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요약 

뇌 MRI 영상에서 다중 전역 집중 기반 다중 

스케일 압축 U-SegNet을 이용한 뇌영상 분할 

방법에 관한 연구 

 

                             챠이트라 다야난다 

                                 지도교수: 이범식 

                                조선대학교 대학원 

                                 정보통신공학과 

 

 

본 논문에서는 자기 공명 이미지 (MRI)에서 뇌 조직을 분할하기 위해 

새로운 다중 전역 집중 기반 컨볼루션 학습을 통한 다중 스케일 압축 

U-SegNet 아케텍처를  제안한다. CNN (Convolutional Neural 

Network) 은 의료 영상 분할에서 압도적인  성능을 보여주지만, 기존 

CNN 모델에는 몇 가지 단점이 있다. 특히 인코더-디코더 기반 

접근법의 사용은 유사한 low-level의 특징을 여러 번 추출하여 정보의 

중복 사용을 초래한다. 또한, long-range dependency 비효율적인 

모델링으로 인해, 각 의미 클래스는 정확하지 않은 특징 표현과 연관될 

가능성이 높아 분할의 정확도가 낮다. 

 

 제안된 전역 집중 모듈은 특징 추출을 조정하고 컨볼루션 신경망의 

표현력을 향상시킨다. 또한 집중 기반 다중 스케일 융합 방법은 해당 

전역 종속성과 로컬 특징을 통합할 수 있다. 인코더와 디코더 경로 

모두에 파이어 모듈을 통합하면 모델 매개변수의 수가 크게 감소하기 

때문에 계산 복잡성을 줄일 수 있다. 제안된 방법은 뇌 조직 분할을 

위해 공개 데이터 세트에서 평가되었다. 실험 결과에 따르면 제안된 

모델은 학습 가능한 매개 변수의 수가 크게 감소하여 뇌척수액(CSF)의 

경우 94.81%, 회백질(GM)의 경우 95.54%, 백질(WM)의 경우 

96.33%의 분할 정확도를 달성한다. 본 연구는 이전에 개발된 U-
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SegNet 기반 분할 접근법에 비해 학습 가능한 매개 변수의 수가 4.5배 

감소하면서 주사위 유사성 지수 측면에서 예측 정확도를 2.5% 

향상시켜 더 나은 분할 성능을 보여준다. 이는 제안된 접근 방식이 뇌 

MRI 영상의 신뢰성 있고 정확한 자동 분할을 달성할 수 있음을 

보여준다. 

 

키워드: CNN, 조직 분할, 다중 글로벌 어텐션, 뇌 MRI. 
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ABSTRACT  

 

A Study on Brain MRI Segmentation 

using Multi-scale Squeeze U-SegNet 

with Multi-global Attention 
 

                     Chaitra Dayananda 

                     Advisor: Prof. Bumshik Lee 

          Department of Information and 

Communication Engineering 

                     Graduate School  

Chosun University                            

 

   This research work focuses on the multi-scale feature extraction with novel 

attention-based convolutional learning using the U-SegNet architecture to 

achieve segmentation of brain tissue from a magnetic resonance image (MRI). 

Although convolutional neural networks (CNNs) show enormous growth in 

medical image segmentation, there are some drawbacks with the conventional 

CNN models. In particular, the conventional use of encoder-decoder 

approaches leads to the extraction of similar low-level features multiple times, 

causing redundant use of information. Moreover, due to inefficient modeling 

of long-range dependencies, each semantic class is likely to be associated with 

non-accurate discriminative feature representations, resulting in low accuracy 

of segmentation. The proposed global attention module refines the feature 

extraction and improves the representational power of the convolutional neural 

network. Moreover, the attention-based multi-scale fusion strategy can 

integrate local features with their corresponding global dependencies. The 
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integration of fire modules in both the encoder and decoder paths can 

significantly reduce the computational complexity owing to fewer model 

parameters. The proposed method was evaluated on publicly accessible 

datasets for brain tissue segmentation. The experimental results show that our 

proposed model achieves segmentation accuracies of 94.81% for cerebrospinal 

fluid (CSF), 95.54% for gray matter (GM), and 96.33% for white matter (WM) 

with a noticeably reduced number of learnable parameters. Our study exhibits 

higher segmentation performance, increasing prediction accuracy by 2.5% in 

terms of dice similarity index while reducing the number of learnable 

parameters by 4.5 times in comparison to previously established U-SegNet 

based segmentation algorithms. This illustrates that the proposed approach can 

achieve reliable and precise automatic segmentation of brain MRI images. 

Keywords: CNN, tissue segmentation, multi-global attention, brain MRI. 
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1. INTRODUCTION 

The rapid progression of medical image processing techniques has benefited 

mankind and plays an important role in clinical diagnosis. The current 

advances in medical imaging help to view the human body in to diagnose and 

monitor medical conditions [1-2]. The imaging techniques such as ultrasound 

(US), magnetic resonance imaging (MRI), and X-ray imaging give image 

information by which the radiologist has to analyze and evaluate 

comprehensively in a shorter time [2]. In particular, magnetic resonance 

imaging (MRI) is typically favored for structural analysis as it generates 

images with high soft-tissue contrast and higher spatial resolution and does not 

entail any health hazards. Brain MRI scans are quantitatively examined to 

diagnose various brain disorders such as epilepsy, schizophrenia, Alzheimer’s 

disease, and other degenerative disorders [3]. MRI is also essential to identify 

and localize abnormal tissues and healthy structures for diagnosis and 

postoperative analysis. Hence, the segmentation of these abnormal tissues 

from the medical images plays a vital role in the study and treatment of many 

diseases. Early detection of brain disorders allows the observer to follow up 

on the subject. Hence, the main objective is to derive better tools that help to 

interpret the images.  

   In this chapter, Section 1.1 presents a brief description of magnetic resonance 

imaging (MRI) in the diagnosis of various brain disorders. Section 1.2 presents 

the overview and motivation of the proposed work. Section 1.3 presents the 

research objectives and major contributions of the thesis. Section 1.4 explains 

the outline of the thesis. 
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1.1.  A Brief Review of MRI 

   Magnetic resonance imaging (MRI) is a medical imaging technology that 

creates detailed images of the organs and tissues using a magnetic field and 

computer-generated radio waves [2]. Large, tube-shaped magnets are used in 

the majority of MRI equipment. The magnetic field momentarily realigns 

water molecules in the body while we lie inside an MRI machine. These 

aligned atoms emit tiny signals, which are used to form cross-sectional MRI 

pictures, similar to slices in a loaf of bread. The MRI scanner can also create 

three-dimensional images that may be viewed from various perspectives. MRI 

is a non-invasive method of examining the organs, tissues, and skeletal system 

by a doctor. It creates high-resolution images of the inside of the body to aid 

in the diagnosis of a wide range of ailments. The most common imaging test 

for the brain is MRI. The functional MRI of the brain (fMRI) is a unique type 

of MRI [3]. It generates images of blood flow to specific brain locations. It 

may be used to look at the structure of the brain and figure out which areas of 

the brain are in charge of essential functions. Damage from a head injury or 

illnesses like Alzheimer's disease can also be assessed using functional MRI. 

