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Abstract

Reactive and Proactive Resource Allocation for
LoRa-Enabled IoT Applications

Arshad Farhad
Advisor: Prof. Jae-Young Pyun
Department of Information and Communication Engineering
Graduate School of Chosun University

In recent times, LoRa has become a de-facto technology for the Internet of
Things (IoT) owing to its long-range connectivity support for a large number of
end devices, low deployment cost, and ultra-low energy consumption. The adap-
tive data rate (ADR) in LoRaWAN is a widely adopted strategy for resource as-
signment to end devices recommended for static IoT applications, such as smart
grid and metering. ADR manages the spreading factor (SF) and transmit power
(TP) of an individual end device (ED). However, the ADR performance can be
reduced significantly under a highly dense network and variable channel con-
ditions. Also, the mobility of EDs causes frequent alterations in the topology,
which influences the signal strength between EDs and a gateway (GW). ADR
of LoRaWAN is unsuitable and inadequate when the EDs are mobile because it
requires hours to converge to a stable and energy-efficient communication state
by adapting an appropriate SF. The new SF and TP configured by the NS do
not guarantee efficient communication between mobile ED and GW. In such a
case, the propagation environment may change radically when an ADR com-
mand reaches the mobile ED, and the newly assigned parameters may no longer
be valid. Hence, a new packet from this ED with newly adopted parameters may
be lost owing to the inappropriate use of both SF and TP. This packet loss compels
EDs to retransmit the packet, resulting in further packet loss due to interference.
Therefore, this dissertation resolves the packet loss issue caused due to inappro-
priate SF using reactive, proactive, and hybrid paradigms. The reactive paradigms
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comprise channel-adaptive SF allocation (C-ASFA), Gaussian-ADR (G-ADR),
and Exponential moving average-ADR (EMA-ADR). The proactive paradigms
include mobility-aware SF assignment (M-ASFA), retransmission-assisted re-
source management (RA-ARM), and artificial intelligence-empowered resource
allocation (AI-ERA). Finally, a hybrid-ADR (HADR) is presented. Simulation
results showed an improved packet success ratio, energy consumption, and con-
vergence period compared to state-of-the-art ADR schemes.

Index Terms: LoRa, LoRaWAN, Internet of Things, Adaptive Data Rate,
Resource Allocation, Artificial Intelligence
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요약

LoRa기반사물인터넷응용을위한 Reactive및 Proactive자원
할당

Arshad Farhad
Advisor: Prof. Jae-Young Pyun
Department of Information and Communication Engineering
Graduate School of Chosun University

최근 LoRa는다수의단말에대한장거리연결지원,낮은배포비용및적은
에너지 소비로 인해 사물인터넷 (IoT)을 위한 통신기술이 되었다. LoRaWAN
의 ADR (adaptive data rate)은 스마트 그리드 및 계량과 같은 정적 IoT 애플리
케이션에권장되는단말에자원을할당하기위해널리채택된전략이다. ADR
은개별단말의 SF (spreading factor)와 TP (transmit power)를관리한다.그러나
고밀집 네트워크 및 가변 채널 조건에서는 ADR 성능이 크게 저하될 수 있다.
또한단말의이동성으로인해전송환경이자주변경되어단말과게이트웨이

간의 신호 강도에 영향을 준다. LoRaWAN의 ADR은 적절한 SF를 적용하여
안정적이고 에너지 효율적인 통신 상태로 수렴하는데 많은 시간이 소모되기

때문에 단말이 이동하는 경우에 부적절하다. 또한, LoRaWAN 네트워크 서버
에의해새로구성된 SF와 TP같은통신파라미터는이동단말과게이트웨이
간의효율적인통신을보장하지않는다.즉,단말이이동하는경우전파환경이
급격히변하여새로발행된 ADR명령이더이상유효하지않아단말은적응적
이지 못한 SF와 TP의 사용으로 인해 패킷 전송이 실패할 수 있다. 이 패킷 손
실은단말이재전송절차를수행하도록하여패킷간간섭으로인한추가적인

손실을일으킨다.따라서본논문에서는적응적이지못한 SF로인한패킷손실
문제를 reacitve, proactive, hybrid와 같은 다양한 자원 할당 접근 방식을 통해
해결한다. reacitve 접근 방식에는 채널 적응형 SF 할당(C-ASFA), 가우시안-
ADR (G-ADR)및지수이동평균-ADR (EMA-ADR)이포함된다. Proactive방
식으로는 M-ASFA (mobility-aware SF assignment), RA-ARM (retransmission-
assisted resource management ADR), AI-ERA (artificial intelligence-empowered
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resource allocation)가 있다. 마지막으로는 hybrid ADR (HADR)를 제안한다.
제안한방법의주요목표는패킷전송성공률을높이고에너지소비를줄이는

것이다.시뮬레이션결과는제안한 ADR방식에향상된성능을보여준다.

Index Terms: LoRa, LoRaWAN, Internet of Things, Adaptive Data Rate,
Resource Allocation, Artificial Intelligence

iv



Acronyms

ACK Acknowledment
ADR Adaptive Data Rate
CIR Cumulative Interference Ratio
CSS Chirp Spread Spectrum
DL Downlink
DR Data Rate
E-ADR Enhanced ADR
ED End Device
GW Gateway
I-ASF Adaptive SF Assignment Based on the Interference
IoT Internet of Things
LOG Log-Distance
LoRaWAN Long-Range Wide Area Network
LPWAN Low-Power Wide Area Network
MAC Medium Access Control
M-ASFA Mobility-Aware SF Assignment Scheme
MCS Modulation and Coding Schemes
NS Network Server
OH Okumura-Hata
PER Packet Error Rate
PLR Packet Loss Ratio
PSR Packet Success Ratio
RF Radio Frequency
RSSI Received Signal Strength Indicator
RX Receive Window
SF Spreading Factor
SINR Signal-to-Interference-plus-Noise Ratio
SNR Signal-to-Noise Ratio
ToA Time-on-Air
TP Transmit Power
UL Uplink

v



Contents

Abstract [English] i

Abstract [Korean] iii

Acronyms v

List of Figures x

List of Tables xiii

List of Algorithms xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . 3

1.4.1 Reactive Resource Allocation . . . . . . . . . . . . . . 3
1.4.2 Proactive Resource Allocation . . . . . . . . . . . . . . 4
1.4.3 Hybrid Resource Allocation . . . . . . . . . . . . . . . 4

1.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . 4

2 LoRaWAN Overview and Background Study 5
2.1 LoRa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 LoRa Modulation . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Spreading Factor . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Time-On-Air . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Types of End Devices in LoRaWAN . . . . . . . . . . . 8
2.2.2 Confirmed Mode . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Unconfirmed Mode . . . . . . . . . . . . . . . . . . . . 10

vi



2.3 Adaptive Data Rates in LoRaWAN . . . . . . . . . . . . . . . . 10
2.3.1 ED-Managed ADR in Confirmed Mode . . . . . . . . . 11
2.3.2 ED-Managed ADR in Unconfirmed Mode . . . . . . . . 11
2.3.3 NS-managed ADR . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Blind Adaptive Data Rate . . . . . . . . . . . . . . . . . 14

2.4 Background Studies . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Interference-Based Approaches . . . . . . . . . . . . . . 15
2.4.2 Link- and System-Based Approaches . . . . . . . . . . 16
2.4.3 Mathematical Model-Based Approaches . . . . . . . . . 17
2.4.4 Improvements in Typical ADR Approaches . . . . . . . 18
2.4.5 Improvements in Convergence Period Approaches . . . . 18
2.4.6 Artificial Intelligence-Based Approaches . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Network Model and Problem Formulation 22
3.1 Assumptions and Constraints . . . . . . . . . . . . . . . . . . . 22

3.1.1 Class A End Devices . . . . . . . . . . . . . . . . . . . 22
3.1.2 Frequency Region . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Duty Cycle Constraints . . . . . . . . . . . . . . . . . . 22

3.2 Key Performance Indicators Utilized in Dissertation . . . . . . . 23
3.2.1 Uplink Packet Outcomes . . . . . . . . . . . . . . . . . 23
3.2.2 Convergence period . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Energy consumption . . . . . . . . . . . . . . . . . . . 24

3.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Channel Performance Model . . . . . . . . . . . . . . . 27

3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Single mobile ED . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Massive mobile EDs . . . . . . . . . . . . . . . . . . . 30
3.4.3 Findings in BADR and ADR . . . . . . . . . . . . . . . 32

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Reactive Resource Allocation 36

vii



4.1 Channel-Adaptive Spreading Factor Allocation . . . . . . . . . 36
4.1.1 Increment SF . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Decrement SF . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Gaussian-Based Adaptive Data Rate . . . . . . . . . . . . . . . 37
4.2.1 Scope of the Proposed G-ADR . . . . . . . . . . . . . . 37
4.2.2 Working Procedure of the Proposed G-ADR . . . . . . . 37

4.3 Exponential Moving Average-Based Adaptive Data Rate . . . . 41
4.3.1 Scope of the Proposed EMA-ADR . . . . . . . . . . . . 41
4.3.2 Working Procedure of the Proposed EMA-ADR . . . . . 42

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Proactive Resource Allocation 44
5.1 The Mobility-Aware Spreading Factor Allocation . . . . . . . . 44

5.1.1 Initial SF Allocation with Traffic Heterogeneity . . . . . 44
5.1.2 Mobility-Aware SF Assignment Scheme . . . . . . . . . 45

5.2 Retransmission-Assisted Resource Management ADR . . . . . . 47
5.2.1 R-ARM at ED side . . . . . . . . . . . . . . . . . . . . 47
5.2.2 R-ARM at NS side . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Integration of R-ARM in LoRaWAN . . . . . . . . . . . 52

5.3 Design of the Proposed Artificial Intelligence-Empowered Re-
source Allocation Framework . . . . . . . . . . . . . . . . . . . 52
5.3.1 Scope of the Proposed AI-ERA Framework . . . . . . . 52
5.3.2 AI-ERA Framework: Offline Mode . . . . . . . . . . . . 53
5.3.3 AI-ERA Framework: Online Mode . . . . . . . . . . . . 56
5.3.4 Computational Complexity of the Proposed Deep Learn-

ing Model . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Hybrid Resource Allocation 59
6.1 Hybrid Adaptive Data Rate . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Computing d0 . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 ADR Selection . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



7 Experimental Results 62
7.1 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . 63
7.3 Experimental Analysis of Reactive Resource Allocation . . . . . 63

7.3.1 Analysis of C-ASFA . . . . . . . . . . . . . . . . . . . 64
7.3.2 Analysis of G-ADR and EMA-ADR . . . . . . . . . . . 64

7.4 Experimental Analysis of Proactive Resource Allocation . . . . 70
7.4.1 Analysis of M-ASFA . . . . . . . . . . . . . . . . . . . 70
7.4.2 Analysis of R-ARM . . . . . . . . . . . . . . . . . . . . 74
7.4.3 Analysis of AI-ERA Framework . . . . . . . . . . . . . 79

7.5 Experimental Analysis of Hybrid Resource Allocation . . . . . . 87
7.5.1 Analysis of HADR . . . . . . . . . . . . . . . . . . . . 87

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusions and Future Directions 93
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . 93

List of Publications 94

Biblography 96

ix



List of Figures

1.1 Reactive, proactive, and hybrid resource allocation in LoRa-Enabled
IoT applications. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Time on air of each SF for different packet sizes. . . . . . . . . 7
2.2 LoRa packet structure. . . . . . . . . . . . . . . . . . . . . . . 8
2.3 LoRaWAN network architecture. . . . . . . . . . . . . . . . . . 9
2.4 Confirmed mode: uplink packet and downlink acknowledgment

operation of the LoRaWAN. . . . . . . . . . . . . . . . . . . . 10
2.5 SF utilization of the blind ADR for mobile IoT applications. . . 14
2.6 Categorization of the background studies. . . . . . . . . . . . . 14

3.1 Building penetration: (a) top view of the building and model pa-
rameters for the LOS, and (b) side view of the building for NLOS. 26

3.2 Overlap time (Ct) of the two packets arriving at the GW (as an
example with same SF = 10). . . . . . . . . . . . . . . . . . . . 28

3.3 Trajectory and received power at the GW of a single mobile ED
during 6 h of simulation time. . . . . . . . . . . . . . . . . . . . 30

3.4 Energy consumption measured at a single mobile ED during 6 h
of simulation time. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Average PSR and PLRs for the BADR during 1-day experiment. 32
3.6 Average PSR and PLRs for ADR during 1-day experiment. . . . 33
3.7 Average energy consumption of BADR, ADR, and SF = 12 dur-

ing a 1-d experiment. . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Reactive resource allocation paradigms. . . . . . . . . . . . . . 36
4.2 The PDF of the SNR of M packets received at the network server

using real-time experiment and computer simulation. . . . . . . 39
4.3 Example of smoothed SNR using EMA filter generated at ns-3. . 42

5.1 Proactive resource allocation paradigms. . . . . . . . . . . . . . 44
5.2 Detection of ED movement in the proposed M-ASFA scheme. . 47

x



5.3 Modified frame header (FHDR) of the LoRa message for the pro-
posed R-ARM and BADR. . . . . . . . . . . . . . . . . . . . . 48

5.4 An example of the firmware update over the air (FUOTA) process
in LoRaWAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Representation of offline mode for the proposed AI-ERA frame-
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Input features and data labeling: (a) best SF selection based on
successful ACK among 6 groups, and (b) input sequence with
features including X- and Y-coordinates, Prx, SNR and labeled SF. 55

5.7 Learning phase of DNN model. . . . . . . . . . . . . . . . . . . 56
5.8 Representation of online mode for the proposed AI-ERA frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Operation procedure of the proposed hybrid adaptive data rate. . 59
6.2 Operation procedure of the proposed BADR+. . . . . . . . . . . 60

7.1 Initial network topology in the case of static EDs with N = 500. . 63
7.2 The success ratio of the SF allocation schemes in the unconfirmed

mode under the condition of GW radius = 3410 m. . . . . . . . 65
7.3 Convergence period and PSR of static EDs with N = 500. . . . . 66
7.4 Convergence period and PSR of mobile EDs with N = 500. . . . 67
7.5 Average PSR of static and mobile EDs (uplink period = 24 pack-

ets/day, total simulation time = 4 days). . . . . . . . . . . . . . . 68
7.6 Average energy consumption of static and mobile EDs (uplink

period = 24 packets/day, total simulation time = 4 days). . . . . . 70
7.7 Average PSR of M-ASFA and ADR in confirmed and uncon-

firmed modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.8 The per-hour of M-ASFA and ADR with offered traffic (O) [pack-

ets/day] = N × λ . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.9 Average energy consumption for M-ASFA and ADR. . . . . . . 74
7.10 Average PSR of the proposed R-ARM and typical ADR approaches. 76
7.11 Probability of PSR and PLRs of the proposed R-ARM ADR dur-

ing the 1-d experiment. . . . . . . . . . . . . . . . . . . . . . . 76

xi



7.12 Convergence period with per-hour PSR of the proposed R-ARM
and typical ADR approaches with N = 500. . . . . . . . . . . . 77

7.13 Average energy consumption. . . . . . . . . . . . . . . . . . . . 78
7.14 Model performance during the offline mode. . . . . . . . . . . . 81
7.15 Analysis of average packet success ratio. . . . . . . . . . . . . . 82
7.16 Probability of PSR and PLRs for AI-ERA framework. . . . . . . 83
7.17 Analysis of energy consumption in Joules. . . . . . . . . . . . . 84
7.18 Analysis of convergence period in hours. . . . . . . . . . . . . . 86
7.19 PSR of the HADR, BADR, and ADR under different ED conditions. 88
7.20 PSR improvement in the proposed HADR. . . . . . . . . . . . . 88
7.21 Packet success and loss ratios under mixed end devices (50%

static and 50% mobile). . . . . . . . . . . . . . . . . . . . . . . 89
7.22 Average energy consumption in [J]. . . . . . . . . . . . . . . . . 90
7.23 Convergence period of ADR, BADR, and HADR with N = 500. 91

xii



List of Tables

2.1 End device and gateway sensitivity thresholds for each SF with
125-kHz mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 End device requirements under bi-directional communication mode. 9

3.1 Reception paths distribution over the three mandatory channels in
the EU region at GW. . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Duty cycle constraints. . . . . . . . . . . . . . . . . . . . . . . 23

7.1 Applications requirements. . . . . . . . . . . . . . . . . . . . . 62
7.2 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . 64
7.3 PSR improvement for static EDs in percentage. . . . . . . . . . 69
7.4 PSR improvement for mobile EDs in percentage. . . . . . . . . 69
7.5 Constraints of the proposed R-ARM and typical ADR approaches

under confirmed mode with SF = 12. . . . . . . . . . . . . . . . 75
7.6 Mobile applications under confirmed mode. . . . . . . . . . . . 75
7.7 Fraction of the EDs (in percentage) utilizing SF in pet-tracking

application with N = 1000. . . . . . . . . . . . . . . . . . . . . 79
7.8 Fraction of the EDs (in percentage) utilizing SF in livestock-tracking

application with N = 1000. . . . . . . . . . . . . . . . . . . . . 79
7.9 Parameters and hyper-parameters utilized in the offline phase. . . 80
7.10 Final SF Utilization by the EDs in percentage for mixed end devices. 90
7.11 Convergence period in hours of ADR, BADR, and HADR with

N = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



List of Algorithms
2.1 ED-managed ADR in confirmed mode. . . . . . . . . . . . . . . 11
2.2 ED-managed ADR in unconfirmed mode. . . . . . . . . . . . . . 12
2.3 NS-managed ADR of LoRaWAN at NS-side. . . . . . . . . . . . 13

4.1 Channel-adaptive SF allocation approach. . . . . . . . . . . . . . 38
4.2 The proposed G-ADR scheme. . . . . . . . . . . . . . . . . . . . 40
4.3 The proposed EMA-ADR scheme. . . . . . . . . . . . . . . . . . 43

5.1 Initial SF allocation with traffic heterogeneity in the proposed M-
ASFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Mobility-aware SF assignment in the proposed M-ASFA scheme. 46
5.3 Proposed ED-side R-ARM approach. . . . . . . . . . . . . . . . 50
5.4 Proposed NS-side R-ARM approach. . . . . . . . . . . . . . . . 51

6.1 BADR+ at the end device. . . . . . . . . . . . . . . . . . . . . . 60
6.2 ADR+ at the network server. . . . . . . . . . . . . . . . . . . . . 61

xiv



Chapter 1

Introduction

The Internet of Things (IoT) allows people and things to be connected Anytime,
Anyplace, with Anything and Anyone, using Any network and Any service. The
IoT is massive and growing exponentially, comprising a large number of devices
scattered over a wide geographical area, thus creating a high-density and large-
scale environment. Low Power Wide Area Network (LPWAN) is an umbrella
of IoT technologies to fulfill application requirements. IoT applications can be
categorized into nine groups: smart metering, agriculture, tracking, smart grids,
health, industrial, smart city, home automation, and vehicle telematics [1].

LPWAN technologies have risen in licensed and unlicensed markets, such as
Long Term Evolution for Machines (LTE-M), SigFox, Long-Range Wide Area
Network (LoRaWAN), and Narrowband (NB)-IoT. LoRaWAN [2] is among the
leading LPWAN technologies and has been extensively adopted by academia and
industries for the IoT. Specifically, the IoT requires a communication protocol
that can satisfy application requirements such as long-range, energy efficiency,
and scalability [3].

