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ABSTRACT

Development of Diagnostic and Prognostic Algorithms

for Nuclear Power Plant Using Artificial Neuranl

Network

Hyojin Kim

Advisor : Prof. Jonghyun Kim, Ph.D.

Department of Nuclear Engineering

Graduate School of Chosun University

비정상 및 비상 상황 발생 시 운전원은 상황을 인식하고 적절한 조치를 수행해

야 한다. 비정상 상황에서는 운전원이 올바른 비정상 절차서를 수행하기 위하여 빠

르고 정확한 진단을 수행해야 한다. 하지만, 원자력 발전소에는 100개 이상의 비정

상 절차서와 약 4,000개의 경보 시스템으로 인해 운전원이 의사결정 과정에서 고려

해야 할 정보가 매우 많다. 이러한 과도한 정보는 운전원에게 혼란을 줄 수 있을

뿐만 아니라 인적 오류를 유발할 수도 있다. 또한, 비상 상황에서는 운전원의 올바

른 상황인식은 원자력 발전소 관리에 중요할 뿐만 아니라 사고를 효과적으로 완화

하는 데 도움이 된다. 특히, Ensley가 제시한 3 Level 상황인식 중 Level 3는 (미래

상황 예측) 안전을 확보하기 위해 가장 좋은 조치를 결정하는데 필요한 지식 및 시

간을 제공할 수 있지만, 원자력 발전소의 복잡성과 사고의 불확실성으로 인해 어려

운 과제이다. 본 연구에서는 비정상 상황에서의 진단과 비상 상황에서의 예측을 돕

기 위하여 인공신경망을 이용한 진단 및 예측 알고리즘을 제안한다. 진단 알고리즘

은 long short-term memory (LSTM)과 variational autoencoder (VAE)를 이용하

여 빠르고 정확한 진단을 할 뿐만 아니라 알지 못하는 사고를 식별할 수 있으며,
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진단 결과를 검증하여 진단 신뢰도를 향상했다. 예측 알고리즘은 bidirectional

LSTM (Bi-LSTM)과 attention mechanism (AM)을 이용하여 120단계를 통해 2시

간 거동을 예측하고 variational encoder-decoder를 이용하여 예측의 불확실성을 제

공한다. 제안된 알고리즘들은 compact nuclear simulator (CNS)를 이용하여 구현

및 검증하였다.
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Ⅰ. Introduction

Owing to the complexity of engineering systems and potential hazards

associated with nuclear power plants (NPPs), appropriate decisions must be

ensured for their safe and efficient operation [1]. Most decisions are made by

human operators who monitor numerous instrumentation signals and apply them

to various procedures that correspond to the plant status [2]. In particular, if

abnormal or emergency situations occur during the operation of NPPs, operators

should be aware of the situation and execute appropriate actions. However,

operators are inclined to perform incorrect measures owing to the complexity of

accidents and time constraints involved [3].

Diagnosing NPPs in abnormal situations is considered one of the most

difficult tasks of operators. First, there is excess information to consider in the

decision-making process of operators. Moreover, NPPs not only have

approximately 4000 alarms and monitoring devices in the main control room, but

they also have more than 100 operating procedures that should be followed

during abnormal situations [4]. Using this large body of information, operators

diagnose abnormal situations and execute specific actions in accordance with the

relevant operating procedures [5]. However, this excessive information could

confuse operators and increase the likelihood of error caused due to excess

mental workload [6]. Additionally, some abnormal situations require speedy

diagnosis and response to prevent the reactor from being tripped.

Moreover, in emergency situations, adequate situation awareness (SA) of

operators is not only important for the management of NPPs, but can also

assist the operators in effectively mitigating events. Among the three levels of

SA suggested by Ensley, Level 3 SA (i.e., projection of future status of the

situation) provides the knowledge (and time) necessary to decide on the most
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favorable course of action, to ensure safety [7]. In addition, the prediction of

plant parameters can be applied in early warning applications to assist operators

in predicting future events. However, it is one of the most challenging tasks for

operators because of the complex physical processes, nonlinear parameter

variations, multiple system factors, and uncertainty of accidents [8].

To address these issues, several researchers have applied operator support

systems and algorithms to reduce the burden on operators. For instance, Hsieh

et al., used an abnormal symptom matrix [9], while Kim and Jung,. used a

flowchart of the AOPs generated through the R software to implement operator

support systems [10]. Other works using support vector machines (SVM) [11],

expert systems [12], and artificial neural networks (ANNs) [13] have

demonstrated the applicability of artificial intelligence (AI) techniques. However,

the SVM algorithms and expert systems have their downsides. SVM algorithms

are not suitable for large datasets, while expert systems are usually developed

for specific domains and acquiring the necessary knowledge is time-consuming.

Meanwhile, ANNs are regarded as one of the most relevant approaches to

handle pattern recognition and large nonlinear data (e.g., handwriting

recognition, translation, financial forecasting). Therefore, some papers have

proposed algorithms using ANNs for the diagnostic and prognostic in NPPs

[14-18].

Several diagnostic algorithms using ANNs have performed well in trained

cases, but some drawbacks are observed. It cannot correctly assess anonymous

cases as an unknown situation if an unknown abnormal situation is provided.

As some abnormal events are not known and are unpredictable in actual NPPs,

defining all abnormal events is also difficult. This limitation could harm the

safety of NPPs caused by the wrong diagnostic results from an algorithm. In

addition, the diagnostic algorithms need potential improvements. An

improvement with this diagnostic algorithm is that the algorithm produces the
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diagnosis result with probabilities and the operators need to make the final

decision based on the probability result. In some situations, this diagnostic

algorithm may provide multiple and competing diagnosis results with competing

probability values. For example, this diagnostic algorithm produces an output

such that Event-A has a probability of 0.6 and Event-B has a probability of

0.4. In this case, operators might make errors due to confusion and uncertainty

when the probabilities of diagnosis results are competing, especially during the

initial period of abnormal situations when the probabilities of those events may

not be clearly distinguished. In some abnormal situations, fast decision making

is important. Hence, confirming the diagnostic result of the algorithm during the

initial period of an abnormal situation is necessary.

In addition, many prediction algorithms using ANNs have shown good

performances in single-step prediction, but have limitations. However, these

studies can only predict the future single-step, which is limited to practical

monitoring and early warning applications. The single-step prediction does not

significantly benefit real early warning applications because the event after a

multi-step condition is difficult to predict. Hence, multi-step prediction is more

suitable for long-term prediction than single-step prediction; however, it is

difficult to perform because of the lack of information and uncertainty or error

accumulation [19]. Further, in the prediction using ANNs, the uncertainty is

inevitable and the information about the uncertainty should be provided for the

operators if the algorithm is supposed to support operator’s prediction.

