] &
%_ o

ok _i%
of\ o

H]-g-ujl Q1 n—hexane(Daejung)Oﬂ Atk 53 PEA-AA

g A
FA = 60 °C L2olA 24 A|ZF FF M- AZ

PMMA-MAA F58A+= #Y =739 A A¥ methyl methacrylate(Junsei) 2}
methacrylic acidE ©#EAZ A} BPOE 7MAAE AM&ston =&
THFE AF&stRom 60 °ColA A+ stz & 353 Wyo= st

ofo
ol
—_
=
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It ethyl methacrylate(r;) = 1.25, methacrylic acid(rs) =

8 oW, Hk-gA Hlo] sk WM& FeA A vl 0.1 o]t

=t o] Aol oF 30 %Ak WESo] & &2 H[EulQl methanol?l
o)

RaL, 53 JHES 100 °C 204 24

() _m
g
ol
=
Lo

9

oo
oX
=
rir
3

PSSA Fs @A+ ¥HWIAH Makowski ¢ WHE ©]&3t9] polystyrene(PS)<
EEFA A DEAGS FEFAIIE AR dElA DolRw, WA PSE
1,2-dichloroethane(Daejung)oll *=9°]a2 60 °CZ 7}€3 & sulfonic acid(OCI)2}
acetic anhydride(Ardrich)E &3sle] THE &EE3) A|8E o] S0 HH3] #H7}

02 60 & ¢ w¥A T T $ methanolS ©] &N HIbsto] whE&

L

[U

AAA 715 #FE Eoll 895 AA3] "ojrmy 1,2-dichloroethanes S 2A17]= ®
Moz &S AASE IAHAERZ PSSA7F dojA = o] AAES A F 557
T2 2 A¥ ol AALS AT 53 PSSAE 100 °C 284 24 A|tH
T AF-AEA AL

2 A AFE-FH = PAlI(Ardrich)2 AASte] AFEsA=d WA PAILS
| AHe "ol
AllS 90 °C 2.E9

trifluoroacetic acid(Daejung)ell 2o =<l

] -1 =
trifluoroacetic acidE& #|Asta HZEQ PAILS 4t ©

A 24X 7+ ZoF W Azsrg T

;—U

2
ol
2

222 %4 2 F3

FAe FTFAE A FE7] TEmol%)E &7 & €A Jo] nEAE
benzene/methanol(9/1, v/v) &8l 5o]il phenolphthalein A Al ¢F& 22 5

0.050 N NaOH/methanol £o =z HAIAT. HAHS PSMAA, PEA-AA,
PMMA-MAA, PSSA T gA=9 A 287 v+ 44 6.2, 6.0, 6.6, 54 mol%
oAt FFTFAEL A FEVE 100 % T3] s LI Fo ARE
benzene/methanol(9/1, v/v) &g o] =< ¥ 0.20 N NaOH/methanol &8

H
7tstdth. ol#H Al F3tE olol e ES 72 PSMANa, PEANa, PMMNa, 1]
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PSSNaghil SH4lth 71 ¥ Z87F ¢ ool ewn] ol on WaE o g3}
K

al
o FAAZXAZI ¥ 100 °C (PEANa o}o] 2 x=m 9] 60 °C) L EoA 24 A|ZF
= s

A AT st B 1 &S MR 9= 78RR EdEE wE7] 93§ PAlle]l ¢
A3 /e Fodof] FA v &S YE Fo] olo]o - E YW wWHHA|A fIA AT
24 =

Al = Ay "W or wE7] 93] minimax
moldE A3ttt AlE AdL Alsd uel 200-250 °ColA Aastiom whs
=45 913 dumbbell & EH A tHScheme 4). A]H 9]

5 2
1 2ol Zol(LO)7F 37 mmAaL gF2 £ A (L), WrHl(W) 3

a7l AY 2l
FAME 247 22 mm, 4.8 mm$ 1.6 mmo| Ut Z A= oA A4S 5 9]
= "oy AFEAAE Fol7] fsiA 2 As F 7 7 oY AlES FHl e

—» S

—
L

_

- 10—

Scheme 4 Specimen dimensions
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mol%), PEA-AA(6.0 mol%), PMMA-MAA(6.6 mol%), PSSA(5.4 mol%) ©}o] L
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Figure 1¢]
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UERH A Table 191
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=
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ol
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718} 71e71 = AL
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0|

KN
=
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KN
=

S (stress)
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=
=

A Figure 19| y

olel e g

of e B% WMetzRE AsdE Aol

N
piid

A (ductile), # 4 (brittle) Z12] 31 ¥4 (elasticity)e] ATt 1%
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R

7o)

]_

aE

Holth o 7] A]

S
=

&4 (yield point)
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oJ
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)

—
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]

A el
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=
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fi%e)
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0|/
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fite)
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B
olo
)
A

0|/

e
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¥

17} Z7hetA

]
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S

B

region)©| 2}l

i

HAl = A

7}
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9=

HE|t}7F =2 o] A (crazing)o] LAY E o

olo

se AAol A
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o 1=
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70

PA-11 + PSMNa blends (a) | PA-11 + PEANa blends - (b)
60
50 K\ s =" A0
1\“—”-_:___:."/ //'h 1 -
IR —— :‘// - |J
40 YN\ =<
30
— PAN
-2  _____ 5 wt% PA-11
@© _ tow% y  ———— 5 Wt%
o 10 k ———em 20 Wt% —— — 10Wt%
= —— —- 30wt% ———- 20 wt%
~—" —_— — 50 wt% —_— —- 30Wt%
7)) 0 ] ] 1 ] ] ] ] ]
8 PA-11 + PMMNa blends (C) PA-11 + PSSNa blends (d)
—
5 60 I B
K\
50 17/ -
Y /\
: v
40 e
30
20 PA-11 [ PA-11
_____ 5 wt% ————— 5wi%
10l — — — fowt% | — — — 10wt%
—_——————— 20 wit% —_——- 20 wt%
—_—— —- 30Wt% —_—— —- 30Wt%
O 1 1 1 1 1 | 1 1