Long-Range (LoRa) specifies the physical layer, which employs chirp spread
spectrum (CSS) modulation, enabling long-range and low-energy communica-
tion [4,5]. LoRa operates in the unlicensed ISM bands of 433, 868, and 915 MHz
in Asia, Europe, and North America, respectively [6]. In LoRa technology, Class
A end devices (EDs), which support bidirectional communication, always initiate
uplink (UL) transmission by using six spreading factors (SFs ∈ [7, 8, 9, 10, 11,
12]) with an ALOHA channel access mechanism. In LoRa, an SF represents the
size of the chip sequence applied to the original data signal [7]. Furthermore, it
indicates the number of maximum raw bits that can be encoded. For example,
SF7 indicates that a chirp can be encoded in seven bits. When the value of SF in-
creases, the signal-to-noise ratio (SNR) and time-on-air (ToA) increase, resulting
in increased coverage range and sensitivity [8].

The rest of the chapter is organized as follows: Section 1.1 presents the mo-
tivation. Section 1.2 highlights the problem statement. Section 1.3 describes the
research objectives. Section 1.4 elaborates on the contributions, while last Section
1.5 presents the organization of the dissertation.

1.1 Motivation

LoRaWAN is the most widely adopted technology for the IoT due to its long-
range, ultra-low power consumption, and low-cost solutions. To fulfill IoT ap-
plication requirements [1], Class A devices are utilized because of high energy
efficiency and bi-directional behavior. However, the Class A devices utilize an
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ALOHA channel access method during the communication, resulting in packet
collisions caused by intra- and inter-SF interferences. This situation causes mas-
sive packet loss and high energy consumption. To this end, LoRaWAN offers
an energy-efficient Adaptive Data Rate (ADR) for resource [e.g., transmit power
(TP) and SF] allocation to IoT applications.

In LoRaWAN, EDs and network server (NS) utilize ADR concurrently for
dynamic resource management. For example, LoRa Alliance suggested using the
ED-side ADR in [2, 9], which is primarily designed to re-establish reliable com-
munication links by stepping up the SF and allocating the maximum power (i.e.,
14 dBm). Additionally, the network operator can set up the NS-side ADR (e.g.,
The Things Network) to manage the SF and TP by investigating the UL his-
tory of M packets (i.e., M = 20), thereby providing reliability and efficiency [10].
Once the ADR is adjusted, the SF and TP parameters are periodically maintained.
Hence, this provides a suitable environment for high-capacity, and static applica-
tions such as metering [11]. However, the channel condition changes drastically
due to the ED movement, resulting in a massive packet loss ratio (PLR), excessive
energy consumption, and a significantly long convergence period in static and
mobile application scenarios. Therefore, this dissertation reactively and proac-
tively assigns resources to mobile and static IoT applications to improve the scal-
ability, convergence period, energy consumption, and packet success ratio (PSR).

1.2 Problem Statement

ADR is a widely adopted resource assignment approach for static IoT applica-
tions, such as smart grid and metering. However, for mobile IoT applications, for
instance, pet and industrial asset tracking, blind ADR (BADR) is recommended.
Both ADRs cannot consider any appropriate measures to predict and provide eva-
sive measures to alleviate the massive packet loss that is caused due to the ineffi-
cient SF and TP adopted by EDs.

1.3 Research Objectives

The application requirements of static and mobile IoT applications are not the
same, such as UL period, bi-directionality, PSR, and scalability. Resource man-
agement in a uni-directional network is not challenging due to the absence of
an acknowledgment (ACK); such network in LoRa is called unconfirmed mode.
However, resource management is demanding in a bi-directional network (also
known as a confirmed mode) since most IoT applications require monitoring
(e.g., asset-tracking). The current ADR of LoRaWAN is specifically designed
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Figure 1.1: Reactive, proactive, and hybrid resource allocation in LoRa-Enabled
IoT applications.

to manage the resources of only static EDs. Therefore, Semtech suggests utiliz-
ing a BADR for mobile applications (e.g., pet-tracking). However, many aspects
of the IoT applications are ignored (e.g., UL period and bi-directionality). Thus,
resource management should be done in both confirmed and unconfirmed modes
for mobile and static applications to fulfill their requirements.

The primary objective of this dissertation is to study the LoRaWAN, the typ-
ical ADRs, highlight issues, and then suggest some distinctive approaches to im-
prove the PSR, convergence period, and energy consumption of the static and
mobile IoT applications.

1.4 Contributions of Dissertation

This dissertation contributes to the Internet of Things (IoT) field by utilizing a
long-range wide area network (LoRaWAN) in static and mobile IoT applications.
This dissertation targets the LoRaWAN, which is the Medium Access Control
(MAC) layer. It is primarily responsible for the resource management of end de-
vice (ED) through ED- and NS-sides ADR. This dissertation presents reactive,
proactive, and hybrid approaches for resource allocation to static and mobile IoT
applications, as shown in Figure 1.1.

1.4.1 Reactive Resource Allocation

A reactive paradigm is based on responding to events after they have happened in
the communication network (such as collision, interference, and channel varia-
tions). In the reactive paradigm category, Channel-Aware Spreading Factor Allo-
cation (C-ASFA at ED-side), Gaussian- and Exponential Moving Average ADR
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(G-ADR and EMA-ADR) are proposed to resolve the resource assignment issue.
The C-ASFA increases/decreases the SF of ED by utilizing the channel infor-
mation. While G- and EMA-ADRs are primarily designed to smooth the SNR
of M packets (i.e., M = 20 UL packets) for efficient SF and TP parameters. Re-
sults showed that these approaches have assigned resources to EDs efficiently and
improved the network performance in terms of PSR and energy consumption.

1.4.2 Proactive Resource Allocation

A proactive approach focuses on eliminating problems before they have a chance
to appear (e.g., interference, collision, and packets arriving under the required SF
sensitivity due to channel variations). In this category, Mobility-Aware Spread-
ing Factor Allocation (M-ASFA), Retransmission-Assisted Resource Manage-
ment (R-ARM), and Artificial Intelligence-Empowered Resource Allocation (AI-
ERA) are proposed to allocate resources to static and mobile EDs, respectively.
Results showed that proactive approaches have assigned resources to EDs effi-
ciently and improved the network performance in terms of PSR, convergence
period, and energy consumption.

1.4.3 Hybrid Resource Allocation

A hybrid paradigm utilizes both reactive and proactive approaches at the same
time. The hybrid ADR (HADR) first finds the ED status (e.g., static or mobile).
For example, if an ED is determined as mobile, it will use BADR+, otherwise
ADR. Simulation results showed enhanced PSR, convergence period, and energy
consumption.

1.5 Organization of Dissertation

Chapter 2 presents an overview of LoRaWAN and background study. Chapter 3
presents the network model, definitions, assumptions, and performance indicators
utilized in the dissertation, along with problem formulation. Chapter 4 elaborates
on the proposed reactive resource allocation paradigm. Chapter 5 presents the
proposed proactive resource allocation paradigm. Chapter 6 illustrates the pro-
posed hybrid resource allocation paradigm. Chapter 7 provides detailed exper-
imental results and analysis of the proposed paradigms in comparison with the
typical ADRs and existing state-of-the-art approaches. Finally, Chapter 8 con-
cludes this dissertation and suggests some future directions.
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Chapter 2

LoRaWAN Overview and Background Study

The LoRa was started in 2009 by Nicolas Sornin and Olivier Seller to create a
low-power, long-range modulation technology, targeting the metering industry
by introducing long-range wireless communication capabilities to meters. They
used CSS modulation technology to achieve long-range communication, primar-
ily for sonar in the maritime and aviation radar industries. In May 2012, Semtech
collaborated with Nicolas and Olivier to further develop the technology and final-
ize the hardware chips needed for the EDs (SX1272 and SX1276) and the gate-
ways (SX1301). Simultaneously, developing a proprietary MAC protocol called
"LoRaMAC" by defining message formats and security layers for an open net-
working protocol. As a result, the LoRa Alliance® was created in February 2015,
and the networking protocol was called " Long-Range Wide Area Network (Lo-
RaWAN)." The primary goal of LoRa Alliance was to help and encourage the
global adoption of the LoRaWAN by ensuring that all LoRaWAN products and
technologies are interoperable. A LoRaWAN is a long-range and low-power tech-
nology that focuses on multi-year battery life. Thus, LoRaWAN provides EDs
with cheap costs and the best solution for the IoT.

The rest of this chapter is structured as follows: Section 2.1 elaborates on
the LoRa. Section 2.2 describes the LoRaWAN. Section 2.3 highlights the typical
ADR approaches of LoRaWAN for confirmed and unconfirmed modes both at ED
and NS sides. Section 2.4 presents the background studies on the enhancement
of the LoRaWAN performance, while last Section 2.5 presents some concluding
remarks.

2.1 LoRa

LoRa [7] is a radio frequency (RF) modulation technology designed for LP-
WANs. LoRa defines the physical layer features for long-range communication.

2.1.1 LoRa Modulation

LoRa is a proprietary physical layer modulation based on the CSS modulation to
achieve the long-range communication [12]. CSS is a subset of Direct-Sequence
Spread Spectrum (DSSS), helping the GW to recover a weak signal and achieve
high sensitivity, enabling increased coverage at a lower data rate (DR) [13,14]. In
CSS, data is distributed via chirps, which are sinusoidal sounds whose frequency
rises linearly with time and span over the available bandwidth. CSS is based
on the notion that a chirp signal, a sinusoidal signal with a set frequency and
duration, may be used to “spread" information over a larger spectrum than it
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Table 2.1: End device and gateway sensitivity thresholds for each SF with 125-
kHz mode.

Data rate Spreading factor Sg [dBm] Se [dBm] SNR [dB]
0 12 -142.5 -137.0 -20
1 11 -140.0 -135.0 -17.5
2 10 -137.5 -133.0 -15
3 9 -135.0 -130.0 -12.5
4 8 -132.5 -127.0 -10
5 7 -130.0 -124.0 -7.5

would otherwise need. Furthermore, CSS is resistant to multi-path interference
and the Doppler effect than other more traditional modulation techniques if some
additional measures are taken.

2.1.2 Spreading Factor

The number of bits encoded in a symbol by LoRa, which is an adjustable resource
parameter known as the spreading factor (SF). For example, SF7 indicates that a
chirp can be encoded in seven bits. This means that a chirp with the SF represents
2SF bits using a symbol and that a chirp can have K = 2SF different starting
frequencies. Duration of a symbol for any SF can be determined using (2.1.1).

Ts =
2SF

B
, (2.1.1)

where Ts is the LoRa symbol time and B is bandwidth in (2.1.1). The increase
in SF doubles the Ts, increasing the energy consumption and making the signal
more robust to noise and interference, reaching longer distances. However, SF
also influences the DR: for the raw DR Rb at physcial (PHY) layer is represented
in (2.1.2)

Rb = SF× B
2SF . (2.1.2)

On the other hand, when SF increases, DR decreases, resulting in increased
coverage range and sensitivity. However, this further increases the chances of
collision and interference [8]. In addition, the choice of SF affects the receiver
sensitivity (S), as defined in (2.1.3) [15].

S =−174+10log10(B)+NF +SNR, (2.1.3)

Furthermore, Table 2.1 presents the required sensitivities for each SF [16,17].
For both the EDs (Se) and GW (Sg), the sensitivity decreases with an increasing
SF. However, this also further increases the ToA.
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Figure 2.1: Time on air of each SF for different packet sizes.

2.1.3 Time-On-Air

ED in a LoRa network uses an SF to transmit payload to a GW. The choice of
SF utilized by an ED during the communication plays a significant role owing to
different reasons: a higher SF (e.g., 11, 12) comply with a high distance coverage.
However, it indicates a low DR and high ToA. The ToA is computed using (2.1.4
[17]) and shown in Fig. 2.1. ToA increases with SF and packet size.

ToA = Tpreamble +Tpayload. (2.1.4)

Tpreamble = Npreamble +4.25)×Ts, (2.1.5)

Tpayload = Npayload×Ts, (2.1.6)

Npayload = 8+max×

⌈
8PL−4SF +28+16CRC−20IH

4(SF−2DE)

⌉
(CR+4),0. (2.1.7)
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Figure 2.2: LoRa packet structure.

In (2.1.4), the Tpreamble is an interval to transmit the preamble bits, and Tpayload
is a time to transmit a packet, as shown in the LoRa packet structure of Fig.
2.2. The Tpreamble is computed in (2.1.5), where Npreamble is the payload size in
symbols and Ts is the time duration of a symbol. The Npayload is determined by
(2.1.7), where PL is the size of a packet in Bytes, cyclic redundancy check (CRC)
is equal to 1 when the CRC field is present, IH represents the PHY layer header,
which is 1 when enabled or 0 when disabled. Similarly, the DE value is based
on the DR optimization option, and it is either 0 or 1 if it is disabled or enabled,
respectively. At the same time, CR is the coding rate defined by CR = 4 and is set
to 1.

2.2 LoRaWAN

LoRaWAN defines an open-source MAC layer protocol developed by the LoRa
Alliance. As part of this protocol, a star-of-stars topology is formed that com-
prises a large number of EDs, GW, NS, and application servers, as shown in Fig.
2.3.

2.2.1 Types of End Devices in LoRaWAN

The EDs in LoRaWAN network are classified as Class A, Class B, and Class
C [18]. Class A EDs are battery-powered and consume ultra-low energy. These
EDs are bi-directional and receive ACK from NS with in two available receive
windows (RXs). Class B EDs are also battery-powered and provide bi-directional
communication. These devices support unicast and multicast transmission; though,
it has more RXs as compared to Class A EDs. Class B EDs are synchronized
with a beacon frame transmitted by the GW after a certain amount of time. Fi-
nally, Class C EDs use more power than to Class A and B. Besides, Class C
EDs listen all the time, excluding transmission time. Among them, Class A EDs
deal with sensors and are implemented in IoT applications, owing to their en-
ergy efficiency and bi-directional communications. The rest of the requirements
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Table 2.2: End device requirements under bi-directional communication mode.
Class Type Transmission RXs Channel Access Energy

A Battery powered Unicast 2 ALOHA Energy efficient
B Battery powered Unicast and Multicast More Slotted with beacon High
C Main powered Unicast and Multicast Always open Slotted with beacon Highest

of these ED classes are shown in Table 2.2. This dissertation utilizes Class A
EDs throughout. Furthermore, LoRaWAN supports two communication modes:
confirmed and unconfirmed.

2.2.2 Confirmed Mode

In the confirmed mode, after every UL packet transmission, the Class A ED re-
quires an ACK from the NS, as highlighted in Figure. 2.4. RX1 commences oper-
ation after the end of the UL packet transmission, where Receive_Delay 1 (RXd1)
is typically 1 s long. The NS sends an ACK through the DL channel using the
same SF and channel in RX1. In the absence of the ACK in RX1, ED opens
RX2, which normally starts operating 2 s after the UL packet transmission ends.
The NS transmits an ACK to the ED using SF12 in RX2 using the dedicated
869.525 MHz channel [10]. However, RXd1 and RXd2 of RX1 and RX2 are pro-
grammable, depending on the IoT application requirement [19]. When the ED
does not receive the ACK in both RXs, retransmission is initiated after waiting
for at least RET RANSMIT _T IMEOUT seconds (i.e., 2 s with a random delay
between 1 and 3 s) [2].
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Figure 2.4: Confirmed mode: uplink packet and downlink acknowledgment oper-
ation of the LoRaWAN.

2.2.3 Unconfirmed Mode

A DL ACK from the NS to ED is not required in this mode. However, to deter-
mine the connectivity loss between the ED and GW, the ED enables ADR ACK
bit by sending it in a MAC command ADRACKReq in the LoRa frame header
(FHDR) after 64 (default) UL packets [2]. This instructs the NS to send an ACK,
but not necessarily immediately. On the other hand, if ADRACKReq is not en-
abled during communication, the NS does not send any DL ACK notification. In
both confirmed and unconfirmed modes, LoRaWAN utilizes an energy-efficient
ADR for resource management (e.g., SF and TP) of the EDs involved in commu-
nication.

2.3 Adaptive Data Rates in LoRaWAN

LoRaWAN defines the ADR at the ED and NS. The ADR at the ED is specified
by the LoRa Alliance [2], whereas the network operator defines the ADR at the
NS. ADR at the ED side increments only SF, while ADR at the NS alters both the
SF and TP. By managing both SF and TP, the ADR mechanism provides reliable
energy-efficient communication and enhances the network capacity [10, 20, 21].
The ADRs in both confirmed and unconfirmed modes at the ED-side are slightly
different, while the NS-side ADR is common for both modes.
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Algorithm 2.1: ED-managed ADR in confirmed
mode.
Input : SF = SF 7∼ SF 12, α = 2, T xlimit = 8, T P = 14 dBm
Output: SF and TP

1 At each uplink transmission
2 if (mType == CONFIRMED_DATA_UP) then
3 ▷ it is a confirmed uplink transmission
4 if (T X == True) then
5 ▷ it is a new transmission
6 continue transmission with current SF
7 else
8 ▷ it is a retransmission
9 if (ReT x_CNT % α == 0) then
10 ▷ if SF is < 12
11 SF = SF + 1
12 TP = 14
13 else
14 continue transmission with current SF
15 end
16 end
17 end
18 ▷ it is unconfirmed uplink transmission

2.3.1 ED-Managed ADR in Confirmed Mode

In the confirmed mode of LoRaWAN, an ED can transmit a packet up to a max-
imum of 8 times. If the UL packet is a new transmission, it is transmitted to NS
through GW by enabling the ADRACKReq bit in the FHDR. It indicates that the
ED requires an ACK upon the reception of the UL packet from the ED. If ACK
was failed in the RX1, the NS transmits the ACK again in the RX2 using a dedi-
cated channel of 869.525 MHz and SF12. When ED fails to receive ACK in both
RXs, ED initiates retransmission after RET RASNMIT _T IMEOUT . A retrans-
mission counter (ReT x_CNT ) is incremented in the next iteration. To this end,
the Algorithm 2.1 at the ED side verifies if ReT x_CNT is a multiple of α (α =
2). If the condition holds, SF is increased by 1 to regain connectivity [22].

2.3.2 ED-Managed ADR in Unconfirmed Mode

The two parameters, ADR_ACK_LIMIT and ADR_ACK_DELAY with default
values of 64 and 32, respectively, control the working of the ADR, as shown in
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Algorithm 2.2: ED-managed ADR in unconfirmed
mode.
Input : SF = 7 ∼ 12, ADR_ACK_LIMIT = 64, ADR_ACK_DELAY =

32, ADR_ACK_CNT = 0, T P = 14 dBm
Output: SF and TP

1 At each uplink packet transmission
2 if (mType == UNCONFIRMED_DATA_UP) then
3 ADR_ACK_CNT += 1
4 if (ADR_ACK_CNT == ADR_ACK_LIMIT) then
5 ED enables ADRACKReq bit in the FHDR
6 if (ADR_ACK_CNT ≥ ADR_ACK_LIMIT +

ADR_ACK_DELAY) then
7 SF = SF + 1
8 end
9 if (ACK == True) then
10 reset ADR_ACK_CNT
11 end
12 end
13 end
14 ▷ it is a confirmed uplink transmission

Algorithm 2.2 [23]. In addition, the ADR_ACK_CNT parameter increases by one
for every UL packet that an ED transmits to the GW. If ADR_ACK_CNT reaches
ADR_ACK_LIMIT , the ED enables ADRACKReq bit in all UL transmissions.
This indicates that the ED requires a DL ACK confirmation message from the NS
to verify its connectivity with the GW. If the ED detects that several successive
UL packets (i.e., 64 + 32 = 96 UL packets) are not acknowledged from the NS, it
assumes that the connectivity with GW is lost. Therefore, it starts incrementing
the SF to improve the robustness of the link [24].