1.2.  MRI for Diagnosis of Brain Disorders 

   Brain magnetic resonance imaging (MRI) is a non-invasive, painless 

technique that gives detailed images of the brain and brain stem. The 

importance of MRI in brain diagnosis is well recognized, and it has been 

included in various new brain diagnostic criteria [4-5]. Cysts, tumors, 

hemorrhage, swelling, developmental and anatomical abnormalities, 

infections, inflammatory disorders, and blood vessel problems can all be 

detected using an MRI scan. High-resolution MRI may identify the existence 

and severity of brain atrophy, which can aid in the diagnosis of Alzheimer's 
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disease in vivo [6] and even show the presence of neurofibrillary tangles 

(NFTs), which are regarded as a hallmark pathology of the disease [7]. While 

MRI-measured brain atrophy is a reliable and sensitive indicator of 

neurodegeneration in general [8], it can also be used to identify many different 

types of dementia that have similar patterns of atrophy [9]. 

1.3.  Overview and Motivation 

The brain and nerves degenerate over time as a result of neurodegenerative 

illnesses. These diseases have the potential to alter personality and cause 

confusion. They can also damage the cells and nerves in the brain. Alzheimer's 

disease, for example, is a brain disorder that can develop as one becomes older 

[10]. They can wreak havoc on the memory system and mental processes over 

time. Other diseases, such as Tay-Sachs disease, are inherited and manifest 

themselves at a young age. The following are some other common 

neurodegenerative diseases: 

 Alzheimer’s disease 

 ALS (amyotrophic lateral sclerosis) 

 Parkinson’s disease 

 all forms of dementia 

   There are no treatments that can stop or reverse the disease's course, while 

some can temporarily alleviate symptoms. Prevention is the key to reducing 

the occurrence of neurological illnesses and consequently the number of global 

deaths in today's lifestyle. As a result, an early indicator of a higher risk of 

neurodegenerative disorder is a good predictor of clinical diagnosis [10]. 

Furthermore, neurological brain diseases are diagnosed based on the attributes 

such as medical test results, clinical history, and medical image acquisition. In 

https://www.healthline.com/health/huntingtons-disease
https://www.healthline.com/health/amyotrophic-lateral-sclerosis#overview1
https://www.healthline.com/health/parkinsons/stages
https://www.healthline.com/health/dementia/stages
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some circumstances, an expert's ability to interpret a huge number of data in a 

short length of time makes diagnosis more challenging [11]. The progress of 

medical imaging technology and computer software is being utilized to assist 

specialists in quickly identifying and interpreting diseases. These programs 

provide a diagnosis of the condition based solely on visual data [12]. 

Developing software for radiological image processing is, in fact, one of the 

most challenging tasks in the medical field. Modern diagnostic systems are 

created using cutting-edge computing and data processing technology since 

accurate illness diagnosis is dependent on both image acquisition and 

interpretation. Despite commercially available computer-based diagnostic 

systems, fully automated procedures have yet to be fully established in the 

literature [10-12]. As a result of this weakness, they are difficult to employ for 

diagnostic purposes. Brain tissue loss is the first sign of a possible onset of 

brain illnesses.  

 

Figure 1-1. The brain MRI ground truth image and its segmented 

structures. 

MR imaging, for example, is a non-invasive and reliable approach for 

measuring brain tissue for the diagnosis of brain illnesses. As a result, the 

expert is concerned with retrieving useful information on brain tissue 

segmentation. This task necessitates the use of highly qualified experts. Figure 

1-1 shows the brain MRI ground truth image and its segmented structures. 

Manual tracing of brain structures such as grey matter (GM), white matter 
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(WM), and cerebrospinal fluid (CSF), on the other hand, produces inconsistent 

results. Motivated by this limitation, we propose a CNN-based automatic 

segmentation of brain structures, e.g., white matter (WM), gray matter (GM), 

and cerebrospinal fluid (CSF) from the brain MRI, which aids in the diagnosis 

and effective treatment of many brain diseases. 

1.4.  Objectives 

 The main goal of this work is to develop an efficient CNN algorithm for the 

segmentation of brain tissue (GM, WM, and CSF) from brain MRI. 

The contribution of this work is in the segmentation of brain tissues such as 

gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) from the 

MRI using proposed multi-scale, attention-based convolutional network. 

Our main contributions are summarized as follows:  

 The proposed modified U-SegNet architecture is integrated with a 

novel global attention module (GAM). Attention is applied at both 

contracting and expansive paths, creating a multi-attention network. 

The key element in GAM is global average pooling, which provides 

the global context of high-level features as assistance to low-level 

features to obtain class-category localization. 

 The proposed multi-scale input feature fusion strategy extracts the 

context information of high-level features at different scales, thus 

incorporating neighbor-scale feature information more precisely. 

 The fire modules are used to replace the convolution layer to 

significantly reduce the number of model parameters, which results in 

a reduction in the model size and computation complexity; this 

consequently leads to a more efficient segmentation model. 
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The obtained outcome is supportive and reliable towards using the deep 

learning method and can be intended towards medical CAD system 

development. 

1.5.  Thesis Layout 

   This thesis is composed of five consecutive chapters. Following the 

introduction, Chapter 2 presents the survey describing various techniques for 

sematic segmentation of medical and natural images. Chapter 3 explains the 

proposed methodology and pipeline, particularly the multi-scale, attention-

based features extraction with reduced model parameters. Chapter 4 discusses 

the experimental results in comparison with the results of the state-of-the-art 

algorithms. Finally, chapter 5 concludes with a brief discussion on the findings 

of this work. 
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2. RELATED WORKS 

Deep learning is a popular branch of artificial intelligence that involves the 

creation of algorithms and the automatic learning of patterns through 

experience.  Deep learning algorithms learn to make intelligent decisions 

based on their capacity to detect complicated patterns, which can be used in 

applications such as handwriting recognition, stock market analysis, image 

analysis, and medical diagnosis. This thesis is mostly concerned with medical 

diagnosis. This is essentially a segmentation task to identify the brain tissues 

GM, WM, and CSF that would be used in the diagnosis of brain disease such 

as Alzheimer’s, Parkinson’s, dementia, etc.,  using neuroimaging data. 

   In this chapter, we present the basic overview of deep learning technology 

relevant to this thesis and suitable for image-based segmentation tasks. Section 

2.1 firstly present the details of various segmentation techniques, followed by 

the description of the algorithm along with their performance assessment. The 

attention-based learning for image segmentation is presented in section 2.2.  

Finally, literature work related to model parameter reduction is provided in 

Section 2.3. 

2.1.  Medical Image Segmentation 

   Extensive research has been conducted on medical image segmentation in 

the past ref. [13–15], with CNNs growing rapidly this area, driving exceptional 

performances in many diverse applications. Conventional CNN architectures, 

including FCNN [13] or U-net [14], serve as sources of inspiration for existing 

medical image segmentation methods. The conventional FCNN-based 

classification network replaces the fully connected layers with convolutional 

layers to predict the output dense pixels. The input image is recovered to its 
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original resolution by up-sampling the predictions in a single step. In addition, 

skip connections [14] are used in the network using intermediate function 

maps to boost the prediction capabilities. On the other hand, the U-net 

architecture consists of encoding and decoding paths with a sequence of 

convolutional layers with pooling and up-sampling. The features from the 

encoder are concatenated with the decoder layers using skip connections. 