0O 50 100 150 200 O 50 100 150 200 250
Strain (%)

Figure 1. Stress-strain curves of PAll blends with (a) PSMNa, (b) PEANa,
(c) PMMNa and (d) PSSNa ionomers.
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50 wt% XE3e3F Eal=o] ¢l Figure 1-(a) TP Z A= Holx &S A
Table 1914 @ Ed=9] Hfg=S ZolRH 50 MPaZhA]

HPES 6 %7HA Eojuvn ul2 g =dsittes 1S 4 7 9

% EA7E HolFE AP A0 Aoty § AAEEFEH &

e o] ghafo] WolALrE Ed=

(e}
HE 55 Ho]FHa nt2 gudcts Apaolt)

1o,
e
ox
o,
o
%
2
P\
rlo

Table 1 Maximum stress, strain at break and Young’'s modulus
of PAll+Na-ionomer blends

Denotation Ionomer Maximum Strain at break Young’s
of blends wt% Stress (MPa) (%) modulus (MPa)
PA11 0 46.0 £ 0.9 186.7 £ 14 8975 + 63.0
5 50.3 £ 2.0 1865 = 19.0 9679 + 336
10 477 + 34 2074 + 30.9 1025.2 = 354
PA11+PSM
Na 20 51.3 + 2.1 1445 + 245 12524 = 35.1
30 50.7 £+ 14 1157 + 145 12949 + 414
50 54.3 + 5.2 88 + 15 1609.1 = 66.9
5 68.3 + 4.1 150.2 = 4.7 997.0 + 26.6
PATI+PEA 10 63.0 £ 29 1385 £ 6.2 799.0 + 52.0
Na 20 46.7 £ 09 110.6 £ 20.9 802.2 + 24.8
30 303 + 2.8 97.8 + 180 486.4. + 389
5 456 + 3.0 1787 £ 19.1 1001.7 = 26.4
PA11+PMM 10 53.0 = 4.7 51.3 + 26.3 11364 + 52.3
Na 20 5l.1 £ 16 35.0 + 142 1190.2 + 69.5
30 51.2 £ 15 278 + 49 12422 + 482
5) 474 + 40 186.0 £ 32.6 924.7 + 23.3
PA11+PSS 10 456 + 1.1 1542 £ 7.2 1107.7 + 1838
Na 20 36.6 + 5.3 40 + 1.2 12039 + 52.3
30 37.0 £ 4.7 3.8 £ 0.7 12595 + 275
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Before

PSMANa 10 wt% PSMANa 20 wt% PSMANa 50 wt% |PSMANa I

Figure 2. SEM images of the surface of neat PAll, ionomers and PAll+Na-ionomer blends

After

before and after tensile samples.
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FFol sojud uE& HAol A3 ofeleww HU fketA fHaidteE AS
o4 F Jded ole A T3 PAI1F PSMNa ofo] @ = o] A3 zhgo] thE o}
ole e FszgHtt Zstr] witoltt, PMMNa ofo] 2w el 7o +=
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el Aol WP g FASA Fase] 0 %ol ARG mALowm
PA11+PEANa E@l=o|A = PEANa® 73 &/ Yol stdzlelx o] Wy E o
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Figure 7. Stress—strain curves of PAll blends with (a) PSM, (b) PMM (c)

PSS, and (d) PEA ionomers.
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Table 2 Maximum stress, strain at break and Young's

modulus of PAll+ionomer blends

Denotation of Maximum Stress Strain at break  Young’'s modulus
blends (MPa) (%) (MPa)
PA11 46.0 £ 0.9 186.7 + 1.4 897.5 + 63.0

PA-SMZn(5) 451 £ 1.1 1732 + 165 10972 + 14.8

PA-SMZn(30) 426 £ 1.1 374 £ 87 1171.0 + 32.3

PA-SMLi(5) 419 £ 2.7 1025 £ 10.7 1019.3 + 21.0

PA-SMLi(30) 426 £ 1.5 6.5 + 0.3 12286 + 23.0

PA-SMNa(5) 50.3 £ 2.0 186.5 + 19.0 9679 + 336

PA-SMNa(30) 50.7 + 14 1157 + 145 12949 + 414

PA-MMZn(5) 478 + 2.9 194.3 + 15.7 916.7 £ 11.6

PA-MMZn(30) 364 £ 25 41 + 0.7 12394 + 472

PA-MMLi(5) 499 + 2.1 1524 + 6.3 934.8 = 224

PA-MMLi(30) 429 + 2.7 57 £ 14 13084 + 44.0

PA-MMNa(5) 456 = 3.0 1787 + 19.1 1001.7 + 264

PA-MMNa(30) 51.2 + 15 218 £ 49 1242.2 + 48.2

PA-SSZn(5) 471 £ 24 1789 + 31.6 11571 + 23.0

PA-SSZn(30) 479 + 45 40 £ 1.1 13756 + 25.2

PA-SSLi(5) 504 + 1.9 205.3 + 10.3 1149.1 + 24.2

PA-SSLi(30) 51.1 + 2.8 6.2 £ 2.1 12485 + 264

PA-SSNa(b) 474 £ 4.0 186.0 + 32.6 9247 £ 23.3

PA-SSNa(30) 370 £ 4.7 3.8 £ 0.7 12595 + 275

PA-EAZn(5) 57.0 £ 35 129.3 + 180 815.1 + 41.0

PA-EAZn(30) 2719 + 14 96.1 + 13.6 491.2 + 294

PA-EALIi(5) 584 + 3.6 156.4 + 12.3 9046 £ 22.0

PA-EALi(30) 306 = 2.2 1154 + 105 470.8 £ 24.8

PA-EANa(5) 68.3 + 4.1 150.2 + 4.7 997.0 £ 26.6

PA-EANa(30) 30.3 £ 2.8 97.8 + 18.0 486.4. + 389
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Maximum stress (MPa)
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Figure 8. Maximum stress versus weight? of ionomers in PAll+ionomer

blends neutralized with various cations.
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Figure 9. Young’s modulus versus weight% of ionomers in PAll+ionomer

blends neutralized with various cations.