Therefore, this study not only aims to propose a diagnostic algorithm for

abnormal situations by identifying unknown events, confirming the diagnostic

results, and conducting the final diagnosis through the algorithm but also a

long-term prediction algorithm with uncertainty estimation. The diagnosis

algoritm combines long short-term memory (LSTM) and variational autoencoder

(VAE) for identifying unknown situations and confirms the diagnosis of the
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LSTM network. While, prediction algorithm aims to predict the long-term

behavior of plant parameters for 2 hours with 120 steps as well as to provide

uncertainty estimation using bidirectional LSTM (Bi-LSTM), attention

mechanism (AM), and Variational encoder-decoer (VED). The proposed

algorithms were trained and implemented using a compact nuclear simulator

(CNS) in which the reference plant was a three-loop Westinghouse 900 MWe

pressurized water reactor. Moreover, Gaussian noise was incorporated to all test

input data to mimic real NPPs because the CNS produces data without noise.
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Ⅱ. Methods

A. Long Short–Term Memory

LSTM is a neural network architecture based on the recurrent neural

network (RNN) for processing long temporal sequences of data. LSTM has

been suggested for long temporal sequence learning to deal with the vanishing

gradient problem. Although LSTM has the same structure as RNNs, it uses a

different equation to calculate the hidden state. Fig.1 shows the architecture of

the LSTM cell applied in this study. The input sample  passes through every

gate as in a conveyor belt system. With other LSTM models, each LSTM cell

adjusts the output value using the input gate, forget gate, and output gate

while maintaining the cell state. The information in the cell state is unchanged

and can be added or deleted through each gate. Furthermore, as the operation

of each gate is composed of additional operations attached to the cell state, it

can avoid the vanishing gradient problem [14, 15, 19, 20].

Fig. 1. Architecture of LSTM.
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The input gate determines the capacity of the input value, the forget gate

determines the degree to which the previous cell state is forgotten, and the

output gate determines the value of the output. Eqs. (1)-(3) represent the input

gate, forget gate, and output gate denoted by   and , respectively; Here, σ

and  represent a sigmoid function and time state, respectively. The cell state is

determined as shown in Eq. (4), where  represents the cell state. Finally,

LSTM provides the output using Eq. (5), where  represents the output of the

LSTM network [19].

  σ ∙        (1)

  σ ∙         (2)

  σ ∙      (3)

      tanh ∙      (4)

  tanh (5)
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B. Bidirectional Long Short–Term Memory

However, LSTM only makes use of the forward dependencies. Long-term

dependencies of LSTM are trained from chronologically sorted input data by

only considering forward dependencies; whereas backward dependencies trained

from reverse time-ordered data were not considered. As regards dependence on

the prediction problem, all information contained in the time-series data should

be fully used. But in the unidirectional process, it is highly possible that useful

information is filtered out or not efficiently passed through the chain-like gated

structure. Therefore, it could be informative to consider backward dependencies,

which pass information in a reverse direction, into consideration [21]. To

address this issue, Bi-LSTM with the ability to deal with both forward and

backward dependencies is adopted in this study.

The Bi-LSTM is an extension of the described LSTM models in which two

LSTMs are applied to the input data. Fig. 2 shows the process of unidirectional

LSTM and bidirectional LSTM. The prediction results are influenced by not

only the initial inputs but also the subsequent inputs in some regression

problems. Bi-LSTM can improve the prediction accuracy by integrating the

initial and subsequent inputs. Bi-LSTM is divided into forward LSTM and

backward LSTM. The final output of Bi-LSTM is determined by the results of

both forward and backward calculations, whose structures are consistent with

the structure of the hidden state of LSTM: one direction process uses a

forward hidden state from    to ; the other direction process uses a

backward hidden state from    to 1. The output of the  Bi-LSTM is

shown in Eq. (6) [21-23].


   →

⊕
←

  (6)
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Where
→

 and
←

 denote forward hidden state and backward hidden state,

respectively. Here, it uses an element-wise sum to combine the forward and

backward pass outputs.

(a) Process of unidirectional LSTM (b) Process of bidirectional LSTM 

LSTM LSTM LSTM

x1 x2 xT

h1 h2 hT

LSTM LSTM LSTM

LSTM LSTM LSTM

x1 x2 xT

h1 h2 hT

Fig. 2. Process of unidirectional LSTM and bidirectional LSTM.
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C. Softmax

The softmax function is used for the post-processing of the LSTM output.

The softmax function is an activation function commonly used in the output

layer of deep learning models that can categorize more than three classes of

output [24]. Softmax significantly deviations between the values and then

normalizes the outputs. Eq. (7) represents the softmax function. For ∈  (the

input vector to the softmax function), k is the number of classes of output. For

… , the normalized output values were between 0 and 1, and the sum

of output values was always 1.

 
∑  

 



 

for    …  (7)
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D. Sequence to Sequence Learning

Seq2Seq learning was first successfully applied to real natural language

processing by Sutskever et al [27]. It is a MIMO framework that aims to depict

the inner regularities between highly structured inputs and outputs. This

framework has been applied to machine translation and is effective in capturing

continuous spatial and temporal representations of input sequences.

The architecture of the Seq2Seq network is shown in Fig. 3. It comprises

two sets of LSTM blocks that serve as the encoder and decoder. The encoder

processes the input sequence … of length  and yields a summary of the

past input sequence via the last hidden state . After  times of recursive

updates from Eqs. (1)–(5), the encoder summarizes the entire input sequence

into a fixed-length vector. Subsequently, the encoder passes  to the decoder

such that it is used as the input for sequence generation. The decoder

recursively generates the output sequence …  of length . Mathematically,

the goal of the encoder and decoder LSTM is to estimate the conditional

probability … …. The encoder and decoder compute this conditional

probability by first obtaining the fixed-dimensional representation of the input

sequence provided by the last hidden state of the encoder LSTM. Subsequently,

the probability of the output sequence is computed as shown in Eq. (8) [25].

