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ABSTRACT

Artificial Intelligence for UAV-assisted 5G Heterogeneous
NOMA Systems with Priority-based Joint Resource Allocation

Sifat Rezwan
Advisor: Prof. Choi, Wooyeol, Ph.D.
Department of Computer Engineering

Graduate School of Chosun University

For heterogeneous demands in fifth-generation (5G) new radio (NR), massive
machine type communication (mMTC), enhanced mobile broadband (eMBB),
and ultra-reliable and low-latency communication (URLLC) services have been
introduced. Non-orthogonal multiple access (NOMA) has been introduced to
ensure these quality-of-services (QoS) requirements in which multiple devices
can be served from the same frequency by manipulating the power domain and
successive interference cancellation (SIC) technique. To maximize the efficiency
of NOMA systems, optimal resource allocation, ensuring transmission link
quality are the key issues that need to be solved. In this thesis, we propose a
priority-based channel assignment with a deep Q-learning algorithm to maintain
the 5G QoS requirements and increase the network performance. We formulate an
optimal power allocation scheme under Karush—Kuhn-Tucker (KKT) optimality
conditions incorporating different NOMA constraints. The main objectives are to
maximize the channel sum-rate, system sum-rate, and system fairness. We also
propose a novel FDRL-based multiple UAV-BS navigation scheme to serve the

5G devices suffering from NLOS, poor link quality, and multi-path fading with

vi
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maximum coverage, link quality, and fairness. Finally, We conduct extensive
simulations with respect to different system parameters and confirm that the

proposed schemes perform better than other state-of-the-art schemes.
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L. INTRODUCTION

The fifth-generation (5G) wireless communication systems are rapidly growing
owing to the high data rates, massive connectivity, and high quality of service
(QoS) requirements [1]. The 3rd Generation Partnership Project (3GPP) divided
these characteristics into three significant services. These major services include
massive machine type communication (mMTC) that allows massive connectivity
for IoT devices, enhanced mobile broadband (eMBB) that provides a high data
rate for mobile platforms, and ultra-reliable and low-latency communication
(URLLC) that ensures reliability and low latency for sensitive and crucial
applications [2]-[4]. These services are categorized in terms of their quality-of-
service (QoS), where URLLC has a strict QoS policy for high reliability and low
latency, eMBB service has a moderate QoS policy, and mMTC has no specific
QoS policy except for massive connectivity [5].

These types of QoS policies are tough to fulfill with the traditional
orthogonal multiple access (OMA) due to limited spectrum resources, significant
transmission losses, and long queuing delays [6], [7]. Many potential
technologies have been introduced into the 5G communication network to
maintain these diverse QoS requirements [8]. Among them, non-orthogonal
multiple access (NOMA) is gaining popularity because it can support
massive connectivity with limited resources, highly reliable transmissions, low
transmission delays, and high spectral efficiency [9]-[11]. The key feature of
NOMA is that multiple devices can be served from the same radio resource block
(RRB), such as time, frequency, and codes, simultaneously utilizing the power
domain [12], [13]. NOMA applies superposition coding to combine signals of

multiple devices at the transmitter and successive interference cancellation (SIC)
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at the receiver to differentiate the signals of multiple devices manipulating the
power domain [14], [15]. The NOMA system not only mitigates the multiple
access interference but also increases the spectral efficiency and device fairness
[16]. Thus, NOMA can easily maintain strict QoS policies for eMBB, mMTC,
and URLLC services. By contrast, with conventional OMA, only one device can
be served from each RRB at a time to avoid multiple access interference, which
is insufficient to support high data rates and massive connectivity [17].

However, some significant challenges include power allocation, channel
assignment, transmission link quality, multi-path fading, and non-line-of-sight
(NLOS) in the 5G NOMA systems. One of the significant challenges is that joint
power allocation and channel assignment involve a mixed-integer program which
is a non-deterministic polynomial-time hard (NP-hard) problem [18]—-[20]. For
example, all possible combinations of channel assignment and power allocation
are required to reach an optimal solution which makes the system complicated
and requires extremely high computational power [21], [22]. When it comes
to multi-carrier NOMA, the system becomes more complex. In multi-carrier
NOMA, the channel sum-rate fairness is another problem as an increase in the
system sum-rate does not necessarily increase the sum-rate of each channel.
The Poor sum-rate of any channel can decrease the performance of the devices
assigned to that channel [23].

In addition, overall spectral efficiency and sum-rate decrease owing to multi-
path fading, link quality, and NLOS problems. Moreover, perfect signal decoding
using SIC and fulfilling the QoS requirements of 5G services also depends on the
resource allocation, and link quality [24]. An imperfect SIC can quickly decrease
the overall performance of the system. Therefore, we divided this thesis into two

parts. We investigate the power allocation and channel assignment jointly in the
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first part and the link quality, multi-path fading, and NLOS in the second part to

overcome the challenges of the downlink NOMA system under various criteria.

A. Related Works

This section discusses the related works done by different researchers over the
last few years to optimize the 5G NOMA systems. We divide this section into
two parts. We review the literature addressing resource allocation challenges in

the first part and link quality and coverage in the second part.

1. Resource allocation

Optimal resource allocation, such as power allocation and channel assignment,
is the key to increase the overall system performance and fulfill the QoS
requirements of the 5G network. Many researchers have proposed many
approaches to obtain optimal solutions with different performance objectives
[25], [26]. The most common objectives are to maximize the overall sum-rate
of the system and fulfill the minimum data rate.

Ali et al. [25] proposed a power allocation technique with a user grouping
scheme for a single-carrier NOMA system to maximize the sum-rate using
Lagrange equations under Karush—Kuhn—Tucker (KKT) conditions. The authors
have derived the Lagrange equations to obtain an optimal power allocation
scheme while considering total power limitation, minimum data rate requirement,
and SIC constraints under Karush—Kuhn—Tucker (KKT) conditions. Shao et
al. [27] derived a dynamic device clustering technique and an optimal power
allocation solution using the Nash bargaining solution (NBS) for the NOMA
system based on the number of devices and channel gains. However, only a

single-carrier NOMA system for IoT devices is considered. In [5], Shahini et al.
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proposed priority-based URLLC and mMTC device grouping with fixed power
allocation scheme. However, no authors considered the presence of URLLC,
eMBB, and mMTC services in 5G networks. Parida et al. [28] solved only
the non-convex power allocation problem using the difference of two convex
functions (DC) programming to maximize the sum-rate of orthogonal frequency
division multiple access (OFDMA)-based NOMA system. In another paper [29],
Hojeij et al. used the water-filling algorithm for resource allocation to obtain the
highest sum-rate possible. However, no optimality was provided for the obtained
solution.

Nevertheless, the system sum-rate increases when it comes to multi-carrier
NOMA. In [30], Zhu et al. derived a near-optimal power allocation solution
considering two users per channel and iteratively assigned channels to the users.
They also considered the minimum data rate constraints for each user while
maximizing the sum-rate. However, the authors did not consider the different
services of the 5G network. Choi et al. [26] used convex optimization to
approximate the maximization problem for the minimum data rate requirement of
users. Ning et al. [31] adopted a heuristic approach to solve the power allocation
and channel assignment problem of the NOMA system for vehicular ad-hoc
networks.

In addition to conventional convex optimization, many researchers explored
the machine learning and artificial intelligence sectors to optimize the resource
allocation problem of the NOMA system. In [32], Xiao et al. proposed fast and
dynamic reinforcement learning (RL) based power allocation to maximize sum-
rate and spectral efficiency of a multiple-input multiple-output (MIMO) NOMA
system in the presence of smart jamming. The authors initially formulated the

anti-jamming transmission game and derived the Stackelberg equilibrium of

4
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the game. Q-learning-based power allocation is then used to allocate power to
users against jamming attacks. He et al. [33] proposed a joint power allocation
and channel assignment for the NOMA system using deep reinforcement
learning (DRL). They used the derived near-optimal power allocation from [30]
considering two users per channel and performed channel assignment using a
DRL algorithm consisting of an attention-based neural network. The authors then
used a DRL algorithm consisting of an attention-based neural network to perform
channel assignment while maximizing the overall sum-rate and minimum data
rate for user fairness. An actor-critic (A2C) RL algorithm was used in [34]
to obtain the optimal policy for resource allocation and user scheduling in
HetNets with a hybrid energy supply. The actor parameterizes the policy using
the Gaussian distribution to take stochastic actions, and the critic evaluates the
value function and helps the actor learn the optimal policy.

In summary, many researchers found many optimal and near-optimal power
allocation solutions for a single-carrier only. Most researchers focused on
increasing the overall sum-rate while maintaining a minimum data rate for
fairness. However, an increase in the overall sum-rate does not ensure an increase
in the sum-rate of each channel. Furthermore, the sum-rate of a device is directly

connected with the sum-rate of the channel.