2.3.3 NS-managed ADR

On the other hand, an ED can request the NS to step in and monitor the quality
of M UL recent past packets received (i.e., M=20) [25, 26]. If the link quality
calculated over the last M packets is too high compared to the minimum receiver
sensitivity threshold, the NS decides to reduce SF and reduce or increase TP.
The NS-managed ADR takes the maximum SNR value among the last 20 UL
packets received from an ED, as shown in Algorithm 2.3. However, when ED
receives the ADR command containing new SF and TP from NS, the propagation
situation might have changed so radically that the SF and the link budget, would
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Algorithm 2.3: NS-managed ADR of LoRaWAN at
NS-side.
Input : TP = 2∼14, SF = 7∼12, M, SNRreq, devicemargin
Output: SF and TP
// computes

1 a. SNRm = Max(SNR of last M UL packets) ▷ M=20 UL packets
2 b. SNRreq = demodulation f loor (current DR/SF)
3 c. devicemargin = 10 (LoRaWAN de f ault)
4 d. SNRmargin = (SNRm - SNRreq - devicemargin)
5 e. steps = int (SNRmargin/3)
6 while (steps > 0 and SF > SFmin) do
7 SF = SF + 1
8 steps = steps - 1
9 end
10 while (steps > 0 and TP > T Pmin) do
11 T P = T P - 2
12 steps = steps - 1
13 end
14 while (steps < 0 and TP < T Pmax) do
15 T P = T P + 2
16 steps = steps + 1
17 end
18 NS transmits LinkADRReq

no longer be valid, resulting in massive packet loss and retransmissions.
The NS-managed ADR takes the maximum SNR (SNRm) value among the

M UL packets and computes SNRmargin using (2.3.1), where SNRreq (DR) is the
required SNR to successfully demodulate as a function of DR given in Table 2.1,
and margindBm is 10 dBm (default). Lastly, NS-managed ADR computes the Nstep
using (2.3.2), where int is the integer part, which can be negative or positive.

SNRmargin = SNRm−SNRreq(DR)−margindBm, (2.3.1)

Nstep = int
(

SNRmargin

3

)
. (2.3.2)

In (2.3.2), Nstep represents the number of times the ADR is executed [20].
When Nstep is 0, the ED is already using the best possible configuration of SF
and TP. If Nstep is greater than 0, it indicates that there is still a reasonable margin
to optimize these two parameters. First, the SF is decreased until it reaches a
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minimum limit. Second, the TP is decreased by 2 until it reaches a minimum
limit (i.e., 2 dBm). Finally, when Nstep is negative, only the TP is increased by 2
until the maximum limit is reached (i.e., 14 dBm).

2.3.4 Blind Adaptive Data Rate

The BADR uses three SFs (i.e., 7, 10, and 12): SF 7 (three times), SF 10 (twice),
and SF 12 (once) in 60 minutes, as shown in Fig. 2.5 [11]. However, BADR
restricts the network capacity by utilizing only three SFs the entire time, which is
inefficient in terms of ToA (in the case of SF 12).

60 minutes

SF 12 7 10 7 10 7 12

DR 0 5 0 5 2 5 0

Figure 2.5: SF utilization of the blind ADR for mobile IoT applications.

2.4 Background Studies

This section briefly surveys the existing resource allocation solutions in the Lo-
RaWAN network. These existing solutions are divided into five broad categories:
interference-based, link- and system-based, mathematical model-based, improve-
ments in typical ADR, improvements in convergence period, and AI-based ap-
proaches, as shown in Figure 2.6.
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Figure 2.6: Categorization of the background studies.
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2.4.1 Interference-Based Approaches

Another work based on collision types to manage the SF is presented in [27].
Two types of collisions are observed during communications: (a) Collision of two
packets with the same SFs and (b) collision of two packets with different SFs. The
primary aim of this collision-aware SF assignment method is to improve the PER
by enhancing channel fairness. Firstly, this method categorizes the EDs to form
groups based on the radio frequency (RF) coverage and path loss, wherein each
group uses a distinct channel. Secondly, the lowest SF is selected and allocated
to each group based on the observed cumulative interference ratio (CIR). The
proposed scheme in [4] decreases the PER up to 42% overall.

An SF assignment mechanism for the LoRaWAN network introduced in [28]
aims to improve the success ratio by reducing the interference caused by the same
SFs and channels. To categorize the interference of two packets, [9] measures
the signal-to-interference-plus-noise ratio (SINR) of packets transmitted with the
same SFs over the same channels. If the measured SINR is larger than the thresh-
old limit, the packets survive the interference in the simulation. Otherwise, the
packets are lost to interference. However, [9] does not take into account the inter-
ferences between packets with different SFs over the same channel, as these SFs
are not entirely orthogonal [29–33].

A similar scenario related to the impact of non-orthogonality concerning the
data extraction rate is presented in [30]. The study in [30] reveals that the impact
of non-orthogonality is limited when the traffic load in the network is low. The
authors of [30] also show that higher SFs (e.g., 10, 11, 12) are more venerable to
interference due to their high ToA.

It is also assumed in [16] that a collision occurs due to the simultaneous trans-
mission of the packets over the same SF and channel. However, the analysis in
[16] is limited to the case with an SF of 12 only. Furthermore, the effect of the
non-orthogonality concerning SFs is further deliberated in [17], where it com-
putes the probabilities of successful UL packet and coverage based on [30]. The
study in [34] shows that UL packets transmitted with different SFs can collide as
long as their received power at GW is different. It also reveals that the impact of
inter-SF interference can be high enough in a significantly large network. How-
ever, in a short distance (i.e., less than 1 km), the effect of inter-SF interference is
less.

Additionally, the scalability of LoRaWAN under the impact of interference in
the absence of DL traffic was studied in [35]. The testbed and simulation results
concluded that one of the two packets could be received if the headers of both
packets did not collide. In contrast to previous works, [19] considers inter- and
intra-SF interferences. The authors in [36] aimed to maximize the LoRaWAN
network capacity by optimizing the number of EDs for a given SF. The numer-
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ical results showed that the proposed method in [36] maximizes the LoRaWAN
network capacity up to 700%, as compared to the equal number of EDs per SF
strategies.

2.4.2 Link- and System-Based Approaches

The capacity of an LoRaWAN in terms of the maximum number of EDs that can
communicate in a single and multi-cell scenario is analyzed in [37] under realis-
tic traffic conditions in the simulation and the testbed. It is certain that increasing
the network capacity in terms of the offered traffic in all the use cases can pro-
vide a satisfactory PSR. Furthermore, [37] shows that the PSR increases with the
number of GWs. In the unconfirmed mode, the traffic load has a low affect on
the SR, as the geometric coverage plays a significant part, resulting in an SR of
55% or 93% depending on the number of GWs. Furthermore, in [37], the intra-SF
interference is limited to SF values of 7, 9, and 12.

The reliability and scalability of the LoRa (RS-LoRa) scheme aims to en-
hance the reliability and scalability of a LoRaWAN under an ideal network situ-
ation [38]. RS-LoRa works in two phases: In the first phase, GW groups the EDs
within its coverage by obtaining the received signal strength indicator (RSSI)
and SF on each channel. EDs get their SFs, transmit power, and a channel based
on the RSSI in the second phase. This grouping based on the RSSI decreases
collision by choosing a suitable SF and enhancing the network reliability, scala-
bility, and capture effect. Another work presents a system-level simulation with
heterogeneous traffic in [39]. The primary purpose of the work in [39] is to en-
hance the SR by allocating possibly the lowest SFs based on the SNR of the ED
packet. Hence, the scheme in [39] decreases the ToA for each ED and reduces
the probabilities of collision by suitable SF allocation. A similar approach called
an adaptive spreading factor selection (ASFS) algorithm aims to allocate SFs to
EDs in the presence of channel activity detection to improve the throughput of a
single, and multi-hop LoRaWAN network [40]. The performance of the proposed
SF allocation algorithm shows improved throughput in comparison with SX1272
and SX1301 chips.

On the other hand, EXplora-TS considers the heterogeneous traffic load, where
EDs having a higher payload sizer are served based on priority. The performance
of these two approaches has been compared to EXplora-AT, where results show a
21% increase. Furthermore, the authors in [41] further improved the performance
of EXplora-AT and EXploRa-SF by considering the capture effect. EXplora-
Capture (EXplora-C) in [41] equalizes the ToA of UL packets, keeping the bal-
ance regarding SF allocation in a single and multi-GW environment, and takes
the capture effect into account. The performance of the EXplora-C approach has
been compared to EXplora-AT and EXploRa-SF, where EXplora-C shows im-
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proved results in terms of the data extraction rate. In particular, EXplora-C shows
enhanced results of up to 38% on average over the legacy ADR mechanism.

EXPLoRa-SF assigns SFs to EDs based on the received signal strength indi-
cator (RSSI), where the EDs should be above the minimum required sensitivity
of each SF [42]. At the same time, EXPLoRa-AT guarantees ToA equalization
for all EDs in the entire network in addition to EXPLoRa-SF by equally balanc-
ing the offered traffic [42]. Furthermore, EXPLoRa K-means (EXPLoRa-KM)
in [43] locates congested areas with a high collision, increasing the SF to miti-
gate collision impact. Meanwhile, EXPLoRa-time symbol (EXPLoRa-TS) in [43]
considers the diverse traffic load, prioritizing EDs with larger payload sizes. Fi-
nally, EXPLoRa-capture (EXPLoRa-C) [41] applies the load balancing and di-
versity requirements in terms of “sequential waterfilling” to improve the overall
system capacity. [41–43] were evaluated through simulations using LoRaSim1

and showed improved performance compared to the typical ADR.
To improve the power efficiency of ADR, a proposed ADR is presented in

[44]. Firstly, it takes the average of the SNRs of M UL packets (i.e., M=20).
Secondly, it takes the standard deviation of the SNRs of M UL packets. The per-
formance of the proposed ADR shows better performance than ADR in terms
of power efficiency. However, the proposed work in [28] completely ignores the
slow convergence time of the ADR, which is affected by variable channel condi-
tions [20, 24].

2.4.3 Mathematical Model-Based Approaches

Some mathematical models for LoRaWAN have been developed in the litera-
ture [33–37]. The authors in [45] aimed to analyze and evaluate the LoRaWAN
channel access operation in terms of the PER and packet loss ratio (PLR) in a
confirmed mode. The results in [45] reveal that PER and PLR increase with an
increasing load in the network. The authors in [46] further enhanced the work
presented in [45] by proposing a mathematical model based on retransmissions.
The proposed model accurately estimates the PER based on the offered traffic.
The proposed method was verified through simulation by finding the distribution
of data rates probabilities. The simulation results show that the model accuracy
is significantly improved by considering the retransmissions.

Furthermore, the model presented in [46] was enhanced by proposing MCS
allocation to satisfy the different Quality of Service requirements of IoT appli-
cations. However, the reception paths at the GW and duty cycle limitations both
at EDs and GW were neglected. To take into the reception paths and duty cycle

1https://www.lancaster.ac.uk/scc/sites/lora/lorasim.html
A discrete-event simulator based on SimPy for analyzing scalability and collisions in LoRa net-
works.

17



limitations, the authors proposed a mathematical model in [47]. The performance
evaluation of the proposed model shows an improved packet success ratio when
compared with [46].

2.4.4 Improvements in Typical ADR Approaches

In [48], an approach to avoiding unnecessary changes to the SF that occur at
the NS-managed ADR is presented. Their method offers a congestion classifier,
which determines whether to switch to a higher SF or adjust the backoff time to
avoid massive congestion. The congestion classifier is based on the number of UL
and DL packets. No congestion is shown if the number of DL packets received
by the ED is equal to the number of UL packets. Otherwise, the SF is reduced
because a higher SF is vulnerable to interference owing to a high time-on-air.
When an ED fails to receive an ACK after ADR_ACK_DELAY , it chooses a long
backoff time. By contrast, it increases the SF to extend the network scalability
and coverage. The authors showed that their method reduces the delay because
the ED maintains the SF and increases the backoff time when congestion occurs.

To improve the ADR performance, an ADR+ scheme was proposed in [21].
The ADR+ scheme slightly modifies the NS-managed ADR by taking the aver-
age SNR of the last M packets received. Thus, the ADR+ plays a vital role in
increasing the consistency and energy efficiency of EDs under variable channel
conditions. ADR+ shows an improved performance in terms of the PSR and en-
ergy consumption when compared to a typical ADR.

In [49], the authors suggest another enhanced ADR with coding rate adapta-
tion in the LoRaWAN under the unconfirmed mode of LoRaWAN. The primary
aim is to improve the tradeoff between the PSR and energy consumption, which
considers the coding rate and the capture effect, by taking the average of M pack-
ets to fine-tune the link performance of the EDs. The method described in [49]
outperforms a typical ADR in energy consumption and fairness.

2.4.5 Improvements in Convergence Period Approaches

A performance assessment of the convergence period under different config-
urable parameters was conducted in [20]. This study provides in-depth insight
into the runtime performance of the ADR under variable channel conditions and
additional network requirements by aiming to highlight limitations such as the
convergence period. The simulation results showed that the ADR convergence
period and energy consumption are primarily dependent on the link conditions
and number of EDs. It was revealed that the ADR suffers from a high con-
vergence period when the link quality degrades, and the EDs change their SF
or TP to a higher value (such as SF = 12 and TP = 14 dBm) to recover their
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connectivity with the GW. Furthermore, the convergence period is more sensi-
tive to ADR_ACK_DELAY than to ADR_ACK_LIMIT (i.e., ADR_ACK_DELAY
and ADR_ACK_LIMIT are equal to 32 and 64 UL packets in the ED-managed
ADR, respectively). Their simulation results also revealed that the slow conver-
gence rate of the ADR introduces a higher energy consumption and greater packet
losses.

It was recently indicated that typical ADRs (ED- and NS-managed) suffer
from convergence issues [50]. An ED-managed ADR is inefficient for lossy links,
resulting in considerable time to converge to a constant and stable state. Mean-
while, the NS-managed ADR takes M packets to alter the SF and TP, mak-
ing it too time-consuming to determine a reliable configuration. Therefore, [50]
suggests some changes (such as decreasing M packets during SF and TP con-
figuration adaptation) in both ED- and NS-managed ADRs for enhancement.
NS-managed ADR controls the ED-managed ADR by computing the PSR of
an individual ED before sending the DL packet (LinkADRReq) in response to
ADRACKReq. Here, the PSR is compared to a predefined threshold (i.e., PSR<80%).
NS sends the LinkADRReq MAC layer command for the ED containing the SF
and TP if the condition holds. Indeed, it changes the SF and TP of the individual
ED after five UL packets (in a typical ADR, this UL history is set to M pack-
ets). The performance of both enhanced methods (ED- and NS-managed ADRs)
has been compared to typical ADRs, where the results show improved outcomes
in terms of the convergence period, energy consumption, and PSR. However, the
performance evaluation of the enhanced methods is limited to static EDs and only
a confirmed mode of communication. By contrast, mobility under intra-SF inter-
ference and different propagation loss models (such as log-distance and shadow-
ing losses) are considered.

Similarly, [51] proposed two ADRs (at the NS side) using Gaussian and ex-
ponential moving average filters to improve the convergence period, energy con-
sumption, and PSR of the ADR. The proposed methods were validated using a
testbed and evaluated using ns-3 [52]. Further the work in [51] was extended
in [53, 54]. [53] proposed two ADRs, namely, Linear Regression-ADR (LR-
ADR) and Linear Regression +ADR (LR+ADR) at NS and ED sides, respec-
tively. The proposed schemes were compared to G-ADR. The simulation results
showed improved PSR.

Furthermore, [54] proposed Resource Management Adaptive Data Rate (RM-
ADR) based on the number of remaining UL transmissions, transmitted to the NS
in FHDR. In the RM-ADR, the NS is responsible for finding suitable SF and TP
configurations. The RM-ADR was compared to the typical ADR and G-ADR.
Their proposed method showed improved performance in PSR and convergence
period.
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2.4.6 Artificial Intelligence-Based Approaches

The scalability issue in LoRaWAN was studied for a health monitoring system
using human activity recognition [55]. The accelerometer data were collected
with labels and utilized by supervised machine learning approaches such as Lin-
ear Discriminant Analysis (LDA), Random Forest (RF), and K-Nearest Neighbor
(KNN) for classification. In addition, the authors considered a cross-validation
method while computing the feature vectors. As a result, the authors in [55]
claimed an activity recognition accuracy of 94.44% by LDA, 84.72% by RF, and
98.61% by KNN.

Authors in [56] proposed a load balancing (for the downlink traffic) method
by utilizing unsupervised, supervised, and Markov Decision Process (MDP) ma-
chine learning techniques. Their proposed methodology comprised of four pri-
mary stages, including pre-processing (i.e., cleaning of the data using min-max
scaling method), pattern analysis (such as principal component analysis for data
visualization and feature selection), classification (classifier selection), and decision-
making model. Through simulation results with 5000 EDs in a multi-cell envi-
ronment, the authors in [56] achieved 50% and 20% improved PSR and energy
consumption, respectively.

The collision problem was resolved by employing a decision tree classifier
(DTC) and support vector machine (SVM) to predict accurate SF for the subse-
quent transmission in an unconfirmed mode of LoRaWAN [57]. First, the dataset
was generated using a random SF assignment approach, where the packets were
classified as interfered, successful, and under sensitivity. Then, after the DTC
and SVM classifiers training, simulation was executed to predict the optimal SF.
When the trained model classified a packet as interfered, it increased the SF, while
no changes were suggested when a packet was classified as successful. Lastly,
when the trained model classified a packet as unsuccessful at the GW, the SF was
decreased.

Predicting the LoRaWAN behavior using machine learning was presented
in [58]. Their proposed work was divided into two parts: unsupervised learning
and prediction. Unsupervised learning was utilized for profiling EDs (i.e., cluster-
ing) through a well-known "K-Means" method. To perform profiling of the EDs,
authors in [58] considered two GWs within the range of the transmitting EDs.
Their profiling method aimed to group the EDs with similar transmission char-
acteristics (e.g., the same SF and same packet size, etc.). The DTC and LSTM
models were used to predict traffic patterns and showed improved performance.
However, the unsupervised clustering technique (i.e., K-Means) although is de-
sirable for classification in IoT due to its simplicity. However, it would be hard
to implement concerning the number of clusters required in such a dynamic en-
vironment of the LoRaWAN. Hence, the optimal cluster selection and accuracy
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analysis are highly application-specific in the grouping process using K-Means.
Paper [59] proposed a regression approach to predict the collision using ex-

tended Kalman filter-based (EKF) LSTM. The authors used the LSTM-EKF model
as the backbone based on a pre-trained conventional LSTM model. The primary
aim was to predict the future collision, where the LSTM-EKF model was com-
pared to the offline traditional LSTM model. The dataset was generated using
the LoRaSim simulator [60]. Results showed that LSTM-EKF produced better
results in terms of future collision prediction when compared to conventional
LSTM. However, no proactive solution was proposed to alleviate the collision by
allocating a suitable DR to EDs.

2.5 Summary

This chapter presented the difference between LoRa and LoRaWAN and the ADR
approaches in both confirmed and unconfirmed modes. Furthermore, existing ap-
proaches related to the resource assignment and enhancement to the typical ADR
approaches were presented in this chapter. Many of the existing solutions are
based on traditional approaches. However, recently, researchers have been mov-
ing to solve the resource allocation issue in the LoRaWAN by using AI methods.
As a result, the existing AI solutions show improved performance compared to
the traditional approaches.
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Chapter 3

Network Model and Problem Formulation

Many factors affect the performance of LoRaWAN, depending on the scenario
and underlying propagation environment. This chapter considers some assump-
tions and simplifications to acquire a reasonable model, leading to computation-
ally feasible simulations.

This chapter is organized as follows: Section 3.1 presents the assumptions and
constraints considered in the network model deployed in the network simulator
(ns-3). Section 3.2 highlights the key performance indicators utilized throughout
this dissertation for performance measurement of the proposed paradigms. Sec-
tion 3.3 presents the network model. Section 3.4 highlights the issues with ADR
and BADR of LoRaWAN in static and mobility scenarios, while last Section 3.5
presents some concluding remarks.

3.1 Assumptions and Constraints

In this section, some important constraints of the LoRaWAN considered in the
dissertation are highlighted.