… …  
  



…     (8)
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y1

Decoder
LSTM

Decoder
LSTM

s1
Decoder

LSTM
s2sN-1

Encoder 
LSTM

Encoder 
LSTM

h1
Encoder 

LSTM
h2 hT-1

x1 x2 xT

Context

y2yN-1

Fig. 3. The framework of encoder-decoder LSTM network.
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E. Attention Mechanism

Standard Seq2Seq learning must be able to compress all the necessary

information of the source data into a fixed-length vector. In this case,

information loss is inevitable, and the prediction effect will become increasingly

worse with the continuous growth of the time-series sequence [26]. This can

render it difficult for the network to cope with long sequences, particularly

those that are longer than the sequences in the training input data [27].

Hence, the AM has garnered significant interest in deep learning. It is a

probability-weighting mechanism that mimics the attention of the human brain.

When the human brain observes objects, it focuses on specific locations and

disregards other locations. The AM increases the accuracy of the model by

highlighting more important factors by assigning different probability weights. It

has been successfully applied to machine translation, video analysis, and other

related fields.

Applying the AM to the encoder–decoder LSTM network allows the neural

network to adaptively focus on input features that are more important to the

current output and mitigate the interference of other features. Fig. 4 shows an

architecture of AM. Using the encoder hidden state states   …   as

the input of the AM, the AM will search for the attention weight of the hidden

state  of the LSTM decoder, where the attention weight α between the

output at time  and the input at time  is calculated using Eqs. (9) and (10).

The context vector   …  can be obtained by

multiplying the attention weight α and the encoder hidden states  , as shown

in Eq. (11). [26, 28].
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   ∙  (9)

α 


  



exp

exp
(10)

  α ∙  (11)

Attention 

xT

Encoder
LSTM

Encoder
LSTM

h1
Encoder

LSTM
h2 hT-1

x2x1

sN-1 s2

contextN context2 context1

Decoder
LSTM

Decoder
LSTM

Decoder
LSTM

yN y2 y1

s1

Attention Attention 

Fig. 4 Architecture of AM
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F. Variational Autoencoder

VAE [29] is an unsupervised deep learning generative model that can model

the distribution of training data. If input data are similar to the training data,

the output appears to be similar to the input. Otherwise, a probabilistic measure

that considers the variability of the distribution variables decreases. Several

studies have suggested a fault detection algorithm using the reconstruction

log-likelihood of VAE and showed the compatibility of VAE with LSTM

[30-32].

VAE provides a flexible formulation for interpreting and encoding  as a

potential variable in probabilistic generation models. As shown in Fig. 5, the

input sample  passes through the encoder to obtain parameters of latent space

distribution. The latent variable  was obtained from sampling in the current

distribution, and then  was used to generate a reconstructed sample through

the decoder (Chen et al., 2019). VAE comprises of a probabilistic encoder

(ϕ) and decoder (θ). As the posterior distribution (θ) is

intractable, VAE approximates θ using the encoder ϕ, which is

assumed to be Gaussian and is parameterized by ∅. This enables the encoder

to learn and predict latent variables , which makes it is possible to draw

samples from this distribution.
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Fig. 5. Architecture of VAE.

To decode a sample  drawn from ϕ to the input , the reconstruction

loss (Eq. (12)) must be minimized. The first term of Eq. (12) is the

Kullback-Leibler (KL) divergence between the approximate posterior and prior

latent variable . This term makes the posterior distribution to be similar to the

prior distribution by working as a regularization term. The second term of Eq.

(12) can be understood in terms of reconstruction of  through the posterior

distribution ϕ and likelihood θ.

θϕ ϕθ ϕ   logθ  (12)

The choice of distribution types is important because VAE models the

approximated posterior distribution ϕ from a prior θ and likelihood

θ. A typical choice for the posterior is Gaussian distribution, where the

standard normal distribution  is used for the prior θ.
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G. Variational Encoder-Decoder

In some applications, the input data are transformed into output data (e.g.,

machine translation, multi-step prediction, and natural language processing). In

these tasks, a VAE is insufficient, and an encoder–decoder framework is

required. Different efforts have been expended to extend the VAE to

encoder–decoder frameworks, which transform an input  to an output . We

denote our model distribution as  We introduce a latent variable  with

a standard Gaussian prior and factor , as shown in Eq. (13).

∫ (13)

For the definition expressed in Eqs. (12) and (13), the variational lower bound

of the VED can be formulated as shown in Eq. (14).

 θϕ ϕθ ϕ   logθ  (14)

where θ is the prior model of the VED, ϕ is the posterior

approximator of the VED, and θ is the decoder with guidance from 

[33].
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Ⅲ. Development of Diagnostic Algorithm for

Abnormal Situations

A. Diagnostic Algorithm Design

This section describes the overall structure of the diagnostic algorithm for

abnormal situations using ANN. Fig. 6 illustrates the functional architecture of

the diagnostic algorithm design, which consists of four functions: 1)

pre-processing function, 2) unknown event identification function, 3) event

diagnosis function, and 4) confirmation of diagnosis result function.
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Fig. 6. Functional architecture of the diagnostic algorithm design.
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1. Pre-processing Function

The first function of the algorithm is to process the plant parameters and

make it suitable as network inputs. The inputs for the networks are selected

from operating procedures based on their importance and ability to affect the

state of the plant or system availability. These inputs should have a range of

values from 0 to 1. However, plant parameters have a different range of values

or states (e.g., pressurizer pressure: 158 kg/cm2, alarm: on or off). Generally,

variables with higher values will have a larger impact on the network results.

However, higher values are not necessarily more important for prediction. This

problem produces local minima. Therefore, the input pre-processing obtains the

regular plant parameters as input and then outputs the normalized plant

parameters that will be utilized by the networks.

Min-max normalization is used to prevent local minima and increase the

learning speed. Thus, the input of the networks is calculated by using Eq. (15).

here,  is the current value of plant parameters, and min and max are the

minimum and maximum values of collected data, respectively. In this equation,

  has a range of 0–1.

 max  min
  min

(15)
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2. Unknown Event Identification Function

This function is used to identify the unknown event via a combination of the

VAE and LSTM networks. The VAE network was combined with LSTM [31]

and it was used not only to support the sequence of input data but also to

capture the complex temporal dependence in time series. This function receives

normalized NPP parameters from the input pre-processing function and

identifies the unknown event in real time. The anomaly scores that indicate

discrepancies between the actual and trained data were used for this function. If

the anomaly score is below the threshold, the event is identified as a known

event for which the diagnosis network in the next function has been trained. If

the anomaly score is above the threshold, the event is unknown, and the

message “Unknown event occurrence” is provided to the operators as the

output.