_49_

Collection @ chosun



250
PA-SMM* PA-MMM® PA-SSM" PA-EAM*
200

150 -

100

Strain at break (%)

50

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Weight % of ionomers

Figure 10. Strain at break versus weight% of ionomers in PAll+ionomer

blends neutralized with various cations.
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Figure 11. Relative Young's modulus of PAll+ionomer blends fitted with

Guth and modified Guth equations versus volume fraction of

ionomers.
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1.4

Volume fraction of ionomers

Figure 12. Relative strength of PAll+ionomer blends fitted with Nicolais-

Narkis equation versus volume fraction of ionomers.
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Figure 13. Fracture surface after tensile strength test of PA1l blends.
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Abstract: In this study, the effects of the degree of neutralization and cation type on " —matrix B 2
water absorption of poly(styrene-co-methacrylate) ionomers were investigated. It @ ¥

was found that the water absorption of the ionomer increased as the degree of neu-
tralization increased. It was also observed that for the same ion content, fully neu-
tralized ionomers had less water absorption than partially neutralized ionomers. In
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the case of ionomers neutralized with various cations, water absorption increased T -
when the type of cation was changed from Li* to Na*, whereas the water absorption : q .
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omers absorbed less water than K*-neutralized ionomers with a cation size similar 5 P T
to Ba?*. Based on the above findings, it was concluded that the water absorption of 149 A k)d " w ot

ionomers could be understood only by simultaneously considering the number and size
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of multiplets, the plasticization of multiplets, and the contact surface area occupied by the polymer chains emanating from the multiplets.

Keywords: ionomers, multiplets, water absorption, morphology, neutralization degree, cation, ionic aggregates, plasticization, contact

surface area.

1. Introduction

lonomers refer to copolymers, in which less than 15% of the
repeating units have ionic groups. The physical properties of
ionomers can be controlled by changing the type of monomers,
the content of ionic repeating units, the degree of neutraliza-
tion of acid groups of the copolymers, and the type of neutraliz-
ing agents.' The above conditions change the number, size, and
structure of ionic aggregates (ie., multiplets) of the ionomers,
and these morphological variations change the physical prop-
erties of ionomers, such as the degree of water absorption of
ionomers.

Studies on the water absorption by ionomers have been car-
ried out primarily on polytetrafluoroethylene (PTFE) ionomers
developed in the late 1960s, and since then, various morphology
and mechanism models have been proposed to explain the water
absorption by the PTFE ionomers.”** For water-absorbed crystal-
line poly(ethylene-co-methacrylate) ionomers, it was assumed
that water molecules were present in both the amorphous regions
of the polymer matrix and ionic aggregates.'® In addition, it was
proposed that the hydrated water molecules formed a primary
hydrated shell surrounding the ionic aggregates, and the remain-
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ing water molecules were present near the shell, filled with
water.'® For water-absorbed amorphous Na-neutralized poly(sty-
rene-co-methacrylate) PSMA ionomers, it was found that at low
ion content (eg. < 6 mol%) the number ratio of water molecule/
ion pair was ca. 1, but at higher ion content, it increased.”

Water-absorbing polymers and ionomers are currently being
used as fuel cell membranes (e,g. Nafion®), and their applica-
tion range can be extended to cosmetic containers, food contain-
ers, and containers for plant care that require moisture retention
for a certain amount of time, and hydrogels for tissue engineer-
ing application, contaminant removal, and drug delivery.¢%*
This situation suggests that the study of water absorption of
ionomers is timely. Therefore, recently, our group investigated
the active water absorption behavior of polystyrene ionomers.**
It was observed that the amount of water absorbed by the ion-
omer increased with increasing ion content, implying that the
cluster formation was an important factor, determining water
absorption behavior of the ionomers.

Only a few studies have been conducted on the effects of the
degree of neutralization and the type of cations on the water
absorption of ionomers. In 1979, Takamatsu and Eisenberg stud-
ied the effect of water temperature (ca. 20-80 C) on the sec-
ondary absorption of PTFE ionomer with varying degrees of
neutralization (ca. 10-60%) in basic and salt solutions.” It was
found that the degree of neutralization and water temperature
affected the structural rearrangement of the polymer chains in

Macromol. Res., 29(11), 810-817 (2021)
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the aqueous solution. In addition, it was also reported that the
diffusion of water at a low neutralization degree followed Fick’s
law of diffusion, while the absorption at a high neutralization
degree did not follow the law. Thus, the authors suggested that
atlow neutralization levels the segmental mobility of the chain
was relatively high, whereas at higher neutralization levels the
segmental mobility of the chain was limited due to stronger
intermolecular interactions, leading to the different water absorp-
tion mechanisms.