Several extended U-net and FCNN models have been developed to resolve the 

problems associated with pixel-wise segmentation across different 

applications [16–19]. In [17], a patch-wise 3D U-net was proposed for brain 

tissue segmentation with encoding and decoding layers with randomly 

sampled and overlapped 3D patches (8 × 24 × 24) used for training. Unlike the 

U-net, a convolution operation is introduced as a transition layer between the 

encoder and decoder layers to give more weight to the higher-level features 

learned through deeper layers in the network. Pawel et al. [18] proposed a 3D-

CNN for brain tumor segmentation, where the model was trained on 3D 

random patches, and features extracted by 2D-CNNs were given as an extra 

input to a 3D-CNN. The combination of both 3D and 2D features captures rich 

feature representations from a long-range 2D context in three orthogonal 

directions. An ensemble of 3D U-nets designed with different hyperparameters 

uses non-uniformly extracted patches as inputs to obtain brain tumor 

segmentation [18]. Badrinarayanan et al. [20] introduced the SegNet model, 

which uses pooling indices from the encoder to the up-sampling layers. Hence, 

it requires very few parameters and is faster to train. Looking into the 

complementary strengths of SegNet and U-net models, a new hybrid model, is 

explored, namely U-SegNet [21]. The U-SegNet incorporates the unique 

architectural features from both U-net and SegNet models and uses SegNet as 

the base architecture with a skip connection introduced between the encoder 
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and decoder, providing multi-scale information for better performance. Owing 

to the pooling indices passed at the decoder side, the U-SegNet model has 

faster convergence. Recent efforts to promote the discriminative capability of 

feature representations include a multi-scale fusion strategy [22]. Zhou et al. 

[23] redesigned the skip connections in U-net++ [23] by enabling flexible 

feature fusion in decoders, thus resulting in an improvement over the 

restrictive skip connections in U-net [4] that require fusion of only same-scale 

feature maps. A small drawback in U-net++ is that the number of parameters 

increases owing to the employment of dense connections [24, 25]. Deep 

supervision is also employed to balance the decline in segmentation accuracy 

caused by pruning [26]. Zhao et al. [27] proposed a pyramid network that 

utilizes global learning at various scales by grouping feature maps produced 

by multiple dilated convolution blocks. The collection of contextual multi-

scale information can also be obtained by performing pooling operations [28]. 

Cheng et al. [29] proposed a context encoder network (CE-net) that adopts a 

pre-trained ResNet block in the feature encoder. CE-net involves a newly 

proposed dense atrous convolution block, and residual multi-kernel pooling is 

integrated into the ResNet-modified U-net structure to capture more high-level 

features and preserve more spatial information. Although these approaches 

assist in capturing targets at different measures, contextual dependencies for 

all image regions are uniform and non-adaptive. Hence, these approaches 

neglect the contrast between local and contextual representations for different 

categories. Moreover, these multi-context representations were manually 

composed and lacked the flexibility to form multi-context representations. 

Further, the ignored contrast information causes long-range object associations 

in the entire image to be leveraged in these strategies, which is of focal interest 

in many medical image segmentation problems. 
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2.2.  Attention Based Learning 

   The attention mechanisms highlight key local regions in the feature maps and 

discard unrelated data carried by the generated feature maps. The attention 

modules act as crucial components of a network that wants to gather global 

information. The inclusion of the attention blocks demonstrated very 

successful outcomes in various vision problems, such as image classification 

[30], image captioning [31], or image question-answering [32]. Recently, 

many researchers have shown interest in self-attention, as they offer a greater 

opportunity to model long-range dependencies while retaining computational 

and statistical performance [33–36]. Zhao et al. introduced a point-wise spatial 

attention network, where each position on the feature map is connected to all 

the other feature maps through a self-adaptively learned attention mask [37]. 

Dong et al. [38] proposed attention gates (AGs) and used them for the 

segmentation of the pancreas. The AGs highlight the salient features while 

suppressing the irrelevant region from the raw input pixel. AGs make better 

use of intermediate characteristics, reducing the need for cascaded models 

[39]. To incorporate local and global-dependent features, Wang et al. [40] 

employed a basic focus module with three convolutional layers. A similar 

attention method with two convolutional layers integrated with a U-net 

architecture was proposed in [41].  For better extraction of relevant features, 

focus gate modules are integrated with the skip connection in the decoding 

path of the U-net in [39]. Schlemper et al. [41] proposed attention modules 

where the local deep attention features are fused with the global context at 

multiple resolutions for prostate segmentation on ultrasound images. The 

multi-scale self-guided attention-based approach can integrate local features 

with their respective global dependencies, as well as highlight interdependent 
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channel maps in an adaptive manner to achieve accurate segmentation of 

medical images [42]. 

2.3.  Parameters Regularization 

   Most deep learning-related studies have considered increasing network 

accuracy as their primary objective. However, the computational burden of a 

significant number of parameters and deep architecture becomes a crucial 

issue. Recent studies have shown that most deep neural networks are over-

parametrized, resulting in redundancy in deep learning, leading to inefficient 

use of memory and computing resources. In these large parameter spaces, 

various compression techniques, such as shrinking, factorizing, or 

compressing pre-trained networks, are applied to minimize redundancy and 

obtain smaller models [43–46]. In [44], singular value decomposition (SVD) 

was used for a pre-trained CNN architecture to achieve lower-order parameter 

estimates for model compression. Network pruning methods [43, 45] have 

been widely studied to achieve compressed CNN models. The parameters of 

the pre-trained model below a certain threshold are replaced with zeros in the 

network pruning method to produce sparse matrices. Most of the previous 

works [45, 46] introduced network-pruning-based methods to decrease the 

network complexity and reduce the overfitting of the model. Network 

quantization is proposed to decrease the data dynamic range from 32 to 8 or 

16 bits, which further compresses the pruned network by reducing the number 

of bits required to represent each weight [47]. To efficiently operate on 

compressed deep learning models, Son et al. [48] proposed an efficient 

inference engine (EIE), a specialized accelerator that accomplishes customized 

sparse matrix-vector multiplication and performs weight sharing without 

efficiency loss. To reduce the number of parameters and computational work 
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in the CNN, various methods based on factorizing the convolution kernel have 

been introduced [49]. The depth-wise separable convolutions used in 

SqueezeNet [13, 50] are a form of factorizing convolution that separates 

convolution across channels rather than convolution within channels. As in the 

MobileNetV1 architecture, the profoundly separable convolution networks 

realized with quantization require a special attention module [51]. The special 

hardware for CNNs has been considered by many methods aimed at 

minimizing computation time [50]. 
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3. PROPOSED METHOD 

   It is known that the SegNet [20] and U-net [4] are the most widely used deep 

learning models for image segmentation [21, 25]. In SegNet, pooling indices 

in the up-sampling process are utilized to compensate for the missing spatial 

information and lead to faster convergence of the model [20]. U-net uses skip 

connections from the encoder to the decoder and shows a better segmentation 

performance [4]. However, multi-stage cascaded CNN approaches are more 

suitable because the performance of a single SegNet and U-net-based 

segmentation method is not sufficiently accurate when there are variations in 

the structure and intensity of the target tissues [25]. However, multiple 

cascaded networks can produce a significantly large number of model 

parameters, thus leading to the redundant use of computational resources. To 

overcome this problem, U-SegNet [21] uses both skip connections and pooling 

indices to combine feature maps from the encoder to the decoder and localize 

these feature up-sampling, respectively. As a result, pooling indices make the 

U-SegNet converge faster, and the skip connection improves the segmentation 

accuracy. Although U-SegNet shows better segmentation performance, the 

segmented outputs are still blurry, and the network is insensitive to the fine 

details of the image [24]. To achieve a better segmentation of brain tissues 

when training on a limited set, the network needs to extract more 

discriminative features [38]. However, U-SegNet is slightly insufficient to 

capture better features because numerous pooling operations in the U-SegNet 

model produce low-resolution feature maps. Due to the inherent complexity, a 

large number of layers, and the massive amounts of data required, deep 

learning models are very slow to train and require a lot of computational 

power, which makes them very time- and resource-intensive. The model which 
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can provide improved segmentation results while training on limited or less 