The process of unknown event identification function is shown in Fig. 7. To

consider the temporal dependency of time-series data in a VAE, a VAE is

combined with LSTMs by replacing the feed-forward network in a VAE with

the LSTMs similar to conventional temporal autoencoders. Given the

multi-parameters input ∈  (where D is the number of input parameters),

made up of  , … , at  time which is normalized plant parameters from

input pre-processing function, the encoder approximates the posterior   by

the LSTM of the encoder to estimate the mean μ 
∈  and variance σ 

∈ 

of the latent variable  ∈ . Then, the randomly sampled   from the posterior

  is fed into the LSTM of the decoder. The final outputs are the

reconstruction mean μ 
∈  (μ 

 … μ  and variance σ 
∈ 

σ 
… σ .
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Fig. 7. Various processes in the unknown event identification function.

To identify the unknown event, the unknown event identification function

detects an anomalous execution when the current anomaly score is above the

threshold α ′ in Eq. (16). The term   ∅ θ is an anomaly score calculator.

The anomaly score is defined as the negative log-likelihood of , represented

in Eq. (17), with respect to the reconstructed distribution of  from an

LSTM-VAE network. Here, μ 
and σ 

are the mean and variance of the

reconstructed distribution from an LSTM-VAE network with parameters ∅ and

θ, respectively. Fig. 8 shows an example of the anomaly score calculation. Note

that ∈  (for      ) represents the normalized input parameters,

μ 
∈  (for μ  

 μ  
 μ

) represents the reconstruction mean, and σ 
∈  (for

σ 
 σ  

 σ  represents the reconstruction variance. Each element goes through

the Eq. (17) then the anomaly score is calculated. Notice that in this example,

the number of input parameters () is three. Therefore, the anomaly score

calculated in this example is 0.927 as shown in Fig. 8. A high anomaly score

means that the input has not been adequately reconstructed by the LSTM-VAE

network.
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  if   ∅ 〉 ′

  
(16)

 ∅   


  



log   
   (17)

α ′      (18)

Fig. 8. Example of anomaly score calculation.

The threshold α′ was determined using three-sigma limits after considering

the anomaly score distribution of the training data. The fact that the anomaly

scores are achieving a smaller value indicates that the output data (i.e.,

reconstructed data from LSTM-VAE) is similar to the training data and the

threshold considers the upper control limit.  and  are the mean and

standard deviation of the anomaly scores of the training data, respectively (Eq.

(18)). This not only sets a range for the process parameter at 0.27 % control

limits (corresponding to the three-sigma in normal distribution) but also

minimizes the cost associated with preventing the error of classifying a known

event as unknown. Section Ⅲ.B.2 discusses the method to determine the

threshold and hyperparameters.
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3. Event Diagnosis Function

This function produces diagnosis results of the plant situation using LSTM.

Fig. 9 shows the processes in the event diagnosis function. The LSTM network

receives normalized plant parameters from the input pre-processing function and

produces identified abnormal events with their probabilities. The output is

post-processed using the softmax function. The probability represents the

confidence level of the identified event. Then, this function selects the event

with the highest probability among the diagnostic results for the confirmation

function. In addition, multiple events can be identified with different probabilities

in the previous function. If the confirmation function returns the information

stating that the current situation is not consistent with the diagnostic result,

then this function will select the next event with the highest probability until

the current situation is consistent with the diagnostic result. The procedure to

determine hyperparameters, such as number of layers and nodes, is described in

Section Ⅲ.B.3.

Fig. 9. Processes in the event diagnosis function.
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4. Confirmation of Diagnosis Result Function

This function is used to confirm whether the current abnormal situation is

identical to the event selected in the event diagnosis function. This function has

a library that consists of LSTM-VAE networks for trained events. Further, the

LSTM-VAE network for the selected event is used to confirm that the selected

event is identical to the trained event.

Fig. 10 shows the confirmation process of the selected event. First, this

function selects the LSTM-VAE network from the library that corresponds to

the event identified in the previous function. Next, it verifies whether the

current situation is identical to the selected event by using the LSTM-VAE

network. To estimate the anomaly score, this function uses negative

log-likelihood (i.e., similar to “the unknown event identification function”). If the

negative log-likelihood is below the threshold, then the algorithm declares that

the diagnosis result from the event diagnosis function is correct and confirmed.

If the negative log-likelihood is beyond the threshold, then it returns to the

previous function to select another event. The thresholds of LSTM-VAE

networks are determined in a similar manner as that described in Section

Ⅲ.A.2.

Fig. 10. Processes in the confirmation of diagnosis results function.
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B. Experiment

The suggested algorithm was implemented by using a CNS that simulates a

Westinghouse 900 MWe, three loops, pressurized water reactor. Fig. 11 shows a

plant overview interface of the CNS. For implementation, a desktop computer

with NVIDIA GeForce GTX 1080 11 GB GPU, Intel 4.00 GHz CPU, Samsung

850 PRO 512 GB MZ-7KE512B SSD, and 24 GB RAM was used. Python 3.7.3

was used as the coding language, and several python libraries, including Keras

and Pandas, were used to model the algorithm.

Fig. 11. Plant overview interface of CNS.
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1. Data Collection

To implement, train, and validate the algorithm, CNS was used as a real-time

testbed. A total of 20 abnormal situations and 558 cases were simulated to

collect data. Table 2 shows the abnormal scenarios and the numbers of

simulations for each event. The scenarios included representative abnormal

situations in actual NPPs, such as instrument failures (Nos. 1–6), component

failures (Nos. 7–16), and leakages (Nos. 17–20).

Table 1. Abnormal scenarios and the number of simulations.

No. Scenarios
Training

Cases

Verification

Cases

Total

Cases

1 Failure of pressurizer pressure channel (High) 14 4 18

2 Failure of pressurizer pressure channel (Low) 20 6 26

3 Failure of pressurizer water level channel (High) - 6 6

4 Failure of pressurizer water level channel (Low) 11 4 15

5 Failure of steam generator water level channel (Low) 32 8 40

6 Failure of steam generator water level channel (High) 35 6 41

7 Control rod drop 38 10 48

8 Continuous insertion of control rod 7 1 8

9 Continuous withdrawal of control rod 6 2 8

10 Opening of pressurizer power-operated relief valve 42 10 52

11 Failure of pressurizer safety valve 35 8 43

12 Opening of pressurizer spray valve 41 9 50

13 Stopping of charging pump - 1 1

14 Stopping of two main feedwater pumps - 3 3

15 Main steam line isolation - 3 3

16 Rupture at the inlet of the regenerative heat exchanger 40 10 50

17
Leakage from chemical volume and control system to component 
coolant water (CCW) 40 10 50

18 Leakage at the outlet of charging control flow valve 24 6 30

19 Leakage into the CCW system from the reactor coolant system 24 6 30

20 Leakage from steam generator tube - 36 36

Total 409 149 558
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Based on the abnormal operating procedures of the reference plant, 139

parameters were selected for input, including plant variables (e.g., temperature

or pressure) and component states (e.g., pump or valve status). These

parameters were collected every second during the simulations.