Until recently, our group studied whether polystyrene iono-
mers could be used as self-healing polymers. One of the research
topics was the effect of neutralization degree and cation type
on the physical and mechanical properties of styrene ionomers.
Thus, to make the scope of our recent research a little wider, in
this study, we tried to find out how the degree of neutralization
and type of cations affected the water absorption of styrene-
based ionomers. lonomer samples were prepared by varying
the neutralization degree of poly(styrene-co-methacrylate) iono-
mers and by changing the types of cations used for neutraliza-
tion. Then, we investigated the initial water absorption rates
and maximum water absorption degrees by a swelling method.
We also conducted small angle X-ray scattering (SAXS) experi-
ments to investigate the relationship between water absorption
of ionomer and ionomer morphology.

2. Experimental
2.1. Polymer sample preparation

Poly(styrene-co-methacrylic acid) (PSMAA) copolymers used
in this study were made using the procedure described else-
where.” The contents of acidic units of the PSMAA copolymers
were 6.1, 11.0, 12.2, and 21.3 mol%. First, to obtain ionomers
having various neutralization degrees, a PSMAA copolymer hav-

PS MAA MANa
(|3H3 C|3H3
+CH2—CHHCH2—C‘]—(—CH2—C+
89 | | 1y
COOH COO'Na*

neutralization 0% :x=11.0 y=0

20%:x=88 y=22

50%:x=55 y=55

80%:x=22 y=88

100 % :x=0 y=11.0
PS MA

CH;

|
J[CHZ—CHHCHZ—C+
x l Y

COO™ M*(M?*)
M* : Na*, Li*, K*, Cs*
M2t : Ba?*

Scheme 1. Chemical structures of the ionomers used.
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ing 11.0 mol% acidic units was dissolved in a mixed solvent of
benzene/methanol (9/1 v/v), and a NaOH/methanol solution
was used to neutralize the acid groups of the copolymer. The
neutralization degrees were 0, 20, 50, 80, and 100% (chemical
structures of the ionomers are shown in Scheme 1). On the other
hand, to prepare the ionomer containing various cations, PSMAA
copolymers having 6.1, 12.2, and 21.3 mol% acidic units were
dissolved in a mixed solvent of benzene/methanol (9/1 v/v),
and then the acid groups of the copolymers were neutralized
with methanolic LiOH, NaOH, KOH, CsOH, and Ba(OH), solutions
(chemical structures of the ionomers are shown in Scheme 1).
To obtain the neutralized ionomers as powdery samples, the
ionomers were freeze-dried and, then, vacuum-dried further at
ca. 100 C for 1 day. To prepare coin-shaped specimens for water
uptake studies, powdery ionomers were compression-molded
ata pressure of ca. 25 MPa and temperature of ca. 200-300 C,
depending on the ion content of the ionomers. Then, the speci-
mens, the size of which was ca. 13 mm (d) x 1.3 mm (¢), were
annealed under vacuum at ca. 100 C for 1 day prior to the water
uptake experiments. The sample notation here is x-y-z, where x
is the type of cation, y is the acid or ion content (mol%), and z is
the neutralization degree (%).

2.2. Water uptake measurements

Prepared sample specimens, three per each ionomer, were placed
in vials containing distilled water (ca. 20 C and 30 mL). After a
certain period of time, the specimens were removed from the
water, and the water on the specimen surface was removed
using a light-duty wiper, and then the specimens were weighed
using an analytical balance. Immediately thereafter, the speci-
mens were returned to the water until the next measurement,
and the same procedure was repeated. To determine the water
absorption degree of the ionomers, the weight ratio of the ion-
omer sample that absorbed water to the dried ionomer sample
was determined as a function of the time the ionomer was
immersed in water. The weight ratios obtained from the three
samples were averaged.

2.3. Small-angle X-ray scattering experiments

The morphological changes of the dried and water-absorbed
ionomers were investigated using a small-angle X-ray scatter-
ing (SAXS) technique. The SAXS experiments were performed
on the Pohang Accelerator Laboratory 4C-SAXS Il station (3.0 GeV).
The energy of the beam was 10.00 keV, and the type of the crys-
tal used was DCM Si (111). The distance between the detector
(Rayonix 2D SX165) and the specimen was 1 m. The intensities
of the SAXS peaks were obtained in the g (scattering vector)
range of ca. 0.02 to 0.6 A™.,

3. Results and discussion
3.1. Effects of neutralization degree

Figure 1 shows the ratio of the weight of the partially and fully
neutralized Na-11.0-z ionomers that absorbed water to the
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Figure 1. Weight ratio of partially and fully neutralized Na-11.0-z ion-
omers after and before absorbing water as a function of water-immersing
time. The error bar indicates a standard error.

weight of the corresponding dried ionomer as a function of
water-immersing time. At this point, it should be noted that
polystyrene (PS) homopolymer did not absorb water due to its
non-polar nature: therefore, the experimental results are not
shown here.

It can be seen that all Na-11.0-z ionomer samples with varying
degrees of neutralization show a sharp increase in the water
absorption as the time increases from the time of immersion in
water to ca. 100-300 h, depending on the neutralization degree;
after that, water absorption occurs slowly over time, eventu-
ally reaching a state in which no more water absorption occurs.
In the case of the acidic Na-11.0-0 copolymer, the maximum
weight gain of the copolymer by water absorption is only ca. 0.5%,
compared to 0% for PS, indicating only a very low water absorp-
tion by the carboxylic acid units of Na-11.0-0 copolymer. It is
also found that as the neutralization degree (z) of the ionomer
increases from 0% to 100%, the initial absorption rate at which
the weight ratio of Na-11.0-z ionomers increases rapidly by
water absorption (hereinafter referred to as the initial absorp-
tion rate) and the maximum weight ratio of the Na-11.0-z iono-
mers increase. Also, it is seen that the sizes of the error bars for
the average values of the data increase with the degree of neu-
tralization. This is a natural result as the amount of water
absorbed by the ionomer increases with the degree of neutral-
ization of the ionomer.