2. Link quality and Coverage

In 5G communication networks, the geographical distribution of base stations
(BSs) is planned to support a large amount of traffic for a long time with minimum
latency, highest reliability, and massive connectivity [35]. Thus, the radio cell

architecture is shifting toward small cells with low transmit power compared
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to previous generations of wireless communications [36]. However, establishing
numerous BSs to cover unforeseeable traffic and poor connectivity areas is not
economical and efficient [37]. Many researchers have proposed solutions utilizing
unmanned aerial vehicles (UAVs) to provide a wide range of services and radio
coverage [38].

Al-hourani et al. [39] proposed a mathematical model to obtain the optimum
altitude of low-altitude aerial platforms (LAPs) for maximum coverage. The
authors considered the percentage of built-up area to the total land area, the
number of buildings per unit area, and the statistical distribution of buildings
heights to estimate the line-of-sight (LOS) probability in a closed-form. Shi et al.
[35] proposed a drone iterated particle swarm optimization (DI-PSO) algorithm
to maximize the user coverage ratio by the drones while ensuring drone-BS
channel quality in 3D space. The authors formulated the drone cell deployment
problem as an NP-hard problem and solved it for each drone cell iteratively.
Sharma et al. proposed a UAV-based solution to solve the coverage and capacity
enhancement problem of 5G heterogeneous networks in [40]. The objectives
of the proposed solution are the deployment of the UAV-BSs and cooperative
network formation for addressing the traffic load. The authors adopted priority-
wise dominance and the entropy method for optimality. Fotouhi et al. [41]
developed two distributed algorithms to serve users with maximum spectral
efficiency and minimum interference. The UAV-BS dynamically re-position itself
using these two algorithms to increase the spectral efficiency and minimize the
interference from other neighboring UAV-BSs. The same authors also proposed
a service on-demand-based solution where UAVs serve multiple ground users
balancing the traffic load in [42]. Similarly, Lyu et al. in [43] proposed a spiral

placement algorithm where multiple UAV-BSs are placed sequentially in an
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inward spiral manner to cover all the ground users.

In contrast to the conventional techniques, many researchers explored the
machine learning sectors to optimize the UAV trajectory for better coverage
and line quality. In [44], Challita et al. proposed a DRL framework using echo
state network (ESN) cells for optimizing trajectories of multiple UAV-BSs. The
authors considered the whole network topology, QoS requirements, and location
of other UAVs to learn optimal path, transmit power level, and user association
vector. Abedin et al. proposed a DRL-based energy-efficient UAV-BS navigation
solution for 5G wireless networks where a UAV-BS cruises over the ground
users to maintain data freshness in [45]. The authors utilized a conventional DRL
framework with experience replay memory to train the UAV-BSs. In contrast, Liu
et al. proposed distributed multi-UAV navigation framework to establish energy-
efficient long-term communication in disastrous scenarios utilizing DRL in [46].
The authors used an actor-critic framework to keep track of all the UAV-BSs
serving the ground users.

In summary, many researchers have developed UAV-based solutions for better
link quality and coverage. Some crucial parameters need to be considered while
developing UAV-based solutions, which include UAV energy constraints, UAV
charging, multi-UAV cooperation with minimum overhead, UAV navigation
environment, obstacles, UAV to ground user channel quality, LOS, interference,
and collision with other UAVs. However, no researchers have addressed all the

problems in a single solution.
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B. Contributions

In this thesis, we investigate resource allocation schemes to maximize the
performance of multi-carrier NOMA systems under multiple performance
metrics. We also investigate multi-UAV navigation schemes to provide better
link quality and coverage to the ground devices considering multiple crucial
parameters. We propose a priority-based joint resource allocation scheme with
DQL and a federated DRL (FDRL)-based multi-UAV navigation scheme for
heterogeneous NOMA systems considering the UAV performance constraints
and the key constraints and services of 5G networks.

The contributions of proposed resource allocation scheme are described as

follows:

* We formulate an optimal power allocation scheme that maximizes the
overall system efficiency for any given channel assignment using Lagrange
multipliers under KKT optimality conditions and incorporates different

constraints of NOMA.

* We propose a priority-based channel assignment scheme using deep Q-
learning (DQL) to maximize the performance and fairness of multi-
carrier NOMA. We prioritize the devices present in the 5G network
based on the QoS requirement and categorize them based on URLLC,
eMBB, and mMTC services. The agent of the DQL explores the 5G
network environment and learns the prioritization and channel assignment
to achieve an optimal policy. We use an autoencoder architecture for the

policy network, followed by a long short-term memory (LSTM) network.

* We consider different constraints of the NOMA system, including the total

Collection @ chosun



power budget of the base station (BS), the minimum data rate requirement
of each device, the QoS policies of different services of the 5G network,

and the sum-rate maximization with channel fairness constraints.

* We consider maximizing sum-rate (MSR), maximizing channel sum-rate

(MCSR), and maintaining the 5G QoS policies as our main objectives.

* Finally, we analyze and compare the proposed schemes in different

scenarios with the conventional OMA system.

The contributions of proposed multi-UAV navigation scheme are described as

follows:

* We propose a novel multi-UAV navigation scheme using FDRL to serve
URLLC, mMTC, and eMBB devices suffering from NLOS, poor link

quality, and multi-path fading in 5G heterogeneous networks.

* We deploy multiple UAV-BSs to serve the ground devices in the suffered
area. The UAV-BSs cruise over the ground devices (GDs) in the 3D
considering the LOS, UAV-to-device channel gain and serve them using the
5G NOMA system. The prime objectives of the UAV-BSs are to cover as
many GDs as possible with a minimum amount of energy for the maximum

amount of time.

* We utilize the federated learning (FL) algorithm to train the UAV-BSs
in a distributed manner. Thus, each UAV-BS does not have to learn the
actions of other UAV-BSs and can easily replace another UAV-BS in case of
emergency. We consider the BS as the central server for model aggregation

and the UAV-BSs as DRL-based learning agents. Moreover, we incorporate
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autonomous visits for charging where a UAV-BS can return to the BS while

another fully charged UAV-BS replaces it.

* We have utilized the proportional-integral-derivative (PID) controller to
drive the UAV-BSs. We also have clustered ground devices in the suffered

area utilizing the K-means algorithm to avoid collision among UAVs.

* Finally, we analyze and compare the proposed schemes in different

scenarios with other baseline schemes.

C. Thesis Layout

The thesis 1s organized as follows. In Chapter II, we present fundamentals
of the reinforcement learning. Then in chapter III, we describe the problem
statement, proposed solution and simulation analysis of priority-based joint
resource allocation with DQL. Next in Chapter IV, we describe the problem
statement, proposed solution and simulation analysis of FDRL-Based multi-UAV

navigation. And finally, we conclude the thesis in Chapter V.

10
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IL. Fundamentals of Reinforcement Learning

To understand the proposed solution, we have to understand the fundamentals of
reinforcement learning (RL), deep reinforcement learning (DRL), and federated
deep reinforcement learning (FDRL). Thus, we briefly discuss the internal
structure, decision-making process, and convergence process of RL, DRL, and

FDRL in this chapter.

A. Reinforcement learning

Reinforcement learning is an effective and extensively used tool of Al which
learns about the environment by taking different actions and achieves an optimal
policy for operation. The RL consists of two main components: an agent and an
environment. The agent explores the environment and decides which action to
take using the Markov decision process (MDP) [47].

MDP is a framework for modeling decision-making problems and helping
the agent to control the process stochastically [47]. MDP is an useful tool for
dynamic programming and RL techniques. Generally, MDP has four parameters
represented by the tuple (S,A, p,r), where S is a finite state space, A is a finite
action space, p is the transition probability from the present state s to the next state
s after taking action a, and r is the immediate reward given by the environment
for action a [48]. As shown in Fig. 1, at each time step ¢, the agent observes its
present state s; in the environment and takes action a;. Then, the agent receives
a reward r; and the next state s, | from the environment. The main goal of the
agent is to determine a policy 7 to accumulate the maximum possible reward
from the environment. In long term, the agent also tries to maximize the expected
discounted total reward defined by max[Y._, &7 (s,,7(s;))], where § € [0,1] is

the discount factor. Using the discounted reward, a Bellman equation named the

11
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Reward, r¢

Action, a¢

Policy

Controller ..................................... )
Agent
State, s¢ Next State, s¢+1

Figure 1: The agent-environment in Markov decision process.

QO-function (2) is formed to take the next action a; using MDP when the state
transition probabilities are known in advance. The Q-function can be expressed

as

Q(sr,ar) = (1 — ) x Q(sr,ar) + afr+ 8 (max Q(s;+1,a))], (D

where « is the learning rate.

Algorithm 1 The Q-learning Algorithm
0(S,A) =0.

Initialize , 8, €.

forr=1,2,...,T do Choose an action a; for present state s; based on the value
of €.

Obtain an immediate reward r; and next state s, 1.