Among the 20 scenarios collected, 15 scenarios containing 409 cases were

used for training, and 5 scenarios were used for validating untrained events. A

total of 149 cases were used for validating the algorithm, including the five

untrained events (i.e., 3, 13, 14, 15, and 20). Among them, 115 cases were used

for determining the thresholds of identification of unknown event function and

confirmation of diagnosis result function.

The collected data were added with ±5 % Gaussian noise to reflect actual

signals from NPPs. The CNS produces data without noises, as shown in Fig.

12 (a). The noise was added to the CNS data intentionally, as shown in Fig. 12

(b).

Fig. 12. Examples of pressurizer temperature data ((a): original CNS data and

(b): data with ±5 % Gaussian noise).
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2. Function Implementation

a. Pre-processing function

To implement the min-max normalization in the input preprocessing function,

we determined the maximum and minimum values of parameters based on all

the collected data (i.e., 558 cases). Moreover, as ±5 % Gaussian noise was

added to the simulator data (making it similar to actual NPP data), some data

can be larger than the maximum values or lower than the minimum values.

Therefore, the data will not fall between 0 and 1 when normalized. To prevent

this problem, we added a 10 % margin to the maximum and −10 % to the

minimum values for each parameter. Fig. 13 shows an example of a normalized

pressurizer temperature.

Fig. 13. Example of normalized pressurizer temperature.
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b. Identification of unknown event function

The unknown event function was identified using the LSTM-VAE network.

In this network, a dataset has 10 s sequence and 139 input values. As

mentioned in Section 4.1, 409 scenarios (i.e., 192,637 datasets for 139

parameters) were trained. Fig. 14 illustrates how the unknown event function is

identified by using the LSTM-VAE network. VAE does not necessarily tune

the hyperparameters as it provides a variational information bottleneck that

prevents overfitting. Consequently, it has the effect of making the optimal

bottleneck size in a given hyperparameter [34-36]. Additionally, this

LSTM-VAE network used Adam [37] optimizer with a learning rate of 0.0001

and ran for 100 epochs.
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Fig. 14. Identification of unknown event function using the LSTM-VAE

network.

This study used the receiver operating characteristic (ROC) curve to evaluate

the performance of the network. The ROC curve is created by plotting the true

positive rate (i.e., the ratio of correctly predicted positive observations to all

observations in the actual class) against the false positive rate (i.e., the ratio of

the incorrectly predicted negative observations to all observations in the actual

class) is a useful method of interpreting the performance of a binary classifier.

The area under the ROC curve (AUC) is an effective measure to summarize

the overall diagnostic accuracy of the test and is interpreted as the average

value of sensitivity for all possible values of specificity. It can also take on any
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value between 0 and 1, where a value of 0 indicates a perfectly inaccurate test.

The closer AUC is to 1, the better the overall diagnostic performance. In

general, an AUC of 0.5 suggests no discrimination, 0.7 to 0.8 is considered

acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered

outstanding [38, 39]. The threshold was determined as 0.923 using Eq. (18). Fig.

15 shows the result of ROC and AUC of LSTM-VAE.

Fig. 15. Result of ROC and AUC of the identification of unknown event

function.
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c. Event diagnosis function

The event diagnosis function was developed using LSTM. A total of 409

scenarios (i.e., 192,637 datasets for 139 parameters) were trained. To optimize

the LSTM network in the event diagnosis function, a manual search method

was used while individually adjusting the hyperparameters (e.g., input sequence

length, batch size, and number of layers). In general, there is no golden rule for

hyperparameter determination to optimize the network [36, 39, 40]. Table 2

shows the accuracy comparison results of different configured networks. The

accuracy is defined as the ratio of correctly predicted data to total verification

data. Consequently, an optimal LSTM network with 10 s time steps, 32 batch

sizes, and 2 layers was selected. This network used the Adam optimizer

(Kingma and Ba, 2015) with a learning rate of 0.0001 and ran for 100 epochs.

Fig. 16 shows the illustration of the event diagnosis function using LSTM and

softmax.

Table 2. Accuracy comparison results of various configured networks.

No. Time step Batch size Layers Accuracy

1 5 32 2 0.9668

2 5 32 3 0.9638

3 5 64 2 0.9634

4 5 64 3 0.9650

5 10 32 2 0.9768

6 10 32 3 0.9746

7 10 64 2 0.9764

8 10 64 3 0.9741

9 15 32 2 0.9767

10 15 32 3 0.9762

11 15 64 2 0.9764

12 15 64 3 0.9766



- 33 -

Fig. 16. Event diagnosis function using LSTM and softmax.
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d. Confirmation of diagnosis result function

To implement this function, an LSTM-VAE library was developed. This

library comprises 16 LSTM-VAE networks that are trained for each known

event (i.e., 15 abnormal events and 1 normal state). Fig. 17 shows the

illustration of the confirmation of diagnosis result function (i.e., when Ab 01

event is diagnosed). Each LSTM-VAE network and threshold were comprised

and determined in a manner similar to the identification of an unknown event.

545 3 shows the training dataset, AUC, and threshold of each LSTM-VAE

network in the confirmation of diagnosis result function.
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Table 3. Results of training data, performance, and thresholds of
LSTM-VAE networks.