On the other hand, the transparency of the ionomer sample
decreased with the amount of water absorbed. When Na-11.0-
100 ionomer sample on a paper with a grid pattern was photo-
graphed (Figure 2), the ionomer became opaque with increas-
ing immersion time to 72 h. At 24 h, the ionomer became almost
completely opaque, and thus, the grid pattern on the paper
underneath the ionomer sample was no longer visible. As men-
tioned before in the previous study,* this is firstly different
from the refractive index of the polystyrene matrix and that of

© The Polymer Society of Korea and Springer 2021
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Figure 2. Transparency of the Na-11.0-100 ionomer sample soaked in
water for an indicated time.

the aqueous phase (1.599 vs. 1.335, respectively, at A=532 nm),
and secondly, a large phase separation (a phase containing mainly
polymer chains and a phase containing a lot of water mole-
cules) had occurred.

Figure 3(a) shows the initial absorption rates of Na-11.0-z
ionomers of varying neutralization degrees, and Figure 3(b)
shows the ratios of the weight of the ionomer soaked in water
for 2,300 h to the weight of the corresponding dried ionomer
(hereinafter referred to as the maximum water absorption). In
Figure 3, itis seen that the initial water absorption rate increases
linearly from ca. 3.3 x 10* h* for Na-11.0-20 ionomer to ca.
1.11 x 10 h* for Na-11.0-100 ionomer. In addition, the maxi-
mum degree of water absorption by the ionomer increases
from ca. 1.01 for Na-11.0-20 ionomer to ca. 1.13 for Na-11.0-100
ionomer, which is due to the increasing amount of ionic groups
that are much higher hydrophilic than acid groups. According to
our previous work on the water uptake of Na-neutralized PSMA
ionomers, the initial absorption rates and the maximum water
absorption degree also increased rapidly with increasing ion
content;?* the data are also included in Figure 3. At this point,
there is something to mention. In the previous study, data were
obtained from ionomers immersed in water for 629 h. Thus, to
compare the data obtained in the previous experiment with the
data obtained in this experiment, among the data obtained in
this study, the data of the ionomers soaked in water for 644 h, a
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Figure 3. (a) The initial water uptake rates and (b) the maximum
weight ratios of the ionomers absorbed water to dried ionomers as a
function of neutralization level. The data (gray symbols) obtained
from our previous work are also included.**
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similar experimental condition to the previous experiment, are
also shown in Figure 3. Comparing the two data sets, we find
that the maximum water absorption degree of partially neu-
tralized Na-11.0-50 ionomer is relatively higher than that of fully
neutralized Na-6.1-100 ionomer. This might be because in the
case of partially neutralized ionomers, the relatively hydrophilic
carboxylic acid groups are present in the multiplets with ionic
groups and act as “multiplet plasticizer” through the H" & Na*
exchange process.?”?® As a result, the multiplets of the partially
neutralized ionomers hold the polymer chains weakly, making
the motion of the chains surrounding the multiplet more flexi-
ble than that of the chains of the fully neutralized ionomers, as
proposed earlier by Takamatsu and Eisenberg.?® Thus, even if
the amount of the ionic groups of the fully and partially neutral-
ized ionomers is the same, the partially neutralized ionomer is
more hygroscopic than the fully neutralized ionomer. How-
ever, itis clear that even in this ionomer system, the cluster for-
mation appears to be a very important factor in controlling the
water uptake found in our previous study.**

To study the morphological changes according to the neu-
tralization degree of the Na-11.0-z ionomers, an SAXS experi-
ment was performed. Figure 4(a) and (b) show the SAXS results
of the partially neutralized Na-11.0-z ionomers without and
with water absorption, respectively. It should be mentioned
here that researchers working with SAXS, when analyzing the
SAXS results, usually obtain calculated parameter values by fit-
ting a SAXS profile using a function applied to a specific model.
However, some assumptions are required to fit the SAXS results
using the model, and in this study, the SAXS results are only
needed as supplemental data for the water absorption of the
ionomer, and, thus, we only obtained the distance between
scattering center and the scattering intensity of the SAXS peaks.
In Figure 4, it is shown that both the dried and water-absorbed
samples show a small-angle upturn that is known to be due to
the inhomogeneity of the position and size of the ionic aggre-
gates.?3* For the dried Na-11.0-z ionomers, the g, of the SAXS

250
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Figure 4. SAXS profiles of (a) dried and (b) water-absorbed Na-11.0-z
ionomers. The neutralization degrees are marked near each curve.
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peak, which is a scattering vector at which the maximum point
of the SAXS peak is located, is seen at ca. 0.31, 0.35, 0.32, and
0.31A? for dried Na-11.0-20, -50, -80, and -100 ionomers,
respectively, with increasing peak height. In the case of water-
absorbed ionomers, the g, is also shown at ca. 0.27, 0.34,0.31,
and 0.27 A for Na-11.0-20, -50, -80, and -100 ionomers, respec-
tively, also with increasing peak height.