3.1.1 Class A End Devices

This dissertation considers Class A EDs, where these EDs randomly choose UL
channels using the ALOHA channel access method. Class A EDs deal with sen-
sors and are primarily designed for LPWAN and IoT applications due to their
ultra-low energy consumption and bi-directional communication. EDs in Class
A, transmits UL packet to GW using six SFs ∈ [7, 8, 9, 10, 11, 12].

3.1.2 Frequency Region

The EDs follow the European frequency region (i.e., EU-868 MHz) with three
mandatory channels, that is, 868.1, 868.3, 868.5 in MHz. The reception paths at
GW for the three mandatory channels are shown in Table 3.1 [61]. Furthermore,
these reception paths are aligned according to the SX1301 datasheet to demodu-
late eight packets [16] concurrently.

3.1.3 Duty Cycle Constraints

The duty cycle (DC) is defined as the ratio of time an ED device is "ON" over one
hour, represented as a percentage. These restrictions apply to all EDs involved in
communication, except those with listen before talk (LBT) capability. Table 3.2
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Table 3.1: Reception paths distribution over the three mandatory channels in the
EU region at GW.

Channel Frequency [MHz] Distribution of receive paths
1 868.1 3
2 868.3 3
3 868.5 2

shows how a DC limitation adheres to a maximum ToA and a minimum allowable
delay time between subsequent packet transmissions.

Table 3.2: Duty cycle constraints.
Duty cycle Max ON time per hour Max ON time Min OFF time
≤ 1.0% 36 seconds 3.6 seconds 1.8 seconds
≤ 10% 360 seconds 36 seconds 3.6 seconds

3.2 Key Performance Indicators Utilized in Dissertation

This section presents key performance indicators, including packet success and
loss ratios (PSR and PLRs), convergence period, and energy consumption.

3.2.1 Uplink Packet Outcomes

The transmission of the UL packet can succeed or fail during communication for
a variety of reasons, which are explained below.

1. PSR: When the NS gets the UL packet (within the T xlimit = 8 available
transmission attempts). During PSR calculation, this study does not count
retransmitted packets as new packets.

2. PLR-I (Interference): It is calculated when multiple packets with the same
or different SFs (i.e., Inter- and intra-SF interferences [18, 27]) occur with
one another with no external interference from other technologies (e.g.,
IEEE 802.15.4, Wi-Fi, cellular etc.) is assumed, as described in [18, 61].

3. PLR-R (Reception paths): When the reception paths employed at the GW
are busy in receiving incoming UL packets from the ED.

4. PLR-S (Sensitivity): It is measured when an UL packet arrives at the GW
under the required sensitivity threshold (thresholds values at GW (Sg) and
ED (Se) are mentioned in Table 2.1 for each SF).
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5. PLR-T (Transmission priority): PLR-T occurs when an ongoing reception
of UL packet or incoming UL packet arriving at the GW is interrupted by
an ACK transmission [62].

3.2.2 Convergence period

Time required by the ED to realize a stable SF and PSR. The convergence period
is primarily dependent on the initial SF (which is set to 12 in the ADR), number
of EDs, and interval of the UL packet [20, 50, 51].

3.2.3 Energy consumption

Energy consumed by the EDs divided by the total number of successful recep-
tions (in the confirmed mode, a packet is termed successful when it receives a
corresponding ACK from the NS [63]).

3.3 Network Model

The network model utizilized in this dissertation is comprised of channel and its
performance models.

3.3.1 Channel Model

The channel model is comprised of link measurement, log-distance propagation
loss, building penetration loss, and correlated shadowing loss models.

3.3.1.1 Link measurement model

The link measurement model is mainly based on [61]. It considers the impact
of propagation on signal strength, small-scale fading and similar influences. To
estimate the received power (Prx) at the GW is given by

Prx =
Ptx×GED×GGW

L
eξ , (3.3.1)

where GED and GGW represent the ED and GW antenna gains, respectively, and
Prx is the transmit power, L is the path loss, eξ is the log-normal shadowing com-
ponent, i.e., ξ ∼ N(0, σ2), where µ=0 which is the mean captured in the L, and
α represents the depth of shadowing, which is the logarithm standard deviation.
Its value is dependent on the condition, i.e., 4< α <12. It shows that the signal
strength varies owing to the objects hindering the propagation path between the
ED and GW.
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Furthermore, eξ is a factor modeling the shadowing via a lognormal random
variable (or log-distance path loss) with ξ ∼ N(0, σ2). Writing (3.3.1) in the
logarithmic domain, with 10ξ log10e = 4.34ξ , it yeilds

Prx = Ptx +GED +GGW −L+4.34ξ . (3.3.2)

The path loss L in dB is the combination of both propagation loss (Lprl) and
building penetration loss (Lbpl). Lprl depends on the distance between ED and
GW, while Lbpl represents attenuation due to building walls, this yield

L = Lprl +Lbpl, (3.3.3)

In (3.3.3), L, Lprl , and Lbpl are computed in dB, respectively.

3.3.1.2 Log-distance path loss model

The log-distance path loss model is presented in (3.3.4).

Lprl(LOG)= 40×(1−4×10−3h)log10(R)−18log10h+21log10( f )+80, (3.3.4)

where d in km is the distance; h is the height of antenna in m mounted at GW, and
f represents the frequency measured in MHz. As an example, for frequency 868
MHz and a GW antenna of 15 m height, the Lprl is computed using (3.3.5)

Lprl(LOG) = 120.5+10×3.76log10R. (3.3.5)

Moreover, the path loss exponent (α) is another model parameter affecting
system performance. Typically, α is known; however, mostly, that is not the case.
In this dissertation, the value of α = 3.76 is computed concerning 15 m of the
antenna height, as shown in (3.3.6)

Lprl(LOG) = 120.5+10×3.76log10R+LogF. (3.3.6)

3.3.1.3 Building penetration loss model

A building penetration loss model based on COST 231 "non-line-of-sight" (NLOS)
is presented in (3.3.7).

Lbpl(LOG) = Lew +max(Lin,LOS,Lin,NLOS)−G f h, (3.3.7)

where Lew is the external wall penetration loss caused by the external walls
of the buildings. Lin,LOS and L(in,NLOS) are computed using equations (3.3.8) and
(3.3.9), respectively.
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Figure 3.1: Building penetration: (a) top view of the building and model parame-
ters for the LOS, and (b) side view of the building for NLOS.

Lin,LOS = lwi× kw, (3.3.8)

L(in,NLOS) = D×din, (3.3.9)

In (3.3.8), lwi represents the loss of signal strength in the ith internal wall that is
uniformly distributed between 4 and 10 dB (depending on the wall materials); and
kw is the number of internal walls separating the ED from the GW. For kw = 3,
15% of the EDs are assumed, while the rest of the EDs are equally distributed
among [0,1,2]. In (3.3.9), D is the penetration distance coefficient (i.e., 0.6 dB/m);
and din is uniformly distributed between [0,15] m range. G f h is the floor gain,
presented by (3.3.10) and (3.3.11), and shown in Figure 3.1.

G f h = n×Gn, (3.3.10)

G f h = n×Gh, (3.3.11)

where Gn is the gain of floor height (with an attenuation of 1.5 to 2 dB/floor and
applicable to 6 m); Gh is the height gain (with an attenuation of 1.1 to 1.6 dB/m)
and suitable for 4–5 m), and n is the number of the floor. This study takes into
account (3.3.10) case because (3.3.11) is only appropriate at a frequency of 1800
MHz.

3.3.1.4 Correlated shadowing model

The correlated shadowing generation model is mainly based on the decaying ex-
ponential of distance (i.e., distance-only model) [61].
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Prx(i, j)(di, j) = e−(
di, j
d0

)
, (3.3.12)

where Prx(i, j) is the measured received power at ED j transmitted by EDi,
d(i, j) is the distance among two EDs (shadowing correlation), d0 is a decorrela-
tion distance parameter, which is tunable and always greater than zero (d0 is set
to 110 m [64]). The shadowing values of EDs which are not closely positioned
on a vertex of the grid are interpolated using the exponential covariance function
(covariance is set to 6 dB [62]). Also, correlated shadowing in wireless commu-
nication is divided into two types, and its implementation details are described
in [61]:

1. When an ED transmits a packet to a GW, it is anticipated that the shadowing
experienced by the GW is correlated with shadowing disturbing any other
ED, which is "near" to it. This phenomenon is the d(i, j) and demonstrated
with an exponential function.

2. If two EDs transmit and are near to each other, the shadowing values are
expected to be correlated at the GW. This consequence is the site-to-site
cross-correlation.

This model captures the first case adequately, and to express the fact that a
GW "sees" two correlated shadowing values from adjacent EDs, the same shad-
owing map for every likely point in the grid is used. It is because nearby links are
frequently affected by similar shadowers; link losses can be correlated.

3.3.2 Channel Performance Model

The link performance model includes receiver (i.e., GW) sensitivity and interfer-
ence models.

3.3.2.1 Receiver sensitivity

Table 2.1 shows the required SF threshold sensitivities [16,17]. For both the EDs
and GW, the sensitivity decreases with an increasing SF. An ED can detect a
packet if the Prx is above the sensitivity level. In this dissertation, it is assumed
that the Prx of a packet is constant during the whole experimental period. If the
power is sufficient to start the decoding process, a packet is assumed to be de-
codable till the end of the reception. Lastly, it is assumed that if two weak signals
from the EDs arrive concurrently at the GW, they cannot be perceived as decod-
able even if the sum of their powers is above the sensitivity; this is because the
signals interfere.
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3.3.2.2 Interference model

In this dissertation, both Intra- and Inter-SF interferences caused due to the col-
lision of multiple packets with the same and different SF over the same channel
are presented. Furthermore, in this dissertation, external interference from other
wireless technologies is not considered. Based on these assumptions, the study
of interference focuses on how transmissions performed by different EDs, at dif-
ferent transmit power, and various SFs impact each other. To continue with in-
terference among Intra- and Inter-SF interferences, a Signal to Interference Ratio
(SIR) threshold matrix in [13] is shown in (3.3.13):

β(i, j) =


6 −16 −18 −19 −19 −19
−24 6 −20 −22 −22 −22
−27 −27 6 −23 −25 −25
−30 −30 −30 6 −26 −28
−33 −33 −33 −33 6 −29
−36 −36 −36 −36 −36 6

 (3.3.13)

The elements in βi, j represent the SIR margin (in dB), when a packet x trans-
mitted with SF(i) = 10, and another packet y transmitted with SF( j) = 10 can be
correctly decoded when the SIR is greater than βi, j, as shown in Figure 3.2. The
SIR is computed in (3.3.14)

SIR(x,y) =
Prc,0

∑k∈ly Prc,k
, (3.3.14)

where in (3.3.14), Prc,0 is a packet under observation, which is received at
the GW with sufficient power, k is the interfering packet and ly are the list of
interfering packets.
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Figure 3.2: Overlap time (Ct) of the two packets arriving at the GW (as an exam-
ple with same SF = 10).
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Packet under observation (Prc,0) is received correctly if the SIR is larger than
the threshold β(i, j). In contrast, a packet can be considered lost.

3.4 Problem Formulation

Resource management of LoRa-enabled devices deployed on a large scale is chal-
lenging due to the underlying propagation conditions. LoRaWAN supports an
energy-efficient ADR mechanism to manage the static device resources (i.e., SF
and TP). Semtech recommends using BADR for mobile applications, such as
pet-tracking. However, due to the sudden changes in the propagation environ-
ment, both ADRs cannot provide any appropriate measures to predict and con-
sider evasive measures to alleviate the massive packet loss that is caused due to
the inefficient SF adapted by the devices. Issues in both ADRs are illustrated in
the rest of this section.

3.4.1 Single mobile ED

Fig. 3.3 shows the trajectory of a mobile ED, received power, and distance from
the GW with a UL interval of 6 packets/h as suggested by the BADR for a pet-
tracking application [11]. Successful packet reception is mainly based on the GW
sensitivity corresponding to each SF. A packet that arrives with sufficient power
and exceeds the required sensitivity of each SF can be successfully decoded and
received. These required SF sensitivities are highlighted in Table 2.1, where Sg
and Se denote the sensitivities defined for each SF at the GW and ED, respectively.

In Fig. 3.3, the received power for every UL packet is shown in a circle. Fig.
3.3 (a) shows that 36 packets are transmitted toward the GW, and 29 packets are
received (PSR of 80%). The circles with red crosses denote PLR-S at the GW
with an SF of 7 and 10 when arriving under the required SF sensitivity (the total
packet loss recorded was 7). Simultaneously, Fig. 3.3 (b) shows a similar trajec-
tory for a mobile ED employing the ADR. In Fig. 3.3 (b), a circle represented
with a red cross shows a single packet loss recorded with an SF of 8 (the receiver
sensitivity for an SF of 8 is -132.5 dBm; however, the packet arrived with an
insufficient power of –134.5 dBm).

The primary aim when considering BADR is to lower the energy consump-
tion, which is realized as shown in Fig. 3.4. It is clear that the energy consump-
tion of a mobile ED employing the ADR and an SF of 12 with respective rates of
48.64% and 69.51% is higher than that in the case of the BADR. This is because
the energy consumption in LoRa is mainly dependent on the SF, TP, ToA, and
retransmissions [65, 66].
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Figure 3.3: Trajectory and received power at the GW of a single mobile ED during
6 h of simulation time.

3.4.2 Massive mobile EDs

The performance evaluation for the BADR under massive ED (N) conditions is
presented in Fig. 3.5. As shown in Fig. 3.5 (a), the BADR underwent PLR-S
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Figure 3.4: Energy consumption measured at a single mobile ED during 6 h of
simulation time.

because the packets arrived with insufficient power at the GW (in the cases an SF
of 7 and 10) under the condition of 100 EDs. The overall fractions of the PSR
and PLRs for the other EDs are shown in Fig. 3.5 (b).

Similarly, in Fig. 3.6 (a), EDs employing the ADR underwent PLR-I for the
initial 3 h owing to a higher SF (e.g., SF = 12), thereby resulting in a high ToA.
The ADR at the NS side changed the SF and TP after interpreting the UL history
of M packets. However, the ED movement could change the underlying envi-
ronment radically. Thus, the recent parameters can potentially be unsuitable for
the successful delivery of a packet to a GW, thereby leading to an increase in the
PLR-S as shown in Fig. 3.6 (a). Thus, retransmissions from the EDs are increased,
which in turn restrict the scalability of a LoRaWAN network [67].

The average energy consumption, as shown in Fig. 3.7, reveals that the BADR
is more energy-efficient when compared to the ADR and a static SF of 12. This
higher energy consumption in the case of the ADR (e.g., with a higher SF of >=
10) and a static SF of 12 results from the high ToA [68].
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Figure 3.5: Average PSR and PLRs for the BADR during 1-day experiment.

3.4.3 Findings in BADR and ADR

Based on the evaluation of the BADR and ADR, the following conclusions and
issues concerning them are elaborated:
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Figure 3.6: Average PSR and PLRs for ADR during 1-day experiment.

• BADR: It was observed that BADR underwent PLR-S because the ED
packets arrived at the GW with insufficient power, resulting in massive
packet loss. This situation occurs when the ED moves around the GW and
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Figure 3.7: Average energy consumption of BADR, ADR, and SF = 12 during a
1-d experiment.

transmits a packet arbitrarily using an SF (i.e., between 7, 10, and 12). For
example, an ED, far from the GW transmitting a packet with an SF of 7,
might not be received at the GW due to low signal strength. As a result,
the ED packet is lost, and retransmission occurs. Hence, this leads to a
significant PLR-S and increases energy consumption.

• ADR: This dissertation followed the ADR recommended by the LoRa server
[25, 26]. The simulation analysis revealed that ADRs were associated with
different PLRs, such as PLR-I and PLR-S. Furthermore, it was revealed
that the ADR involved significant energy consumption owing to high SF,
TP, ToA, and retransmission parameters [66]. Apart from these identified
issues, the authors in [50], and [69] claimed that the ADR involved a con-
siderable convergence period because of the time-consuming process of
changing the SF and TP values when using the ADR method.

To resolve the issues mentioned above concerning the BADR and ADR caused
owing to the inefficient use of SF and TP, this dissertation presents the three
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proposed resource allocation paradigms: reactive, proactive, and hybrid.

3.5 Summary

This chapter presented assumptions and constraints, key performance indicators,
and network models. These models are utilized in the subsequent chapters of
the dissertation to model the LoRaWAN network correctly in ns-3. Furthermore,
the issues with ADR and BADR were highlighted under static and mobility sce-
narios. The identified issues are resolved using reactive, proactive, and hybrid
paradigms in the subsequent chapters of the dissertation.
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Chapter 4

Reactive Resource Allocation
A reactive paradigm is based on responding to events (such as collision, interfer-
ence, and channel variations) after they have happened in the LoRaWAN network.
Reactive resource allocation include “Channel-Aware Spreading Factor Alloca-
tion (C-ASFA)", “Gaussian- and Exponential Moving Average ADR (G-ADR
and EMA-ADR)," as shown in Figure 4.1.

Reactive Paradigms

Gaussian-Adaptive 
Data Rate (G-ADR)

Exponential Moving 
Average-Adaptive Data 

Rate (EMA-ADR)

Channel-Aware 
Spreading Factor 

Assignment (C-ASFA)

Figure 4.1: Reactive resource allocation paradigms.

The remaining of this chapter is structured as follows: Section 4.1 presents
the proposed C-ASFA. Section 4.2 describes the proposed G-ADR. Section 4.3
highlights the proposed EMA-ADR, while Section 4.4 concludes this chapter.

4.1 Channel-Adaptive Spreading Factor Allocation

In a massive LoRaWAN network, only incrementing the SF can create a situa-
tion where most of the EDs switch their SF to higher values, resulting in a high
ToA and hence, a collision possibility [10]. Besides, the UL transmission be-
comes a bottleneck for dense LoRaWAN deployments, wherein the packet loss
rate increases with the high traffic load situation. As a result, the power depletion
of each ED causes a reduction of their battery lifetimes. The proposed channel-
adaptive spreading factor allocation (C-ASFA) approach comprises two phases:
increment SF in the case of ACK failure and decrement SF when ACK is suc-
cessfully received.

4.1.1 Increment SF

The proposed C-ASFA is based on a typical SF management scheme [2, 37],
which is triggered after the retransmission is initiated from the ED. When ACK
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is not received in either of the RXs by the ED, it increases SF for the next
UL packet. If ReT x_Le f t_CNT is a multiple of two, the proposed C-ASFA in-
creases the SF to a higher value to avoid further packet loss. However, in the
proposed C-ASFA, if any changes are detected to the SF, a counter, denoted as
SF_CHANGE_T RACK, keeps a count of the SF change.

4.1.2 Decrement SF

On the other hand, when ED receives ACK successfully, the proposed C-ASFA
increments a counter, ACK_CNT . If ACK_CNT reaches α, the network reliability
is satisfied. Furthermore, the SF_CHANGE_T RACK value is verified if greater
than zero. It shows that SF is higher than seven (MinSF < SF ≤ MaxSF ). There-
fore, it can be decremented, and the proposed C-ASFA lowers the SF further
to decrease the ToA when the channel is determined to be stable. The detailed
working of the proposed C-ASFA is presented in Algorithm 4.1.

4.2 Gaussian-Based Adaptive Data Rate

This section presents the scope and working procedure of the proposed Gaussian-
Based Adaptive Data Rate (G-ADR).

4.2.1 Scope of the Proposed G-ADR

The signal strength received at the GW can be thought of as a Gaussian distribu-
tion [70]. For example, It is shown through real-time experiments, and computer
simulations that the SNR received at the NS follow a Gaussian distribution using
SF 7 and SF 12, as shown in Figure 4.2 (a) and 4.2 (b), respectively. Therefore, a
Gaussian filter can be utilized to estimate the value of the SNR to accurately find
SF, TP, or both because these parameters are dependent on the SNR.