Update Q(S,A) via Markov decision process (2).

sy < sp+1 Optimal policy, 7(s) = argmax Q(S,A)

RL with a Q-function is also known as Q-learning. Initially, the agent explores

12
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Reward, r¢

v
7o i ATy
S 3
2
: Agent
State, s¢ Next State, s¢+1

Figure 2: Simple Deep Q-learning.

every state of the environment taking different actions and forms a Q-table using
the Q-function for each state-action pair. Then, the agent starts exploiting the
environment by taking actions with the maximum Q-value from the Q-table.
This policy is known as the g-greedy policy, where the agent starts exploring
or exploiting the environment depending on the value of the probability €. An

illustration of Q-learning is presented in Algorithm 1.

B. Deep reinforcement learning

The Q-learning algorithm is efficient in terms of its comparatively small action
and state space. However, the system becomes more complicated for large action
and state space. In this situation, the Q-learning algorithm may not be able to
achieve an optimal policy owing to the complex and large O-table. To overcome

this problem, researchers replaced the Q-table with a deep neural network (DNN)

13
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and named it deep Q-learning (DQL) [49]. DQL is a DRL that works with Q-
values similar to Q-learning, except for the Q-table part as shown in Fig. 2.

The main goal of the DNN is to skip manual calculations each time by
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learning from the data. A DNN is a computational non-linear model like the
structure of the human brain, which can learn and perform tasks such as decision-
making, prediction, classification, and visualization [50]. It is composed of
neurons arranged in multiple layers. It typically has one input layer, two hidden
layers, and on output layer, interconnected as depicted in Fig. 3 [51]. The input
layer accepts the inputs with the input neurons and sends them to the hidden
layers. The hidden layer then sends the data to the output layer. Every neuron has
a weighted input, an activation function, and an output. The activation function
determines the output depending on the input of the neuron [52]. It acts as a

trigger that depends on the weighted input.

Algorithm 2 The Deep Q-learning Algorithm

Initialize policy and target DQL network with random w and w’, respectively.
Initialize experience replay memory (ERM).

Initialize €.

forr=1,2,...,T do Select an action a; for present state s; based on probability
E.

Observe the immediate reward r; and next state s, 1.

Insert (s7,ar,rs,8;4+1) in ERM.

Create a mini-batch with random sample of (s;,a;, ry,s;+1) from ERM.

Optimize the weights w of the policy DNN with gradient descent via MDP.

w’ < w after certain number of time steps.

During the training phase, the weighted values of the inputs of the neurons
are updated based on the outputs of the output layer using backpropagation by the
agent. The agent takes the output of the policy DNN and compares it with a target
DNN model and calculates error [53]. Then the agent updates the policy DNN
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using backpropagation. This process is generally referred as optimization with
gradient descent. After a certain time, the agent updates the target DNN using
policy DNN. For a more stable convergence of the optimal policy, experience
replay memory (ERM) is introduced into the DQL framework [54], [55]. The
agent takes different actions and saves the present states, obtained rewards, next
states, and actions taken in ERM [54], [55]. Then, the agent takes a mini-batch of
data from the ERM and trains the policy DNN. Fig. 4 and Algorithm 2 illustrate
the framework and flow of the DQN better [56]. Thus, the agent can make

decisions efficiently and in a timely manner using the learned DNN.

C. Federated deep reinforcement learning

The key idea of FL is to train a machine learning model in a distributed manner
across multiple devices using local data-sets without sharing them [57], [58].
Google introduced FL recently to overcome their mobile users’ statistical and
data security challenges [59], [60]. Many researchers are currently working on
FL to make it personalized. The main focus involves optimizing the distributed
mobile device interactions, communication costs, data distribution, and device
reliability [60].

In general, FL involves N devices (Gi,Ga,...,Gy) with their local data
(D1,Ds,...,Dy) to train themselves utilizing a machine-learning model such
as deep learning and deep reinforcement learning. The conventional way is to
collect all the data and train a single model MS. However, in the FL system,
the individual devices will train their model, and a central server will aggregate
all local models (Mp1,Mj,,...,Mrx) to create a global model Mrp as shown

in Fig. 5. The accuracy of the Mgp should be close to the Mg. The accuracy

16

Collection @ chosun



3%

Mgp
N
Model|[Weights
N 2 N
oMy M - Min
Gq G, Gn

Figure 5: Simple Federated Learning.

difference can be denoted as J;.

This sub-section discusses the FL utilizing DRL, also known as FDRL.
Generally, FDRL can be categorized into Horizontal FDRL (HFDRL) and
Vertical FDRL (VFDRL), depending on the architecture of the FL algorithm.

1. HFDRL

Many researchers have been studying parallel RL for an extended period, in
which multiple agents are interacting with the different environments to perform
the same type of tasks. The agents are also learning the actions taken by other
agents to cooperate. However, things get more complex and energy-inefficient

when the number increases. Moreover, there is no privacy preservation among
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Figure 6: HFDRL Framework.

the agents. Therefore, it is necessary to adopt HFDRL to lower the complexity,
increase the energy-efficiency, and provide privacy. A basic HFDRL framework
is shown in Fig. 6.

In Fig. 6, multiple DRL agents interact with different environments to perform
the same tasks. Their main objective is to achieve an optimal policy in their
environments. A federated server aggregates the different models from different

agents to obtain a general optimal policy. The basic steps of HFDRL can be
described as following [61]:

 Step 1: All agents train their own DRL model, locally and independently,

interacting with their environments.
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» Step 2: The DRL agents send their masked model parameters to the

federated server.

 Step 3: The federated server encrypts and aggregates the model parameters

to obtain the global model Mrp.

* Step 4: The federated server sends the global model parameters to all DRL

agents.

» Step 5: The DRL agents update their local model with the global model

parameters and continue to perform tasks.

2. VFDRL

VEFDRL comes into action when multiple agents are interacting with the same
environment to perform different tasks. To cooperate with each other, the agents
have to learn the actions taken by other agents. The main goals of the VFDRL are
to train the DRL agents more effectively from the same environment and make
the agents more robust. In VFDRL, the agents can share their masked model
parameters but can not share their raw data obtained from the same environment.
A basic VFDRL framework is shown in Fig. 7.

In Fig. 7, multiple DRL agents are interacting with the same environments
to perform different tasks. Their main objective is to achieve an optimal policy
for their assigned task in the same environment. A federated server aggregates
the different models from different agents to obtain a general optimal policy and
relays one agent’s masked model parameters to others. The basic steps of VFDRL

can be described as following [61]:
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Figure 7: VFDRL Framework.

 Step 1: All agents train their own DRL model, locally and independently,
interacting with the same environments.
 Step 2: The DRL agents get their feedback from the environment, such as

states and rewards.

» Step 3: The DRL agents compute the mid-products and send the masked

mid-product model parameters to the federated server.
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» Step 4: The federated server encrypts and aggregates the mid-product

model parameters to obtain the global model Mgp.

» Step 5: The federated server sends the global model parameters to all DRL

agents.

» Step 6: Each DRL agent updates their local model with the global model

parameters and continues to perform tasks.
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I11. Priority-based Joint Resource Allocation

with DQL

In this chapter, we describe the proposed resource allocation scheme to maximize
the performance of multi-carrier NOMA systems under multiple performance
metrics. To describe the proposed solution, we first derive the basic architecture
of multi-carrier NOMA and the system model and then formulate the constraints

of NOMA into a single RL problem.

A. Problem Statement

In this section, we discuss the fundamentals of multi-carrier NOMA. We also
briefly describe the system model and derive different equations based on the

constraints of NOMA system and the objectives of our proposed solution.

1. Multi-Carrier NOMA

With NOMA, multiple devices can be served using the same RRB utilizing the
power domain for both uplink and downlink transmissions. We consider a simple
downlink multi-carrier NOMA system where the BS serves different types of
devices at the same time over the wireless channels. Fig. 8 shows, a scenario of
5G network consisting of three different devices. The BS assigns one channel
to every three devices, where the signals of the three devices are multiplexed at
different power levels. Therefore, the devices receive their desire signals along
with the signals of other two devices of that channel as noise or interference.
The unwanted signals will act as noise if the power level of the desired signal
is high; otherwise the unwanted signals will act as interference. To decode the

desired signal, each device uses SIC technology. SIC decodes the signal with the
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Figure 8: Simple multi-carrier NOMA system.

highest power and subtracts that signal from the main signal until it decodes the
desire signal. The perfect SIC depends on the channel state information (CSI)
such as signal-to-noise and interference ratio (SINR) [62], and the SINR depends
on the channel assignment and power allocation. In this case, the data rate for

each device for its channel can be calculated using (2).

PrT%
szl()gz 1+ﬁ ’ kvi:172737 (2)
Y PR

where I' is the channel to noise ratio (CNR) for the assigned channel k and P is

the assigned power. The details of (2) are given in Sub-section 2.