No. Name Trained data AUC Threshold

1 Ab 01
3,459 datasets

(Ab 01)
0.995 0.923

2 Ab 02
3,785 datasets

(Ab 02)
0.934 0.923

3 Ab 04
5,658 datasets

(Ab 04)
0.993 0.922

4 Ab 05
5,730 datasets

(Ab 05)
0.998 0.921

5 Ab 06
8,312 datasets

(Ab 06)
0.974 0.923

6 Ab 07
34,735 datasets

(Ab 07)
0.999 0.920

7 Ab 08
2,831 datasets

(Ab 08)
0.958 0.924

8 Ab 09
2,070 datasets

(Ab 09)
0.955 0.927

9 Ab 10
8,394 datasets

(Ab 10)
0.985 0.921

10 Ab 11
8,004 datasets

(Ab 11)
0.938 0.921

11 Ab 12
23,885 datasets

(Ab 12)
0.996 0.920

12 Ab 16
24,600 datasets

(Ab 16)
0.965 0.920

13 Ab 17
30,904 datasets

(Ab 17)
0.953 0.934

14 Ab 18
14,805 datasets

(Ab 18)
0.984 0.922

15 Ab 19
1,546 datasets

(Ab 19)
0.967 0.920

16 Normal
7,602 datasets

(Normal state)
0.995 0.923
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Fig. 17. Illustration of the confirmation of diagnosis results function.
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3. Verification

Verifications were performed for 149 scenarios (i.e., 57,309 datasets). Among

them, 100 cases and 47,987 datasets were used for the trained events, while 49

cases and 9,322 datasets were used for untrained events. As a result of the

verification, the accuracy of the network of unknown event identification (i.e.,

predicting a trained event as a known event and an untrained event as an

unknown event) is 96.72%. In addition, the accuracy of the network for

confirmation of diagnosis results is 98.44%. The verification demonstrated that

the algorithm could successfully diagnose the trained events and identify the

untrained events. Fig. 18 shows an example for the diagnosis of an untrained

event (i.e., Ab 20), which is a leakage from the steam generator tubes. In this

case, the identification of unknown event function identifies the event as an

untrained event because the construction error goes beyond the threshold. Thus,

the message “Unknown Event” is provided.

Fig. 18. Process of diagnosing an untrained event.
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Fig. 19 illustrates how the algorithm diagnoses a trained event (i.e., event Ab

08), which is the continuous insertion of control rod. The input pre-processing

function normalizes plant parameters. Subsequently, the identification of

unknown event function identifies the current situation as a trained event. The

event diagnosis function examines the event as Ab 08, and diagnosis result

function confirms that the diagnosis result is correct. Finally, “Ab 08:

continuous insertion of control rod” is presented as the diagnosis result for the

current situation.
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Fig. 19. Process of diagnosing a trained event.
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Ⅳ. Development of Long-Term Prediction with

Uncertainty Estimation Algorithm

A. Long-Term Prediction Algorithm Design

This section describes the overall structure of the multivariate and long-term

trend prediction algorithms for the critical safety parameters. Fig. 20 illustrates

the functional architecture of the prediction algorithm design, which comprises

four functions: 1) Pre-processing, 2) long-term prediction, 3) uncertainty

estimation, and 4) post-processing.
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1) Pre-processing

2) Long-term Prediction

3) Uncertainty Estimation

4) Post-processing

Min-Max Normalization
Range of values

Parameters Selection 

BiLSTM based 
Variational Encoder

Attention 

Plant Parameters

De-Normalization
Range of values

Plotting the predicted data with 
uncertainty

Graphical Predicted Safety 
Parameters

Collect
prediction results,

for i=I
Initial i=1

i=i+1

No

Yes

Yμ Yσ

Context LSTM Decoder

Fig. 20. Functional architecture of long-term prediction with uncertainty
estimation algorithm design.
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1. Pre-processing Function

The first function of the algorithm is to process the plant parameters and

make them suitable as network inputs. The input data for the network should

have a range of values from 0 to 1. However, plant parameters have a different

range of values or states. Generally, variables with higher values will have a

larger impact on the network results. However, higher values are not

necessarily more important for prediction. This problem produces local minima.

Therefore, the normalization processing obtains the regular plant parameters as

input and then outputs the normalized plant parameters that will be utilized by

the network.

Min-max normalization is used to prevent the local minima problem and

increase the learning speed. The training data of the network is calculated by

using Eq. (15). Basically, time-series predictions are strongly dependent on

input parameters. Therefore, parameter selection is one of the most important

processes in a proposed algorithm. The process to determine the input

parameters is discussed in Section Ⅳ.B.3.



- 43 -

2. Long-Term Prediction Function

The long-term prediction function is used to predict the long-term trend of

variables for critical safety parameters via BiLSTM and AM networks. This

network is based on an encoder–decoder network to apply for the MIMO

framework, as well as an applied Bayesian model to estimate the model

uncertainty. This network receives the normalized plant parameters from the

pre-processing function and predicts multivariable and long-term behaviors. Fig.

21 illustrates the architecture of the long-term prediction function, which

comprises four main components: a BiLSTM-based variational encoder, an

LSTM decoder, an attention layer, and a decoder combined with the attention

layer. For the input multivariate time-series data ∈  ×  (where  is the

number of input time steps, and  is the number of input parameters), the

BiLSTM yields the temporal representation of the time-series data via the

encoder hidden states    
…

 ∈  × , where each

encoder hidden state can be defined as 
∈ . The encoder hidden state

is combined with the hidden state of the forward LSTM ∈  and the hidden

state of the backward LSTM
←

∈  (where  is the number of each LSTM

dimension, and  is the encoder  time step of the encoder). Hence, at the end

of the encoder process, we obtained the last hidden state 
, and the

encoder outputs  .

The exact modeling of the true posterior  is intractable. Subsequently,

the last hidden state of the BiLSTM is input to two linear transformation

layers to estimate the mean μ∈  and standard deviation σ∈  of the latent

variable ∈  (where  is the number of latent variable dimensions) to

determine ϕ, which is a parameter for a normal distribution

corresponding to the last hidden state 
 .
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The latent variable  is used as the input value for the LSTM decoder to

yield the decoder hidden state   ⋯  ∈  × , where  is the number of

predicted time steps. Therefore, at the decoder time step , the first step of the

attention layer computes the alignment scores  using   and , as

shown in Eq. (19).  is a vector of length , where each element represents

∈…  the alignment score dedicated to the encoder output. Next, the

attention weights α∈  are computed, as shown in Eq. (20). Subsequently,

these attention weights are used in an inner product with   to compute

the context vector ∈  with the respective attention weights

 ⋯  , as shown in Eq. (21).

   ∙ ∈  (19)

α 


  



exp

exp
(20)

  α ∙   (21)

Next, the attention of the attentional hidden states 
  is computed, as

shown in Eq. (22).