The average distance between the scattering centers of the
ionomers, the Bragg distance (Dgrage = 27/qimay), is calculated
from the g, value and shown in Figure 5. In the case of the
dried Na-11.0-z ionomers, as the neutralization degree increases
from 20% to 50%, the Bragg distance of the ionomer decreases
from ca. 20 A to ca. 18 A. When the neutralization degree is
increased further to 100%, the Bragg distance increases to ca.
20 A. These results suggest that at 20% neutralization, the PSMAA
copolymer begins to form multiplets, but the number of ion pairs
is relatively small. Thus, only a few ionic aggregates (ie. multi-
plets) can be formed, which means a relatively large Bragg dis-
tance between multiplets and a relatively low peak height, which
is what we observed here. As the neutralization degree increases
from 20% to 50%, the number of ion pairs increases, and
accordingly, the number of multiplets also increases, resulting
in a shorter distances between multiplets, which increases a
SAXS peak height. With increasing the degree of neutralization
further to 100%, the SAXS peak shifts to a lower g and the peak
height increases. This means that the number of multiplets
decrease, the number of ion pairs per multiplet (i.e. the size of
the multiplets) increases, and, thus, the distance between mul-
tiplets increases, as well. For ionomers that have absorbed
moisture, as in studies obtained in dried ionomers, the Bragg
distance decreases as the neutralization level increases from
20% to 50%. On the other hand, the Bragg distance increases
again with increasing neutralization degree from 50% to 100%.
In addition, the Bragg distances of the water-absorbed ionomers
are larger than those of the dried ionomers. This means that the
number of multiplets of ionomers decreases by absorbing water.
On the other hand, the differences in the Bragg distances of the
Na-11.0-20 and Na-11.0-100 ionomers before and after water
absorption (ca. 3 A) are relatively larger than those of the Na-
11.0-50 and Na-11.0- 80 ionomers (0.5 A and 0.7 A, respectively).
This implies that the number of multiplets of Na-11.0-20 iono-
mer is smaller than those of the Na-11.0-50 and Na-11.0-80 iono-
mers. In addition, as mentioned before, un-neutralized carboxylic
acid groups may reside in multiplets and cause the Na* & H*
exchange process.””?® The exchange process in multiplet leads
to multiplet plasticization to make the strength of the interac-
tions of ion pairs in the multiplets weakened. Thus, for Na-11.0-
20 ionomer, firstly, there are fewer multiplets that can absorb
water, and secondly, the multiplet plasticization is more strongly
operative than for the Na-11.0-50 and Na-11.0-80 ionomers.
Therefore, the disintegration of multiplets by water absorp-
tion becomes more effective in Na-11.0-20 ionomer than in Na-
11.0-50 and Na-11.0-80 ionomers. In the case of Na-11.0-100
ionomer, there is no multiplet plasticization effect by carboxylic
acid groups, but the numbers of ionic groups and multiplets are
sufficiently large enough to change the number of multiplets by
water absorption.

© The Polymer Society of Korea and Springer 2021
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Figure 5. Bragg distance calculated from g, of SAXS peak maximum
of Na-11.0-z ionomers with or without water absorption as a function
of neutralization level.

In Figure 5, the Dy, values of dried and water-absorbed Na-
6.1-100 ionomers, the ion content of which is not much differ-
ent from that of Na-11.0-50 ionomer, are also shown. It is seen
that the Bragg distance of the Na-6.1-100 ionomer increases
only very slightly, by absorbing water. On the other hand, for
Na-11.0-50 ionomer, itincreases from ca. 18 Ato 185 A by absorb-
ing water. As mentioned above, the increase in Bragg distance
by the ionomer’s water absorption is due to a decrease in the
number of multiplets of the ionomer. For ionomers without water
absorption, the Bragg distances of Na-6.1-100 ionomer (ca. 21
A) is longer than that of Na-11.0-50 ionomer (ca. 18 A), which
indicates the number of multiplets of the Na-11.0-50 ionomer
is larger than that of the Na-6.1-100 ionomer. According to our
previous study, the weight ratio of Na-6.1-100 ionomer before
and after water absorption for 288 h (i.e. 1.015) is smaller than
that of Na-11.0-50 ionomer after water absorption for 327 h
(ie. 1.022). For reference, the maximum weight ratio of Na-
11.0-50 ionomer was obtained when immersed in water for
1750 h, and the value was 1.036. As previously confirmed, in
the case of PSMAA copolymer, the presence of carboxylic acid
has only a very little effect on water absorption. Therefore, for
ionomers with the same ion content, the reason that the par-
tially neutralized ionomer absorbs more water than the fully
neutralized ionomer is due to the number of multiplets rather
than the presence of carboxylic acid groups in the polymer matrix.
In other words, the more multiplets the ionomer has, the more
moisture the ionomer absorbs.

3.2. Effects of cation type

As a second part of the study, the weight ratios before and after
water absorption of 6.1, 12.2, and 21.3 mol% PSMA ionomers
neutralized with various cations (ie. Li*, Na*, K*, Cs*, and Ba*")
were determined as a function of water absorption time (Fig-
ure 6). As seen before, the PSMAA copolymers hardly absorb
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6.1 mol%

Wit ratio of soaked ionomer to dried ionomer

. 0 100 200 300 400 500
Submersion time (h)

Figure 6. Weight ratios of PSMA ionomers neutralized with various
cations, after and before water-absorption, as a function of water sub-
mersion time. The error bar indicates a standard error.

water regardless of the content of acid groups. All ionomers
neutralized with various cations exhibit relatively fast initial
water absorption. However over time, the absorption of water
gradually slows down and eventually no longer takes place. Itis
also seen that the maximum water uptake increases as the ion
content ofionomers increases. In addition, it is seen that the ini-
tial absorption rate and the maximum water absorption vary
depending on the type of cations.