2. System Model

We consider a micro-cell of a 5G network consisting of 5G enabled devices
with a base station (BS). We also consider the downlink of single-input and
single-output (SISO) NOMA system as shown in Fig. 9, where the total number
of devices is N and the number of channels is K. There are three types of
devices that require three different services of 5G network: eMBB devices

UE,,UE,,...,UE,; URLLC devices UL{,UL,,...,UL;; and mMTC devices

23

Collection @ chosun



MC1,MCy,...,MC,,. We also consider that the total available bandwidth (BW;)
is divided into all channels having channel bandwidth (BW,;,) of 180 kHz. The
maximum number of devices per channel is n, which ranges from 2 <n < N, and
the total number of channels is K = ceil (N /n).

We consider perfect CSI to develop the proposed scheme. However, for a
practical wireless environment, we also consider an imperfect CSI to evaluate the
proposed scheme. Let us assume that the k' channel is assigned to n devices,
where the power allocated to the n'” device is P, and the desired signal of the n'"
device is x,. After combining the signals of the n devices, the BS transmits them

over the k' channel which can be represented as follows:

n
X*=Y /P, i=12,....n (3)
i=1

At the device end, the transmitted signal reaches with path loss component

and additive white Gaussian noise (AWGN), which can be represented as

n
yk:Z,/[’ikh{?xi+wk7 i=1,2,...,n, “4)
i=1

where hé‘ is the channel gain of the i device and wX denotes the AWGN with
thermal noise power variance, 0. After receiving the signal, the receiver uses
the SIC technique to decode its signal. Perfect SIC depends on the SINR of the
device on the channel that it has been using for communication. Let us consider
the CNR of the n'" device for k" channel is

_ | hil?

k
I_‘l’l
Ok

&)

We know from the earlier discussion that different power levels are allocated

to the devices of a channel. As per NOMA, the highest power is allocated
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Figure 9: System architecture of multi-carrier SISO-NOMA system.

to the device with the lowest CNR and vice versa. For example, for devices
having F’f > F’ﬁ > . > Fﬁ CNR are assigned with power Plk < Pf <...< P,’l‘,
respectively. Therefore, the SINR and the data rate for each device of a specific

channel can represented as (6) and (2), respectively.

v

k1k
Rl

Er )

i=12,....n (6)

To perform perfect SIC, the BS allocate power to each device above certain
threshold level P,;, as shown in (7). For example, the device with low CNR must
have higher power than the sum of other high CNR devices’ power for perfect

completion of the SIC technique.

i—1
(7 () e
j=1

i=1,2,....(n—1), (7)
d=n,...,2,1,
k=1,2,...,K.
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3. Problem Formulation

We consider each device has a set of channels I'y = {FN, FIZ\,, Fﬂ‘v} for channel
assignment and range of power from Py € [0.01,0.99] x Pr where Pr is the
total power budget per channel for power allocation. In this study, we focus on
the sum-rate as the key performance indicator for the optimization of channel

assignment and power allocation in the NOMA system which can be represented

as
Roum = {:nlogz< #>,
T i=1 Yo PiTi+1
i=1,2,....n, ®)
k=102,... K.

We also consider the minimum data rate requirement of all devices which can be

expressed as

Pkrk
log, (1 + Z’Tklikjtl> > Rf,
i=1,2,...,n, ©
k=1,2,...,K.
The sum of the power per device in a channel must less or equal than Pr, and can
be written as

n
Y PE<Prk=12,.. K (10)
i=1

In this study, we derive an optimal power allocation scheme and propose
a priority-based channel assignment with a deep Q-learning algorithm for
maintaining the QoS policies of the 5G services, MSR, and MCSR to ensure
fairness among the devices and the increase in system performance. As DQL

requires power allocation to evaluate the channel assignment and train the DNN,
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we first derive a power allocation solution for any given channels, and then we
build the DQL framework for priority-based channel assignment to obtain an

optimal solution for the NOMA system.

B. Power Allocation

In this section, we derive the optimal power allocation for any given channel
while considering different constraints of NOMA to increase the maximum sum-
rates and system efficiency. The power allocation solution is derived based on the
power allocation solution in [25]. We consider sorting the devices in descending
order based on their distances from BS. As our main target is to maximize the
sum-rates, we can represent (8) as a maximizing convex function for a given
channel & considering (7), (9), and (10), which can be formulated as follows:

n Pka
maximize Z logy | 1 + =———F—F—
Pk “~ Zz 1 P’Tk +1

PTX .
: i
sub]ect to 10g2 1+ m Z Ri s

Pk <Py, (an

- (5) ) on

'M=

1

~

AH
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The convex problem (11) can also be expressed in Lagrangian form as
k ok
= Pr—) P
L ¢ (12)
n

RK
PR S
KBW,

where 7, v, and y are the Lagrange multipliers, Vi =1,2,...,n, and ¢l.’< = 2KBWen
Taking the derivatives of (12) with respect to P, 7,v, and y, multiple KKT
conditions can be found. For n-device NOMA, there are 2n Lagrange multipliers
resulting in 2*" combinations. For example, for n = 2,3,4,...,8, the number
of combinations are 16,64,256,...,65536, respectively. However, checking all
types of combinations is not computationally feasible. After solving only n
equations according to [63] for 2,3,4-device NOMA, 2,4,8 combinations are
found that satisfy the KKT conditions, respectively. Therefore, the closed-form
solution of the power allocation for n-device NOMA for a given channel k is
near-optimal and can be written as

P (=P (D P
}}__szﬂ_+2@fwr@_ __<§:2H7 ’

1) i=x

Pr Pin "« P
Pj = - Y=
ST VR ( ; o1 )

(13)

where x=1,2, j=3,4,...,n,¢=0,1,...,(n—3), and devices have I'} > T% >

... >T* CNR with power P{‘ < Pf < ... < P, respectively.
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C. Priority-based Channel Assignment

In this section, we propose a priority-based channel assignment scheme using
deep Q-learning. First, we formulate the channel assignment problem based on
the priority, MSR, and MCSR, and then model the channel assignment problem as
a reinforcement task and introduce an autoencoder followed by an LSTM network
to create the DQL framework. Finally, we use the near-optimal power allocation

solution and train the DNN for validation.

1. Priority-based Channel Assignment

The 5G wireless network provides three different services with different QoS
requirements, such as URLLC service has highest QoS requirements, eMBB
service has average QoS requirements, and mMTC service has least QoS
requirements. We prioritize the devices in the network based on the services
they are using and their QoS requirements where the URLLC devices have
the highest priority, the eMBB devices have the second-highest priority and
the mMTC devices are the least priority devices. The BS sorts the URLLC,
eMBB, and mMTC devices in descending order based on their distances from
BS. Subsequently, the BS assigns URLLC devices to the channels with highest
gain first, then assigns the eMBB devices and mMTC devices accordingly to
the channels available as shown in Fig. 10. This figure shows an illustration
of priority-based channel assignment for 3-device NOMA where 4 URLLC, 5
eMBB, and 3 mMTC devices are present. However, assigning channels is subject
to the CNR of each device with the BS.

Another main requirement of the optimization of the channel assignment is

to maximize the channel and overall sum-rates. The BS have (2’ ) combinations
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Figure 10: Proposed priority-based sample channel assignment for 3-device NOMA

system for 12 active devices.

for each channel k to check for maximize the sum-rate. Therefore, the total

N—(nxi)

combination in general is Y'X , ("

) for MCSR. When it comes to priority,
the low priority devices can not replace the high priority devices in a channel.
However, high or equal priority devices can replace the equal or low priority
devices in any given channel. The maximization process incorporating with the
priority scheme is computationally complex since the BS has to check all the
possible combinations of the device. To reduce the computational complexity, we

propose a DQL framework to assign channels to the devices while maintaining

the priority and maximizing the sum-rates.

2. Deep O-Learning Framework

In this section, we propose a DQL framework and train it to optimize the priority-
based channel assignment problem. The deep Q-learning algorithm generally
consists of an agent with a deep neural network (DNN) and an environment.
The agent interacts with the environment and decides which action to take. The

BS acts as an agent and interacts with the environment consisting of URLLC,
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Figure 11: Simple Q-learning.

eMBB, and mMTC devices’ information. Initially, the agent starts exploring the
environment to collect the channel information of every device. At each time step
t, based on the present state s; of the agent in the environment, the agent predicts
an action a; using the DNN to assign a channel. In return, the agent receives
an immediate reward r; and the next state s, from the environment as shown
in Fig. 11. The agent receives a good reward r; if it performs a good channel
assignment. By predicting actions, the agent learns about the environment and
achieves an optimal channel assignment policy 7. This optimal policy is learned
at each time step ¢ by the DNN. The agent updates and improves the policy 7,
by repeating the channel assignment process for multiple episodes. One episode
terminates when there are no channels left for assignment. We define the state,

action, and reward for use in the proposed DNN as follows:

 State: We consider the channel information for each device as the states
of the environment. There are N devices having K channel preferences.
Therefore, the state space has N x K elements and can be represented as

S={r},r2rn,. .. ks k... k.
* Action: The main action of the agent is to assign channels to the devices
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which belong to the action space A. At each episode for a set of S, the agent
has to take NV € A actions while maintaining one action per K elements from
S. For 2,3,...,n-device NOMA, the agent can take one action 2,3,...,n-

times, respectively.