data is considered to be a high potential network [52]. Meanwhile, due to data 

scarcity, the need to develop a model which could be trained efficiently on less 

data is very crucial [53]. Motivated by this problem, we propose a novel global 

attention mechanism using a U-SegNet architecture, where the proposed 

architecture is designed with a multi-scale guided multi-global attention 

module. The multi-scale input features at each encoding layer encode both the 

global and local contexts. Moreover, the proposed novel global attention at the 

encoder and decoder can filter irrelevant information and focus on the most 

relevant details needed for the MRI segmentation task. Besides, the model is 

prone to lose local details when complete image information is employed as 

an input to train the network. We also propose the use of a patch-wise splitting 

of each input slice to resolve this problem, which is used to train the model 

and provide better segmentation accuracy. Finally, we adopt fire modules that 

comprise a squeeze layer consisting of only 1 × 1 convolution filters followed 

by an expansion layer with a combination of 1 × 1 and 3 × 3 filters, which 

reduces the number of learnable parameters and computational requirements, 

and results in a smaller efficient model. 

3.1.  Proposed Pipeline 

First, the MRI datasets with the corresponding ground truth are prepared. For 

each MRI scan with the dimension of height × width × slices (H × W × S), we 

pad zeros to the H × W of each slice and resize to a dimension of 256 × 256. 

Then, 48 slices are extracted starting from the 10-th slice with an interval of 3 

slices [54]. Furthermore, each slice is divided into four uniform non-

overlapping patches, and these patches are given as input to the proposed 

model for training. Figure 3-1 shows the overall framework of the proposed  
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Figure 3-1. Overall framework of the proposed algorithm. 

method. The architecture of the proposed method is discussed in detail as 

follows: (i) encoder path, (ii) decoder path, and (iii) global attention module 

(GAM), (iv) fire module, (v) uniform patch-wise input, and (vi) classification 

layer.  As shown in Fig. 3-2, the features extracted using 1 × 1 and 3 × 3 filters 

are fused to form a multi-scale input representation. These multi-scale data 

with the feature maps from a previous network layer are provided as input to 

the GAM at the encoder side. The GAM at the decoder can capture 

discriminative information and concentrate on relevant features while 

performing up-sampling operations. Thus, each network layer contains two 

separate attention modules which concentrate on extracting enhanced 

representations of features and generate an accurate segmentation network. In 

addition, the convolution blocks at the encoder and decoder layers are replaced 

with fire modules which reduce the number of model parameters and create a 

smaller network.  

3.2.  Encoder Path  

   Figure 3-2 shows the architecture of the proposed method with the encoder 

and decoder paths. The fire module replaces the convolution operation in the 

proposed method, significantly reducing the number of learnable parameters 

and computational complexity. The fire module was originally used for 
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SqueezeNet [13] to reduce the complexity of AlexNet [50]. In this study, we 

incorporate it with our proposed multi-scale U-SegNet architecture for 

segmentation. Let us consider 𝑥𝑙 as the input sample, where l represents the 

index of the network layer. The convolution output for the squeeze block is 

computed as (1). 

𝑜𝑠𝑞𝑢𝑒𝑒𝑧𝑒(𝑙) =  𝑓(𝑥𝑙 ∗ 𝑤𝑙
1×1  +  𝑏𝑙) ,                             (1) 

where 𝑜𝑠𝑞𝑢𝑒𝑒𝑧𝑒(𝑙) is the squeeze layer output of the fire module and 𝑤𝑙
1×1 is 

the kernel weight, where the subscript [1 × 1] represents the size of the 

convolution kernel associated with the respective layer and 𝑏𝑙 is used as a bias 

term. * represents the convolution operation. The convolution output is fed to 

the standard Rectified Linear Unit (ReLU) activation function f (∙). 

The squeeze output is fed into the expanding module. The expanding module 

consists of two parallel convolutions with kernel sizes of 3×3 and 1×1.  

Furthermore, the output from these parallel convolutions is concatenated to 

form the fire module output and is expressed as (2). 

𝑜𝑒𝑥𝑝𝑎𝑛𝑑(𝑙) = Concat [𝑓(𝑜𝑠𝑞𝑢𝑒𝑒𝑧𝑒(𝑙) ∗  𝑤𝑙
1×1 +  𝑏𝑙),𝑓(𝑜𝑠𝑞𝑢𝑒𝑒𝑧𝑒(𝑙) ∗  𝑤𝑙

3×3 +

 𝑏𝑙)],        (2)              

where 𝑜𝑒𝑥𝑝𝑎𝑛𝑑(𝑙)  is the fire module output of the l-th network layer, and 

Concat() is a concatenate function. As shown in Fig.3-2, the encoder path 

consists of a sequence of fire modules whose output is applied to the GAM as 

input. The GAM also receives input 𝑚𝑠𝑙,  obtained from multi-scale input 

feature fusion. In the multi-scale layer, the input 𝑥𝑙  is down-sampled using 

max-pooling with a stride of 2×2, as in (3). The max-pooled input is followed 

by a convolution of 1×1 and 3×3 filters separately. These convolved outputs  
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are concatenated to form multi-scale feature maps, as shown in (3). The multi-

scale information and the fire module output and are fed as input to the GAM 

at each encoding layer, as in (4). 

                  𝑚𝑠𝑙 = Concat [f(𝑚𝑙, 𝑤𝑙
1×1), f(𝑚𝑙, 𝑤𝑙

3×3)] .                         (3) 

                   𝐺𝐴𝑀𝑙 = GAM(𝑚𝑠𝑙, 𝑜𝑒𝑥𝑝𝑎𝑛𝑑(𝑙)) .                         (4) 

 The output from GAM is given to the max-pooling layer to reduce the 

dimensionality and focus on the fine details of the feature map, as expressed 

in (5). Pooling indices are stored at each encoder layer so that the decoder uses 

the information to up-sample the feature maps. The output at each encoder 

layer is referred to as the encoding unit (down-sampling unit) and is obtained 

using (5). 

𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑙)  =  𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐺𝐴𝑀𝑙, 2) .                       (5) 

3.3.  Decoder Path 

   Similar to the encoding path, the decoder path in the proposed method uses 

transposed fire modules to reduce the number of model parameters. The main 

component of the decoder path is the up-sampling unit. Each up-sampling unit 

consists of a transposed fire module. The transposed fire module consists of a 

1×1 transposed convolution. The output from the 1×1 transposed convolution 

is fed into two 3×3, and 1×1 kernel-sized parallel transposed convolutions 

that are concatenated to form the output transpose fire module, as in the down-

sampling unit. The decoder is integrated with attention gates, which can 

highlight the salient features. The feature maps extracted from the 𝑙-th (high-

level) and (𝑙 − 1)-th (low-level) encoding layers are used as the input signal 

and gating signal to the attention module, respectively. Thus, the feature map 
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obtained from encoding layers containing contextual information is computed 

using the GAM to eliminate unrelated responses. The GAM output is 

concatenated with the feature map of the corresponding up-sampling layer, as 

expressed in (6). Hence, the attention-based skip connections in the proposed 

architecture help in extracting the most informative data from the encoder, 

utilized by the decoder to make more accurate predictions. These skip 

connections use both high-and low-resolution feature information and focus 

on the most relevant information while performing up-pooling operations. 

𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (𝑙)  =  𝐶𝑜𝑛𝑐𝑎𝑡[ 𝐺𝐴𝑀(𝑥𝑙 , 𝑥𝑙−1), 𝑈𝑛𝑝𝑜𝑜𝑙 (𝑥𝑙−1, 𝑃𝑜𝑜𝑙𝑖𝑑𝑥(𝑙−1))] .       (6) 

   The output from each decoder layer can be obtained using (6), where 

𝑃𝑜𝑜𝑙𝑖𝑑𝑥(𝑙−1) is the pooling index passed from the encoder layer to the decoder 

layer to recover spatial information of the feature maps while performing un-

pooling operations at the decoder. 

3.4.  Global Attention Module (GAM) 

   A distinctive brain signal processing system for human vision is the visual 

attention process. This is a tool for a human to pick relevant information 

instantly from a large amount of information using sources of limited attention. 

In deep learning, the attention process is similar to that of human visual 

attention. Its main objective is to determine the most relevant data from a vast 

amount of knowledge to accomplish its goal (tissue segmentation). The 

attention mechanism improves network performance by suppressing function 

activations that are not important to the task. To do this, we propose a novel 

global attention module with self-attention in an efficient manner. As a guide 

from low-level features to assess class localization, the GAM on each encoder 

and decoder layer enables global context details.  
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Figure 3-3. Schematic of the proposed global attention module (GAM) 

integrated into the proposed brain segmentation architecture. 

 

Figure 3-3 shows the proposed architecture of GAM, which is integrated with 

our proposed brain segmentation architecture. The 𝑥𝑙 is the output feature map 

from the 𝑙-th encoding layer (low-level features). The 𝑥𝑙+1 collected from a 

coarser scale serves as a vector of the gating signal and is applied to select the 

target area for each pixel. The α𝑙  is the tensor coefficient that preserves 

activation by suppressing irrelevant feature responses associated with the 

target task. The operation of GAM is the element-wise addition of the feature 

map with the tensor coefficient from the 𝑙-th encoding layer, and the output of 

GAM is obtained using (7). 

 𝑥𝑙𝑜𝑢𝑡 =   α𝑙 + 𝑥𝑙 .                                      (7) 

   In the case of multiple semantic groups, learning multidimensional 

coefficients of attention is suggested. As guidance for low-level features to 

incorporate local features into the global context, global average pooling 

provides global context information. The global information produced from 

the high-level feature is fed to a 1×1 convolution with the ReLU activation 

function. To obtain weighted low-level characteristics, it is multiplied by 1×1 

convoluted low-level features. To obtain the tensor coefficient of attention, we 

used multiplicative attention. To extract pixel localization specific to the class 
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of the high-level feature index, the tensor coefficient is up-sampled and added 

with low-level features. The tensor coefficient of attention is obtained as 

follows: 

 α𝑙 = upsa𝑚𝑝𝑙𝑒{(𝐺𝐴𝑃[𝑥𝑙] ∗ 𝑊𝑥 + 𝑏) , (𝑥𝑙+1 ∗ 𝑊𝑔 + 𝑏)} ,                      (8) 

 

   where 𝑊𝑥 and 𝑊𝑔  are the weight values associated with the input and gating 

signals, respectively, b is the bias term, and GAP is a function of the global 

average pooling. The feature maps obtained from the attention module 𝑥𝑙𝑜𝑢𝑡 , 

which contains contextual information, were concatenated with the feature 

map of the corresponding decoding layer forming skip connections. These skip 

connections use both high- and low-resolution features; they focus on the most 

relevant information while performing up-sampling operations. 

3.5.  Fire Module 

   The fire module was initially introduced in SqueezeNet [13] to identify CNN 

architectures with fewer parameters while maintaining competitive accuracy. 

The fire module in SqueezeNet is composed of a squeeze convolution layer 

with only 1×1 filters, feeding into an expand layer with both 1×1 and 3×3 

convolution filters. The number of 1×1 filters in the squeeze layer is set to be 

less than the total number of 3×3 and 1×1 filters in the expand layer, so the 

squeeze layer helps in limiting the number of input channels to the 3×3 filters 

in the expand layers. Owing to the benefits of the fire module in reducing the 

learnable parameters, we used the same design of the fire module and 

integrated it into our proposed encoder and decoder architecture. Figure 3-4 

shows a schematic representation of the fire module applied to the proposed 

architecture. Figure 3-4(a) and -(c) show the encoder and decoder sides of U-

net [4] using a normal convolution layer, with each convolution block 
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containing 𝐹𝑖𝑛 filters, and takes a feature map of height ×width×channels 

(H×W×C) as input. Figure 3-4(b) and - (d) show the architecture of the fire 

modules at the encoder and decoder paths in the proposed method. Likewise, 

the fire module of SqueezeNet, the fire module in the proposed method 

consists of two parts: (i) the squeeze layer and (ii) the expand layer. As shown 

in Fig. 3-4(b), the squeeze module consists of one convolution layer with a 

kernel size of 1×1 and an output channel equal to 𝐹𝑖𝑛/4, where 𝐹𝑖𝑛  is the 

number of convolution filters in the conventional U-net [4]. The squeeze 

output is fed into the expanding module. The expanding module consists of 

two parallel convolutions with kernel sizes of 3×3 and 1×1, each convolution 

with 𝐹𝑖𝑛/2 output channels.  

 

 
 

 
(a) (b) (c) (d) 

Figure 3-4. Schematic of fire module. (a) & (c) show the convolution for 

the encoder and decoder side in U-net [4] respectively; (b) & (d) show our 

corresponding squeeze U-SegNet at encoder and decoder side using 

squeeze and expand layers to reduce the number of parameters. 

Furthermore, the output from these parallel convolutions is concatenated to 

form a fire module output, where 𝐹𝑜𝑢𝑡 = 𝐹𝑖𝑛. Hence, as mentioned in [13], the 

proposed method maintains the number of filters in the squeeze layer, which 
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is less than the total number of filters in the expand layers, which results in a 

significant reduction in the total number of network parameters. 

3.6.  Uniform Input Patch 

The brain MRI scan of each subject constitutes the dimensions H×W×S. Some 

of the starting and ending slices of the brain MRI scan do not provide much 

useful information, as analyzed in the previous research [54], and the 

consecutive slices would share almost the same information. Hence, to exclude 

these non-informative slices and reduce the multiple training of consecutive 

slices, we selected 48 slices with a gap of 3 slices, which ensured the presence 

of slices with more as well as less information for model training. Each of the 

extracted slices was resized to 256×256. The partitioning of a slice with 

individual patches improves localization because the trained network can 

better concentrate on local details in a patch. Therefore, each slice was divided 

into four uniform patches using our proposed method. Therefore, the 

dimensions of each partitioned patch were 128×128 in the proposed method. 

These patches are fed into the training of the model and the predicted 

segmentation results are obtained for the test data. 

3.7.  Classification Layer 

   The final decoder layer consists of a 1×1 convolutional layer with softmax 

activation to predict a reconstructed segmentation map. The output contains 

four predicted classes: gray matter (GM), white matter (WM), cerebrospinal 

fluid (CSF), and background. The proposed model accepts the input image and 

produces the corresponding learned representation. Based on this feature 

representation, the input image is classified into any of the four output classes. 