4.2.2 Working Procedure of the Proposed G-ADR

The steps involved in the proposed G-ADR scheme are as follows:

1. When the NS receives an UL packet with the ACK bit enabled in the frame
header of the ADRACKReq MAC command, the NS starts tracking the SNR
of the M received packets. The G-ADR algorithm is initiated by computing
the mean (µ) and variance (σ ) using (4.2.1) and (4.2.2) [71], respectively.

µ =
1
M

M

∑
i=0

SNRi, (4.2.1)
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Algorithm 4.1: Channel-adaptive SF allocation
approach.
Input : SF = 7∼12, m = 8, ED = i ∼ N, ACK_CNT = 32,

SF_CHANGE_T RACK = 6, α = 6 (ACK_CNT threshold)
Output: increase SF

1 At each uplink packet
2 if (is CONUL ?) then
3 ▷ it is a confirmed uplink transmission
4 if (is ACK failed ?) then
5 ▷ it is a confirmed uplink retransmission
6 if (is ReT xCNT (rem)%2 == 0 ?) then
7 SF = SF +1
8 SF_CHANGE_T RACK ++
9 else
10 Retransmit with current SF
11 end
12 else
13 ACK_CNT ++
14 if (is ACK_CNT % α == 0 ?) then
15 if (is SF_CHANGE_T RACK > 0 ?) then
16 SF_CHANGE_T RACK -
17 SF = SF−1
18 end
19 ACK_CNT = 0
20 end
21 Transmit with current SF ▷ ACK received
22 end
23 else
24 Transmit unconfirmed uplink packet ▷ it is

unconfirmed uplink transmission
25 end
26 getRandomChannel() transmitPacket() ▷ ED i transmits UL

packet

σ
2 =

1
M−1

M

∑
i=0

(SNRi−µ)2, (4.2.2)

where i is the number of packets.

38



- 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

Pro
ba

bil
ity

 de
nsi

ty 
of 

SN
R

S a m p l e  p e r i o d

 S i m u l a t i o n  ( S F  7 )
 T e s t b e d  ( S F  7 )

(a) PDF of SNR using SF7

- 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 2 5 3 0
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

Pro
ba

bil
ity

 de
nsi

ty 
of 

SN
R

S a m p l e  p e r i o d

 S i m u l a t i o n  ( S F  1 2 )
 T e s t b e d  ( S F  1 2 )

(b) PDF of SNR using SF12

(c) Deployment of two EDs with SF7 and SF12

Figure 4.2: The PDF of the SNR of M packets received at the network server
using real-time experiment and computer simulation.
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Algorithm 4.2: The proposed G-ADR scheme.
Input : TP = 2∼14, SF = 7∼12, M = 20, SNRreq, devicemargin
Output: SF and TP

1 Executed when NS receives M UL packets
2 a. mean of the SNR of M received packets
3 b. Variance (σ2)
4 c. Standard deviation (σ )
5 d. LowPassFilter (LPF) = (µ - σ ) and HighPassFilter (HPF) = (µ + σ )
6 for i← 0 to M do
7 SNR = getSNR(i)
8 if (SNR ≥ LPF and SNR ≤ HPF ) then
9 insert SNR into SNRlist

10 end
11 end
12 for i← 0 to SNRlist do
13 Sum
14 end
15 SNRm = Sum/ Size of SNRlist
16 ▷ Network server LoRaWAN ADR
17 1. SNRreq = demodulation f loor (current SF/DR)
18 2. devicemargin = 10 ▷ LoRaWAN default
19 3. SNRmargin = (SNRm - SNRreq - devicemargin)
20 4. steps = int (SNRmargin/3)
21 while (steps > 0 and SF > SFmin) do
22 SF = SF - 1
23 steps = steps - 1
24 end
25 while (steps > 0 and TP > T Pmin) do
26 T P = T P - 2
27 steps = steps - 1
28 end
29 while (steps < 0 and TP < T Pmax) do
30 T P = T P + 2
31 steps = steps + 1
32 end
33 NS transmits LinkADRReq

Now, the probability density function (PDF) is expressed as follows: [71]

f (SNR) =
1

σ
√

2π
e
−(SNR−µ)2

σ2 . (4.2.3)
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2. The proposed G-ADR accepts the centralized SNR values that lie within the
effective range of µ + σ and µ - σ . The SNR value is estimated by averaging
the values that are within the effective range.

3. Finally, the G-ADR obtains the SNR required (SNRreq, a demodulation thresh-
old based on the current DR, as shown in Table 2.1) and computes the SNR
margin (SNRmargin) and Nstep using (4.2.4) and (4.2.5) [20], respectively.

SNRmargin = SNRm−SNRreq(DR)−margindBm, (4.2.4)

Nstep = int
(

SNRmargin

3

)
. (4.2.5)

In (4.2.5), Nstep represents the number of times the algorithm is executed [20].
Furthermore, the detailed operation of the G-ADR method is described in Algo-
rithm 4.2.

4.3 Exponential Moving Average-Based Adaptive Data Rate

The scope and working procedure of the proposed Exponential Moving Average-
based Adaptive Data Rate (EMA-ADR) is presented in this section.

4.3.1 Scope of the Proposed EMA-ADR

In general, the SNR varies over time, even in a fixed environment, resulting in an
inaccurate SF and TP configuration [24]. The reasons why the SNR shows such
high variability in space and time include various noise factors, fading, interfer-
ence, and attenuation. The EMA for time-series data can be computed iteratively
as follows:

St =

{
Y1, t = 1
δ .Yt + (1 - δ ). St−1, t > 1

. (4.3.1)

In (4.3.1), Yt represents the current SNR value at time t, St denotes the value of
the EMA at any time t, and δ is a smoothing factor (0 < δ < 1). Note that a larger
value of δ reduces the level of smoothing, whereas a value of δ close to zero has
a greater smoothing effect and is less responsive to recent SNR observations.

Based on the assumption, an experiment was conducted by using EMA filter-
based smoothing of the SNR for several packets received at the NS through a
computer simulation, as shown in Figure 4.3. It can be seen that the smoothing
process reduced the spikes of the raw SNR values. Therefore, the EMA filter can
be utilized to resist the rapid changes occurring in the SNR of M packets owing
to the mobility of the EDs.

41



0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
- 4 0

- 3 0

- 2 0

- 1 0

0

1 0

2 0

3 0
SN

R

S a m p l e  n u m b e r

 E M A
 R a w  S N R

Figure 4.3: Example of smoothed SNR using EMA filter generated at ns-3.

4.3.2 Working Procedure of the Proposed EMA-ADR

The steps involved in the proposed G-ADR scheme are as follows:

1. When the NS receives the first two UL packets, the EMA-ADR is com-
menced.

2. The EMA starts smoothing the SNR values using (4.3.1). In this work, the
value of δ = 0.7 is chosen owing to ED mobility ( [72] uses δ = 0.5 for
indoor positioning).

3. The rest of the EMA-ADR operation is similar to G-ADR as shown in Al-
gorithm 4.3.

4.4 Summary

This chapter presented proposed reactive paradigms: C-ASFA, G-ADR, and EMA-
ADR. Reactive paradigms are responsible for dealing with SF and TP allocation
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Algorithm 4.3: The proposed EMA-ADR scheme.
Input : TP = 2∼14, SF = 7∼12, M = 20, δ = 0.7, SNRreq, devicemargin
Output: SF and TP

1 Executed when NS receives two uplink packets
2 for i← 0 to SNRlist do
3 SNRm = using (4.3.1)
4 end
5 ▷ Network server LoRaWAN ADR
6 1. SNRreq = demodulation f loor (current SF/DR)
7 2. devicemargin = 10 ▷ LoRaWAN default
8 3. SNRmargin = (SNRm - SNRreq - devicemargin)
9 4. steps = int (SNRmargin/3)
10 while (steps > 0 and SF > SFmin) do
11 SF = SF - 1
12 steps = steps - 1
13 end
14 while (steps > 0 and TP > T Pmin) do
15 T P = T P - 2
16 steps = steps - 1
17 end
18 while (steps < 0 and TP < T Pmax) do
19 T P = T P + 2
20 steps = steps + 1
21 end
22 NS transmits LinkADRReq

to EDs when NS observes issues. These approaches are implemented at the NS
side and activated when NS receives 20 UL packets from ED. After efficient SF
and TP parameters identification, NS transmits them in a downlink LinkADRReq
MAC command to the concerned ED. Upon the reception of LinkADRReq, the
ED adapts the recommended transmission parameters and transmits UL packets.
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Chapter 5

Proactive Resource Allocation

A proactive approach eliminates the issues in the LoRaWAN network before they
occur (e.g., collision and packets arriving under the required SF sensitivity due
to propagation environment). Reactive resource allocation include the “Mobility-
Aware Spreading Factor Allocation (M-ASFA)", “Retransmission Assisted Re-
source Management (R-ARM)," and Artificial Intelligence-Empowered Resource
Allocation Framework (AI-ERA), as shown in Figure 5.1.

Proactive Paradigms

Retransmission-
Assisted Resource 
Management (R-

ARM)

Mobility-Aware 
Spreading Factor 
Assignment (M-

ASFA)

Artificial Intelligence-
Empowered Resource 
Allocation (AI-ERA)

Figure 5.1: Proactive resource allocation paradigms.

The remaining of this chapter is structured as follows: Section 5.1 presents
the proposed M-ASFA. Section 5.2 describes the proposed R-ARM. Section 5.3
highlights the proposed AI-ERA framework, while Section 5.4 concludes this
chapter.

5.1 The Mobility-Aware Spreading Factor Allocation

The M-ASFA consists of two phases: (1) an initial SF allocation with traffic het-
erogeneity and (2) a mobility-aware SF Assignment (M-ASFA) to mobile EDs.

5.1.1 Initial SF Allocation with Traffic Heterogeneity

The SF assignment during the initial deployment is primarily based on [61]. First,
the Prx is computed for each UL transmission at the GW by assuming a time-
independent and symmetric link. Here, the channel uses the same path loss model
for UL and DL transmissions. Second, the lowest SF is allocated to the ED based
on the Prx that would be above the GW sensitivity (Sg). The Sg values for each SF
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Algorithm 5.1: Initial SF allocation with
traffic heterogeneity in the proposed M-ASFA.
Input : Sg = GW-sensitivity for each SF, SF = 7∼12, EDs = i∼N
Output: Assignment of SF to static and mobile EDs

1 for i← 0 to N do
2 Prx(i) = getRxPower() ▷ Prx at GW (i.e., a GW would

receive from ED)
3 if (Prx(i) > Sg) then
4 i = getSpreadingFactor()
5 PLi = getPacketLength()
6 if (PLi < PLth) then
7 No variation in SF of ED i
8 else
9 i = getHighestSpreadingFactor()
10 ▷ highest permissible SF, which can still

support the specified PL
11 end
12 else
13 i = SF 12 ▷ EDs are out of range
14 end
15 end

are presented in Table 2.1. This allocation method minimizes the ToA and reduces
the probability of collisions. However, a typical initial SF assignment approach
shown in [61] is not suitable for a scenario where EDs have heterogeneous traffic
with different PL, reliability, and mobility requirements. Thus, a third step (i.e.,
traffic heterogeneity) is added to restrict the biased SF allocation to the EDs based
on the PL. If the condition holds (i.e., PLNi < PLth; PLth [73]), ED can transmit a
UL packet with a specified PL. Otherwise, the proposed scheme assigns a suitable
SF to support the stated PL. The detailed procedure of the proposed method is
shown in Algorithm 5.1.

5.1.2 Mobility-Aware SF Assignment Scheme

The working of the M-ASFA is described in Algorithm 5.2. The M-ASFA exe-
cutes before an ED initiates a UL packet transmission at the ED side. At the time
of UL packet transmission, M-ASFA verifies the ED status (i.e., whether the ED
is mobile or static) by determining the distance between the current (x2, y2) and
previous (x1, y1) positions of an ED (i.e., d0), as shown in Fig. 5.2.

When d0 is known, the M-ASFA scheme verifies the condition by compar-
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Algorithm 5.2: Mobility-aware SF assignment in
the proposed M-ASFA scheme.
Input : Sg = GW-sensi-tivity for each SF, SF = 7∼12
Output: Allocating new SF to mobile EDs before transmission and

retransmission
1 At each uplink packet
2 compute d0
3 if (d0 ≥ α) then
4 ▷ ED i is mobile
5 compute Prx at GW for each transmitting ED
6 Prx(i) = getRxPower()
7 if (Prx(i) > Sg) then
8 i = getSpreadingFactor()
9 PLi = getPacketLength()
10 if (PLi < PLth) then
11 No variation in SF of ED i
12 else
13 i = getHighestSpreadingFactor()
14 end
15 else
16 i = SF 12
17 end
18 else
19 No variation in SF of ED i ▷ ED i is static
20 end
21 getRandomChannel() ▷ ED i obtains a random channel

from among R
22 R = number of available channels ▷ R = 3 (default

channels in the EU region)
23 channels = [1,...,R] ▷ shuffle channels
24 transmitPacket() ▷ ED i transmits UL packet

ing d0 with a pre-defined threshold (i.e., α=10 meters). The proposed M-ASFA
scheme considers the value of α as 10 m because the received signal strength
remains unaltered up to 40 m [74]. Therefore, this results in two alternative con-
ditions.

1. Condition 1: (d0 ≥ α): If the condition holds, it verifies that the ED is
mobile. Subsequently, M-ASFA measures Prx at the GW and allocates a
suitable SF such that Prx is higher than Sg, and the newly assigned SF can
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Figure 5.2: Detection of ED movement in the proposed M-ASFA scheme.

support the specified PL. After the SF selection, ED picks a random channel
(from among the three available channels in the EU region) and transmits
a UL packet (either confirmed or unconfirmed).

2. Condition 2: (d0 < α): The ED is considered static in this condition. There-
fore, static EDs transmit their UL packet with a previously allocated SF.

5.2 Retransmission-Assisted Resource Management ADR

A detailed overview of the proposed R-ARM ADR operating on the ED and NS
sides is presented in this section.

5.2.1 R-ARM at ED side

Algorithm 5.3 shows the detailed mechanism of the proposed R-ARM approach
on the ED side. The R-ARM is triggered at every UL packet transmission via veri-
fication of the status of each packet (i.e., a confirmed or an unconfirmed transmis-
sion) with either message type (mType) or ADRACKREq bit in the frame header
(FHDR). The proposed R-ARM uses mType, which was selected during the ED
deployment time by setting it as CONFIRMED_DATA_UP (for confirmed traf-
fic) or UNCONFIRMED_DATA_UP (for unconfirmed traffic) in the LoRaWAN
MAC header. When mType holds, the confirmed mode is verified such that the UL
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FHDR FPort FRM Payload

Application Data1 Byte7 to 22 Bytes

FCtrl (1 Byte)DevAddr (4 Bytes) FCnt (2 Bytes) Fopts (0-15 Bytes)

ADR | ADRACKReq | ACK | Fpending | 

FOptsLen

Short address Seq # Optional MAC Commands

X-position Y-position Retransmissions left (  )X- and Y-positions are transmitted in FHDR 

(only in the case of BADR)

Transmitted only in the 

case of proposed R-ARM

𝛾 

(4 Bytes) (4 Bytes) (1 Byte)

Figure 5.3: Modified frame header (FHDR) of the LoRa message for the proposed
R-ARM and BADR.

packet requires an ACK from the NS. Furthermore, the R-ARM implemented on
the ED side analyzes whether the ongoing packet is a new transmission or re-
transmission. This step can be verified in two ways:

(i) If the frame count (FCnt) contained in the LoRa message frames of the
ongoing packet and the previously transmitted packet is identical, then R-
ARM considers the current packet as a retransmission. Here, FCnt is a 2-
byte field in the FHDR, which shows the sequence number of the transmit-
ting packet as shown in Fig. 5.3.

(ii) A new transmission or retransmission can be verified by checking for an
ACK reception in the receive windows.

The proposed R-ARM utilizes FCnt to determine retransmissions conducted
(RxsCnt) at the ED. When packet retransmission is confirmed, RxsCnt is incre-
mented each time. This aids in identifying the number of remaining retransmis-
sions (γ). When γ is a multiple of 2, R-ARM computes the Prx by considering the
impact of the propagation loss and small-scale fading using an approach similar
to that presented in [18].

When Prx is obtained, it is compared with the GW sensitivity thresholds (Sg)
as defined in Table 2.1. The R-ARM approach assigns the lowest possible SF
(satisfying Prx > Sg) through the SetSF(index) function, where index denotes the
number of SF. Under this scenario, when stating the Sg threshold values, the SF 9
can be extremely low, whereas the GW can still receive a packet from the mobile
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ED when transmitted using an SF ∈ [10,11,12]. The R-ARM method selects the
lowest value (i.e., SF = 9) to minimize the ToA. Higher SFs are vulnerable to
interference owing to a higher ToA [29, 31–33, 75].

Next, to prevent a massive packet loss given retransmissions of mobile EDs,
γ was compared to a threshold α (i.e., α = 4). When γ and the SF are lower than
α and 12, respectively, the R-ARM increases the SF and allocates the TP. In this
study, R-ARM assumes the threshold value of α as four because retransmission
significantly increases energy consumption [76, 77]. When the ED receives an
ACK in any two receive windows, the ED continues transmission with the previ-
ous SF set via the NS. Finally, γ is encapsulated in the FHDR and transmitted to
the NS as shown in Fig. 5.3.

However, encapsulating γ in the FHDR can add 1 byte to the payload, thereby
increasing ToA, i.e., SF7 = 25.86, SF8 = 51.71, SF9 = 103.42, SF10 = 206.85,
SF11 = 413.70, and SF12 = 827.39 (in ms). It is noted that the BADR shares mo-
bile ED positions with the NS [11] as shown in Fig. 5.3. By sending ED positions
(in this study, the ED positions consist of 8 bytes, and the PHY/MAC header size
is 9 bytes), the ToA and transmission energy can be significantly increased. How-
ever, the proposed R-ARM omits sending ED positions to the NS to decrease the
ToA and extra energy consumption. Additionally, any energy-demanding local-
ization, such as a global positioning system (GPS), is not required.

5.2.2 R-ARM at NS side

Algorithm 5.4 presents the detailed mechanism of the proposed R-ARM approach
on the NS side.

When the NS receives a UL packet wherein ADRACKReq bit is enabled in the
FHDR, the typical ADR of LoRaWAN on the NS side is executed by considering
the maximum SNR value among the M packets to determine NSSF and NST P
parameters (line 3).

To further optimize SF and TP parameters, R-ARM recommends using two
Gaussian thresholds: low Gaussian and high Gaussian filter thresholds (LGT and
HGT ). These thresholds are dependent on two parameters: the mean (µ) and
standard deviation (σ ) of Prx [51]. The R-ARM uses Prx values that lie within the
effective range of µ + σ and µ - σ . The Prx associated with each received packet
at the NS is compared with thresholds of LGT and HGT , the resultant values
of Prx are stored in the received power list (RxPwList), and the average value is
computed (lines 9-17).