* Reward: Whenever the agent completes taking N actions, the agent gets a
reward rf for each action. For each correct action, the agent gets a positive
reward r; and when the agent takes correct n actions, the agent gets the
sum-rate of that channel as a reward for the taken actions. For example,
let us assume a 3-device NOMA. The agent has to assign 3 devices per
channel. In this case, when the agent successfully selects an appropriate
channel based on priority for a device, the agent gets a positive reward r;
(i.e., 10). If the agent can select the same appropriate channel for 3 devices,
the agent gets the sum-rate calculated by (2) as a reward for its 3 actions.

The reward function can be defined as

?ZlRf ifa’;,:n
r= 0<ri <Yl Rfforeachd, ifat<n, (14)
0 ifaI;,:O

where a’l‘, is the number of appropriate action a/ taken per channel k and
Vl=1,2,...,N € A. Here, we consider maximizing the sum-rate for each
channel which results in increased performance and fairness of the whole

system.

With the state, action, and reward, we propose the deep neural network (DNN)
structure shown in Fig. 12 as the policy controller for channel assignment. The

DNN replaces the Q-table and estimates the Q-values for each state-action pair

32

Collection @ chosun



NxK
—
o
@)
@)
State :

Space, S O
@)
O iiiii

—
=

=]
=
-

nnnnn

iiiii

Jinear

iiiii

2
X
~

_ Decoder

Figure 13: Autoencoder architecture.

@ee eee:

Outp:

uts

____________

nZ
e

N mmls

of the environment. Eventually, the DNN approximates the optimal policy for

channel assignment. The proposed DNN has two parts, an autoencoder model

and an LSTM model. The main goal of the DNN is to derive probabilities for

each device-channel pair for each state space, which can be expressed as Q(S,A).

These probabilities are the Q-values for DQL.

e Autoencoder: An autoencoder is a feed-forward neural network where the

number of inputs is same as the number of output neurons. It compresses

the input into a lower-dimensional code and then reconstructs the input data

Collection @ chosun
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from the code at the output. The autoencoder can easily handle raw input
data without any fancy processing or labeling. Therefore, the autoencoder
is considered as a part of the unsupervised learning technique [64] and
can generate their labels from the training data. The autoencoder has three
main parts named an encoder, code, and decoder as shown in Fig. 13.
Both the encoder and decoder are fully connected neural networks. The
encoder starts with an input layer having 2" neurons followed by multiple
hidden layers having 2"~" neurons, where % is the position of the layer.
The number of neurons per hidden layer continues to decrease till the code
part of the autoencoder. In this study, we use 2% neurons for the code layer.
The decoder part is the mirror image of the encoder ending with an output
layer. This type of structure is known as stacked autoencoder as the layers
are stacked one after another, like a sandwich. Moreover, we use ReLLU as

an activation function for each layer in the autoencoder.

* Long short-term memory:Long short-term memory (LSTM) is an
evolved form of recurrent neural network (RNN). LSTMs are a special
type of RNN that can learn long-term dependencies and remember previous
information for future usage. The LSTM network has a chain structure
composed of multiple LSTM cells. We use three LSTM cells to build our
LSTM network. The structure of a single LSTM cell is shown in Fig. 14
[65]. An LSTM cell has three input and two output parameters. The cell
and hidden states are the common parameters between inputs and outputs.
The other parameter is the current input. The LSTM cell also contains three
sigmoid layers and two tanh layers involving some linear transformations

as shown in Fig. 14. Initially, random cell and hidden states are given along
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Figure 14: An LSTM cell.

with the input for the first LSTM cell. Then the two outputs (hidden state,

cell state) become the three inputs of the next cell as shown in Fig. 14.

In this study, we use an autoencoder having input and output size of 128 and
code size 8 followed by an LSTM network having 128 input size, 64 hidden state
size, and 3 recurrent layers. Finally, the output of the LSTM is passed through
a linear layer and a sigmoid layer to obtain the probabilities of the preferred
channels for each device. The state space S is given as the input of our policy
network. Initially, the input is first embedded with dimension 128. It then passes
through the policy network to generate the channel assigning probabilities, as

shown in Fig. 12.

3. Training

The proposed DNN is trained gradually with a set of training data Ty,, =
{Sl,Sz, ..., 8™} per episode. For each state space S, the device-channel pairs

are selected using €-greedy policy according to the output probabilities from the
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DNN. An episode terminates when all state spaces are passed through the DNN.
The policy to take action for each device per state space can be expressed as
argmax Q(S',Al) if € < g&;; where &, € (0,1]

Y

random action [1,K] otherwise
(15

Vi=1,2,...,N€A,
Vi=1,2,...,ins.
After taking the actions using (15), the agent gets the rewards according to (14)
and the next state space S,

To train the DNN, we calculate the loss and optimize the parameters of the
DNN performing back-propagation. To calculate the loss, we approximate the
optimal Q*-values for each device-channel pair of St from a different DNN
called the target DNN [66]. The target DNN is identical to the policy DNN and
initialized by the parameters of the policy DNN. The next state space S'! is
given as an input to the target DNN and from the outputs the optimal Q*-values
are chosen greedily by the agent. Because assigning the channel is a classification
problem, we use the categorical cross-entropy loss function to calculate the loss
between the optimal Q*-values and normal Q-values [67]. After calculating the
loss, we optimize the policy DNN using the Adam optimizer [68]. To estimate
the optimal Q*-values correctly, we periodically update the target DNN with the
parameters of the policy DNN after certain episodes.

For a more stable convergence of the optimal policy, we introduce the
experience replay memory (ERM) to the DQL [69]. Initially, the agent explores
the environment and saves current states, actions, rewards, and next states
(S',A;,r;,8!) as a tuple in the ERM. Subsequently, the agent takes a mini-batch
of tuples from the ERM and trains the policy DNN. The ERM continues to be
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updated for each training data. Fig. 15 and Algorithm 3 summarize the proposed

DQL framework and the working flow.

D. Simulation Analysis

In this section, we perform multiple simulations to analyze the performance of
the proposed DQL algorithm for priority-based channel assignment and compare
the proposed priority-based joint resource allocation (priority-JRA) with the
joint resource allocation (JRA) method and dynamic power allocation with fixed
channels (DPA-FC) method proposed in [30] and [25], respectively. Moreover,
we compare the priority-JRA NOMA system with the conventional OMA system.
Finally, we also analyze the system complexity and system convergence varying

different parameters.
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Algorithm 3 Proposed DQL Algorithm

1: Initialize policy and target DNN with random parameters (p and p’).
2: Initialize experience replay memory (ERM).
3: Initialize €.

4: for each episode do

5: for each instance do
6: for each device do
7: Select an channel and add to action space A;

for present state space S based on €.

8: end for
9: Observe the immediate rewards r; and next state
space Sit1.
10: Insert (S, A;,r;,S!) in ERM.
11: Create a mini-batch with random sample of

(S, Ay, 17,871 from ERM.

12: for each tuple in mini-batch do

13: Obtain Q-values using policy DNN.

14: Approximate Q*-values using target DNN.

15: Calculate the loss using Q an Q*-values.

16: Optimize the parameters p of the policy DNN

using Adam optimizer.

17: end for

18: end for

19: p’ < p after certain number of episodes.
20: end for=0
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Table 1: Simulation parameters for DQL-based resource allocation

Parameter Value Parameter Value
BW, 5 MHz BW,, 180 kHz
Pr 2—-18W Learning rate 0.01
N 24 Batch size 24
n 2,3,4 Circuit power 20 dBm
K 12,8,6 Number of episodes 200
Taata 5000 instances Ry 2 bps/Hz
1. Simulation Environment

For the simulation environment, we consider a 5G micro-cell where 24 devices
are randomly and uniformly distributed. We only consider three types of devices,
URLLC, eMBB, and mMTC devices. We model the channel gain 4¢ of the k"
channel for each device based on the Rayleigh fading model, where the path loss
exponent, 7 = 3. Then we calculate the CNR of each channel for each device
using (5) where o}, = M for Vk = 1,2,...,K with BW, = SMHz and Ny =
-172 dBm/Hz.

To analyze the performance, simulation parameters similar to [25], [30] are
used as given in Table 1. The parameters of proposed DNN such as weights
and biases are initialized randomly and uniformly. The input size of the DNN is
N x K and the embedded size is 128. We generate 5000 instances for training and
1000 instances for validation data-set randomly for each episode. Each instance

consists of N x K user-channel information.
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2. Performance Analysis

In this section, we compare the proposed priority-JRA with JRA and DPA-FC in
terms of system sum-rate, sum-rate per channel, and energy-efficiency varying
power, number of users, and location.