The cross-entropy loss is used to measure the proposed model losses, as in 
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(10). The softmax layer learns representations from the decoder and interprets 

them in the output class. The probability score 𝑦′ is assigned to the output 

class. If we define the number of output classes as c, we obtain as (9) as 

follows: 

𝑦′ = 
𝑒𝑥𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑙)

∑ 𝑒𝑥𝑝
𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑙)𝑗𝑐

𝑗=1

  ,                                                (9) 

and the cross-entropy loss function is used to calculate the network cost 

function as in (11):  

   L(y, 𝑦′) =  ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖
′𝑐

𝑖=1 ),                                    (10) 

where for each class of i, the ground truth and predicted distribution score are 

y and 𝑦′, respectively. 
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4. EXPERIMENTAL ANALYSIS 

4.1.  Datasets 

 The proposed method was evaluated using two sets of brain MRI images. (i) 

OASIS dataset, (ii) IBSR dataset. A detailed description of the dataset is 

provided as follows, 

4.2.  OASIS Dataset 

   The first sample included 416 T1 weighted brain MRI scans from the Open 

Access Series of Imaging Studies (OASIS) database [55], where information 

from both non-demented and demented subjects was obtained from 

Washington University. A T1-weighted (T1W) image is a common MR 

imaging pulse sequence that shows signal differences based on the intrinsic T1 

relaxation time of distinct tissues. Clinically, T1-weighted images are superior 

at displaying normal anatomy and are mainly used for the anatomical details 

and pathological abnormalities of the intracranial lesions [56]. Of the 416 

subjects in total, 150 were chosen for our experiments. The first 120 subjects 

were used for model training out of the selected data, and the remaining 30 

subjects were used as test datasets. For our studies, the axial, sagittal, and 

coronal planes of the MRI slices were used for training and testing the 

proposed network. In the OASIS dataset, the size of each input axial scan was 

208×176×176 which corresponds to height×width×slices respectively and 

each scan consisted of 176 slices. It was observed that the distinguishable 

tissue regions were mostly found near the middle slices of the volume [54]. 

Often, the same information is exchanged for consecutive slices. Therefore, to 

remove these non-informative slices and decrease the repetitive training of 

consecutive slices, a sample of 48 slices, starting from the 10-th slice with an 
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interval of three slices, were selected for the evaluation procedure. By inserting 

24 pixels of zeros at the top and bottom of the image and 40 pixels of zeros on 

the left and right of the image, the extracted slices were resized to the 

dimensions of 256×256×48. Similarly, the sagittal and coronal planes of MRI 

slices were also resized to 256×256 dimensions. Each input scan, therefore, 

consisted of 48 slices with dimensions of 256×256. During the training phase, 

slices of each MRI scan and their corresponding ground-truth segmentation 

maps were split into uniform patches. An input slice had dimensions of 

256×256 and each slice was split into four patches. Therefore, in the proposed 

model, the dimensions of each partitioned patch were 128×128. These patches 

were given as input to the training model, and the predicted segmentation 

results were obtained for the test data. 

4.3.  IBSR Dataset 

   The second dataset contains MRI from the Internet Brain Segmentation 

Repository (IBSR) [57] dataset. The IBSR dataset includes 18 T1-weighted 

MRIs of 14 healthy men and 4 healthy women between 7 and 71 years of age. 

Pre-processing, such as skull stripping, normalization, and bias field 

correction, is performed on the MRIs in the IBSR. The training dataset 

included 12 subjects with manually annotated and confirmed ground truth 

labels for the remaining six subjects for testing the model. The original axial 

scans (256×128×256) were padded to the top and bottom of the image with 

64 pixels of zeros to resize to a dimension of 256×256×256 to use the patches 

effectively in our proposed model. Similarly, the original coronal 

(256×256×128) and sagittal (128×256×256) scans were also resized to 

dimensions of 256×256×256 for the experiments. Table 1 summarizes the 

OASIS and IBSR datasets used in the experiments. 



 

27  

 

 

Table 1. Summary of OASIS and IBSR datasets used in our experiments. 

Dataset 
No. of subjects Experiment data 

Male Female Total Training set Testing set 

OASIS 160 256 416 120 30 

IBSR 14 4 18 12 6 

 

4.4.  Results and Discussions 

   The training and testing were performed on an NVIDIA GeForce RTX 3090 

GPU to build the proposed network and use stochastic gradient descent to 

optimize the loss function.  For training, we set the learning rate to 0.001, a 

high momentum rate of 0.99, and the number of epochs to 10. The Keras 

framework for the implementation of the proposed work was used. Figures 4-

1 and 4-2 show the segmentation results for the axial, coronal, and sagittal 

planes of the OASIS and IBSR datasets, respectively.  The figures show that 

the proposed approach achieves well-segmented performances for GM, WM, 

and CSF of the brain MRI on both datasets. 

The axial plane shows the most informative details in the central slices of the 

MRI compared to the other planes. Thus, the segmentation results for the axial 

planes show the segmentation performance most effectively. In addition, the 

highlighted boxes in Fig. 4-1 and 4-2 show that the quality of sagittal and 

coronal images is highly promising without any difference in every detail. 

From the results of Fig. 4-1 and 4-2, it can be inferred that the proposed method 

can extract complicated pattern features from all three planes. We evaluated 

the performance of the proposed method using quantitative metrics. Table 2 

presents the DSC, JI, Accuracy, Precision and Recall which are popular 

evaluation metrics for comparing the ground truth and segmented results.   
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(a) (b) (c) (d) (e) (f) 

Figure 4-1. Segmentation results for the axial, coronal, and sagittal planes 

of the brain MRI image (top to bottom) on the OASIS dataset using the 

proposed method. (a) Original input images, (b) ground truth 

segmentation map, (c) their predicted segmentation map obtained by 

using the proposed method, (d) predicted GM (binary map), (e) predicted 

CSF (binary map), (f) predicted WM (binary map). 

      
(a) (b) (c) (d) (e) (f) 

Figure 4-2. Segmentation results for the axial, coronal, and sagittal planes 

of the brain MRI image (top to bottom) on the IBSR dataset using the 

proposed method. (a) Original input images, (b) ground truth 

segmentation map, (c) their predicted segmentation map. 
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The most extensively used metrics for measuring the performance of 

segmentation methods are the DSC [58] and JI [59] measurements. To 

compute the similarity between two sample sets for segmentation, all 

evaluation metrics were applied. These metrics determine the match between 

the predicted segmentation map and the corresponding ground-truth 

segmentation map. The evaluation metrics for brain tissue segmentation are 

defined as follows:  

Table 2. The formulation of evaluation metrics 

 

where TP, TN, FP, and FN represent true positives, true negatives, false 

positives, and false negatives, respectively. We also assessed the segmentation 

performance in terms of the mean square error (MSE), which is the average 

square difference between the original X and predicted Y values. The 

Hausdorff distance (HD) [60] was used to determine the dissimilarity between 

two sets in a metric space. The two sets of small Hausdorff distances are almost 

identical. HD and MSE are computed as listed in Table 2, where D is the 

Euclidean distance between two pixels, and R and C are the image height and 

width, respectively. To compare the segmentation results of various network 

architectures, we performed an experiment on SegNet [20], U-net [4], U-

SegNet [21], U-net++ [23], and CE-net [29] models under the same 

Dice similarity coefficient(DSC) 2.TP/(2.TP+FP+FN) 

Jaccard Index (JI) TP/(TP+FP+FN) 

Accuracy  (TP+TN)/(TP+TN+FP+FN) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