Furthermore, to prevent unnecessary retransmissions from mobile EDs, R-
ARM extracts γ from the FHDR and compares it to a threshold α . When the γ

condition holds (i.e., γ < α), R-ARM compares Prx to each value contained in Sg,
thereby resulting in the assignment of a suitable SF (such that Prx > Sg) (lines 18-
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Algorithm 5.3: Proposed ED-side R-ARM approach.
Input : ED = i∼N, index = SF 7∼ SF 12, α = 4, Sg = Table 2.1,

T xlimit = 8, T P = 14 dBm
Output: Spreading factor (SF) and transmit power (TP)

1 At each uplink transmission
2 if (mType == CONFIRMED_DATA_UP) then
3 ▷ it is a confirmed uplink transmission
4 if (RxsCnt > 0) then
5 ▷ it is a retransmission
6 ▷ R-ARM finds number of retransmissions

left (γ)
7 γ = (T xlimit - RxsCnt)
8 if (γ %2 == 0) then
9 ▷ R-ARM computes Prx as in [18]
10 if (Prx(i) > Sg) then
11 iSF = SetSF(index)
12 ▷ ED i transmits UL packet with the

assigned SF
13 end
14 else
15 if (γ < α and SF < 12) then
16 iSF = iSF + 1
17 iT P = 14 dBm
18 end
19 end
20 else
21 continue transmission with current SF ▷ ACK is

received
22 end
23 else
24 continue transmission when mType =

UNCONFIRMED_DATA_UP
25 ▷ it is unconfirmed uplink transmission
26 end
27 include γ in FHDR (as shown in Fig. 5.3)

22). At this stage, R-ARM indicates a satisfactory SF for an ED of i (iSF ), which
is compared to the NSSF determined by the typical ADR in the same interval
(lines 23-25). When this condition is true, the ED transmits the next packet with
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Algorithm 5.4: Proposed NS-side R-ARM approach.
Input : ED = i ∼ N, index = SF 7 ∼ SF 12, α = 4, Sg = Table 2.1, T P

= 2∼14 dBm, M = 20
Output: SF and TP

1 At each uplink packet reception
2 if (ADR == enabled) then
3 ▷ typical ADR finds NSSF & NST P
4 // R-ARM computes the following:
5 a. Standard deviation (σ),
6 b. LGT = (µ - σ),
7 c. HGT = (µ + σ),
8 d. and Prx.
9 for j← 0 to M do
10 if (Prx > LGT and Prx < HGT ) then
11 RxPwList.push_back(Prx)
12 ▷ RxPwList is a list, which contains Prx

values after applying Gaussian filters
13 end
14 end
15 // computing average
16 Prx = Sum for all element values in RxPwList/

RxPwList.size()
17 ▷ RxPwList.size() returns the number of

elements present in RxPwList list
18 ▷ extract γ from FHDR
19 if (γ < α) then
20 if (Prx(i) > Sg) then
21 iSF = SetSF(index)
22 end
23 if (iSF > NSSF) then
24 transmit SF to ED i
25 end
26 end
27 transmit NSSF and NST P to ED i
28 end
29 NS transmits LinkADRReq MAC command

newly identified parameters via R-ARM (i.e., iSF ). Otherwise, the ED sends the
next transmission with NSSF and NST P (line 27).
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GatewayNetwork server End devices

Figure 5.4: An example of the firmware update over the air (FUOTA) process in
LoRaWAN.

When the R-ARM execution is completed, the LinkADRReq MAC command
is transmitted to the concerned ED as unconfirmed (line 29). The unconfirmed
transmission of the MAC command suggests that the NS does not require an
ACK notification from the ED to lower the overhead and energy consumption.

5.2.3 Integration of R-ARM in LoRaWAN

Typically, to integrate the proposed R-ARM ADR on the ED in a real LoRaWAN
network, a firmware update process is required using a wired connection such as
serial communication. However, LoRaWAN comprises a large number of EDs,
which makes the firmware update process more challenging. Therefore, firmware
update over the air (FUOTA) can be utilized to update the firmware of the target
ED as shown in Fig. 5.4. The FUOTA is recommended by the STM, which is a
LoRa Mote maker [78, 79].

5.3 Design of the Proposed Artificial Intelligence-Empowered
Resource Allocation Framework

5.3.1 Scope of the Proposed AI-ERA Framework

In general, AI is a computational paradigm that provides systems with intelli-
gence, teaching them to operate, respond, and learn the same way as humans.
ML is an AI technique that enables artificial processes to learn from data and
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make decisions without being explicitly programmed. Additionally, ML perfor-
mance does not scale linearly with increasing data in volume and plateaus quite
quickly [80]. Furthermore, ML algorithms occasionally require storing all data
in memory, computationally impracticable in big data scenarios. Deep neural
network (DNN) is a class of AI algorithms modeled after biological nerve sys-
tems that perform representation learning through multi-layer transformations.
They generate output at each time step via recurrent connections between hidden
units [80]. The DNN is an Artificial Neural Network (ANN) approach, which
addresses these concerns that is effective in a variety of applications [81]. A sig-
nificant benefit of DNN is its ability to extract high-level characteristics automat-
ically from data with a complicated structure and internal relationships [82].

Furthermore, DNN is capable of dealing with enormous volumes of data
[83–87]. Wireless networks rapidly generate massive amounts of data (e.g., traf-
fic series with periodicities such as daily and weekly, traffic with different data
rates under different environments, channel variations, etc.). Due to the growing
number of AI applications in mobile and wireless networking [82], the crossovers
between these domains construct the scope of the proposed AI-ERA framework
for resource allocation to IoT applications.

5.3.2 AI-ERA Framework: Offline Mode

The offline mode of the proposed AI-ERA consists of two phases: preparation
and learning, as shown in Fig. 5.5.

5.3.2.1 Preparations Phase

In this phase, a raw dataset is generated by utilizing LoRaWAN module1 in the
ns-3 simulator. For example, to generate the training dataset shown in Fig. 5.5,
transmission was made between GW and EDs for ten days of simulation time,
where ED transmits 6 UL packets periodically every hour with SF7 to SF12 in
a group, G∈{UL1,..., UL6} in a confirmed mode without a retransmission mech-
anism. As an example shown in Fig. 5.6 (a), ACK failure is represented with
“0,” and successful ACK reception for each corresponding UL packet is marked
with “1" (in a confirmed mode, a UL packet is considered successful if ED re-
ceives ACK). Furthermore, the UL transmissions generated in G1 ∼ G6 are from
the same location and ED. The primary aim is to find the best SF based on the
propagation environment.

1https://github.com/signetlabdei/lorawan
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Preparation Phase (raw dataset generation using ns-3)

DNN model

Learning Phase
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Save the trained 

DNN model

Uplink history (6 samples)

Figure 5.5: Representation of offline mode for the proposed AI-ERA framework.

5.3.2.2 Best SF Selection

Based on the successful ACK reception, the lowest and best SF is chosen among
every G. For instance, SF9 and SF 11 are selected from G1 and G6, respectively,
as shown in Fig. 5.6 (a). However, in the case of ACK failure in any G, SF12
is assumed. Once the best SF is selected from each G, a total of 6 input samples
with essential features, including X- and Y-coordinates, received power (Prx), and
SNR is given as input to the DNN model, as shown in Fig. 5.6 (b).

5.3.2.3 Learning Phase

Once the preparation phase is completed, the learning phase is initiated, which
is further elaborated in Fig. 5.7. Once the dataset is pre-processed according to
the required UL history as input for the DNN model, it is divided into training
(80%), validation (10%), and testing (10%). To properly train the DNN model,
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Figure 5.6: Input features and data labeling: (a) best SF selection based on suc-
cessful ACK among 6 groups, and (b) input sequence with features including X-
and Y-coordinates, Prx, SNR and labeled SF.
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Figure 5.7: Learning phase of DNN model.

the proposed method utilizes 5 fully connected layers via the ReLu to update the
weight and biases. Finally, so f tmax is utilized at the output layer, responsible for
the classification of SFs. In multi-class classification issues, the so f tmax activa-
tion function is typically used at the last layer of a deep learning model to map
the outputs to a list of probabilities S = (S1, S2,..., SK) overall available classes,
mathematically represented as [88]

Sk = σ(z)k =
ezk

∑
K
j=1 ezk

for k = 1, 2,..., K, (5.3.1)

where K is the number of classes, Sk is the probability of the k-th class, and z =
(z1, z2,..., zK) represents the output of the layer before softmax activation function.

Furthermore, the DNN model during the training process is validated after
every 10th epoch and tested with 10% unknown UL history to evaluate the model
accuracy. This pre-trained DNN structure with the best hyperparameters is further
utilized as a backbone to suggest the best SF in the online mode.

5.3.3 AI-ERA Framework: Online Mode

Online mode refers to the process of classifying an appropriate SF with new data
without updating the model weights. The online mode is divided into two phases:
preparation and execution, as shown in Fig. 5.8.

1. Preparation Phase: This phase is responsible for managing the data re-
quired for the pre-trained DNN model (e.g., required features with a se-
quence of size 6 for each ED during communication). When ns-3 is exe-
cuted, EDs (e.g., static or mobile) transmit UL packets toward GW. The
input sequence of size 6 is gathered with required features (i.e., X-, Y-
coordinates, Prx, and SNR) at the time of UL packet without prior knowl-
edge of ACK status.
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Figure 5.8: Representation of online mode for the proposed AI-ERA framework.

2. Execution Phase:
When the sequence length reaches 6 for a particular ED, the execution
phase is commenced. The proposed AI-ERA waits only for the first 6 pack-
ets and then uses a sliding window afterward. At this stage, the input size
with required features is fed as input into the pre-trained DNN model to
classify a suitable SF for the subsequent UL transmissions. Once the pre-
trained DNN model classifies the SF, an ED (e.g., static or mobile) trans-
mits a UL packet with this new SF to the GW. Finally, the GW forwards
the received data to the NS for further processing, as shown in Fig. 5.8.

5.3.4 Computational Complexity of the Proposed Deep Learning Model

The proposed AI-ERA framework is implemented at the ED side. It can also be
deployed at the NS side; however, it will significantly increase the convergence
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period since it should wait for M (i.e., M = 20) UL packets received at the NS to
be activated. Therefore, the proposed AI-ERA framework was deployed at the ED
side to proactively classify a suitable SF before each UL transmission, starting it
as soon M reaches 20, increasing the probability of successful transmission with
classified SF. During the initial deployment, the AI-ERA framework utilizes SF
of 12, which has the highest ToA. With this high ToA, SF 12 is vulnerable to
high interference. The PLR at the GW increases the time to receive M packets at
the NS. Therefore, causing a convergence period (time required to reach a stable
SF and PSR). However, the choice of employing the AI-ERA framework at the
ED side can lead to excessive computational resources. Therefore, it can be a
compromise between the attained performance (e.g., enhanced PSR, ultra-low
energy consumption, and low convergence period) and computational cost.

5.4 Summary

This chapter presented three proactive paradigms, including M-SFA, R-ARM,
and AI-ERA framework, to deal with SF and TP allocation. Proactive paradigms
can resolve the SF and TP allocation problem more efficiently by resolving the
issues caused due to inefficient SF/TP in the network. Furthermore, the proac-
tive paradigms know the problem with SF and TP used by the ED. Therefore,
proactive approaches proactively allocate new SF/TP parameters to ED before
a problem occurs in the network, such as collision, interference, and/or packets
arriving under the required sensitivity at the GW.
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Chapter 6

Hybrid Resource Allocation

The primary aim of the hybrid paradigm is to fulfill the requirements of both
static and mobile EDs simultaneously. Therefore, a hybrid adaptive data rate was
proposed to dynamically assign physical layer resources to static and mobile EDs.

6.1 Hybrid Adaptive Data Rate

The operation procedure of the proposed HADR is shown in Fig. 6.1. There are
two primary steps involved in the proposed HADR: computing the distance be-
tween previous and current locations of the ED (d0) and ADR selection based on
the ED status (i.e., static or mobile).

is (d0 >α or < -α ?)

Input: 

X- and Y-

positions, α = ± 5 

Output: 

ADR selection 

based  on ED 

status (static or 

mobile) 

Yes

end

(BADR+ is 

initiated)

(ADR+ is 

initiated)
No

Finds 

d0

ED is mobile

ED is static

Figure 6.1: Operation procedure of the proposed hybrid adaptive data rate.

6.1.1 Computing d0

HADR checks by whether the ED involved in communication is static or mobile
at each UL packet transmission time. This step verifies the ED status (i.e., d0),
which is determined by finding the distance between the previous (x1, y1) and
current (x2, y2) positions of an ED. The proposed HADR chooses a threshold of
α = 5 m because the received signal strength remains unchanged up to 40 m [66].

6.1.2 ADR Selection

Based on the d0, HADR selects an appropriate ADR for the ED. When an ED is
classified as mobile, BADR+ is initiated at the UL transmission (TX), as shown in
Algorithm 6.1. The BADR+ is a slightly changed variant, where the ED transmits
packets sequentially (i.e., [SF7∼SF12]), as shown in 6.2. To resolve the retrans-
mission issue of the BADR, HADR utilizes a similar method, as shown in [22].
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Figure 6.2: Operation procedure of the proposed BADR+.

Algorithm 6.1: BADR+ at the end device.
Input : SF = 7∼ 12, β = 2, T xlimit = 8, T P = 14 dBm
Output: SF and TP

1 At each uplink transmission
2 if (T X == True) then

// starting SF = 7
3 Assign SF sequentially (see Fig. 6.2) instead

of [12, 10, 7]
4 else

// retransmission method
5 if (ReT x_CNT % β == 0 and SF < 12) then
6 SF = SF + 1
7 TP = 14
8 else
9 continue transmission with current SF

10 end
11 end

When ED fails to receive ACK, a retransmission counter (ReT x_CNT ) is incre-
mented. If ReT x_CNT is a multiple of β (i.e., β = 2) SF is increased by 1 to
regain connectivity [22].

In the case of static ED, the ADR+ manages both SF and TP (ADR is defined
by The Things Network (TTN) [50]), as shown in Algorithm 6.2. However, the
ADR was slightly modified by taking the average (AV G) of M UL packets to
smooth the SNR, which helps in identifying an efficient SF and TP.
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Algorithm 6.2: ADR+ at the network server.
Input : SF = 7∼ 12, TP = 2∼14 dBm, M = 20
Output: SF and TP

1 At each UL packet reception
2 if (ACK == enabled) then

// confirmed mode
3 1. SNRm = AVG(SNR of last M UL packets)
4 2. SNRreq = demodulation f loor (current DR/SF)
5 3. SNRmargin = (SNRm - SNRreq - devicemargin)
6 4. Nstep = int (SNRmargin/3)
7 while (Nstep > 0 and SF > 7) do
8 SF -= 1 and Nstep -= 1
9 end
10 while (Nstep > 0 and TP > 2) do
11 TP -= 2 and Nstep -= 1
12 end
13 while (Nstep < 0 and TP < 14) do
14 TP += 2 and Nstep += 1
15 end
16 end

6.2 Summary

This chapter presented a hybrid ADR to simultaneously allocate resource param-
eters to both static and mobile devices. The proposed HADR is implemented at
the ED side. When the HADR determines the ED status (i.e., static or mobile),
appropriate ADR is executed.
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Chapter 7

Experimental Results

In this chapter, the performance of reactive, proactive, and hybrid paradigms are
assessed comprehensively compared to state-of-the-art approaches. In this dis-
sertation, network simulator 3 (ns-3) is utilized. In addition, the module utilized
in this dissertation was the LoRaWAN1 by adding: (1) mobility environment,
(2) confirmed mode, (2) typical ADR and blind ADR protocols of LoRaWAN,
(3) LoRa modified FHDR for tracking application by including the X- and Y-
coordinates [11], and (4) the proposed reactive, proactive, and hybrid approaches.

The remainder of this chapter is organized as follows: Section 7.1 presents
the considered application along with key requirements. Section 7.2 describes
the simulation environment. Section 7.3 presents the performance of the reactive
approaches, comprising C-ASFA, G-ADR, and EMA-ADR. Section 7.4 evaluates
the proactive approaches, containing M-ASFA, R-ARM, and AI-ERA. Section
7.5 presents the performance evaluation of the hybrid adaptive data rate approach.
Finally, the last Section 7.6 presents some concluding remarks.

7.1 Application Scenario

This dissertation considers two IoT applications: smart grid (metering) [89–91],
livestock, and industrial asset tracking [92,93], suggested by Semtech and GSMA-
3GPP, respectively. A packet size of 30 bytes for electrical metering and industrial
asset tracking (both static and mobile) is considered in simulation, as shown in
Table 7.1. In the case of electrical metering, transmitting location information in
FHDR is not required. However, for industrial asset tracking, location informa-
tion needs to be sent in FHDR for tracking and monitoring purposes. Therefore,
the packet size of industrial asset tracking (i.e., 30 bytes) includes 8 bytes of lo-
cation information (i.e., X- and Y-coordinates are of size 8 bytes). Therefore, to
transmit location information of the ED, LoRa FHDR was modified, as shown in
Fig. 5.3.

Table 7.1: Applications requirements.
Application Suggested by Uplink interval Packet size Mode

Smart grid (metering) Semtech [11] 24 [per day] 30 [bytes] confirmed
Industrial asset tracking GSMA-3GPP [93] 24 [per day] 30 [bytes] confirmed

1https://github.com/signetlabdei/lorawan
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Figure 7.1: Initial network topology in the case of static EDs with N = 500.

7.2 Simulation Environment

This study considers both confirmed and unconfirmed modes in a single GW
scenario. The EDs are randomly deployed in a radius of 5 km. Under mobility
scenarios, EDs employ a random walk 2-D mobility model [94]. The study also
considers the random walk 2-D mobility model because the applications (i.e., in-
dustrial asset tracking) utilized in this dissertation are nomadic [93] in nature,
where the ED does not follow a pre-defined mobility path and ED always ran-
domly changes direction. During the initial deployment, SF = 12 is assigned to
the EDs as the initial SF in all schemes [50]. In some cases, the SFs to EDs
are assigned using initial-SF allocation (I-SFA), in the case of only the proposed
methods (G- and EMA-ADRs). The I-SFA method allocates SF during the ini-
tial deployment based on the GW SF sensitivity thresholds, as defined in Table
2.1. The initial simulation environments with SF = 12 and I-SFA deployment are
shown in Figures 7.1 (a) and 7.1 (b), respectively. The other parameters utilized
in the simulation are listed in Table 7.2.

7.3 Experimental Analysis of Reactive Resource Allocation

This section presents the analysis of the C-ASFA, G-ADR, and EMA-ADR.
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Table 7.2: Simulation parameters.
Parameter Description and Value

Path loss exponent 3.76
Path loss model log-distance

ED movement speed [m] 0.1∼1.0 ( [51, 66])
Mobility model random walk 2-D ( [51, 66])

Frequency region EU-868
UL channels [868.1, 868.3, 868.5] in MHz

with 125 kHz bandwidth
DL channel 869.525 MHz

For receive window 2 and DR0 only

7.3.1 Analysis of C-ASFA

Figure 6 presents the performance analysis of the typical and proposed channel-
adaptive SF schemes. As shown in Figures 6 (a) and (b), the SR generally de-
creases with many EDs joining the network in both schemes. Therefore, when an
ED does not receive an ACK, it transmits at low data rates after a few retrans-
missions. Owing to the higher ToA, the collision probability increases. When a
packet collision happens, the two EDs involved in the collision schedule a re-
transmission time imposed by the duty cycle restriction. In a massive LoRaWAN
network, a higher traffic load increases the chances of collision probability, and
most of the RW is missed due to the duty cycle limitations [8,38]. As a result,
more EDs with the SF management scheme transmit high SFs and cause more
congestion, and the network loses the advantage of orthogonality between differ-
ent SFs. However, the proposed channel-adaptive SF scheme increases the data
rate when ACK failures are reduced, thus lowering the SF and yielding a better
SR of up to 7.5% and 7.8% for Figure 6 (a) and (b), respectively. Furthermore,
the performance of both the SF approaches is lower in Figure 6 (b) than in Fig-
ure 6 (a). This is due to the signal strength being significantly decreased by the
building penetration losses, which results in a lower SR. In the case of an urban
environment, many EDs cannot reach the GW due to the unfavorable channel
that leads to a high packet loss. As these EDs stay active and cause interference
to the nearby EDs, the scalability of the LoRaWAN is retained. Another possibil-
ity is that the duty cycle limitations imposed by the LoRaWAN do not allow such
transmissions if the EDs reach the maximum allowed time.