Fig. 16 shows the sum-rate versus the BS power comparison among priority-
JRA, JRA, DPA-FC 3-device NOMA system. It is also evident from the figure
that the proposed scheme outperforms the other two methods. In the JRA method,
the power allocation solution is derived first, and the channels are then assigned
using a matching algorithm [30]. By contrast, in the DPA-FC method, power
allocation is done dynamically based on the channel response between the device
and the BS while assigning fixed channels to the devices [25]. Hence, we can
conclude that the priority-based channel assignment technique is more efficient
than the JRA, and DPA-FC methods. From Fig. 16, we can also observe that the
sum-rate is shown in bps/Hz which also reinforces the spectral efficiency of the
system. Moreover, due to the converging nature of (8), the graph saturates when
the BS power is extremely large.

Sum-rate for each channel comparison among priority-JRA, JRA, and DPA-
FC for 3-device NOMA is shown in Fig. 17. It is evident from the figure that
the proposed priority-JRA achieves the highest sum-rate in most of the channels
while maintaining the proposed priority scheme. In few channels, the sum-rate
is low because of the trade-off between the priority scheme and the maximum
sum-rate. Our main target is to fulfill the QoS requirements of the 5G services
while achieving the maximum possible sum-rate.

Fig. 18 shows the sum-rate achieved by the three schemes for the 2,3,4-

device NOMA system. For every NOMA system, the proposed priority-JRA
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Figure 16: Sum-rate of 3-device NOMA system.
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Figure 18: Sum-rate of 2,3,4-device NOMA systems.

achieves the highest sum-rate compared to the other methods. Moreover, we can
also observe that the sum-rate decreases when the number of devices per channel
increases. This is due to the increase in system complexity and the division of the
same amount of power into more devices.

In Fig. 19, we compare the conventional OMA system with priority-JRA
along with JRA and DPA-FC NOMA systems in terms of the sum-rate with
respect to power and number of users, respectively for the 3-device NOMA
system. The sum-rate shown in the figure also represents the spectral efficiency
of the system. It is clear that all NOMA systems outperform the traditional OMA
system in terms of both the sum-rate and spectral efficiency. Moreover, we can
also conclude from the Fig. 19 that the proposed priority-JRA outperforms all the
other methods for any given power and number of users.

In Fig. 20, we compare the energy-efficiency of the OMA system with
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different methods of the NOMA system with respect to number of users and
power, respectively. Energy-efficiency of a system represents the number of sent
bits per joule of energy. The graph shows that the energy-efficiency decreases
as the power increases because the energy efficiency is inversely proportional
to power. We can conclude from the figure that the NOMA system is more
energy-efficient than the conventional OMA system in any scenario. Moreover,
from Fig. 20, we can also observe that the proposed priority-JRA is the most
energy-efficient method for channel assignment among all for any given power
and number of users. We calculated the energy efficiency graph using the BS
power and circuit power for each method [30].

Moreover, Fig. 21 shows the sum-rate comparison among priority-JRA, JRA,
DPA-FC 3-device NOMA system for different user-data instances considering
perfect and imperfect CSI. As mentioned earlier, we generate 5000 and 1000
instances consisting of N x K user-channel information per instance for training
and testing the proposed priority-JRA scheme, respectively. In every instance,
the positions of the users are randomly and uniformly generated within the
transmission range of the BS. From Fig. 21a, it is evident that the proposed
priority-JRA achieves the highest sum-rate for any given positions of the users.
By contrast, we consider £30% CSI error to evaluate the performance of the
aforementioned systems in Fig. 21b. It is noticeable from Fig. 21b that the
performance of the proposed priority-JRA remains almost unchanged compared

to the JRA, DPA-FC schemes.
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considering (a) perfect and (b) imperfect CSI.
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3. Complexity and Parameter Analysis

The proposed priority-JRA scheme contains a DNN network. To visualize the
efficiency of the proposed DNN network, we derive and analyze the time
complexity. The proposed DNN can be divided into three main elements for
complexity analysis, which are an auto-encoder, an LSTM, and two linear layers
as shown in Fig. 12.

The proposed DNN has an input of (NK) and two linear layers of size
d, = 128. The time complexity can be written as O(2Id?(NK)), where I refers to
the kernel size. The auto-encoder has one code layer and two identical encoder
and decoder layers. According to [70], the time complexity of the auto-encoder

can be written as

1 1 1
Ad2(1+ =+~ +—=)(NK
55

= O(Eldg (NK)) (16)

~ O(31d%(NK))
For the LSTM the time complexity can be calculated as O(I). Therefore, the

overall time complexity of the proposed DNN can be written as

O(31d2(NK)) + O(21d>(NK)) + O(I) -

= O(51d*(NK)) +O(I) )

By contrast, for the JRA scheme, the time complexity can be calculated

as 0((1274)(1,\5 )2), which includes all (]Z ) combinations for each channel k.

Therefore, the complexity of the priority-JRA is much lower. However, DPA-FC

scheme has the lowest complexity and it does not outperform the priority-JRA
scheme.

To justify our proposed DNN structure, we compare it with multiple

DNN structures such as standard fully-connected DNN, only LSTM, and only
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Figure 22: Channel assignment policy convergence for different DNN structures.

autoencoder in Fig. 22 for 72-devices and at a learning rate 0.01 and batch size of
24. Tt is evident from Fig. 22 that the proposed DNN structure achieves maximum
cumulative reward and converges faster among all. Furthermore, Fig. 23a shows
the effect of different learning rates on the proposed DNN for 24-devices and
a batch size of 24. As shown in Fig. 23a, the proposed DNN cannot learn the
optimal channel assignment policy for learning rates of 0.5,0.1, and 0.001.
However, for learning rates 0.01 and 0.001, the proposed DNN reached the
optimal solution quickly in the same episode. Therefore, we can use any one of
them. Fig. 23b shows the effect of different batch sizes on the proposed DNN for
24-devices and a learning rate of 0.01. As shown in Fig. 23b, the batch size should
be greater than or equal to 24 to achieve optimality. However, a larger batch
size refers to more room for exploration and slow convergence. Lastly, Fig. 23c
represents the convergence of the proposed DNN for different number of users at

a learning rate of 0.01 and batch size 24. The converging graphs of Fig. 23c
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signify the high scalability and stability of the proposed DNN for increasing
number of users under the BS. Finally, we can ensure from the analysis that the

proposed scheme can achieve a near-optimal performance with low complexity

and high efficiency.
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IV. FDRL-Based Multi-UAV Navigation

In this chapter, we describe the proposed scheme to improve the link quality
and coverage of the 5G NOMA systems under multiple performance metrics. To
describe the proposed solution, we derive the multiple UAV-assisted 5G NOMA
system model and formulate the constraints of UAV navigation into a federated

reinforcement learning problem in this chapter.

A. Problem Statement

In this section, we briefly describe the system model and derive different

equations based on the objectives of our proposed solution.

1. System Model

We consider a macro-cell of a 5G network consisting of 5G enabled URLLC,
mMTC, and eMBB devices with a base station (BS) in Fig. 24. We consider
a simple downlink multi-carrier NOMA system where the BS serves the
devices simultaneously over multiple wireless channels. We also consider
{Dy,D3,...,Dy,} GDs far from the BS are suffering from packet loss, poor link
quality, and low QoS fulfilling rate owing to the poor LOS, multi-path fading.
Thus, the BS assigns {U,Us,...,U,} UAV-BSs to fly over that area and serve the
m-GDs. Moreover, the BS assigns each UAV-BS to a cluster to serve the GDs and
avoid interference and collision among UAV-BSs. The clusters are determined by
the BS in advance, depending on the geographical locations. Thus, the number
of the GDs and the total number of UAV-BSs depends on the number of clusters.
The UAV-BSs are considered to be deployed at the center of the clusters by the

BS. The clusters get updated every hour depending on the mobility of the GDs.
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Figure 24: Multiple UAV-assisted heterogeneous SG NOMA system scenario.

We consider that all UAV-BSs can move at any direction and with a certain
distance in a 3D environment utilizing PID controller. We utilize spherical
coordinate system where distance d € (0,dpqy], azimuth ¢ € (0,27], inclination
6 € (0, ). The UAV-BSs can also hover at a certain position where d =0, ¢ =0,
and 6 = 0. We also consider the energy budgets {E},E>,...,E,} of the UAV-
BSs where the energy consumption ¢/, of n/" UAV-BS at every time-step gets
deducted from its energy budget E,. For UAV-BSs movement and hovering, the
energy consumption ¢/, = Bd’, and ¢!, = 3, respectively, where d/, is the flying
distance and B can be found from the energy consumption model of a UAV.
We also consider some charging points as shown in Fig. 24 where UAV-BSs
visit autonomously utilizing PID controller if the energy level is below certain

threshold e;;,.