Figure 7(a) and 7(b) show the initial absorption rates and
maximum water absorption of PSMA ionomers neutralized
with various cations, respectively, as a function of cation radius.
It can be seen that the initial absorption rates increase as the

0.10 1.8
(a)

cs'
W23

0.08 |- Na”

LY

0.06 | ‘
L ; L {14
0.04 | “cs'
N.a' B’ =@ 412

Initial absorption rate (h™)

0.02 |

WH. ratio of ionomer with maximum
water-uptake to dried ionomer

(122)
; L. ; "(&1)' , 61 1.0

0.00 A
09 12 15 18 09 12 15 18

lonic radius (A)

Figure 7. (a) The initial slopes of the water-uptake curve of PSMA ion-
omers neutralized with various cations and (b) ratios of the weight of
the ionomer with maximum absorption of water to the weight of the
corresponding dried ionomer, as a function of ionic radius. The ion
contents of the ionomer are marked near each plot.
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radius of the cation increases when neutralized with monova-
lent cations. Especially, at 21.3 mol% of ions, the initial absorp-
tion rate of the ionomers increases strongly with cation radius.
However, the ionomers neutralized with Ba?*, a divalent cation,
which is similar in size with K* (radius = 1.49 A vs. 1.52 &), show
much lower values than the ionomers neutralized with K*. In
the case of the maximum water absorption of ionomers neutral-
ized with alkali metal cations, with increasing cation size, it increases
slowly for 6.1 mol% ionomer. On the other hand, for the iono-
mers with 12.2 mol% of ions, the maximum water absorption
enhances noticeably with increasing cation radius from Li*
(radius = 0.90 A) to Na* (radius = 1.16 A); however, with further
increasing radius of cations, it increases only very gently. For
21.3 mol% ionomers, the maximum water absorption increases
drastically when the cation changes from Li* to Na*. Then, it decreases
again with changing cation from Na* to Cs*. In the case of Ba**-
neutralized ionomers, as found in the initial absorption rates,
the maximum water-uptake values are much smaller than those
of K*-ionomers of the same anionic content.

. (a) dried

(b) water-absorbed
M*-21.3-100

M*-21.3-100

Ba'Z
7N

10000 10000

1000 "1 1000

Relative intensity (a. u.)

q (A"

Figure 8. SAXS profiles of (a) dried and (b) water-absorbed PSMA ion-
omers neutralized with various cations.

Shown in Figure 8 are SAXS profiles obtained to observe the
morphological change of the ionomers by water absorption. At
this point, it should mentioned that Figure 8 shows only the
SAXS profiles of 21.3 mol% ionomers, since the profound SAXS
peak of the ionomer neutralized with Li* was not observed in
the case of the low ion content. In Figure 8(a), it is seen that as
the cation changes from Li’, to Na*, and to K, the intensity of
the SAXS peak of dried M*-21.3-100 ionomer decreases slightly
and increases again; also, the gy, of the SAXS peak shifts from
0.34 A t0 0.25 A%, indicating that the distance between scat-
tering centers, i.e. multiplets, increases. When neutralized with
Cs* and Ba*, the ionomers show a peak at ¢, = ca. 0.22 and
0.33 A%, respectively, and the intensities of the SAXS peaks are
higher than those of Li*-, Na*-, and K*-ionomers.

Table 1 shows the Dg,,g, of PSMA ionomers. The Dy, is seen
to increase with increasing radius of the cations of both the
dried and water-absorbed ionomers. This means that as the
radius of the cation increases, the number of ion pairs required
to form one multiplet increases, which also increases the aver-
age size of multiplets and consequently decreases the number
of multiplets; this increases the distance between multiplets, as
well. It should be noted that the electrostatic interactions
between the ionic groups in the multiplets become weaker for
the large-sized ions than for the small-sized ions.?® In addition,
the contact surface area of one ion pair, ie. surface area on the
multiplet occupied by one ion pair, becomes larger for the large-
sized ionic group than for the small-sized ionic group.*” These
two factors lead to slightly higher mobility of the polymer
chains for the ionomer containing large-sized cations, which is
responsible for the shift of the Bragg distance to higher values
with increasing cation size. A similar SAXS result was also
found for a sulfonated polystyrene ionomer system.*® For the Ba**-
ionomer, the ion pair consists of three ionic moieties, i.e. one bar-
ium cation and two carboxylate anions, compared to the two
ionic moieties in a similar-sized K'-ionomer. This difference in the
number of ionic moieties changes the morphology and physical
properties of the ionomers significantly. At this point, it is worth
recalling that the ionomers having two ionic moieties per ion

Table 1. Dy, Number of carboxylate anions per multiplet and number of multiplets in 1 cm?® of dried and water-absorbed ionomers neutralized

with various cations

Cations Density (g/mL) Diragg (&) No. of carboxylate anions per multiplet No. of multiplets in 1 cm?® of sample
Dried ionomers
Li* 1.07 18.4 8.4 1.6 x 10%
Na* 1.08 23.7 18.0 7.5 x 10"
K* 1.10 25.6 23.1 6.0 x 10"
Cs* 1.28 28.0 35.2 46 x 10"
Ba** 1.12 19.4 10.3 1.4 x 10%
Water-absorbed ionomers
Li* 1.06° 18.5 8.4 1.6 x 10%
Na* 1.05° 27.6 27.7 4.8 x 10"
K* 1.07¢ 29.6 34.8 3.9 x 10"
Cs* 1.21° 319 49.2 3.1 x 10"
Ba* 1117 19.5 10.3 1.4 x 10®

“Densities of water-absorbed ionomers were calculated by using the amount of water absorbed by the ionomer, density of water, and the density of the corre-

sponding dried ionomer.

Macromol. Res., 29(11), 810-817 (2021)

Collection @ chosun

815

© The Polymer Society of Korea and Springer 2021



Macromolecular Research

pair have less restriction in the formation of multiplets, compared
to ionomers having three ionic moieties per ion pair. Thus, the
size of the multiplets in the K*-containing ionomers would be
larger than thatin the Ba?*-ionomer, and, thus, the number of the
multiplets is larger for the Ba**-ionomer than for the K*-ionomer.