7.3.2 Analysis of G-ADR and EMA-ADR

The performance of the G-ADR and EMA-ADR are examined in terms of the
convergence period, PSR, and energy consumption in both static and mobility
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Figure 7.2: The success ratio of the SF allocation schemes in the unconfirmed
mode under the condition of GW radius = 3410 m.

scenarios in a confirmed mode. In addition, the EDs choose a random speed of
between 0.5 to 1.5 m/s (in [95], 2 m/s is used for outdoor positioning) and change
direction after every 1000 m. Every ED transmits 24 packets/day during 4 days
of the simulation time

7.3.2.1 Convergence Period

The convergence period and PSR of static EDs during a simulation period of 4
days is shown in Figure 7.3. As indicated in Figure 7.3 (a), all schemes begin
transmission with SF = 12 and TP = 14 dBm. In Figures 7.3 (a) and 7.3 (b) both
typical ADR and ADR+ suffer from 20 h of converge period to reach a stable SF
and PSR. This convergence period verifies the typical ADR features, as described
in [50]. The primary reason for this high convergence period is that the frequency
of a typical ADR (NS-managed ADR) is entirely arbitrary, which is activated
after M UL packets. This is a time-consuming process and thus yields a high con-
vergence period. In general, an ED-managed ADR is intended to maximize the
flexibility of DL traffic, which is restricted by the duty cycle limitations imposed
by LoRaWAN. This helps the EDs to reestablish reliable communication links by
steadily increasing the value of the SF (SF < 12). This flexibility increases the
convergence period in the worst case, for example, when an ED employs a lower
SF than needed to successfully deliver a packet to the nearest GW.

In contrast, G-ADR follows a similar trend with a convergence period of 14 h
along with a better PSR when compared to both a typical ADR and ADR+ under
the static scenario, as shown in Figure 7.3. Moreover, EMA-ADR outperforms the
other schemes in the convergence period (i.e., 3 h) and PSR. As the reason for the
quick convergence, the EMA filter resists against the rapid changes in the SNR
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allocation with I-SFA (for G-ADR and EMA-ADR)

Figure 7.3: Convergence period and PSR of static EDs with N = 500.

of M packets and acts as a local averaging function. Thus, the proposed EMA-
ADR scheme achieves a higher PSR compared with typical ADR and ADR+, as
shown in Figure 7.3 (a). Figure 7.3 (b) presents another scenario in which G-ADR
and EMA-ADR are employed using the I-SFA scheme. There is no convergence
period when I-SFA is jointly utilized with G-ADR and EMA-ADR.

Figure 7.4 shows the convergence period and PSR of mobile EDs, where both
typical ADR and ADR+ require 15 h and 14 h, respectively, to converge to a
stable state. Further, in Figure 7.4 (a), Two types of convergence periods (in the
case of typical ADR and ADR+) are observed: the initial convergence period and
the convergence period caused by the mobility. The initial convergence period
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Figure 7.4: Convergence period and PSR of mobile EDs with N = 500.

occurs due to a high SF (all EDs initially start transmitting packets with SF =
12). However, after a short period of stability, the PSR decreases, and both the
ADR and ADR+ suffer from a convergence period. This convergence period is
caused when an ED is mobile and receives a new configuration (i.e., SF and TP)
from the NS; the propagation scenario could have been drastically changed [24].
Therefore, the SF and the link budget will no longer be valid, which results in
packet loss and massive retransmissions.

In Figure 7.4 (a), G-ADR and EMA-ADR take 16 h and 3 h for the initial con-
vergence period, respectively, but do not suffer a second convergence period un-
der a mobility scenario. Both of the proposed schemes employ filters, which helps
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Figure 7.5: Average PSR of static and mobile EDs (uplink period = 24 pack-
ets/day, total simulation time = 4 days).

reduce the convergence period and improve the PSR. As shown in Figure 7.4 (b),
both G-ADR and EMA-ADR use I-SFA as an initial SF assignment during de-
ployment. Unlike a static scenario, both the proposed G-ADR and EMA-ADR
with the I-SFA scheme have a convergence period of 13 h and 3 h. In the case of
G-ADR (with I-SFA), the mobility has a considerable impact on the convergence
period because the parameters newly modified by the NS (i.e., both SF and TP)
do not guarantee an efficient communication between the ED and GW. In such
a case, the propagation environment may change radically when an ADR com-
mand reaches the mobile ED, and the newly assigned parameters may no longer
be valid. Hence, a new packet from this ED with recently adopted parameters
can be lost due to the inappropriate SF and TP use. However, EMA-ADR (with
and without I-SFA) performs exceptionally well under the mobility conditions,
resulting in a reduced convergence period and high PSR.

7.3.2.2 Average Packet Success Ratio

The average PSR for a different number of static EDs is presented in Figure 7.5.
Here, Figure 7.5 (a) shows a decreasing trend in PSR with a growing number of
EDs in a confirmed mode. The declining tendency of PSR is due to high interfer-
ence among the SFs when the EDs are transmitted with a high SF [96]. Because
higher SFs are highly vulnerable to interference owing to the high ToA, they can
negatively influence the capacity of the communication channel [29–33]. Thus,
retransmissions from the EDs increase, causing significant congestion and mas-
sive packet loss. However, the proposed EMA-ADR with and without the I-SFA
scheme outperforms the other schemes in terms of PSR because EMA-ADR fre-
quently changes the SF and TP parameters by employing a low-pass filter and
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Table 7.3: PSR improvement for static EDs in percentage.
N ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

200 - 12.5 17.3 19.7 22.8 24.3
400 - 8.9 17.7 20.7 23.8 25.0
600 - 5.5 14.7 19.5 20.9 22.7
800 - 5.1 12.9 21.5 21.0 23.0

1000 - 3.1 11.2 20.5 22.5 25.0

Table 7.4: PSR improvement for mobile EDs in percentage.
N ADR ADR+ G-ADR G-ADR (I-SFA) EMA-ADR EMA-ADR (I-SFA)

200 - 12.3 28.2 30.8 29.5 31.9
400 - 9.8 21.6 24.6 23.6 27.8
600 - 7.4 12.5 16.0 15.0 19.7
800 - 4.5 7.3 11.2 9.4 13.6

1000 - 1.8 3.8 8.6 6.1 12.7

averaging function. In addition, for a similar scenario, as presented in Figure 7.5
(a), Table 7.3 shows the average PSR improvement for ADR+ and the proposed
schemes when compared to a typical ADR.

An analysis of the average PSR for a different number of mobile EDs is shown
in Figure 7.5 (b). The mobility of the EDs has a high impact on the PSR because
the mobility causes frequent changes in the topology, which influences the signal
strength between an ED and a GW. As a result, the link budget used at the pre-
vious location after the ED movement would no longer be valid (assuming that
the signal attenuation was applied at each ED). Thus, these EDs must alter their
SF due to the variations in the received signal strength. However, when the NS
changes the SF and TP (in a typical ADR and ADR+), these parameters are no
longer valid owing to ED mobility. As a result, a packet transmitted from these
EDs is lost because arriving under the sensitivity at the GW.

Another reason for this massive packet loss in Figure 7.5 (b) is due to the
saturated receiver. The GW can demodulate up to 8 packets simultaneously. If a
packet arrives at GW and there are no available receive paths, the packet is lost.
Furthermore, for a scenario similar to that in Figure 7.5 (b), Table 7.4 shows the
average PSR improvement for ADR+ and the proposed schemes when compared
to typical ADRs.

7.3.2.3 Average Energy Consumption

In general, the energy consumption of all schemes in the confirmed mode shows
an increasing trend as the number of EDs increases, as shown in Figure 7.6 (a).
However, the energy consumption of the proposed schemes is lower than that of
an ADR and ADR+ because of the small number of retransmissions. Another
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Figure 7.6: Average energy consumption of static and mobile EDs (uplink period
= 24 packets/day, total simulation time = 4 days).

cause of the low energy consumption of the proposed schemes is the higher PSR.
However, in typical ADR and ADR+, a number of the EDs transmit packets with
high parameters, including SF = 12 and TP = 14 dBm. As a result, the maxi-
mum number of packets is lost due to increased interference, resulting in EDs
retransmitting packets with higher settings. Therefore, high energy consumption
is observed in this case because the transmit energy consumption is primarily
based on the values of SF, TP, and ToA, and the retransmissions [97].

The average energy consumption is shown in Figure 7.6 (b). Overall, the en-
ergy consumptions of the proposed G-ADR and EMA-ADR (with and without
I-SFA) are lower because of the higher PSR. In general, the energy consumption
of all schemes shows an increasing trend as the number of EDs increases. When
a packet is retransmitted multiple times with a high SF and TP, it eventually in-
creases the energy consumption. In addition, when packets are transmitted with
higher SFs, it causes a high interference owing to the high ToA. Because higher
SFs are highly susceptible to interference, they can negatively affect the energy
consumption [29–33].

7.4 Experimental Analysis of Proactive Resource Allocation

This section presents the analysis of the M-ASFA, R-ARM, and AI-ERA.

7.4.1 Analysis of M-ASFA

M-ASFA is analyzed under confirmed and unconfirmed modes. Each ED trans-
mits λ = 48 packets during 48 h of simulation time, where 50% of the EDs are
mobile (for pet-tracking application). The rest of the simulation parameters uti-
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Figure 7.7: Average PSR of M-ASFA and ADR in confirmed and unconfirmed
modes.

lized in the performance analysis of the M-ASFA are the same as shown in Table
7.2.

7.4.1.1 Packet success ratio

Fig. 7.7 presents an analysis of the average PSRs of a typical ADR and the pro-
posed M-ASFA schemes. Fig. 7.7 shows how the PSR generally varies when the
offered traffic increases. In the case of the ADR in a confirmed mode (CON), the
performance is significantly lower than that of the proposed M-ASFA scheme.
The NS may not acknowledge the UL packet successful receipt by a GW due to
the GW duty cycle constraints. Furthermore, the curves in Fig. 7.7 (ADR CON
case) occur due to an extreme bottleneck caused by the unacknowledged pack-
ets. Therefore, the PSRCON is decreased. The unacknowledged packets increase
the UL transmission traffic load from the EDs, which causes massive retrans-
missions. Due to ACK failures, more retransmissions are required to transmit a
UL packet, which causes significant interference. The ACKs have priority over
UL packet reception due to the transmission priority of the GW, resulting in UL
packet loss, which, in turn, reduces PSRCON [47].

Meanwhile, the PSRUNC of ADR is higher than that of ADR in the confirmed
mode (PSRCON). Because the unconfirmed mode does not require DL ACK re-
sponse from the GW, DL capacity is saved using a half-duplex GW. This achieves
an improved PSRUNC. However, in ADR, EDs using unconfirmed packets may
periodically receive a DL ACK response from the GW after 64 UL packets by
setting ADRACKReq bit in the UL frame header [10, 98]. An ED generally ob-
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tains this confirmation response to validate its connectivity with the GW. When an
ED completes 64 UL packets transmission and does not receive any DL response,
the ED enables ADRACKReq for the subsequent 32 packets. In the absence of an
ACK response from the NS, the ADR on the ED side is triggered to increase
the SF (i.e., SF<12). However, the decreasing trend in 7.7, in terms of PSRUNC
is due to mobility. This mobility reduces signal strength; therefore, many EDs
could not reach the GW because of the unfavorable channel condition, resulting
in a high packet loss. These EDs stay active and cause interference in the nearby
EDs, thereby restricting the LoRaWAN scalability.

In the case of M-ASFA in the confirmed mode (CON), PSRCON also decreases
owing to the increase in the offered traffic. Nonetheless, a satisfactory PSRCON
of 90% is achieved with the offered traffic of 10,000 packets/day. The decreas-
ing trend in Fig. 7.7 of the PSRCON with the increase in the offered traffic is
caused by the duty cycle constraints of both ED and GW. Moreover, owing to the
transmission priority of ACK over UL at the GW, the UL packets from EDs that
arrive at the GW are lost. However, the proposed M-ASFA proactively responds
to ED mobility, and the SFs have been applied adaptively, resulting in improved
PSRCON . In contrast to a typical ADR, the M-ASFA scheme in the unconfirmed
mode achieves the highest PSRUNC. It fulfills the PSR requirement of all the ap-
plications by adapting a mobility-aware approach.

7.4.1.2 Convergence Period

Fig. 7.8 presents another scenario of per-hour PSRCON at an offered traffic of
3,168 (packets per day) for both M-ASFA and ADR. In Fig. 7.8a, M-ASFA sat-
isfies the minimum PSRCON requirements, whereas ADR fails to meet similar
needs. From Fig. 7.8 (a) The ADR requires 17 h of convergence period (rep-
resented with black line). This verifies the typical ADR features, as described
in [50]. The primary reason for this convergence period is the time required by
the NS, which monitors the M of the UL packets (i.e., M = 20). However, the
PSRCON fluctuates with time even after the convergence period. This is because
the ADR cannot adapt to the variable channel and mobility conditions. Con-
versely, M-ASFA follows a similar trend of PSRCON . Therefore, no convergence
time is required, as shown in Fig. 7.8 (a). M-ASFA adaptively assigns an optimal
SF before a UL packet transmission. Thus, M-ASFA achieves a higher PSRCON
compared with that of ADR.

Per-hour PSRUNC at an offered traffic of 3,168 (packets per day) for both
M-ASFA and ADR is presented in Fig. 7.8 (b). Fig. 7.8 (b) shows that ADR is
unable to converge to a stable PSR owing to the ED movement. The new SF
and TP do not guarantee the fulfillment of the mobile application requirements in
terms of PSR and reliability. As a result, the ADR fails to adapt itself to a reliable
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Figure 7.8: The per-hour of M-ASFA and ADR with offered traffic (O) [pack-
ets/day] = N × λ .

and energy-efficient state. On the other hand, in Figs. 7.8 (b), no convergence
period is observed because M-ASFA assigns the adaptive channel SF to the EDs,
PSRUNC is shown to be larger and satisfied with the minimum PSR requirement
of the pet-tracking application, compared with the PSRUNC in ADR.

7.4.1.3 Energy consumption

Figs. 7.9 (a) and 7.9 (b) show energy consumption of M-ASFA and ADR in the
confirmed and unconfirmed modes of communications, respectively. The cause
of the low energy consumption of M-ASFA is the higher PSR. However, in the
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Figure 7.9: Average energy consumption for M-ASFA and ADR.

case of ADR shown in Fig. 7.9 (a), when a mobile ED receives an ADR command
from NS containing a new configuration of SF and/or TP, the propagation envi-
ronment might have changed drastically. Therefore, the new configuration might
not be valid, which results in packet loss. This situation causes massive retrans-
mission, which results in a bottleneck at the GW. When a packet is retransmitted
multiple times with high SF and TP, it eventually increases energy consumption,
as shown in Fig. 7.9 (a). When packets are transmitted with higher SFs, it causes
high interference. As higher SFs are highly susceptible to interference due to the
high ToA, which can negatively affect energy consumption, as shown in Fig. 7.9
(b).

7.4.2 Analysis of R-ARM

This section presents detailed performance evaluation results of the proposed R-
ARM compared with typical ADR approaches. The constraints of the proposed
R-ARM and typical ADR approaches are listed in Table 7.5. The proposed R-
ARM two mobile IoT applications as suggested by Semtech [11] and GSMA-
3GPP [93]. Semtech in [11] introduced BADR and a pet-tracking application by
sending GPS coordinates to the NS for monitoring real-time locations. Simulta-
neously, GSMA-3GPP suggests that agriculture-livestock tracking applications
have different requirements compared to those of BADR. These application re-
quirements are listed in Table 7.6.

7.4.2.1 Packet success ratio

Fig. 7.10 shows the average PSR of the proposed R-ARM when compared with
typical ADR approaches. Generally, the PSR decreases for all the methods when
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Table 7.5: Constraints of the proposed R-ARM and typical ADR approaches un-
der confirmed mode with SF = 12.

Year Scheme ADR type Simulation environment
2017/2020 typical ADR of LoRaWAN [2] ED and NS sides static EDs

2018 ADR+ [21] NS side static EDs
2019 blind ADR (BADR) [11] ED side mobile EDs
2020 enhanced ADR (EADR) [50] ED and NS sides static EDs

- proposed R-ARM ED and NS sides mobile EDs

Table 7.6: Mobile applications under confirmed mode.
Application Suggested by Uplink interval [per day] Packet size [bytes]
Pet-tracking Semtech [11] 144 (for a single ED) 30

Livestock tracking GSMA-3GPP [93] 100 (for a single ED) 50

EDs increase. Thus, ED mobility affects PSR. Furthermore, given the changes in
the location of EDs, the propagation environment around the ED can potentially
be significantly altered when the ED receives a DL LinkADRReq command with
SF and TP configuration in the case of ADR, ADR+, and EADR. Therefore, a
packet with newly adapted SF and TP can not be successfully delivered to the
GW, thereby resulting in massive packet loss.

Additionally, Fig. 7.10 exhibits a higher network load of 6 packets/hour (in
the case of pet-tracking application), thereby leading to significant degradation
in PSR and impairing scalability (in case of ADR, ADR+, and EADR). In the
case of BADR, most of the transmitted packets that reach the GW are under
the required sensitivity. Thus, congestion occurs in this situation, which causes
massive PLR-S. Therefore, the proposed R-ARM performs significantly better
compared with typical ADR approaches by selecting the best SF based on the
number of retransmissions left regarding the GW sensitivity values.

7.4.2.2 Combined PSR and PLR of the proposed R-ARM

Figure 7.11 represents the probabilities regarding the transmission of the pro-
posed R-ARM for pet- and livestock applications. The sum of the probabilities of
PSR and PLRs is equal to 1 in all cases. It is evident that the number of transmit-
ted or retransmitted packets only contributes to either PSR or PLR.

7.4.2.3 Convergence period

Fig. 7.12 shows the convergence period with per-hour PSR for the proposed R-
ARM and typical ADR approaches at N = 500. ADR, ADR+, and R-ARM must
initially wait for 20 UL packets to change the SF and TP. Therefore, 13- and 14-
h convergence periods can be observed (in the pet-tracking application) for the
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Figure 7.10: Average PSR of the proposed R-ARM and typical ADR approaches.
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(b) Livestock tracking application

Figure 7.11: Probability of PSR and PLRs of the proposed R-ARM ADR during
the 1-d experiment.

ADR and ADR+, respectively. However, a livestock-tracking application requires
15 h and 16 h for the ADR and ADR+, respectively. For the ADR in livestock
tracking, the PSR varies more with time, even after converging to a state of sta-
bility. The ADR and ADR+ fail to adapt to the underlying propagation model and
mobility conditions.

As shown in Fig. 7.12, for converging to a steady-state in terms of the PSR, the
EADR requires 4 h and 5 h, respectively. It is observed that when the UL interval
is slower (in livestock tracking), the convergence period increases. In the case of
a high UL interval (e.g., pet-tracking), the NS can quickly receive M packets to
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Figure 7.12: Convergence period with per-hour PSR of the proposed R-ARM and
typical ADR approaches with N = 500.

determine the SF and TP. Additionally, EADR considers only M = 5 packets at
the NS side and thus outperforms the ADR and ADR+ because it quickly adapts
the SF and TP.

Conversely, BADR does not suffer from convergence by maintaining a stable
PSR (lower PSR) than the EADR. Additionally, BADR does not require time
to change the SF or TP and instead follows a fixed blind pattern (i.e., SF ∈ [7,
10, 12]). The fixed and blind pattern can lead to packets arriving under the GW
sensitivity at a lower SF. Conversely, the proposed R-ARM adaptively allocates
the SF at the ED and NS sides and provides a stable PSR without a convergence
time. Thus, the R-ARM realizes a higher PSR when compared to typical ADR
approaches.

7.4.2.4 Energy Consumption

It is observed that the energy consumption of R-ARM is stable and lower irre-
spective of the number of mobile EDs, as shown in Fig. 7.13. However, increases
in the energy consumption pattern for typical ADR approaches are observed with
increases in EDs and UL intervals. The packets are transmitted with SF = 12
and TP = 14, increasing interference (owing to a high ToA). Furthermore, the lost
packets are retransmitted with similarly high SF and TP values. Therefore, higher
energy consumption in a typical ADR approach is observed given that transmis-
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sion energy consumption is mainly dependent on the SF, TP, ToA, and many
retransmission attempts [66]. Another reason for this high energy consumption
is that the ED moves away from the GW and may not receive an ACK in RX1.
Therefore, the ED opens RX2, thereby resulting in additional energy consump-
tion.
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Figure 7.13: Average energy consumption.