  ⊕ ∈  (22)

Finally, the predicted multivariable output values are obtained by bypassing


 through a decoder combined with an attention layer (i.e.,

  … ∈  ×  ′

, where  is the number of predicted time steps, and  ′

is the number of predicted parameters.).
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Fig. 21. Process of long term prediction function
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3. Uncertainty Estimation Function

The uncertainty estimation function is used to estimate the uncertainty of the

long-term prediction results. The proposed network implements the Bayesian

model using the VED. It is noteworthy that standard ANNs cannot provide the

uncertainty in the prediction results. One of the characteristics of the Bayesian

model is that even if the same input data are input to the network, the network

outputs different results. Hence, the prediction uncertainty can be quantified by

performing several forward passes using the Bayesian model. Fig. 22 illustrates

the process of the uncertainty estimation function. This function accumulates

each prediction result for    to I, and the mean and standard deviation

(SD) are obtained using Eqs. (23) and (24), respectively. To set the confidence

interval, the upper bound is determined by adding 1.645 SD to the mean, and

the lower bound is determined by adding -1.645 SD to the mean.

μ  

∑  

   (23)

σ  




∑  

   μ
 (24)
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Fig. 22. Process of uncertainty estimation function.
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4. Post-processing Function

The final function is to convert the normalized prediction results into suitable

units and ranges to present the variables; subsequently, the results are plotted

graphically. The first step of this function is to denormalize the prediction

results, i.e., the upper and lower bounds. These data should be transformed into

suitable units and ranges for each parameter. Denormalization is performed

based on Eq. (25), where  and  are the denormalized and predicted

values, respectively. Meanwhile, min and max are the minimum and maximum

values of the output train data, respectively. Finally, this function plots the

graph using the denormalized mean value and fills the area between the upper

and lower bounds for the confidence interval and then presents it to the

operators. Fig. 23 shows an example of the plotted graph. The left side of the

dotted line represents the past value of the predicted parameter by a blue line.

The right side of the dotted line represents the prediction result and confidence

interval by the red line and gray area, respectively.

  min  max  min (25)

Fig. 23. An example of the plotted graph.
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B. Experiment

This study implemented the suggested algorithm by using an NPP simulator.

The experiment is performed with data collection, dividing train data,

implementation, training and optimization, and verification. For implementation, a

desktop computer with NVIDIA GeForce RTX 3090 24GB GPU, Intel 4.00 GHz

CPU, Samsung 850 PRO 512GB MZ-7KE512B SSD, and 24GB RAM were used.

Python 3.8 was used as a coding language, and several phyton libraries

including Keras and Pandas were used to model the algorithm.

1. Data Collection

A sufficient amount of realistic data under emergency situations at the NPP

is necessary to ensure the effectiveness of the algorithm. However, emergency

situations in real NPPs are scarce. Therefore, the proposed algorithm was

implemented using a CNS.

In this study, a loss-of-coolant accident (LOCA) with 16 different break sizes

(10 to 25 cm2 at 1 cm2 interval) and two leg positions (cold leg and hot leg)

were simulated. The total number of scenarios was 32, as shown in Table 4. In

all simulations, data were obtained based on the initial plant condition (i.e.,

100% full-power normal operation) to shut down the cooling entry condition.

Among the 32 cases of the LOCA scenario, 26 cases were used for training,

and six cases were used for validating the algorithm.

Table 4. Total collected emergency situation data

Initiating events Number

Cold leg LOCA 16 (10 to 25cm2)

Hot leg LOCA 16 (10 to 25cm2)

Total 32
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2. Segregation of Training Data

The segregation of training data involves transforming the data acquired into

inputs and outputs to be passed to the proposed network. The input is

represented as   … ∈  ×  , where  is the number of input time

steps, and  is the number of input parameters. The output is the predicted

multi-step parameters, and it is represented as   … ∈  ×  ′

, where 

is the number of time steps of the output, and  ′ is the number of output

parameters. Fig. 24 illustrates the segregation process of the training data. 

denotes the length of the input, and  denotes the length of the output. For

each time step  of the training datasets, successive data from   to  

form an input sample, and data from     to     constitute the

corresponding output sample.

l+1 l+2 ... l+T l+T+1 l+T+2 ... l+T+N

� ∈ ℝ�×�

� ∈ ℝ�×�′

Input: length T Output: length N

Fig. 24. Segregation process of input data and output data
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3. Training and Optimization

Prior to constructing the network, the input and output parameters should be

determined. As the output, each selected parameter should be monitored when

emergency situations occur at NPPs. Particularly, nine safety functions for

satisfying the ultimate goal of NPP safety were identified in Korean NPPs. The

nine safety functions were defined to ensure high-level safety objectives and

the integrity of NPPs, as well as to prevent the release of radioactive materials;

the nine safety functions and their purposes are listed in Table 5 [41, 42]. In

this study, we determined 22 total parameters for monitoring based on the nine

safety functions. Table 6 lists the output parameters from the CNS.

Table 5. Nine safety functions [41].

No. Safety function Purpose

1 Reactivity control Shut reactor down to reduce heat production

2 Reactor coolant system (RCS) 
inventory control

Maintain volume or mass of reactor coolant system

3 RCS pressure control Maintain pressure of reactor coolant system

4 RCS heat removal Transfer heat out of coolant system medium

5 Core heat removal Transfer heat from core to a coolant

6 Containment isolation Close valves penetrating containment

7 Containment pressure and 
temperature control

Keep from damaging containment

8 Hydrogen control Control hydrogen concentration

9 Maintenance of vital auxiliaries Maintain operability of systems needed to support 
safety systems
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Table 6. Output parameters from CNS.

In general, time-series predictions are dependent on the input parameters.

Therefore, input parameter selection is one of the most important processes for

the proposed algorithm. The characteristics selected from the used data and the

associated meteorological variables that contain the most relevant information

must be identified to provide accurate predictions [43]. In this regard, we

analyzed the correlations between the output parameters and other parameters

before elaborating the prediction algorithm. We used the Pearson correlation

coefficient to determine the effects of the parameters on each other.

The Pearson correlation coefficient measures the linear dependence between

two random variables. Historically, it is the first formal measure of correlation

No. Plant parameter (units)

1 Pressurizer level (%)

2 Pressurizer pressure (kg/cm2)

3 Steam generator (SG) #1 pressure (kg/cm2)

4 SG #2 pressure (kg/cm2)

5 SG #3 pressure (kg/cm2)

6 SG #1 narrow level (%)

7 SG #2 narrow level (%)

8 SG #3 narrow level (%)

9 Feedwater line 1 flow (kg/s)

10 Feedwater line 2 flow (kg/s)

11 Feedwater line 3 flow (kg/s)

12 Containment pressure (PA)

13 Containment radiation (mRem/hr)

14 Hydrogen concentration (%)

15 Containment temperature (℃)

16 Reactor vessel water level (m)

17 Cold-leg #1 temperature (℃)

18 Cold-leg #2 temperature (℃)

19 Cold-leg #3 temperature (℃)

20 Hot-leg #1 temperature (℃)

21 Hot-leg #2 temperature (℃)

22 Hot-leg #3 temperature (℃)
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and is the most widely used measure currently. This linear correlation

coefficient, which is used to reflect the linear correlation between two normal

continuous variables, is expressed as shown in Eq. (26), where  



  



 and

 



  



 denote the mean of  and , respectively. The achieved correlation

coefficients, , are used to represent the correlation between variables, and

their values range between −1 and 1.