To understand the interpretation of the above-mentioned
SAXS results through more quantitative calculations, we made
the following simple calculations. Using the Bragg distance, the
average number of ion pairs per multiplet and the number of
multiplets expected to be in 1 cm?® of the sample were also cal-
culated and listed in Table 1. At this point, it should be men-
tioned that, for the sake of simple calculation, we assumed that
the multiplets were relatively well-distributed in the polymer
matrix, and that all ion pairs exist within the scattering centers.
In addition, the multiplets were assumed to be located on the
sites of simple cubic lattices, and the densities of samples required
for calculation were obtained using a pycnometer. It should be
emphasized here that this type of calculation does at least give
a brief idea of the morphological changes of the ionomers due
to the water absorption, although it may not accurately reflect
and explain the actual morphological change of the ionomers.
Since the calculation formula is described in our previous paper,**
it is omitted here. Table 1 shows that the average number of
carboxylate anions per multiplet increases with increasing size
of monovalent cations of dried and water absorbed ionomers,
as suggested above. On the other hand, the number of multi-
plets per unit volume of ionomers decreases with increasing
size of monovalent cations of dried and water absorbed iono-
mers. As suggested above, the number of carboxylate anions
per multiplet and the number of multiplets per a unit volume of
polymer for Ba?*-ionomer are large than those for the K*-iono-
mer, eg. 1.4 x 10 vs. 6.0 x 10* and 1.4 x 10%° vs. 3.9 x 10" multi-
plets/(1 cm® of sample) (see Table 1).

Now, let us understand the relationship between SAXS data
and water absorption of the ionomers more qualitatively. In
the case of the ionomer neutralized with Li*, the ion radius is
small and the strength of the interactions between ion pairs is
strong, making it easy to form small-sized multiplets and to sta-
bilize them electrostatically. As a result, the size of multiplets
capable of absorbing water is relatively small, and polymer
chains emanating from the multiplets are densely packed, which
leads to the more restricted mobility of the polymer chains sur-
rounding the multiplets, compared to the chain mobility of large-
sized cation containing ionomers. Therefore, Li*-ionomer absorbs
less water than the Na*-, K*-, and Cs*-ionomers, and, thus, its mor-
phology is not changed significantly upon the water absorption.
On the other hand, for Na*-ionomers, the strength of interactions
between the ion pairs inside the multiplet is strong enough to
make a number of proper-sized multiplets that can absorb water. In
addition, the mobility of the chains emanating from the multi-
plets becomes less restricted, compared to that of Li*-ionomer.
Considering these two factors, it can be understood that the mor-
phology change (ie. rearrangement of multiplets) of Na*-iono-
mers by water absorption is relatively easier than that of Li*-
ionomers, leading to higher water-uptake of Na"-ionomers. The
same interpretation is applicable to the ionomers containing
larger monovalent cations. In the case of the Ba®*-ionomer, although

© The Polymer Society of Korea and Springer 2021

Collection @ chosun

816

the ionic radius of Ba** is larger than Na*, the water absorption
is low because the number of ion pairs forming the multiplet is
small like that of Li*-ionomer, and at the same time, three ionic
species must move together. Due to these two effects, Ba**-ion-
omer absorbs relatively little water as much as Li*-ionomer, and
the morphological change due to water absorption is not large.
The above findings suggest that as the size of the multiplets
increases, the water absorption of the ionomer increases. That
is, as the multiplet size increases, the “contact surface area” occu-
pied by each chain coming out of the multiplet increases, so that
water molecules can more easily enter the multiplets, and as a
result, material deformation including multiplet disintegration
can easily occur, leading to more water absorption.

4. Conclusions

In this work, the weight change of the ionomer before and after
water absorption and the morphological change through SAXS
were investigated to study the effect of the ionomer neutraliza-
tion degree and neutralizing cation type on the water absorption
of the ionomer. It was found that for the Na-11.0-x ionomers,
both the initial absorption rate and the maximum water absorp-
tion increased as the degree of neutralization increased. Also,
as the degree of neutralization of the ionomer increased, the
Bragg distance between scattering centers decreased and then
increased again because of the multiplet plasticization by car-
boxylic acid groups in multiplets and the increasing amount of
ion pairs. In partially neutralized ionomers, the acid groups in
the multiplet not only acted as multiplet plasticizers, but also
promoted to some extent morphological changes (formation
or disintegration of multiplets) in dried or water-absorbed ion-
omers because they did not significantly limit chain mobility
around the multiplets. Thus, the degree of neutralization of the
ionomer directly affected the amount of ionic groups, the plas-
ticization of multiplets by acid groups, the number of multi-
plets, and the mobility of the chains surrounding the multiplets.
Therefore, all these variables must be considered together to
understand the water absorption behavior of partially neutral-
ized ionomers. Nevertheless, the most important finding in this
second work on water absorption of styrene-based ionomers
was that the more multiplets the ionomer had, the more water
molecules the ionomer absorbed. The results of this study were
more specific than the results of the previous study that cluster
formation was an important factor for water absorption of ion-
omers.?* For ionomers neutralized with various cations, increas-
ing the size of monovalent cations increased water absorption,
but the ionomer neutralized with divalent Ba*" absorbed less
water than the ionomers neutralized with K*. In addition, it was
found that the distance between multiplets increased as the
monovalent ion radius increased and as the ionomer absorbed
water. This was due to the fact that the strength of the interactions
between ion pairs determined the size and number of multiplets
and affected the mobility of polymer chains extending outward
from the multiplet and, consequently, the overall water absorp-
tion behavior of the ionomer. On the other hand, in the case of
the Ba®* ionomer, one ion pair consisted of three ionic groups.
This type of ion pairing affected the size and number of multiplets
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and the mobility of polymer chains in the vicinity of the multi-
plets, and consequently the water absorption of the ionomer.
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