2. Problem Formulation

In this study, we focus on the channel-to-noise ratio (CNR), coverage score
(CS), and residual energy (RE) as the key performance indicators for the

optimization of UAV-BS navigation for heterogeneous 5G NOMA systems. In
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NOMA systems, perfect SIC depends on the CNRs of the GDs as the power
allocation is inversely proportional to the CNR of the GD. The GD with the
highest CNR gets the lowest power and vice versa. Let us consider CNR of the
m'" GD is

P

1 ; (18)
o

where o is the thermal noise power variance and 4, is the channel gain of
the m'" GD calculated using the Rayleigh fading model with a path loss exponent
N = 3. The reason behind considering CNR as a performance parameter is to
adjust the height of the UAV-BSs. We consider a high threshold value of CNR
I';, that the UAV-BSs have to achieve for the GD residing at the edge of the
communication range of the UAV-BSs.

We also consider the number of time-steps 7., a GD was covered by a UAV-
BS to calculate the coverage score. At each time-step ¢, we can calculate the
coverage score for m'" GD under n'" UAV-BS using (19). After T time-step, we
can calculate the CS for n'* UAV-BS using (20). We consider CS as a performance

parameter is to ensure the maximum GD coverage by the UAV-BSs.

m

t.
cdy =< (19)

(B cdi)?
<Y (ed; )2

Finally, we consider the RE to ensure energy-efficient UAV navigation due

(20)

to the UAVs’ limited energy capacity. We calculate the RE at each time-step

deducting the energy consumption ¢!, = Bd!, or ¢}, = B from the energy level
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at previous energy (21). At time-step ¢ = 0, starting energy EV is the remaining
energy after UAV-BS deployment.

E =E-1_¢ i=12,..1 (21)

n

In this study, we derive an optimal multi-UAV navigation scheme using
FDRL to serve URLLC, mMTC, and eMBB devices with LOS, better link
quality maintaining the CNR threshold, maximum CS, and minimum energy
consumption in 5G heterogeneous networks. First, we derive the DRL algorithm
for a UAV-BS navigation and then utilize it for all the UAV-BSs using the FL

framework.

B. Proposed FDRL-based Multi-UAV Navigation

In this section, we propose a FDRL-based multi-UAV navigation scheme using
deep Q-learning. First, we formulate the UAV-BS navigation problem based as
a reinforcement task and introduce an autoencoder neural network to create
the DQL framework. Finally, we derive the FL framework incorporating the
DQL frameworks for multiple UAV-BSs and train and aggregate the DNNs for

validation.

1. Deep Q-Learning Framework

In this section, we propose a DQL framework to optimize the UAV-BS navigation
problem. In DQL, an agent interacts with the surrounding area and takes actions
to gather experiences to reach the optimal solution utilizing a deep neural
network (DNN). The UAV-BS acts as an agent and interacts with the environment
consisting of URLLC, eMBB, and mMTC devices. Initially, the agent explores
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the environment and collects the channel and coverage information for all GDs.
Following the steps described in Section I1I-A-2, the agent explores and exploits
the environment for multiple episodes to achieve an optimal policy m, for
navigation. One episode terminates when the UAV goes out of the service area,
faces any obstacles, or suffers from low energy. We define the state, action, and

reward for use in the proposed DNN as follows:

 State: For each UAV-BS at any hour 7 the state S consists the current
locations of the kK GDs within the assigned cluster from the BS. Therefore,
the state space can be represented as S, = {X71,¥51,X55, Y50, - » X35 Yo b

for the n'" UAV-BS at hour 7.

* Action: The main action of the agent is to navigate in such way to
cover as many GDs as possible for the maximum steps utilizing minimum
energy. For navigation, UAV-BS selects distance d’ € [0,d,qy], azimuth
¢’ € [0,27x], inclination 6" € [0, ] and moves to that position using PID.

Thus, action set for the n'"

UAV-BS at time step ¢ can be represented as
a, = {d.,¢},0.}. Here, our main objective is to obtain optimal UAV-BS

trajectory. Thus, we obtain the A} actions for 7 time steps for hour .

* Reward: Whenever a UAV-BS takes action at time step ¢, it gets a reward 7.
We model the reward function based on the coverage score, residual energy,
and maximum CNR value. We can represent the reward r/, for the n'"* UAV-
BS at time step ¢ as (22). We also consider a zero reward in case of the
UAV goes out of the service area, faces any obstacles, provides poor CNR,

or suffers from low energy. Here, (22) ensures the maximum coverage,
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Figure 25: Proposed DNN structure for UAV-BS navigation.

residual energy, and minimum CNR requirement.

. 0 if Out-of-range, obstacle, low energy, T, < T},
. L (22)
csh X ELif I > Ty,

With the state, action, and reward, we propose the deep neural network (DNN)
structure shown in Fig. 25 as the policy controller for UAV-BS navigation. The
main goal of the DNN is to derive probabilities (Q-values) for selecting the
distance, azimuth, inclination for UAV-BS navigation. These probabilities are the
Q-values for RL.

In this study, we use an autoencoder having an input and output size of 128
and code size 8. Finally, the autoencoder output is passed through a linear layer
to reshape it and a Sigmoid layer to obtain the preferred distance, azimuth, and
inclination probabilities. Here, K is the number of samples taken within the range
of distance, azimuth, inclination for 7" time steps for an hour 7. The state space S
consisting of k GD locations is given as the input of our policy network. Initially,
the input is first embedded with dimension 128. It then passes through the policy

network to generate the channel assigning probabilities, as shown in Fig. 25.
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2. Federated Learning Framework

In this section, we utilize the proposed DQL framework for a UAV-BS navigation
to derive the FL framework. We consider {U},U>,...,U,} UAV-BSs train their
DNNs using the proposed DQL framework. After that, the BS collects the
parameters of the DNNs, aggregates them, updates the global DNN (GDNN),
and then updates the DNNs of the UAV-BSs with the GDNN at an interval of
Tupdate- Here, we consider the HFDRL framework, where each agent interacts
with different environments and performs the same task. Each UAV-BS train their
DNN s using the local data of a specific area assigned by the BS as shown in Fig. 6
and Fig. 24. The main benefit of the FDRL is that any UAV-BSs can be replaced
at any time without interrupting the network service in case of emergency such as
low energy, equipment failure. The BS can quickly transfer the GDNN to the new
UAV-BS, which replaced an old UAV-BS. Thus, we consider that if the energy
level of a UAV-BS goes below ¢, another new UAV-BS will take over and update
itself with the GDNN.

3. Training

We train the DNNs of the UAV-BSs gradually with their local training data
[data = 15162 . SIY per episode. For T time steps, each UAV-BS selects T
actions using &-greedy policy according to the output probabilities from the
DNN. An episode terminates when the UAV-BS goes out of the service area,

faces any obstacles, suffers from low energy, or the number of data / runs out.
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The policy to take actions for each UAV-BS per state space can be expressed as

r argmax Q(S7,A]) if € < gy; where g, € (0,1]
1 — )
random action [T, K] otherwise
(23)
Vt=1,2,....1,
Vi=1,2,...,n.

After taking the actions using (23), the agent gets the rewards according to (22)
and the next state space STT!.

To train the DNN at each UAV-BS, we calculate the loss and optimize the
parameters of the DNN performing back-propagation. To calculate the loss, we
approximate the optimal Q*-values for each action of S**! from a different DNN
called the target DNN [66]. The target DNN is identical to the policy DNN and
initialized by the parameters of the policy DNN at each UAV-BS. The next state
space S™*! is given as an input to the target DNN, and from the outputs, the
optimal Q*-values are chosen greedily by each agent. We utilize the categorical
cross-entropy loss function to compute the loss between the optimum Q*-values
and normal Q-values since selecting the distance, azimuth, and inclination is a
classification problem [67]. We use the Adam optimizer [68] to optimize the
policy DNN after computing the loss. After certain episodes, we update the target
DNNs with the parameters of the policy DNNs to correctly estimate the optimal
Q=x-values for every UAV-BS.

For a more stable convergence of the optimal policy, we introduce the
experience replay memory (ERM) to the DQL for each agent [69]. Initially,
the agents explore the environment and save current states, actions, combined
rewards, and next states (S%,A%,R®,S"*1) as a tuple in their individual ERM.

Subsequently, the agents take a mini-batch of tuples from their ERMs and train
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their policy DNN. The ERMs continue to be updated for each training data.

To train the GDNN, we train the policy DNNs of the UAV-BSs in parallel
utilizing a multiprocessing tool. They simultaneously train their policy DNNs
and send the parameters of their policy DNNs to the BS periodically. Then, the
BS updates the GDNN and sends the updated GDNN parameters to the UAV-BSs.
Once the UAV-BSs receive the parameters, they update their policy DNNs. We
consider at least 2 time steps to complete this back-and-forth parameter updating.

Algorithm 4 summarize the proposed FDRL framework and the working flow
where we consider the UAV-BSs are serving the GDs I = 24 hours a day and
taking 7 = 60 actions per hour. We also consider autonomous visit to nearest

charging station in case of low energy.