 
  

   


    
(26)

●     and  are a positive correlation,

●    the linear correlation between  and  is not obvious,

●     and  are a negative correlation.

As 5% Gaussian noise was added to the simulator data to render them

similar to actual NPP data, the values of some data might be greater than the

maximum value or lower than the minimum value. Therefore, we added a 10%

margin to the maximum value and −10% to the minimum value for each

parameter. Subsequently, min–max normalization was performed on the training

datasets (i.e., input and output parameters).

As mentioned in Section 4.A, 26 cases (i.e., 5,263 minutes datasets) were

trained. A manual search method was used to identify an optimal network by

adjusting the absolute values of the Pearson correlation coefficient, , and

the input sequence lengths. Furthermore, no golden rule exists for network

optimization [36-38]. Table 7 shows the mean absolute error (MAE), mean

square error (MSE), root mean square error (RMSE), mean absolute percentage
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error (MAPE), and R2 score (R2) for the different networks. The prediction

results would be more accurate if the values of the MAE, MSE, RMSE, and

MAPE are lower, or if the values of R2 are higher [44-46]. The model

evaluation methods utilizing the five indicators are comprehensive and consider

the respective emphasis of different indicators. The specific calculations for each

indicator are shown in Eqs. 27–31, where  and  indicate the index and the

number of prediction data, respectively.   and   indicate the real and

predicted values, respectively, and

  indicates the mean value of  .
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Table 7. Comparison results of various configured networks based on
fice indicators.

Consequently, since RMSE, MSE, MAE, and MAPE values are lowest as

well as R2 value is biggest, among the various configured networks the input

sequence and  were determined as 60 and 0.90, respectively. The input

parameters were determined as 439 parameters using  larger than 0.90 for

each output parameter. The time lengths of the input and output were selected

as 60 minutes and 120 minutes, respectively. Thus, the input has 60 sequences

and 439 parameters while the output has 120 sequences and 22 parameters. Fig.

25 shows the network for the multivariate and long-term prediction by using

the Bi-LSTM based VED with AM. VED provides a variational information

bottleneck that prevents overfitting. Therefore, this network does not necessarily

tune the hyperparameters [34, 35]. Additionally, this proposed network used

Rmsprop [47] optimizer with a learning rate of 0.00001 and ran for 1,000 epochs.

No. Input sequence  RMSE MSE MAE MAPE R2

1 30 0.85 0.0063 8.5578e-05 0.0045 2.6689% 0.9990

2 30 0.90 0.0089 1.2944e-04 0.0061 8.2861% 0.9986

3 30 0.95 0.0065 1.3023e-04 0.0046 3.4975% 0.9984

4 60 0.85 0.0050 6.0543e-05 0.0036 2.4170% 0.9995

5 60 0.90 0.0035 2.4721e-05 0.0026 1.5647% 0.9997

6 60 0.95 0.0048 6.5584e-05 0.0035 2.3454% 0.9992

7 90 0.85 0.0056 5.8665e-05 0.0041 2.3961% 0.9992

8 90 0.90 0.0052 4.8128e-05 0.0038 2.2859% 0.9994

9 90 0.95 0.0089 9.3425e-05 0.0052 6.6528% 0.9989
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Fig. 25. Illustration of the prediction network.
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4. Verification

Verification was performed for 6 test cases (i.e., 1,315 minutes datasets). As

a result of the verification, the RMSE, MSE, MAE, MAPE, and R2 of the

network are 0.0137, 1.9001e-04, 0.0076, 3.9377, and 0.9974, respectively. Among

the five indicators, a MAPE of more than 50 suggests an inaccurate prediction

result, 20-50 is considered a reasonable prediction result, 10 to 20 is considered

a good prediction result, and less than 10 is considered a highly accurate

prediction result [41]. The verification demonstrated that the proposed network

could accurately predict 120 minutes of the safety-critical parameters (i.e., 120

steps and 22 parameters). Furthermore, to estimate the uncertainty, this study

collected 100 times of prediction results, and the processing time has been taken

6 seconds.

Fig. 26 shows the test results of 2 hours prediction of safety-critical

parameters with uncertainty estimation for the LOCA with sizes of 24 cm2 in

the cold-leg after immediately malfunction injection. The blue line represent the

past values of predicted parameters. Orange and red lines represent the real

values and the prediction results from the proposed algorithm, respectively.

While the gray areas represent the confidence interval. The results show that

the proposed algorithm could not only predict accurately parameters immediately

after emergency situations occur but also estimate the uncertainty of prediction

results.
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Fig. 26. 2 hours prediction test results of safety-critical parameters with

uncertainty estimation under 24cm2 LOCA in the cold-leg.
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Ⅴ. Conclusion

This thesis proposed diagnostic and prognostic algorithms to support operator.

Diagnostic algorithm that uses LSTM and VAE networks to diagnose abnormal

situations in NPPs was proposed. this algorithm has the capability of finding

unknown situations, diagnosing known situations, and confirming the results.

The validation demonstrated that the proposed algorithm could provide correct

diagnostic results as intended. In addition, the long-term prediction algorithm

that uses Bi-LSTM and AM network to predict long-term trends, and provide

uncertainty estimation was proposed. The long-term prediction algorithm has

not only the capability of predicting 22 parameters and 120 minutes at one time

but also provides uncertainty information of prediction results. For a more

realistic evaluation, noise-added signals were also considered. The validation

demonstrated that the proposed algorithm could provide the accurate prediction

as intended. Those algorithms can be applied to an operator support system to

improve the operator’s situation awareness during abnormal or emergency

situations in NPPs. However, ANN methods have the ‘black box’ problem (ie.,

understanding how it makes decisions is difficult because of its inability to

explain itself). Since the nuclear industry is highly conservative in the adoption

of new technologies, future work may consider the use of explainable AI to

achieve a similar result as this study. This will enhance the adoption of this

algorithm for actual diagnosis of operators in the NPPs.
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