Hausdorff distance (HD) 𝐻𝐷 =  𝑚𝑎𝑥  × {
𝑚𝑎𝑥
𝑥∈𝑋

𝑚𝑖𝑛
𝑦∈𝑌

𝐷{𝑋, 𝑌} ,

𝑚𝑎𝑥
𝑦∈𝑌

𝑚𝑖𝑛
𝑥∈𝑋

𝐷{𝑋, 𝑌}
} 

Mean squared error (MSE) MSE = 
1

𝑅𝐶
 ∑ ∑ (𝑋 − 𝑌)2𝐶

𝑗=1
𝑅
𝑖=1  
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experimental conditions. As shown in Fig. 4-3 and 4-4, the proposed method 

shows superior results in terms of the quality of the segmentation map 

compared to those of other conventional methods. Although the skip 

connections in the U-net improve feature representations by combining low-

level and high-level information, they suffer from a large semantic gap 

between low- and high-resolution feature maps, resulting in high 

misclassification rates of brain tissues. Furthermore, for medical images with 

low contrast, blurred boundaries between different tissues, the segmentation 

accuracies of U-net and SegNet are significantly degraded. Because the 

network layers in U-net++ are connected through a series of nested, dense skip 

pathways, leading to redundant learning of features, they did not show good 

performance. In particular, it can be observed that there are misclassification 

results in the feature maps generated by SegNet, U-net, and U-net++ in the red 

boxes of Fig. 4-3(c) and 4-4(c). Although U-SegNet with pooling indices and 

skip connections yields better segmentation results, it fails to capture fine 

details, as shown in Fig. 4-4(c).  From the highlighted red boxes in Fig. 4-4, it 

can be observed that U-SegNet fails to identify differences between WM and 

GM tissues, and most of the GM tissues are incorrectly predicted as WM. The 

CE-net extracts multi-scale information through a context encoder block for 

the segmentation of medical images.   However, the context encoder block is 

employed only at the bottleneck layer of the model. Thus this multi-scale 

information could be irrelevant by the time it reaches the final decoder layer 

for classification. To overcome these limitations, we extract multi-scale 

information at each network layer followed by the GAM to enhance the 

segmentation performance by directing attention to related areas [61]. This 

improved segmentation can be observed in the results obtained using the 

proposed method. 
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SegNet [20] 

      

U-net [4] 

      

U-SegNet [21] 

      

U-net++ [23] 

      

CE-net [29] 

      

Proposed 

Method 

      
 (a) (b) (c) (d) (e) (f) 

Figure 4-3. Segmentation results for GM, CSF, and WM from brain MRI 

image using the existing methods and the proposed method on OASIS dataset: 

(a) original input image; (b) ground-truth segmentation map; (c) their 

segmentation results obtained SegNet, U-net, U-SegNet, U-net++,CE-net, and 

the proposed method (top to bottom); (d) CSF maps obtained by SegNet, U-

net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); (e) 

GM maps obtained by SegNet, U-net, U-SegNet, U-net++,CE-net, and the 

proposed method (top to bottom); (f) WM maps obtained by SegNet, U-net, 

U-SegNet, U-net++,CE-net, and the proposed method (top to bottom). 



 

32  

 

 

SegNet [20] 

      

U-net [4] 

      

U-SegNet [21] 

      

U-net++ [23] 

      

CE-net [29] 

      

Proposed 

Method 
      

 (a) (b) (c) (d) (e) (f) 

Figure 4-4. Segmentation results for GM, CSF, and WM from brain MRI 

image using the existing methods and the proposed method on IBSR dataset: 

(a) original input image; (b) ground-truth segmentation map; (c) their 

segmentation results obtained SegNet, U-net, U-SegNet, U-net++,CE-net, and 

the proposed method (top to bottom); (d) CSF maps obtained by SegNet, U-

net, U-SegNet, U-net++,CE-net, and the proposed method (top to bottom); (e) 

GM maps obtained by SegNet, U-net, U-SegNet, U-net++,CE-net, and the 

proposed method (top to bottom); (f) WM maps obtained by SegNet, U-net, 

U-SegNet, U-net++,CE-net, and the proposed method (top to bottom). 
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Similar results were observed for the segmentations obtained from the 

IBSR images, as shown in Fig. 4-4. It can be observed that the proposed 

network obtains finer details than the other architectures. These results 

indicate that our proposed approach can strongly recover finer 

segmentation details while bypassing distractions between tissue 

boundary regions.  The quantitative analysis of the proposed method is 

performed in comparison with SegNet [20], U-net [4], U-SegNet [21], U-

net++ [23], and CE-net [29]. Table 3 and Table 4 show the comparative 

results in terms of the average and standard deviation of DSC, JI, and HD 

metrics, respectively. Table 5 and Table 6 show the comparative results 

in terms of the average and standard deviation of accuracy, precision, and 

recall metrics, respectively. As shown in Table 3 to Table 7 the proposed 

network achieves significant improvements of 10%, 3%, 2%, 2%, and 1% 

(in terms of DSC) over SegNet [20], U-net [4], U-SegNet [21], U-net++ 

[23], and CE-net [29], respectively, and obtained a lower MSE value of 

0.003 on average. In addition, the maximum standard deviations for 

accuracy, precision, and recall are 0.092, 0.098, and 0.099, respectively, 

which are close to the mean values; This indicates that the pixel predicted 

values are fitted well to the ground truth values without much data 

variation. For each encoder map, SegNet [20] stores only the max-pooling 

indices, i.e., the maximum feature value positions in each pooling window 

are stored and used for up-sampling. This improves boundary delineation 

with 3.5 million parameters with approximately 1.4 hours of training time, 

requiring fewer resources among the existing methods in our proposed 

method. 
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Table 7. Mean square error (MSE) comparison between the segmentation 

accuracy for the proposed method and conventional methods on OASIS and 

IBSR datasets. 

Mean Square Error (MSE) 
 SegNet [20] U-net [4] U-SegNet [21] U-net++ [23] CE-net [29] Proposed 

method 

OASIS 0.021 0.006 0.005 0.004 0.004 0.003 

IBSR 0.013 0.008 0.007 0.005 0.005 0.004 

 

SegNet tends to miss several fine details because when performing up-

sampling from low-resolution feature maps, it loses adjacent information. On 

the other hand, U-net uses skip connections as the core of the architecture, 

which blends deep, coarse information with shallow, fine semantic 

information. A drawback of U-net is its significant memory requirement 

because lower-level features in the up-sampling process must be stored for 

further concatenation. Because U-net uses low-level feature maps for up-

sampling, translation invariance is often compromised. Moreover, U-SegNet 

[21] tends to be insensitive to fine details, and it is evident from the difficulty 

in identifying boundaries between adjacent tissues, such as WM and GM. The 

design of atrous convolution followed by multi-kernel max-pooling in the CE-

net helps to capture multi-scale information and avoids the acquisition of 

redundant information. However, the multi-scale feature extraction capability 

of the CE-net is limited to the bottleneck layer, leading to poor feature 

presentation at the final decoder layer. The segmentation maps generated by 

these existing models have a relatively low resolution because of the pooling 

layers in the encoder stage. Hence, to preserve the high spatial resolution, the 

pooling layers must be removed. However, since convolution is a rather local 

operation, SegNet, U-net, U-SegNet, U-net++, and CE-net models would not 

learn holistic features in the images without pooling layers. Our proposed 
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method presents a multi-scale feature fusion scheme combined with GAM as 

a potential solution to the problems discussed above and produces improved 

segmentation accuracy. The max-pooled output was filtered with 1×1, 3×3 

kernels. Then, they are concatenated together and can extract the global 

context without losing the resolution of the segmentation map. 

 

Figure 4-5. Detail data on the number of learnable parameters and computation 

time for the proposed and conventional methods for the OASIS dataset. 

 

   In this way, global information can be exchanged between layers without 

reducing the resolution, leading to lowered blurring in the segmentation maps. 