C. Simulation Analysis

In this section, we perform multiple simulations to analyze the performance of
the proposed FDRL algorithm for multiple UAV-BS navigation (FDRL-nav) and
compare it with the conventional baselines such as fixed point communication
(FPC), random navigation (RN), travelling salesman problem (TSP). In FPC.
the UAV-BSs hover at a single point and serve the GDs. In contrast, UAV-BSs
randomly move over the GDs and serve them in RN model. In TSP, UAV-BSs
gather the locations of the GDs and fly to that locations at each time step to serve

the GDs as shown in Fig. 26.

1. Simulation Environment

We consider a 5G macro-cell where 60 GDs are randomly distributed far from

the BS for the simulation environment. The GDs suffer from packet loss, poor
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Algorithm 4 Proposed FDRL Algorithm

1: Initialize global DNN with random parameters g in BS.

2: for each UAV-BS do

3: Initialize n policy and target DNNs with random parameters (p; and p?).
4 Initialize n experience replay memory (ERM).

5: end for

6: for each episode in a UAV-BS do

7: for each hour 7 do
8: Get the cluster location for deployment.
9: Get the k GD locations within the cluster.
10: Select the distance, azimuth, inclination for action space A®

for present state space ST based on €.
11: for each time step t do
12: Check for UAV-BS flies beyond cluster or faces obstacles or

suffers from low energy

13: Observe the immediate rewards #* using (22).
14: Obtain the combined rewards R and next state space S**!.
15: Check for episode termination conditions.
16: end for
17: Insert (S¥,A%,R®,S*"!) in ERM.
18: Create a mini-batch with random sample from ERM.
19: for each tuple in mini-batch do
20: Obtain Q-values and Q*-values using policy and target DNN.
21: Calculate the loss using Q an Q*-values.
22: Optimize the policy DNN using Adam optimizer.
23: end for
24: end for
25: P < p; after certain number of episodes.
26: g < mean(p1,pa,...,py) after certain number of episodes.
27: (p1,p2,- -+, Pn) < g immediately after updating g.
28: Check for energy level for autonomous visit to nearby charging points.
29: end for
60
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Fixed point communication (FPC) Random navigation (RN)

Travelling salesman problem (TSP)

Figure 26: Baseline methods for UAV-BS navigation.

link quality, and low QoS fulfilling rate due to the poor LOS, multi-path fading.
We only consider three types of GDs, URLLC, eMBB, and mMTC devices. We
model the channel gain 4, of the m'" GD based on the Rayleigh fading model
and calculate the CNR I',, using (18) where o}, = M for Vk =1,2,....K
with BW = 1MHz and Ny = -174 dBm/Hz. To analyze the performance, we use
the simulation parameters given in Table 2.

The BS utilizes a conventional K-means algorithm to divide the GDs into
clusters for UAV-BS deployment and avoid mutual interference. We divide the 60
GDs into 5 clusters and determine the number of clusters using the elbow method

of K-means for the simulation [71]. We also consider a UAV-BS agent per cluster
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Table 2: Simulation parameters for FDRL-based UAV-BS navigation

Parameter Value Parameter Value
BW 1 MHz Learning rate 1x107%
n 5 Batch size 8
m 60 e 15%
T 60 Number of episodes 200
1 24 Ty 25 dBm
Discount factor  0.999 K 15

serving the GDs. The parameters of DNNs of each UAV-BS and GDNN, such as
weights and biases, are initialized randomly and uniformly. The input size of the
DNN s is k, and the embedded size is 128.

For training data, we consider the locations of the GDs. We use 2D random
walk mobility model [72] to generate the mobility data of the GDs for 24
hours. We generate 1000 instances for training and 500 instances for validation
data-set randomly for each episode. Each instance consists of 60 x 24 location
information. We also generate the 3D locations of obstacles randomly that are

unknown to the UAV-BSs.

2. Performance Analysis

This section compares the proposed FDRL-nav with FPC, RN, and TSP in terms
of system average CNR, average coverage time, coverage score, and residual

energy for 24 hours in multiple agent scenarios without UAV-BS replacement.

62

Collection @ chosun



50 :'R‘\ —— FDRL-nav 55 ./'\ —=— FDRL-nav
AN FPC \ ) FPC
NON e Tel -+ RN y FAN —+- RN
45 - TSP 50 - -+~ TSP
é % \\ 1” \\.\ .’.~.~._. e
=401 v —¥- = o Al 21 Se-e
& o 45
Z Z
% 35 /A (5 — . ‘/#.’_-‘ ~4
M EAN gt e
5 0 \ Ke \o—*w-o—.\**/._‘__k’_(»\. S . //‘k /
< Nt “asf
25
30
0 5 10 15 20 0 5 10 15 20
Time (h) Time (h)

(@ ()

Figure 27: CNR comparison for (a) UAV-BS 1, (b) UAV-BS 2.

Fig. 27 and 28 shows the average CNR established by five UAV-BS agents
throughout a day. It is evident from Fig. 27 and 28 that the TSP and the FDRL-
nav scheme achieve the highest CNRs above the threshold. It is usual for the
TSP method to achieve high CNR as the agents travel to each GD to serve them.
By contrast, the CNR fluctuates and stays below the threshold for RN and FPC
schemes, respectively. In the RN method, the UAV-BSs randomly move over the
GDs, resulting in undesirable fluctuation in the CNR. The UAV-BSs hover at a
fixed point to serve the GDs and can not maintain the CNR threshold in the FPC
method. Fig. 27 and 28 also reinforces the optimality of the proposed FDRL-nav
scheme as all the UAV-BSs maintain a steady CNR above the threshold.

Average coverage time comparison among FDRL-nav with FPC, RN, and

TSP for each UAV-BS agent is shown in Fig. 29 and 30 . It is evident from
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Figure 28: CNR comparison for (c) UAV-BS 3, (d) UAV-BS 4, and (e) UAV-BS 5.

the figure that the proposed FDRL-nav achieves the highest average coverage
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Figure 29: Average coverage time comparison for (a) UAV-BS 1, (b) UAV-BS 2.

time for each agent. However, the average coverage time fluctuates due to GD
mobility, unwanted obstacles, and LOS problems. The GDs were blocked by the
obstacles in that hours, causing some uncertainty. In contrast, other schemes show
low average coverage scores, which is not desirable.

Fig. 31 and 32 shows the CS achieved by the four schemes in each agent. In
every UAV-BS agent, the proposed FDRL achieves the highest CS compared to
the other methods. Moreover, we can also observe that the TSP scheme achieves
similar CS owing to traveling and serving nature. However, it can ensure energy
efficiency and higher average coverage time as shown in Fig. 33, 29, and 30,
respectively.

In Fig. 33, we present the average residual energy of the overall system at
each hour for FDRL-nav, FPC, RN, and TSP scheme. As in the FPC scheme, the

UAV-BSs hover over a certain point that requires a meager percentage of energy
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resulting in higher average residual energy. By contrast, the average residual
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energy is zero, and the agents get replaced at every hour in the TSP scheme
owning to its diverse movement. The RN scheme has high average residual
energy owing to the low average coverage time. Although the proposed FDRL-
nav uses a significant amount of energy, it outperforms all other schemes and
leaves with average residual energy above the energy threshold e;,.
Furthermore, we also compute the time complexity of the proposed FDRL-
nav. According to [70], the time complexity of the proposed DNN network for
each UAV-BS can be represented as O(51d(k)), where size of the two linear
layers d, = 128 and input size is k. Finally, we can conclude that the proposed

FDRL-nav shows prominent performance with low complexity.
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CONCLUSION

In this thesis, we propose a priority-based resource allocation scheme with deep
Q-learning to fulfill the QoS requirements of the 5G services, such as URLLC,
eMBB, and mMTC services, while maximizing the system performance and
fairness of the multi-carrier NOMA system.

* It maximizes sum-rate (MSR), channel sum-rate (MCSR) while ensuring

the 5G QoS requirements and channel distribution fairness.

* It addresses different constraints of the NOMA system, including the total
power budget of the base station (BS), the minimum data rate requirement
of each device, the QoS policies of different services of the 5G network,

and the sum-rate maximization with channel fairness constraints

* The proposed scheme priority-JRA outperforms the JRA and DPA-FC

schemes under different conditions.

* The proposed priority-JRA method is less complex than other optimal

exhaustive search-based solutions while achieving a near-optimal solution.

We also propose a novel FDRL-based multiple UAV-BS navigation scheme
to serve URLLC, mMTC, and eMBB devices suffering from NLOS, poor link

quality, and multi-path fading in 5G heterogeneous networks.
* It ensures the LOS, better link quality for the suffered 5G ground devices.

* It addresses different constraints, including the power budget of the UAV-
BS, obstacles, autonomous visit to charging points, the maximum device
coverage, the minimum CNR threshold of the 5G network, and overall

device coverage fairness.
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* The proposed scheme FDRL-nav outperforms the baseline schemes, such

as FPC, RN, TSP, achieving a near-optimal solution.
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