7.4.2.5 Fraction of end devices utilizing SF

Tables 7.7 and 7.8 show the fraction of the EDs utilizing final SF for pet- and
livestock-tracking applications, while N = 1000. Evidently, in a massive Lo-
RaWAN network, static ADRs can result in a situation where most of the EDs
switch to the highest SF. This, in turn, increases the collision probability [10,99].
A similar situation is observed for the static ADRs in Tables 7.7 and 7.8 with most
of the EDs utilizing SF7 and SF12. The underlying mobility environment changes
with ED movement, and the static ADRs cannot adapt to the channel conditions.
However, the proposed R-ARM ADR proactively assigns a stable and suitable
SF concerning the Prx and γ at the ED side. However, at the NS side, R-ARM
assigns the best SF by utilizing the two thresholds of Gaussian filter on Prx in
conjunction with γ . Therefore, the utilization of a lower SF can result in fewer
collisions [100].
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Table 7.7: Fraction of the EDs (in percentage) utilizing SF in pet-tracking appli-
cation with N = 1000.

Spreading factor ADR ADR+ EADR BADR R-ARM
SF 7 34 29.2 27.7 48.8 55.1
SF 8 1.7 2.9 4.6 0 18.1
SF 9 1.9 2.7 4.2 0 14.5

SF 10 1.4 1.5 3.6 34.7 8.4
SF 11 1.4 1.4 3.2 0 2.5
SF 12 59.6 62.3 56.7 16.5 1.4

Table 7.8: Fraction of the EDs (in percentage) utilizing SF in livestock-tracking
application with N = 1000.

Spreading factor ADR ADR+ EADR BADR R-ARM
SF 7 40.5 36.6 30.8 49 55.5
SF 8 4.4 4.3 8 0 16.5
SF 9 3.1 3.4 7 0 14.9

SF 10 1.7 2.3 6.1 34.1 7.8
SF 11 1.5 1.3 5.3 0 3.6
SF 12 48.8 52.1 42.8 16.9 1.7

7.4.3 Analysis of AI-ERA Framework

In the case of AI-ERA framework, two IoT applications: electrical metering [89–
91], and industrial asset tracking [92, 93] with requirements shown in Table 7.1
are considered.

7.4.3.1 Evaluation of AI-ERA Framework in the Offline Mode

The AI-ERA framework model performance and confusion matrix are shown
in Fig. 7.14. The model accuracy was recorded as 85%, as shown in Fig 7.14
(a). In Fig 7.14 (a), The accuracy and validation are increasing, and the loss is
decreasing with the increasing number of epochs. The AI-ERA learns the pattern
quickly and reaches good performance by efficiently predicting SF. Furthermore,
the confusion matrix is shown in Fig 7.14 (b) shows the individual SF correct
prediction.

Based on the performance of the model accuracy in the offline mode, the
trained model was saved and thus will be utilized during the online mode to clas-
sify SF. Therefore, the proposed AI-ERA framework enhances the performance
during the online mode owing to the best SF selection, reducing the chances of
collision, interference and mitigating SF selection that can go under the required
sensitivity threshold.
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Table 7.9: Parameters and hyper-parameters utilized in the offline phase.
Parameter Value

Features 4
Python library PyTorch: 1.9.0

GPU NVIDIA GeForce GTx 1050 Ti
Learning rate 0.0001
Hidden layers 5

Activation function fully connected ReLu
Optimizer Adam

Loss function corss-entropy

7.4.3.2 AI-ERA Framework Analysis in the Online Mode

The pre-trained DNN model was trained using GPU; however, it uses CPU for SF
classification when utilized in the online mode. Therefore, the proposed AI-ERA
is lightweight.

7.4.3.3 Packet success ratio

Fig. 7.15 shows the PSR, where the PSR decreases for all approaches with in-
creasing EDs. The PSR decrease in the static scenario is due to the interference
caused by Intra- and Inter-SF interferences. However, The PSR of BADR in both
scenarios is static due to the use of only SF7, 10, 12.

The impact of PLR is higher in the mobility scenario compared to the static
scenario. It is because ED mobility affects PSR. When ED moves around GW, the
propagation environment changes dramatically. When ED employing ADR and
GADR receives a DL LinkADRReq MAC command with newly configured SF
and TP, a packet transmitted with these parameters can no longer be of assistance,
causing packet loss.

Compared with typical ADR approaches, the proposed AI-ERA performs
significantly better in static and mobility scenarios. The reason behind such an
outstanding performance is that the DNN model learns the features for best of
selection in the offline mode, thereby providing better SF classification for the
transmitting ED before each UL transmission when utilized in the online mode.
Thus, this proactive behavior of the AI-ERA framework reduces the chances of
interference, resulting in improved PSR by 13% and 12% in static and mobility
scenarios, respectively, when compared with ADR.

7.4.3.4 Packet loss ratios (PLRs) of the Proposed AI-ERA Framework

Figure 7.16 represent the ratios of PSR and PLRs. Generally, the ratio of PSR
and PLRs is equal to one. Thus, the amount of sent or retransmitted packets con-
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Figure 7.14: Model performance during the offline mode.

tributes exclusively to either PSR or PLR.
As shown in Fig. 7.16 (a), AI-ERA is performing exceptionally well in terms

of PLR-S under the static scenario owing to its proactive behavior of the online
mode, classifying appropriate SF before UL packet transmission based on a se-
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Figure 7.15: Analysis of average packet success ratio.

quence of size M (i.e., past 20 UL packets). Therefore, the static ED successfully
delivers a packet with an adequately higher sensitivity than that is required. How-
ever, a small fraction of PLR-S is observed for the proposed AI-ERA framework
due to a suitable SF classification.

On the other hand, in Fig. 7.16 (b), the impact of PLR-S is a little higher than
that of static scenario owing to the ED movement. The ED movement causes dras-
tic changes in location, Prx, and SNR, resulting in an inaccurate SF classification
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Figure 7.16: Probability of PSR and PLRs for AI-ERA framework.

owing to the overfitting problem.

7.4.3.5 Energy consumption

Fig. 7.17 shows the energy consumption, where the energy consumption trend
increases for all approaches with increasing EDs.

(i) Static Scenario: The energy consumption of the proposed AI-ERA is
much lower compared to the state-of-the-art ADR approaches, as shown in Fig.
7.17 (a). It is due to the proactive behavior of efficient SF selection at UL packet
transmission. This behavior reduces the number of retransmissions. Another cause
of the low energy consumption of the proposed AI-ERA is the higher PSR com-
pared to other ADR approaches. Thus, the proposed AI-ERA outperforms state-
of-the-art ADR approaches in the best SF classification for EDs and significantly
reduces packet loss.

However, EDs employing ADR and GADR transmit packets with relatively
high communication parameters (i.e., SF-12 and TP=14 dBm), resulting in mas-
sive packets owing to high interference. These lost packets are retransmitted with
the same high communication parameters, increasing energy consumption. It is
because the energy consumption of packet transmission is mainly based on SF,
TP, ToA, and retransmissions parameters [68]. The energy consumption of BADR
reveals that it is more energy-efficient when compared to the typical ADR and
GADR.

(ii) Mobility Scenario: It is observed that the energy consumption of AI-
ERA is lower compared to state-of-the-art ADR approaches, as shown in Fig.
7.17 (b). Since the SF selection in AI-ERA is based on prior knowledge, resulting
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Figure 7.17: Analysis of energy consumption in Joules.

in suitable SF classification. As a result, retransmission is significantly reduced,
a primary reason for excessive energy consumption.

However, the energy consumption of ADR and GADR is increasing signif-
icantly. In the case of ADR and GADR, when a mobile ED receives an ADR
command containing communication parameters (i.e., SF and TP) from NS, the
propagation environment might have changed dramatically. Therefore, the new
configuration might not be valid, resulting in packet loss. This situation causes
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massive retransmission, creating a bottleneck at the GW. Thus, forcing ED to re-
transmit the lost packets with the same high transmission parameters increases the
energy consumption, eventually. Furthermore, because higher SFs are highly sus-
ceptible to interference, they can negatively affect the energy consumption [33].
Furthermore, in a mobility scenario, ED migrates from one location to another,
causing failure of ACK reception in RX1. Therefore, the ED opens RX2 with
SF12, causing further energy consumption. In contrast, the primary aim of the
BADR is to lower energy consumption, which is realized as shown in Fig. 7.17
(b). Thus, BADR outperforms typical ADR and GADR in terms of energy con-
sumption.

7.4.3.6 Convergence Period

Fig. 7.18 highlights the convergence period with per-hour PSR for the 24-h of
simulation time with N = 500 concerning static and mobile scenarios. The EDs
in all approaches begin UL packet transmission towards GW by employing SF12
with TP of 14 dBm, which is similar to that in [50, 51, 94, 101].

(i) Static Scenario: ADR and GADR must initially wait for M (i.e., M =
20) UL packets to be received at the NS before altering SF and TP. Therefore,
this waiting causes a convergence period of 12- and 15-h that can be noticed in
a static ED scenario for ADR and GADR, respectively, as shown in Fig. 7.18
(a). Both ADR and GADR are activated after M UL packets are received at the
NS. However, when a UL packet is lost, both ADR and GADR have to wait
longer since they start transmitting packets with SF12, which is susceptible to
high interference owing to high ToA [18, 94, 102]. Therefore, this is a tedious
operation, yielding a high convergence period.

Conversely, BADR suffers from a 7-h convergence period and then maintains
a stable PSR (lower PSR) than the other approaches, as shown in Fig. 7.18 (a).
Furthermore, BADR does not require time to alter the SF or TP. Instead, it follows
a predetermined blind pattern using SF ∈ [7, 10, 12]. The fixed and blind pattern
can lead to packets arriving under the required threshold at GW at a lower SF.

In contrast to other approaches, the proposed AI-ERA only suffers from a 3-h
convergence period in a static scenario, as highlighted in Fig. 7.18 (a). Although,
AI-ERA transmits packets with SF12 with TP of 14 dBm during the initial period.
It only waits for the first 20 UL packets (i.e., either received by the GW or lost)
at the ED side before adapting an efficient SF. Therefore, this efficient, proactive
approach of AI-ERA provides a stable PSR with only 4-h of convergence period,
resulting in a higher PSR.

(ii) Mobility Scenario: Under the mobility scenario shown in Fig. 7.18 (b),
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Figure 7.18: Analysis of convergence period in hours.

GADR suffers from 16-h, while ADR failed to converge in 24-h of simulation
time. This convergence time occurs while an ED is on the move and gets a new
configuration (i.e., SF and TP) from the NS; the propagation scenario may have
been substantially altered. As a result, the SF and link budget will be invalid,
causing packet loss and huge retransmissions. Furthermore, due to massive re-
transmissions, some packets are lost due to ACK transmission priority at GW.
In such a situation, the reception of a UL transmitted packet from ED gets in-
terrupted at GW. As a result, the incoming packets from ED are lost at GW,
increasing the wait time for the ADR and GADR to be initiated, causing a high
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convergence period.
However, the convergence period of BADR has drastically decreased to 4-

h. Eventually, a packet among SF ∈ [7, 10, 12] can be received at the GW. For
example, a packet lost with SF 7 at first try was lost, the next UL packet can be
transmitted with SF 10 since the retransmission mechanism for the BADR is not
explicitly defined in [11]. Therefore, the BADR blindly changes every ED SF for
each UL packet transmission.

In contrast, the proposed AI-ERA suffers from the same convergence period
(i.e., 6-h) under the mobility condition observed in a static scenario. Thus, it is
evident that AI-ERA having 85% of accuracy in the offline mode classifies SF for
every ED before UL packet transmission, yielding higher and stable PSR.

7.5 Experimental Analysis of Hybrid Resource Allocation

In this section, the analysis of the hybrid paradigm, namely HADR, is presented.

7.5.1 Analysis of HADR

Mobile EDs use Random Walk 2D mobility with a random speed between 2–4
m/s, as adapted in [94]. Both static and mobile ED transmit a UL packet every 10
minutes with a payload size of 30 bytes for a total simulation time of 24-h.

7.5.1.1 Packet Success Ratio

Fig. 7.19 depicts the average PSR of the proposed HADR when compared with
typical ADR and BADR approaches. In the mixed and static ED cases, ADR per-
forms better than BADR because of the low variations in the channel conditions.
In contrast, BADR shows improved performance in the mobility scenario only by
blindly transmitting with SF 12, 10, and 7. However, ED mobility affects the PSR
of ADR. In the case of ADR, when a DL LinkADRReq MAC command with new
SF and TP parameters arrives at the GW, the propagation environment surround-
ing the ED might be drastically affected. As a result, the parameters are no longer
helpful, resulting in packet loss owing to arriving under the required sensitivity
thresholds

Compared to ADR and BADR, the proposed HADR performs significantly
better by selecting the best SF using ADR+ for static EDs and blindly (without
requiring prior knowledge, such as SNR or received power) transmitting with SF
sequentially using the BADR+ for the mobile EDs. Thus, compared with typical
ADR approaches, the proposed HADR enhanced the PSR, achieving its primary
goal of PSR improvement in the mobility and mixed EDs scenarios, as shown in
Fig. 7.20.
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Figure 7.19: PSR of the HADR, BADR, and ADR under different ED conditions.
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Figure 7.20: PSR improvement in the proposed HADR.

7.5.1.2 Packet Loss Ratios

Fig. 7.21 depicts the packet success and loss ratios under mixed scenarios (i.e.,
50% of ED are static and 50% of the EDs are mobile). Generally, the ratios of
PSR and PLRs equal one. Thus, the amount of sent or retransmitted packets con-
tributes exclusively to PSR or PLR. In Fig. 7.21 (a), the ADR is primarily suf-
fering from PLR-I and PLR-S, and PLR-T when the EDs increase. The PLR-I
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Figure 7.21: Packet success and loss ratios under mixed end devices (50% static
and 50% mobile).

is caused due to high ToA when EDs transmit packets with SF of 12 during the
initial deployment. A packet transmitted with these new SF and TP parameters
arrives under the required threshold sensitivity at the GW, causing PLR-S. The
PLR-T impact is approximately similar to all ADR approaches when the lost
packets are retransmitted by ED (up to 7 times in the confirmed mode), increas-
ing the network load in the UL direction and causing a collision with ACK. In
the case of BADR shown in Fig. 7.21 (b), on average, 50% of the packets are lost
owing to arriving under the required sensitivity threshold when transmitted with
SF7 or SF10. Fig 7.21 (c) clearly shows that the proposed HADR resolves the
issue of packets arriving under the required sensitivity by utilizing BADR+ and
ADR+. Under a similar scenario, the final SF employed by the EDs is shown in
Table 7.10.
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Table 7.10: Final SF Utilization by the EDs in percentage for mixed end devices.

Approach SF7 SF8 SF9 SF10 SF11 SF12

ADR 53.0 9.6 7.0 5.8 13.0 11.6
BADR 53.4 0 0 27.2 0 19.4
HADR 9.6 8.4 7.2 6.8 21.0 47.0
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Figure 7.22: Average energy consumption in [J].

7.5.1.3 Energy Consumption

Fig. 7.22 shows an increase in energy consumption when the number of EDs is
increased. The energy consumption of BADR is higher than ADR in the case of N
= 100. With the increasing number of EDs, the energy consumption is gradually
increased in ADR due to interference caused by an unsuitable SF and multiple
retransmission attempts, thereby reducing the network scalability.

HADR utilizes ADR+ for static and BADR+ for mobile EDs. In the static ED
scenario, the NS adjusts the SF and TP by taking the moving average of the SNR
of the M packets, reducing the energy consumption. However, when mobile EDs
utilize BADR+, a packet can be retransmitted several times (up to 7 times in the
confirmed mode) if an ED is not in the GW proximity. In such a situation, the
retransmission mechanism in the proposed BADR+ can increase the SF (when
SF < 12) and allocate maximum allowed transmit power (i.e., TP = 14 dBm), at
the cost of high energy consumption.
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Figure 7.23: Convergence period of ADR, BADR, and HADR with N = 500.
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7.5.1.4 Convergence Period Analysis

ADR is activated after M UL packets are received at the NS. Therefore, waiting
for M packets cause a significant amount of convergence period up to 20, 23,
and 11 hours in static, mobility, and mixed scenarios, respectively, as shown in
Fig. 7.23. However, if a UL packet is lost, the ADR has to wait longer since it
starts sending packets with SF12, which is susceptible to high interference ow-
ing to high ToA [18, 94, 102]. Therefore, this is a tedious operation, yielding a
high convergence period. Conversely, BADR suffers from 6, 3, and 6 hours of
convergence period and then maintains a stable PSR (lower PSR) than the other
approaches, as shown in Fig. 7.18. Thus, the proposed HADR does not suffer
from a convergence period in contrast to other approaches. Furthermore, the de-
tailed convergence periods of all approaches in hours for static and mobile EDs
are highlighted in Table 7.11.

Table 7.11: Convergence period in hours of ADR, BADR, and HADR with N =
500.

ADR BADR HADR
static mobile mixed static mobile mixed static mobile mixed
20 23 11 6 3 6 0 0 0

7.6 Summary

This chapter presented extensive simulation results of the proposed reactive, proac-
tive, and hybrid paradigms. Through ns-3 simulation experiments, the proposed
paradigms were extensively analyzed compared to typical ADR and state-of-the-
art ADR approaches. As a result, the proposed paradigms significantly enhanced
the PSR and reduced the energy consumption and convergence period.
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Chapter 8

Conclusions and Future Directions
8.1 Conclusions

Resource management of LoRa-enabled devices deployed on a large scale is chal-
lenging due to underlying propagation conditions. LoRaWAN supports the ADR
mechanism to manage the device resources, such as SF and TP. However, due to
the sudden changes in the channel conditions, ADR cannot consider any appro-
priate measures to predict and provide evasive measures to alleviate the massive
packet loss that is caused due to the unsuitable SF adapted by the devices. There-
fore, this dissertation resolved the massive packet loss occurring due to ineffi-
cient SF by reactive, proactive, and hybrid approaches. Through extensive ns-3
simulation experiments, the proposed methods were compared to state-of-the-art
methods. It was shown that the state-of-the-art methods suffer from a high con-
vergence period owing to the time-consuming process and poor adaptation of the
SF. Furthermore, it was observed that owing to the high convergence period, the
state-of-the-art methods suffered from a high packet loss ratio and high energy
consumption.

In contrast to the state-of-the-art approaches, the proposed methods adap-
tively assigned efficient resource parameters (e.g., SF and TP) to EDs. As a result,
the proposed methods improved the PSR by reducing retransmissions and packets
arriving under the required sensitivity thresholds. Furthermore, due to the assign-
ment of efficient resource parameters to EDs, the reactive, proactive, and hybrid
methods decreased energy consumption and the convergence period. Therefore,
these proposed methods are suitable for IoT applications (e.g., smart metering
and asset/livestock tracking) requiring reliability, low convergence period, high
PSR, and ultra-low energy consumption.

8.2 Future directions

1. The proposed AI-ERA framework achieved significantly better results by
efficiently allocating SF to ED. In the future, both SF and TP can be as-
signed to EDs simultaneously using the deep learning model (e.g., LSTM).

2. It was realized that the proposed AI-ERA framework at the ED side could
be computationally costly. Therefore, it is intended to utilize the AI-ERA
framework at the NS side in the future. As a result, the AI-ERA framework
can decrease the computational cost and energy consumption.

3. In the future, the proposed pre-trained AI-ERA framework can be deployed
in a real-world environment using a testbed.
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