In addition, the GAM at the encoder enables the presentation of global context 

information as a guide for low-level features to extract the original resolutions 

for segmentation. The GAM at the decoder shows that the combination of 

global features and local features is essential to discriminate brain tissues and 

is consistent with the results from previous studies. Furthermore, uniform 

input patches allow the network to concentrate better on local information. As 

a result of the selective integration of spatial information through uniform 

patches, feature maps followed by multi-scale guided multiple GAMs help in 
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capturing context information and can efficiently encode complementary 

information to segment the brain MRI accurately. 

   As mentioned above, we propose the use of a fire module for fewer learnable 

parameters while maintaining equivalent accuracy. Figure 4-5 shows the 

details of the number of learnable parameters and computation time consumed 

by the proposed method in comparison with conventional methods. Smaller 

models can be built by arranging a sequence of fire modules that consist of a 

squeeze layer that has only 1 × 1 convolution filters. This serves as 

an expansion layer that has a combination of 1×1 and 3×3 filters. The number 

of filters in the squeeze layer was defined to be less than the number of 1×1 

and 3×3 filters in the expand layer. The 1×1 filters in the squeeze layer down-

sample the input channels and decrease the parameters before they are given 

as an input to the expand layer. The expansion layer consists of both 3×3 and 

1×1 filters. The 1×1 filters in the expand layer combine channels and perform 

cross-channel pooling but cannot recognize spatial structures. The 3 × 3 

convolution filter in the expand layer identifies the spatial representation. The 

model becomes more descriptive by integrating these two distinct size filters 

while running on lower parameters. Hence, fire modules reduce the 

computational load by reducing the parameter maps and building a smaller 

CNN network that can preserve a higher degree of accuracy. The total 

parameters in our proposed method are one million parameters, which are 3, 

5, 4.5, 3, and 28 times smaller than SegNet, U-net, U-SegNet, U-net++, and 

CE-net networks, respectively. The training time for the proposed method for 

the OASIS dataset was 50% of that of the U-net++ and CE-net methods. 

Compared to traditional approaches, a reduction in memory requirements 

would result in a substantial decrease in energy and processing requirements. 
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4.5.  Ablation Study 

   We conducted an ablation study on the three simplified versions of the 

proposed modules to investigate the influence of each selection on the 

segmentation performance as follows: (i) Squeeze U-SegNet, (ii) Squeeze U-

SegNet with multi-scale input, (iii) Squeeze U-SegNet with multi-global 

attention and (iv) multi-scale Squeeze U-SegNet with multi-global attention 

(proposed method). The Squeeze U-SegNet was obtained by replacing each 

convolution block with a fire module in the conventional U-SegNet. The 

second network proposes that the encoder of the Squeeze U-SegNet includes 

a multi-scale input layer. This is achieved by max-pooling the input and 

performing parallel convolution with 1×1, 3×3 kernels, and concatenating 

these multi-scale features. These fused multi-scale features are concatenated 

with the corresponding fire module output and fed as input for further max-

pooling operations. This process is repeated for all encoding layers. The multi-

scale feature module extracts neighbor scale information of global features 

more precisely while filtering out irrelevant information. The impact of the 

attention mechanism is explored in the third network, where GAMs are 

integrated at both the encoder and decoder, forming a multi-attention network. 

Finally, the multi-scale squeeze U-SegNet with multi-global attention referred 

to as the proposed method incorporates semantic guidance by combining all 

the proposed modules. Table 8 lists the results of the individual contributions 

of different components to segmentation performance. The fire module-based 

model significantly decreases the requirement of learnable parameters with 

reduced computation time for model training while maintaining network 

accuracy. We observe that, compared to the baseline squeeze U-SegNet, the 

performance of the models integrated with the multi-scale feature fusion input 
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scheme and with the multi-attention modules is improved by 1.5% and 2%, 

respectively. Although the multi-scale feature fusion shows a slight increase 

in the DSC, its contribution combined with GAM provides more network 

efficiency. Furthermore, the combination of both multi-scale and multiple 

global attention strategies boosts the performance and yields the best values in 

the three metrics: 96% (DSC), 91% (JI), 3.1(HD), and with the lowest MSE of 

0.003. These results represent an improvement of 2% in DSC compared to the 

baseline U-SegNet [20], showing the efficiency of the proposed multi-scale 

guided multi-GAM compared to individual components. 

 

Table 8. Detail data on the number of learnable parameters and computation 

time for the proposed method and its three simplified versions. 

 

 1: Squeeze U-SegNet, 2: Squeeze U-SegNet with multi-scale input, 3: Squeeze U-SegNet with 

multi global attention, 4: Proposed  

 

 

   We also investigated the effects of patch size in terms of training time and 

segmentation performance. The experiments were performed on the OASIS 

dataset for three distinct patch sizes (128×128, 64×64, and 32×32). 

Table 9 lists the output of the segmentation in terms of the DSC with respect 

to different patch sizes. It can be observed that smaller patches result in better 

performance. 

 

 

 

 GM WM CSF  
Computation 

time(10 

epochs) 

#Learnable 

parameters 

DSC JI HD DSC JI HD DSC JI HD MSE   

1 92.05 88.06 3.52 93.37 90.42 2.8 91.65 88.06 2.0 0.006 1 h 768,788 

2 93.44 89.47 4.81 94.78 91.90 4.1 93.32 90.25 3.0 0.005 1.04 h 860180 

3 94.32 89.25 5.10 95.12 91.40 4.2 94.24 89.22 3.3 0.004 1.15 h 942164 

4 95.54 91.09 3.21 96.56 92.05 3.1 94.86 90.29 3.0 0.003 1.12 h 1030420 
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Table 9. Segmentation accuracy (%) and training time (hours) for the 

proposed method with different sizes of input patches. 

Patch size 
DSC JI 

Training time 

(hours) 
WM GM CSF WM GM CSF 

128×128 96.56 95.54 95.73 92.05 91.09 90.23 1.1 

64×64 

32×32 

96.74 

96.91 

96.13 

96.85 

95.49 

95.73 

92.49 

91.88 

91.58 

91.76 

90.54 

90.71 

6.7 

12.4 

 

This is because smaller patches create more training data for the network to 

train. Moreover, local regions can be restored more accurately.  Furthermore, 

when the patch size is 128×128, it takes 1.1 h to train the model, whereas the 

training time doubles for 32×32 patches with almost identical accuracy. We, 

therefore, concluded that a patch size of 128×128 provides a fair tradeoff 

between the DSC score and the computational time needed to train the model, 

based on the results in Table 9. 
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5. CONCLUSION 

This paper proposes multi-scale feature extraction with novel global 

attention-based learning based on the U-SegNet architecture for brain MRI 

segmentation. The multi-scale data provide rich spatial information and 

improve the robustness of feature extraction. The global attention module 

provides the global context as guidance for low-level features to select 

category localization details. The squeeze and expand layers lead to the 

generation of one million parameters, which are 3, 5, 4.5, 3, and 28 times 

smaller than SegNet, U-net, U-SegNet, U-net++, and CE-net networks, 

respectively. Our proposed network obtains the best DSC value of 96%. The 

training time for the proposed method for the OASIS dataset is 50% of that of 

the U-net++ and CE-net methods. Our validation proves that the network 

operating on patch-wise input, integrated with multi-scale global attention and 

fire modules, will yield an efficient brain MRI segmentation model. The 

proposed model can be easily extended to complex network architectures 

owing to flexibility and adaptability with faster computation. Hence, a three-

dimensional (3D) segmentation model can be devised using the extended 

model of the proposed architecture as future works.  
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